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ABSTRACT

Along with the development of quantum communication protocols,
quantum extensions of process calculi have been explored together
with different notions of behavioural equivalence. Recent works
have shown that defining a bisimilarity that matches the obser-
vational properties of a quantum-capable system is a surprisingly
difficult task. Moreover, the two proposals explicitly addressing this
issue, namely qCCS and IqCCS, do not define an algorithmic verifi-
cation scheme: in order to prove the bisimilarity of two processes,
one has to compare their behaviour under any possible input state.
We introduce a new semantic model based on effects, i.e. probabilis-
tic predicates on quantum states that represent their observable
properties. We define and investigate the properties of effect distri-
butions and effect labelled transition systems (eLTS), generalizing
probability distributions and probabilistic labelled transition sys-
tems (pLTS), respectively. We give an eLTS-based semantics for a
minimal quantum process algebra, featuring concurrent and non-
deterministic behaviour, quantum measurements and unitaries, and
we prove that this semantics is sound and complete with respect to
the observable probabilistic behaviour of quantum processes. To
the best of our knowledge, ours is the first algorithmically verifiable
proposal that abides to the properties of quantum theory.

1 INTRODUCTION

Recent years have seen a flourishing development of quantum
technologies for computer science, in the form of quantum compu-
tation and quantum communication. Both of them exploit quantum
phenomena like superposition and entanglement: the former is in-
terested in harvesting the (supposedly) higher computational power
of quantum computers, while the latter strives to achieve secure
and reliable communication, featuring solutions for key distribu-
tion [30], cryptographic coin tossing [2], direct communication [27],
and private information retrieval [13]. Protocols like BB84 QKD [2]
are unconditionally secure [28], meaning that they are protected
against all physically possible attackers. Quantum communication
also promises to allow linking multiple computers via the Quantum
Internet [4, 34], therefore providing quantum algorithms with large
enough memories for practical applications.
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Despite the rich theory and the potential applications, there is
no accepted standard to model and verify quantum concurrent
systems and protocols. Numerous works [6, 11, 14, 24, 33] rely
on quantum process calculi, an algebraic formalism that has been
successfully applied to classical protocols and concurrent systems.
Their semantics is given by means of a labeled transition system
(LTS) (S, Act, —): the relation — C S X Act X S specifies how a
state s € S may evolve performing an action @ € Act. The standard
equivalence for such LTSs is bisimilarity, the largest relation on
states that is “stable” for —, meaning that bisimilar states evolve in
bisimilar states.

There have been several attempts [6-9, 23] to adapt existing
techniques to the quantum setting, mainly in terms of probabilistic
LTSs (pLTs) (Conf, Act, —), where Conf = H XS is a set of configu-
rations composed by a quantum state (an element of a Hilbert space
H) and a process, and — C Conf X Act X D (Conf) with D(Conf)
probability distributions of configurations. This approach led to
a plethora of different bisimilarities, yet most of them unsatisfac-
tory since they spuriously distinguish processes that are deemed
indistinguishable by the prescriptions of quantum theory [7, 12, 22].
Moreover, assessing bisimilarity of processes requires comparing
infinitely many LTSs (one for each possible quantum state). Indeed,
algorithmic verification is still missing. In [6], the root of these
problems is identified in the peculiarities of the semantic model
described above, a non-deterministic pLTS made of quantum states
and processes.

We propose effect labelled transition systems (eLTSs) as a novel
semantic model for non-deterministic and concurrent quantum
systems, generalizing pLTSs. In physics, effects represent the ob-
servable behaviour of quantum states, thus building on them allows
us to express the correct observable properties of more complex
structures, like effect distributions and eLTSs. At the same time,
effects encode probabilistic properties that are parametric with re-
spect to quantum states. We study effect distributions and eLTSs,
either generalising the known results on probabilistic systems when
possible, or proving they do not hold otherwise. We explore several
notions of bisimilarity and investigate their relation with the pre-
scriptions of quantum theory. We show that a Larsen-Skou-style
bisimilarity is indeed adequate for comparing quantum systems.

To assess our proposal, we define a minimal quantum process al-
gebra (mQPA) featuring actions, synchronisation, non-determinism,
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parallel composition, destructive measurements and unitary trans-
formations, and we enrich it with two different semantics: a stateful
Schrodinger-style semantics that given a quantum state as input re-
turns a pLTS representing the observable behaviour of the system;
and an Heisenberg-style semantics in the form of an eLTS that is
independent of the actual quantum input, in the style of [10, 19].
We prove that the Heisenberg-style eLTS is indeed the “symbolic”
version of the Schrodinger-style pLTSs of the same system. In a
nutshell, this means that we can prove bisimilarity just once on the
Heisenberg semantics, and have it automatically verified for all the
possible “ground” systems obtained by instantiating the quantum
input. Notably, our notion of bisimilarity can be efficiently verified
with standard techniques [21].

Synopsis. In section 2 we give some background about proba-
bility distributions and quantum theory. In section 3 we introduce
effect distributions and eLTSs, we investigate their properties and
compare eLTS bisimilarities. In section 4 we present our minimal
process algebra, enriched with both a stateful and a stateless se-
mantics, which are proved to coincide. Finally, we compare with
related works in section 5, and we conclude in section 6. The full
proofs of our results are postponed to the Appendix.

2 BACKGROUND

We recall some background on probability distributions, and we in-
troduce quantum computing. Finally, we present density operators,
modelling probability distributions of quantum systems. We refer
to [29] for further reading on quantum computing.

2.1 Probability Distributions

A probability (sub)distribution over a set S is a function A : § —
[0, 1] such that } ;g A(s) < 1. We call the support of a distribution
A, written supp A, the set {s € S | A(s) > 0}. We write DS for
the set of finitely supported distributions over S. We say that a
probability distribution A is total when } ¢ A(s) = 1.

For each s € S, we let 5 be the point distribution that assigns
1 to s. Given a finite set of non-negatives reals {p;};cs such that
Dier Pi < 1, we write Y ;5 pi - A for the distribution determined
by (Zierpi - M) (s) = Zier pidi(s).

Probability distributions form a convex set [3], meaning that for
any two distribution A, © and any real p € [0, 1] there exists a
distribution A ,® © defined as p- Ay + (1 - p) - A;. Given a function
f between convex sets X and Y, we call f convex if it preserves
the ,® operator, i.e. if f(x1 »® x2) = f(x1) »p® f(x2). We denote
as Conv(X, Y) the set of convex functions between X and Y.

2.2 State Space

A (finite-dimensional) Hilbert space, denoted as H, is a complex
vector space equipped with a binary operator (-|-) : H X H — C
called inner product, defined as (Y|¢) = X; a; i, where [/) =
(a1y...s ai)T and |¢) = (f1,. .. ,ﬁi)T. We indicate column vectors
as |) and their conjugate transpose as (| = |1//>T. The state of an
isolated physical system is represented as a unit vector i) (called
state vector), i.e. a vector such that (/|¢) = 1. The simplest example
of a quantum physical system is a qubit, which is associated with the
two-dimensional Hilbert space C2. The vectors {|0) = (1, 0T, 1) =
(0,1)T} form an orthonormal basis of C2, called the computational
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basis. Other important vectors in C? are |+) = \/ié(|0> + 1)) and
|-y = ‘/ig(|0) — |1)), which form the Hadamard basis.

Intuitively, different bases represent different observable prop-
erties of a quantum system. Note that |+) and |-) are non-trivial
linear combinations of |0) and |1), roughly meaning that the prop-
erty associated with the computational basis is undetermined in
|[+) and |-). In the quantum jargon, |+) and |-) are superpositions
with respect to the computational basis. Symmetrically, |0) and |1)
are superpositions with respect to the Hadamard one.

2.3 Unitary Transformations

For each linear operator A on a Hilbert space H, there is a linear
operator AT, the adjoint of A, which is given by the conjugate
transpose of A and is the unique operator such that (Y|A|¢p) =
<A%¢|¢>. A linear operator U is said to be unitary when UUT =
UTU = I In quantum physics, the evolution of a closed system
is described by a unitary transformation: the state |i/) at time f
is related to |¢’) at time #; by a unitary operator U, which only
depends on ty and t1, i.e. [¢') = U |¢).

In quantum computing, the programmer manipulates the state
of qubits by applying unitary transformations. Some of the most
common transformations on single qubits are: X that transforms
the qubit |0) into |1) and vice-versa (corresponding to the classical
logical not); Z that given |¢/) = « |0) + f|1) returns « [0) — S |1);
and H that maps |0) and |1) into |+) and |-), respectively.

0 1 1 0 11 1
=[] 2=l A =gl 2
2.4 Measurement

Quantum measurements are needed for describing systems that
exchange information with the environment. Performing a mea-
surement on a quantum state returns a probabilistic classical result
and either destroys or otherwise changes the quantum system. We
focus in this paper on destructive measurements.

The simplest kind of measurements are effects, i.e. yes-no tests
over quantum systems. A complex matrix A is called positive semi-
definite, shortly positive, when (/|A|y) > 0 for any |¢/). The Léwner
order is the partial order defined by A C B whenever B—A is positive.
Each effect can be represented as a positive matrix smaller than
the identity in the Lowner order. We denote the set of effects on
a d-dimensional Hilbert space as follows, where I; is the d X d
identity matrix.

&y ={Eec®™o,cEC],}

The probability of getting a “yes” outcome when measuring an
effect E on a state |)) is given by (Y|E|¢).

In general, a measurement with n different outcomes is a set
{E1,...Epn} of effects, such that the completeness equation .7 | E; =
T holds. If the state of the system is |i/) before the measurement,
then the probability of the i outcome occurring is p; = (Y| E; |).

As examples of measurements, consider Mp; and M. that project
a state into the elements of the computational and Hadamard basis
of C? respectively. The measurement My is defined as {]0X0[, |1X1]}
and Mz as {|[+X+, |-X-1}.
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Applying the measurement My; on |0) returns the outcome asso-
ciated with |0)X0| with probability 1. When measuring |+), instead,
the same result occurs with probability %

2.5 Composite Quantum Systems

We represent the state space of a composite physical system as the
tensor product of the state spaces of its components. Let H4 and
Hg be n and m-dimensional Hilbert spaces: their tensor product
Ha ® Hp is an n - m Hilbert space. Moreover, if {|y1), ..., [¥n)}
and {|@1),...,|dm)} are bases of respectively Hy4 and Hp, then
(i) ®|p;) | i=1....,nj =1,...,m}is a basis of Hy ® Hp,
where |/) ® |$) is the Kronecker product, defined as

X1,1 ct Xin X114 o XA
A=
Xma1 *°° Xmn xm,lA c xm,nA

We often omit the tensor product and write |/) |¢) or [/¢).

A measurement for a composite system may measure only some
of the qubits, e.g. {Eo ® I, E; ® I} measures (in the computational
basis) the first qubit of a pair.

A quantum state in Hy ® Hp is separable when it can be ex-
pressed as the Kronecker product of two vectors of H,4 and Hp.
Otherwise, it is entangled, like the so-called Bell states:

o) = %(IO@ ) @)= %(loo} )

+ 1 - 1
[e*) \/5(|01>+|10>) =) \/§(|01> 10)).

When two qubits are entangled, the evolution of one depends
on the transformations applied to the other. E.g. measuring the
first qubit of |CI>+> in the computational basis causes the second
qubit to decay into either |0) or |1) with equal probability, as will
be explained in the next section. Note that, this means that even
when performing a destructive measurement on a qubit, the state
of the remaining part of the composite system must be updated in
general, as the two components may be entangled.

2.6 Density Operator Formalism

The density operator formalism puts together quantum systems and
probability by considering mixed states, i.e. probabilistic mixture
of quantum states. A point distribution |¢_) (called a pure state) is
represented by the matrix |/X¢/|. In general, a total probability
distribution A of n-dimensional states is represented as the matrix
p € C™™ known as its density operator, with p = >\; A(Y;) Vi Xl

For example, the mixed state W ® m being |0) with probability

1/3
1/3 and in |+) with probability 2/3 is represented as
1 2 112 1
= [0X0| + = |[+X+| = =
1001 + 5 [++] 3[1 1

Given an n-dimensional Hilbert space, the density operators con-
structed in this way are all and only the positive matrices of trace
one. We denote such set as DM,

DMy ={peC®™|pa0y tr(p) =1}

Note that the encoding of probabilistic mixtures of quantum states
as density operators is not injective. For example, %]I is called the
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maximally mixed state and represents both the distribution A¢ =
loy 1729 1) and Ag = |+) 12® |-). This is a desired feature, as
the laws of quantum mechanics deem indistinguishable all the
distributions that result in the same density operator.

Density operators form a convex set, where the convex com-
bination operator is defined by p ,® o = pp + (1 - p)o. Density
operators and effects are dual, as effects are isomorphic to the con-
vex functions from the set of density operators to the probability
interval. The isomorphism is given by the so-called Born rule.

THEOREM 1. It holds that &f,, = Conv(DMy, [0, 1]) through the
isomorphism E — Ap. ir(Ep) [17].

Roughly, effects can be considered as probabilities parametrized
on an unknown quantum state.

Density operators can be used to describe the state of a sub-
system of a composite quantum system. Let Hap = Ha ® Hp
represent a composite system, with subsystems A and B. Given a
(not necessarily separable) pAB € H g, the reduced density operator
of system A, p? = trg(p4B), describes the state of the subsystem A,
with trp the partial trace over B, defined as the linear transformation
such that trg([Y Xy’ | ® [§X'[) = [¥Xy'| tr(|¢X¢’[). When applied
to pure separable states, the partial trace returns the actual state
of the subsystem. When applied to an entangled state, instead, it
returns a probability distribution of states. For example, the partial
trace over the first qubit of iCD+><<I>+| is the maximally mixed state.

The evolution of density operators is given as a trace preserv-
ing superoperator & : DM, — DMp,, a function defined by its
Kraus operator sum decomposition {E;}; for a finite set of indexes
i = 1,...,n X m, satisfying that E; € C™ " E(p) = 3; EipE;.‘-
and ; EjEl = [,. Superoperators can represent any unitary trans-
formations U as the superoperator &y having {U} as its Kraus
decomposition. The tensor product of density operators p ® o is
defined as their Kronecker product, and of superoperators & ® ¥
as the superoperator having Kraus decomposition {E; ® F;}; ; with
{Ei}i and {F;}; Kraus decompositions of & and 7.

In the final section of this paper we will employ sub-probability
distributions of pure states, thus leading to the notion of partial
density operators and trace non-increasing superoperators. To each
sub-probability distribution we associate a partial density operator,
belonging to the set

pDM,, = {peC™ | p a0y tr(p) <1}.

Transformations between such density operators are trace non-
increasing superoperators & : pDM, — pDM,,, having Kraus
operators {E;}; satisfying ; E;rEi C I,. We let SOy be the set of
non-increasing superoperators with input in pDM ;.

Trace non-increasing superoperators allow us to describe how
entangled systems change after a destructive measurement. Sup-
pose having a compound system associated to a Hilbert space
Hy ® Hp. If we measure only the A sub-system using the measure-
ment M = {Ey,...E,}, we can describe the transformation applied
by this measurement with superoperators. For each effect E; we
define the associated superoperator ME,:

M, (p) = tra((WE; ® 1p)p(\E; ® Ip))
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We have that, if the system was in a state p, after observing the i-th
measurement outcome the B sub-system will be in state Mg, (p),
which in general is a partial density operator, whose trace is exactly
the probability of observing the i-th outcome.

Superoperators gives us information on both the probability of
an outcome and how the state is modified. Thus, we can define also
the converse operation, introducing for each superoperator & its

associated effect
Eg =) EJEi
i
where {E;}; is any Kraus decomposition of &.

3 EFFECT-BASED MODELS

We generalize probability distributions and pLTSs to effect distribu-
tions and eLTSs, and we investigate which properties of probability
distributions can be lifted to the quantum case. We adapt the two
most used definitions of bisimilarity for pLTS to eLTS, namely, the
Aczel-Mendler and Larsen-Skou bisimilarities. Even if the two coin-
cide in the probabilistic case, this is not the case for eLTSs, and we
advocate for the latter being adequate for comparing the behaviour
of quantum systems. Finally, we define semantic operations over
eLTSs suited for modelling concurrent quantum systems, and we
study their limitations.

3.1 Effect Distribution

We introduce effect distributions, i.e. functions associating each
element of a given set X with some d-dimensional effect.

Definition 1. Given a set X, the set of d-dimensional finite effect
(sub)distributions over X is

QuX =D e &y | supp(D) is finite,  » D(x) Ty

xesupp(D)
where supp(D) is the set {x € X | D(x) # 04 }.

Effect distributions are finite non-normalized POVMs [17] and
they generalize probability distributions. More in detail, 1 X 1 posi-
tive matrices are isomorphic to real numbers, hence Q1 X coincides
with the usual set of probability distributions DX.

Since effects can be regarded as functions from states to proba-
bilities, an effect distribution © € Q;X denotes a function D| €
(DX)PMa associating any p € DM with the probability distribu-
tion D 5 such that D], (x) = tr(D(x)- p) for any x € X. Hence, an
effect distribution corresponds to the parameterized probabilistic
outcome of performing a finite destructive measurement on some
unknown input quantum state.

In particular, we have the following isomorphism (formally, a
convex set isomorphism).

THEOREM 2. Effect distributions correspond to all and only the
parameterized sub-probability distributions that are convex and have
an “overall” finite support.

adz{m e (D(x))PMs| Dlopoo= (D) p© (Dlo) }

Upepm, supp(Dlyp) is finite

PRrOOF SKETCH. We begin from the isomorphism between effects
and functions in Conv(DMy, [0, 1]), and we lift it in a point-wise
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manner to effect distributions, making them isomorphic to func-
tions in Conv(DMy, [0,1])X. Thus, we swap the arguments and
check both convexity and finiteness of the union of supports. O

We represent effect distributions as indexed sets of pairs D =
{x1 > E1,x2 > Ep,...,xp > E,} with possibly repeated x;, meaning
D(xi) = Xy,=x Ei. For example, {x > E1,x > Ez,y > E3} and {x >
Ej + Eo,y > Es} denote the same distribution. We let X € Q1 X be
the point distribution x(x) = 1.

Example 1. Let X = {x,y}. The effect distribution ® = {x>> % yD%}
is indeed a fair probability distribution, i.e. an effect distribution in a
1-dimensional Hilbert space.

A similar distribution on a two-dimensional Hilbert space is ® =
{x> %]L y> %I[}, associating x and y with the same probability once
an input quantum state is given.

Finally, given the quantum input p = % [oXo| + % |[+X+| and the
distribution T = {x > |0X0|, y > |1X1|}, the probability distribution
T, associates x with the probability % and y with 4—1.

As for probability distributions, we compose multiple effect dis-
tributions in an effect-weighted sum.

Definition 2. Given n effect distributions {D;};cr, and n effects
{Ei}ier such that ) ; E; T 1, the weighted sum of {D;};es with effects
{Ei}ier is an effect distribution

ZE,’ ® D; such that (Z Ei®D;

iel iel

(¥) = ) Ei @ Dyi(x)

iel

This composition results in a distribution on a Hilbert space of
dimension d - d’, and coincides with the usual weighted sum of
probability distributions if d = d’ = 1. Intuitively, D measures a
portion of the quantum state to choose between the distributions
D; (which in turn behave accordingly to the quantum state). We
will sometimes write E1 ® D1 + -+ E, ® Dy for 3 E; ® D;.

Example 2. Take ® and T of Example 1. The effect distribution
[+X+]| ® 6 + |[-X—| ® T can be rewritten as

1 1
{x> 5 [+X+ ® Ly > 5 [+X+ ® Lx > [-0X—0|,y > |-1X~1] }.

Intuitively, this represents the probabilistic outcome of applying the
following cascade of two measurement procedures to the input quan-
tum state: measure the first qubit over the Hadamard basis, if the qubit
is found in |+) then discard the second qubit and returns either x ory
with the same probability, otherwise measure the second qubit in the
computational basis and return x if you observe |0) and y otherwise.

In the probabilistic case, it is usual to consider just the binary
composition A ,® ©, defined as p - A + (1 - p) - ©. This is a safe
simplification as any finite probability distribution can be obtained
by repeatedly applying ,& over point distributions. Unfortunately,
this is not the case for effect distributions in general, as we show
in the following.

Definition 3. LetD @ T be the weighted sumE® D+ (I-E) ® T.

Some effect distributions with support bigger than two can be
defined by a nesting of @ expressions over point distributions.
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Example 3. The effect distribution over S = {x1,x2, X3, x4}
D = {x1 > [0+X0+], x2 > [0-X0—],
x3 B> [14X 1+, xq > [1-)1-[}

can be obtained as (x1 VAL X2) loxo0|® €2 [+ @ X1).

We define now the set of distributions that can be obtained
starting from point distributions and applying (an arbitrary number
of times) the binary operator @.

Definition 4. Given a set X, we let Q®X be the smallest family of
sets Q;BX C QuX such that Q¥ X containsx for any x € X, and, if

D,T e Q?X then® ;& T € de,X for any effect E € Efyr.

Some (finite support) effect distributions cannot be defined using
@, as stated by the following theorem.

THEOREM 3. If the cardinality of X and d are at least four, then
QX # QX.

ProOF SKETCH. First, we show that the effect |®*}®*| cannot
be expressed as the tensor product of two-dimensional effects. We
then consider the following effect distribution

{1 & [0, 3o > [@TXD T, x5 > [FTNEF

Lxg > [PTXYT [}
and we prove by induction that it is not in foX . O

Adhering with the previous result, we use general n-ary compo-
sition of effect distributions.

As it is common for the probabilistic case, it is sometimes useful
to see a relation between elements of a given set X as a relation
over effect distributions over X. In particular, we lift a relation on
states to one on effect distributions of states by requiring paired
distributions to associate related states with the same effects.

o
Definition 5. For any dimension d, we let Rz € QX X QX be
the lifting of dimension d of R € X X X given as the least relation
satisfying the following rules

SRt Di Rar Ti
(ZierEi®Di) Ra.a (ZierEi ®Th)

. (Ei € &fg)
SR1t
Note that ¢D21 is the usual probabilistic lifting of [18]. We then

recover the following property, known as decomposability.

Lemma 1. LetR C X X X. Then © 7D€d T if and only if there is a
finite index set I and an effect set E; € Efy such that

(1) © = {xi > Ei}ier

() T=Ayi > Ei}ier

(3) xiRy; foreachiel

PROOF SKETCH. Proving that this condition implies © 7‘32{1 Tis
trivial. Then we proceed by induction on the rules of the lifting. O

3.2 Effect Transition Systems

To model quantum systems and protocols we introduce effect la-
belled transition systems (eLTSs). Then we investigate different
notions of bisimilarity.
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Figure 1: ELTs for the states of Example 4.
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Definition 6. An eLTS of dimension d is a triple (S, Act, —) where
S is a set of states, Act is a set of labels, and — C S X Act X QyS is

L. . . H
the transition relation. As usual, we writes — D for (s, 1, D) € —.
Hereafter, we assume as given a d-dimensional eLTS (S, Act, —).
We instantiate two distinct definitions of semantic equivalence
on quantum systems: Aczel-Mendler and Larsen-Skou bisimilari-

ties [32]. They are known to coincide on classical probabilistic
processes [18]. Notably, they do not in the quantum case.

Definition 7. A symmetricrelation R C SXS is an AM-bisimulation
if for any sRt

if's 5 thent L T for some T such that D 73(1 T
Let AM-bisimilarity ~4p, be the largest AM-bisimulation.

Example 4. Consider the states s1, s, s3, sS4 and ss5 such that:
e s transitions with a to ® = {sq > |0X0], s5 > |1X1|};
o sy transitions with a to ® = {s4 > 1};
o s3 transitions with a to T = {sq > |[+X+|,s5 > |-X—|};
e there is no other transition for s, s, $3, s4 and ss.
We depict their eLTSs in Figure 1 (note that s4 and ss are deadlock
states). We have that s1 ~gm S2 and sy ~qm 3. Indeed,
[0XO0| + |1X1]| =1 = |+X+| + |-X—| , and hence
D ~am {Y > [0X0], 54> |1X1]} = 6,
T Ram Y > |[#X+, 54> |-X-[} = 6.
Nonetheless, s1 #am $3 as we cannot write ® and T using the same

effects, as it would be required by Lemma 1.

This example, inspired by [31], proves that ~g, is not transitive.
We thus generalize Larsen-Skou bisimilarity [25] to the quantum
case (named kernel bisimilarity in [32]).

Definition 8. An equivalence relation R C SXS is anLS-bisimulation
if for any sRt

if's 5 o thent & ¥ for some T such that

VC € S/g Z D(x) = Z T (x)

xeC xeC

with S/ g the equivalence classes of S. Let LS-bisimilarity ~j; be the
largest LS-bisimulation.

We show that ~j¢ behaves differently from ~ 4.

Example 5. Consider Example 4. We can see that s ~|s s3 as both
D and T associate the equivalence class {s4, s5} with the effect 1.

Indeed, LS-bisimilarity is coarser than AM-bisimilarity.
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THEOREM 4. For any eLTS, ~qm C ~5. Moreover, ~gm = ~[s in
eLTSs of dimension one, and ~qm G ~|s for any eLTS of dimension
at least two with S of cardinality at least four.

Proor. For C it is sufficient to show that D *7D€ ¥ requires D
and T to assign the same effect to each class in S/ g, by Lemma 1.
The equality ~gm = ~5 in eLTSs of dimension one is a classical for
pLTSs [18]. Then it suffices to consider Example 5. O

LS-bisimilarity is also trivially an equivalence relation. In the fol-
lowing we discuss its adequacy as quantum semantic equivalence.

Since probabilistic behaviour is the only observable property of
quantum systems, we consider this characterization as the ground
truth our behavioural equivalence must comply with. We now de-
fine a parameterized version of probabilistic bisimilarity for eLTSs,
stating that equivalent states should express the same probabilistic
behaviour when instantiated with any possible quantum state.

Definition 9. Given p € DMy, a symmetric relation R € SX S isa
p-bisimulation if for any sRt

if's LA D thent LA T for some T such that D], 7%1 Tlp

Let p-bisimilarity ~, be the largest p-bisimulation. We define proba-
bilistic behavioural equivalence =, as the relation pairing states if
and only if they are indistinguishable when every possible quantum
state is considered, i.e.

pEDMd

As effects and effect distributions are convex parameterized prob-
abilities and probability distributions respectively, eLTSs are can
be seen as parameterized pLTSs. Along the same correspondence,
LS-bisimilarity can be shown to relate states that behave the same
for every possible choice of quantum input at every step. We define
such a relation as a locally-parameterised probabilistic bisimilarity.

Definition 10. A symmetric relation R C SXS is alpp-bisimulation
if for any sRt

if s 5o thent £ ¥ for some T such that

Dl 7D€1 Xlp foranyp e DMy
Let lpp-bisimilarity ~y,,, be the largest lpp-bisimulation.

THEOREM 5. Foranys,t € S, s ~s t if and only if' s ~p, 1.

PRroOF SKETCH. We employ Theorem 2, telling us that comparing
effects directly or through their probabilistic behaviour is the same.
Thus, LS-bisimilarity is a lpp-bisimulation, and vice versa. O

Note that the difference between lpp-bisimilarity and probabilis-
tic behavioural equivalence (our ground truth) is essentially that
for disproving bisimilarity one can choose a different state p at any
step for the former and a single, global one for the latter.

Example 6. Consider the eLTS in Figure 2. To show that s1 #1p, s2
it suffices to choose |0)0| for the first reduction of s and |+X+| for
the second one. Formally, since D ]|gyo|= 53 and zl|0)<0|— sS4, we
must have that s3 ~1p, s4. But, since ® ]|,y |= 55 and R |1y =
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Figure 2: An eLTS where s; *1pp S2-

S8, S3 ~ipp S4 requires ss ~y,, sg which is trivially disproved by
observing the labels of the available transitions.

Finally, note that neither |0X0| nor |+)+| are capable of distinguish-
ing s1 and sy, as indeed ®9y0;= Rl j0x0| and D j4y+1= T4+
and hence s1 ~|jy | sz for |j) € {|0),[1),]+),|-)}.

Quite surprisingly, for finite eLTSs the two relations ~j,, and
~pbe coincides in spite of that, and hence, we deem LS-bisimilarity
as ours bisimilarity of choice, as it precisely capture the observable
properties of quantum systems.

THEOREM 6. For anys,t € S, s ~s t impliess =, t. Moreover,
if S is finitely dimensional, then s ~,p, t implies s ~js t.

ProoF skeTcH. By Theorem 5, for proving ~jC= 5, it suffices
to show that ~j,, C=pe, which holds by definition.

For ~},;, C~|;, we consider the (finite) set of effects E that may
be applied to equivalence classes in the eLTS, and we build a density
operator pg that distinguish all the effects in E. This allows us to
prove that ~,; is an LS-bisimilarity, since associating the same
probability to all classes with quantum input pg requires the effects
to be the same. We conclude by noticing that ~ppC~pz C~j5. O

Indeed, s; ~pbe S3 for s; and s3 of Example 4, and a single
quantum state is sufficient for distinguishing s; and sz of Example 6.

Example 7. Consider Figure 2, and let p = [0X0| 1€B |[+X+|. Then
s1 #p Sz (and hence s #pbe s2). Note thatDlp— 53 3EB s4 and

Tlp=53 ! @ s4. For s1 to be p-bisimilar to s, it must be thatS3 ~p 84.

Since @Lp— 5, ;@7 and R p= 5 €B Y, 83 ~p sq implies§ ~, v,
which is trzvzally disproved.

3.3 Operators on eLTSs

Languages for defining labelled transition systems commonly relies
on suitable composition operators, in the fashion of process algebras
like CCS and CSP. In particular, when distributions are considered,
like for pLTSs and eLTSs, one usually considers both operators
acting on states and on distributions.

3.3.1 Operators on States. In the following we will discuss the lift-
ing of operators commonly considered for probabilistic systems to
the case of eLTSs, starting from nondeterministic sum and parallel
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Figure 3: A 4-dimensional ELTS and its quantum partial evaluated version with p = % [0X0]| + % [1X1].

composition of states. We will then propose a new operator that is
tailored for the quantum case.

Definition 11. Given two d-dimensional eLTSs (S1, Act;, —1) and
(S2, Acty, —2), their non-deterministic sum is a d-dimensional eL TS
with states S; U Sa U {s1 + s withs; € S; fori = 1,2}, actions
Acty U Acty and such that the transitions is the smallest set including
both —1 and —; and satisfying the following rules
S2 i) D
ExTL ExTR
S1+S2 — D

o
81—>D

81+32—>®

THEOREM 7. Ifsl ~Is $2 and t; ~Is b2 then s1 + t1 ~Js S2 +12.
PROOF SKETCH. By cases on the rules ExtL and ExtR. O

Synchronization is a crucial aspect of protocols and process
algebras. Therefore, from now on we assume that Act contains a
distinguished element 7, and that every other operation a € Act
has in inverse @ such that @ = a.

Definition 12. Given two eLTSs (S1, Act1, —1) of dimension d and
(So, Acty, —2) of dimension d’, their parallel composition is a eLTS
of dimension d - d’ with states sy || sz withs; € S; fori = 1,2, actions
Acty U Acty and such that the transitions are defined by
S LN D
PARL [T PARR
sills2 = {s1> I} [| D

H
Sl—>®

sills2 5 D) sz 1p)
alho sha
sillse 5D T
D) ®T(sz) ifs=s1 s

0 otherwise

SYNCH

where (D || T)(s) = {

THEOREM 8. If31 ~Is $2 and ty ~Is t2, then sq || t1 ~1s S2 || to.
PROOF SKETCH. By cases on the rules ParL, ParR and Synca. O

The next operator is specific for the quantum case. Since effects
are essentially classical probabilities parameterized over an input
quantum state, it is reasonable to consider the operation of instan-
tiating some of the input qubits of an eLTS via a partial evaluation.
As expected, the result will be an eLTS that takes as input a quan-
tum state in a smaller Hilbert space (possibly even no input at all,
meaning that the behaviour is now unconditionally probabilistic).

We first define partial evaluation of an effect.

Definition 13. Let A and B be two quantum systems, with states
in the Hilbert spaces Hy and Hp, respectively. Let p be a density
operator in Hy and E be an effect on Ha @ Hp. The partial evaluation
of E with input p is the effect

E|, = tra(E(p ®1c)).
We can now instantiate the same over states of an eLTS.

Definition 14. Given an eLTSs (S, Act, —) of dimensiond - d’ and
a density operator p € DMy, the quantum partial evaluation of the
eL TS with p is a d’-dimensional eLTS with states sl, fors € S, actions
Act and such that the transitions are defined by the following rule

i
ﬁ QINsT
i
sl, = D,
D(s’ ifs=s'
where bl (s) = (s )lp ifs s.|p
P 0 otherwise

THEOREM 9. If's ~ t thens|, ~is t|, for any p.
PROOF SKETCH. By definition of s| p and D P O

As previously stated, for p sufficiently large the partial evaluation
returns a probabilistic system obtained by taking the same quantum
input for each effect distribution of the eLTS. This means that
slp ~is tl, corresponds to verifying s ~, t, hence, as a corollary
of Theorem 6, it allows also to prove LS-bisimilarity.

Corollary 1. Given ad-dimensional eLTS (S, Act, —) and two states

s,t €, if for any p € DMy we haves|, ~is t|,,, then's ~5 t.

ProoF skeTCH. We show that if s|, ~j5 |,, then s and ¢ are
p-bisimilar, thus allowing us to apply Theorem 6. O

Example 8. Consider the eLTS of Figure 3, where s|, is the partial
evaluation of s with p = % [oXo| + % [1X1].

3.3.2  Operators on Distributions. We now discuss how effect dis-
tributions can be composed, extending the usual definitions for
probabilistic systems. We present a pair of no-go theorems that
distinguishes the quantum case from the classical probabilistic one.
Common simplifications and extensions that can be safely applied
for probabilistic systems make no sense or impact the expressivity
when modelling quantum systems.

A corollary of Theorem 3 is that it is possible with n-ary compo-
sition to define eLTSs with states for which no bisimilar state can



Conference’17, July 2017, Washington, DC, USA

be defined using the binary operator & only. Roughly, this means
that the lack of expressivity of @ is not only syntactical.

Corollary 2. There exists S1, Act,s; € S1, and —1€ S1 X Act XQyS1
such that s1 *[g sp in all the eLTSs (S1 U Sa, Act, —1 U —2) with Sy
disjoint from S1, and —32€ Sy X Act X Q?Sg.

PRrROOF SKETCH. We give an example of a state that evolves in
a distribution D ¢ Q?Sl. Then it is shown that it is not possible
to build ¥ € Q;‘;Sl associating the needed effects to equivalence
classes without violating Theorem 3. O

Our last remark is about non-deterministic composition of ef-
fect distributions. It may be desirable to extend the notion of non-
deterministic sum of Definition 11 to effect distributions as it is
commonly done for probabilistic distributions [18]. The semantic
of a non-deterministic sum of probability distributions A + © is
usually defined as

(A+0)(s) = {OA(sl) -O(sp) ifs=s1+s

otherwise

Given the interpretation of effect distributions as parameterized
probability distributions, we can lift the previous definition to the
quantum case.

Definition 15. Given a pair of d-dimensional effect distributions
D, T overS, a distribution © + I is a non-deterministic sum of D
and X if for any density operator p € DM,

Dlp (s1) - Tlp (s52) ifs=s1+s2

0 otherwise

(®+D)p () = {

Example 9. Consider the following distributions
1 1
D = {s1>[0X0],s2 > [1X1]} and T = {s3> E]LS4 > EH}
The non-deterministic sum ® + T is then

1 1
D+T={s1 +S3l>E|0><0|,81+S4l>5|0><0|,

1 1
sz¥s3b o [1X1], 52 + 54 > 3 [1X1]}

In this example the effect distribution D is non-deterministically
composed with a rather “probability-like” distribution T, being
tr(%]l -p) = % for any p. Indeed, the non-deterministic composition
of effect distributions is not defined in general. More in details, it is
undefined between “purely quantum” effects.

THEOREM 10. Ifthe dimension of the Hilbert space is two or greater,
then © + T is undefined if D(s) = |y X¢| and T(t) = |pXP| for some
states s, t € S and quantum states () and |¢).

ProoF skeTCH. We exploit the fact that [/) has at least an or-
thogonal vector |a) if the dimension is at least two. We show that
the convexity of E = (D+T)(s+1) leads to contradiction, requiring
tr(E - |aXal) to be negative. O

This is a quite severe limitation for non-deterministic sum of
effect distributions.

Example 10. Let D = {s; > [0X0],s2 > [1X1|} and T = {s3 >

[+X+|,s4 > |=X—|}. There is no effect distribution that is a non-
deterministic sum for O+ D, D+ T or T+ .
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The results above give suggestions and limitations for the defini-
tion of a process algebra for quantum processes: two proposals are
given in the following section.

4 MODELLING PROCESSES WITH eLTSs

In this section, we explore the design of a process algebra evaluated
over eLTSs. More in details, we enrich our algebra with a pair of
different semantics: the stateful Schrodinger-style one is a fairly
standard pLTS semantics for a quantum process algebra, and it
assumes a given quantum input; the stateless Heisenberg-style
instead returns a unique eLTS that is parametric with respect to
the input quantum state. We prove that the two coincide, also
when unitary transformations are considered, paving the way for
automatic verification using standard techniques [21].

4.1 A Minimal Quantum Process Algebra

We will follow the tradition of using CCS-style process calculi
to describe LTSs. The minimal quantum process algebra (mQPA)
features a parallel operator, a non-deterministic choice operator
and destructive measurements. An mQPA process P is defined as

P = s | ([Ei]lPi)ier
pP|0|s+s]|s]|s

S

where p € Act is an action and {P; > E; };¢g is a full effect distribu-
tion over mQPA processes. Intuitively, an atomic process s controls
the behaviour of the quantum system, while P represents an effect
distribution of atomic processes. Note that we use n-ary composi-
tion of effects, as a binary operator would have been less expressive,
and that we do not consider ill-defined non-deterministic sum over
general processes (Theorem 10). In the following, we sometimes
write p1 for the process f1.0.

In order to simplify the definition of the semantics of mQPA,
we define a syntactic flattening operation, translating sequences of
syntactic effect distributions (i.e. destructive measurements) into a
single effect distribution.

Definition 16. The flattening operator flat( - ) on mQPA processes
is described by the following inductive rules

flat(P;) = ([Eijlsij)jey,
flat(s) = ([1]s) flat([Ei]Pi)ier = ([Ei ® Eijlsij)ielje;

Note that a mQPA process needs a Hilbert space of a given di-
mension from which the input quantum states are taken. We define
the operator dim, returning the required Hilbert space dimension.
Roughly, this is the maximum number of qubits needed by any
branch of the process to perform its measurements.

Definition 17. The minimum dimension for a mQPA process P is
called dim(P), where
dim(0) =1 dim(p.P) = dim(P)
dim(s + t) = max{dim(s), dim(¢)} dim(s || t) = dim(s) - dim(¢)
dim(([Ei]Pi)ier) = max{dim(E;) - dim(P;)};er

Finally, we define an operator that lifts an effect to a larger
Hilbert space with the identity effect
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flat(s) = ([Eilsi)ier
{p, p.s) LR (Mg, (p), si) > tr(ME,(p)) }ier
H H
M SSumL M SSumR
(p,s+1t) Lo

SPRE

(p,s+1t) L9

(p.5) 55 {(pirsi) & pitier

I SPARL
(p.s Il t) = {{pisi | £) > pitier

(p.ty 5 {pjstj) > pjtjey

I SPARR
sl t) = {pjs I 1) > pjtjes

H n
(p,s) = {{pi>si) > pitier  {pit) = {{pij,tj) > pij}jey
SSyncL

(pos 1) 5 (pijsi Il 1) > pij}ijyerxy

(o ty 5 (i ti)y > pitier (pins) D (piprsi) > pijhies «
Y.

p NCR
(p,s I t) = {Lpij,si |l tj) & pij}ijyerxy

(a) Rules for Schrodinger-style stateful semantics
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flat(s) = ([Eilsi)ier
(1, p.8) B {(Ei, si) > padp (En) Vier
an LD

Ls+1) 5D

HPRE

15D
(1,5) 5 ((Ei,s1) > padpy (B Yier

(sl ) 5 {(Eusi || 1) > padp (B ier
(1t) 5 ((Ej.tj) > padp (E)}jey

W5ty 5 (B s Il t)) > padp (B} jes

HSumL HSumR

HPARL

HPARR

(Ls) 5 (Ersiy > padp (EnYier  (L1) 5 {(Ejut;) > padp (E))} jeg

(Ls ||ty 5 {(Ei ® Ej,si || t;) > padp (Bi ® Ej)} i jyerx

(1) 5 {(Bp.s1) > padp (E)}ier  (L1) Z {(Ej, tj) > padp (Ej)} jes u

(Ls |l t) 5 {(E; ® Ei,si || ;) > padp (E; ® Ei)}(ij)erxy
I
(1,5) = {(Ei,si) > Ei}ier
[
(E,s) — {(E®Ej,s;) > padp (E ® Ej) }ier

HLIFT

(b) Rules for Heisenberg-style stateless semantics

Figure 4: Stateful and stateless semantics for mQPA processes

Definition 18. The padding operator that lifts an effect to a larger
Hilbert space of dimension D is called padp( -)

padp : | ) & — &
d<D
padp(E) =E®Ip_y4

4.2 Schrodinger approach

A natural, stateful semantics for an atomic mQPA process s is given
in terms of a pLTS, where each state is a pair of a density operator
and an atomic process. The pLTS is rooted in the pair (p, s), where
p € DMgims)- All the successor states have some subterm s” of
s, and some possibly smaller state p’ € pDM; with d < dim(s),
because of destructive measurements. The transition relation is the
smallest relation satisfying the rules in Figure 4a. In the SPRE rule
the quantum state is updated with the destructive measurement
operator Mg, (p) associated to the effect E; in the process. Note that
the resulting effect distribution is always a probability distribution,
obtained by tracing the measured density operator. As a result of
that, the eLTS is a pLTS, as expected when the quantum input is
fully instantiated. We remark that SSyncL and SSyncR only differ
in the order of the application of measurements between the two
branches of the parallel operator, as both the orderings are possible.
A trivial consequence of the rules is that all the distributions in the
right-hand side of — are of the form {{p;, s;) > tr(pi) }ier-

Example 11. Consider a process P that first performs a one-qubit
measurement in the computational basis and then measure another

qubit in the Hadamard basis

P =7.([l0X0[]Q, [[1X1]]R), with
Q =r.([[+X+la, [I-X=11§) and R = z.([|+X+[1y, [I=X~1]6).

The stateful semantics of(|<I>+><<I>+ , P) is given in Figure 5a. Note
that measurements are destructive and do not cause a t-transition
(contrary of other approaches [6, 8]) and thus after the measure-
ment the distribution is {{|0X0], Q) > %, {(1X1],R) > %} and not

{(]00X00], Q) & 3, (|11X11|,R) > 1}.

4.3 Heisenberg approach

For any given atomic process s, the stateful semantics results in in-
finitely many distinct pLTSs according to the input quantum state p.
We seek an alternative stateless characterization, adequate for algo-
rithmic verification. We therefore give a new semantics for mQPA
processes whose states are pairs of effects E and atomic processes s.
For each D-dimensional atomic process s we build a D-dimensional
eLTS rooted in (1, s), where 1 is the unit 1-dimensional effect. The
transition relation is defined as the smallest relation satisfying the
rules in Figure 4b. Note that, while in the Schrédinger semantics s
is paired with the remaining part of the input quantum state, in this
new Heisenberg semantics, s is paired with an effect describing the
measurements done so far. The HPRE rule simply records the effect
that must be observed in order to reach the paired mQPA state. As
in the stateful semantics, HSyncL and HSyNcR differ only in the ap-
plication order of the measurements. Note that we are dealing with
destructive measurements, while in general eLTS allows applying
different effects on the same qubit over and over. This is forbidden

HSyncL

SyNcR
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in mQPA, where consecutive measurements act on different qubits,
and thus must be scaled up via tensor product. Storing the effects
along the mQPA processes is needed for constraining subsequent
distributions to be consistent with the previously measured qubits,
which allows for correctly dealing with entangled inputs.

Example 12. Consider the process P of Example 11. Figure 5¢ shows
its stateless semantics, instantiated in Figure 5b with |0% X ®*| by the
quantum partial evaluation operator on eLTSs of Definition 14. As
expected, the evaluated eLTS is indistinguishable from the pLTS of
the stateful semantics in Figure 5a.

This example hints at a connection between the two semantics,
which is to be expected given the duality between effects and states
in quantum theory. Indeed, the eLTSs produced by instantiating the
stateless semantics have exactly the same transitions of the stateful
semantics, thus they are bisimilar.

TuEOREM 11. For any atomic state s and p € DMgim(s)
(W), ~1s (p.5)
ProOF SKETCH. Take the relation
R = {((E, ), (M (p), s)) |peDMyEeé&fyd>d - dim(s)}

The result follows from the inductively demonstrable lemma
p ) H
(E.s)|, = (Eisi)l, & pi} iff (ME(p).s) = {ME,(p) > pi} O

It follows that we can verify whether two processes are bisimilar
for any input just by looking at their Heisenberg semantics.

THEOREM 12. Given two d-dimensional atomic processes s and t,
(1,s) ~is (1,t) if and only if for any p € DMy, {p,s) ~s {p, t)-

Proor. We can prove by Theorem 9 and Corollary 1 that the
hypothesis is equivalent to (1,s}|, ~s (1, t)|,. Then we can apply
the duality result of Theorem 11, thus getting {(p, s) ~;s (p,t). O

4.4 Unitary extension

Our proposed eLTSs are sufficiently expressive to model also lan-
guages with unitaries. As before, we will define both a stateful and
a stateless semantics. The syntax of mQPA processes is extended
with unitary transformations. As for measurement, unitaries are
not observable actions.

Pi=s| ([EilPier | U: P
si=pP|0|s+s|s]|s
We extend the dimension operator imposing that dim(U;P) =
max{d, dim(P)} when U is a d-dimensional matrix. To give the
semantics of a D-dimensional atomic process s, we update the flat-

tening function with a rule for unitaries. Note that, instead of effects,
it returns processes guarded by D-dimensional superoperators.

flat(P;) = ([Eijlsij)jey
flat(s) = ([Ipls) flat([Ei]Pi)ier = ([Eij o ME,Isij) (i j)erxy
flat(P) = ([Eilsi)ier
flat(U; P) = ([E;i o Eylsidier

where Eg7(p) = UpUT is the superoperator corresponding to the
unitary U, 7; is the identity superoperator of dimension d and
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& o F is the composition on superoperators where ¥ is tensored
with identity operators in order to reach the same dimension of &,
e.g. (Ecnor © EH(p)) =CNOT(H®I)p(H ® [)CNOT.

The Schrédinger-style semantics is defined over the same con-
figurations as before. The transition relation is the smallest relation
satisfying the previous rules with the following updated SPRE

flat(s) = ([Eilsi)ier
(p1.5) 5 ((E(p), 51) > tr(Ei(p)) hier

The Heisenberg-style semantics of an atomic D-dimensional pro-
cess is defined as a D-dimensional eLTS made of pairs (&, s), where
the superoperator & represents at the same time measurements and
unitaries. The transition relation is the smallest relation satisfying
the rules in Figure 6, where Eg is the effect associated with the
superoperator &.

Note that, while the states of the transition system contain super-
operators, the resulting semantics is still an eLTS. On the one hand,
indeed, superoperators are only required for describing how the
quantum input evolves upon unitaries and measurements, while
the visible, probabilistic behaviour is still encoded as effect distri-
butions. On the other hand, effects in mQPA processes represent
destructive measurements, therefore they can be represented as
superoperators and composed with the unitary transformations.

As before, we formalize the connection between the two seman-
tics in terms of bisimulations.

SPRE

THEOREM 13. For any d-dimensional atomic process s and any
p € DMy, (Zg.5)|, ~1s {p$)-

Proor skeTcH. Take the relation
R = {((a, ), <8(p),s>) | pe DMy, E € Sod}

The results follow trivially from the inductively demonstrable lemma
H H
&), 2 (Bl > o1 E(p)) D (Eip) b piy O
Thus, we can restate Theorem 12 for our extension of mQPA.

THEOREM 14. Given two d-dimensional atomic processes s and t,
(Zg,s) ~1s {1g,s) if and only if for any p € DMy, {p,s) ~1s (p. 1)

ProOF. As for Theorem 12, but using the duality that is described
in Theorem 13. m]

5 RELATED WORKS

In our work we follow a foundational approach to quantum bisimi-
larity, extending what is done by [18] for probabilistic bisimilarity.
We employ effect distributions (i.e. finite non-normalized POVMs)
as a generalization of sub-probability distributions, finding them
particularly well suited to model the observable behaviour of quan-
tum systems. Our notion generalizes the quantum monad of [1],
which is based on projectors, and it instantiates the abstract “effect
algebra monad” of [20]. More in depth, the author in [20] proposes
effects monoids, i.e. effect algebras with multiplication, and use
them as weights of distributions. Our effects do have tensoring as a
multiplication operator, but it does not form a proper effect monoid
since it changes the effects dimensions. These works come from the
fields of quantum complexity and quantum logic, we instead apply
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(ot ¥ @*|. P) 1LP),
T T
: : ; .
(l0X0l, Q) (|1X1],R) (10X0l. Q) (X1 R}
T l T T l T
N } } : : WIJ;&L‘;
(3.0) (3.8) (31 (30 (lo+Xo+l, @), (lo=X0-1.B)|, (I1+X1+, )|, (11=X1-1,8)],
(a) Schrédinger-style semantics of P with p = |®* X d™| (b) Heisenberg-style semantics of P|,, with p = |+ YD |
(1P)
[0X0| ® 1 [1X1| &I
(loXol. Q) (I1X1].R)

: |-
[0+)X 0+ [o—X0-| |1+><1+|[,—/’Q‘x‘il—><1—|

(10+X0+, @) (10=X0—|, ) (1+X1+,y) - ([1-X1-1,6)

(c) Heisenberg-style semantics of P

Figure 5: Semantics eLTSs for the process P = 7.([|0X0[]Q, [|[1X1|]R) with Q = z.([|[+X+|]e, [|-X—]]18) and R = z.([[+X+|]y, [|-X~-19).

u
(I.s) > {(Eisi) > Eg, bier flat(s) = ([Eilsi)icr 1,5y 5D Lo
T HLrx T HPRE 7” HSumL 7}1 HSumR
(E,5) = {(&i0&,si) > Egogticl (I, p.Py = {{&,si) > Eg}iel I,s+t) > D Z,s+t) > D
p
(I5) 5 (Eisi) > Eg, tier (I,t) = {{&.tj) > Eg; }jey
T HPARL m HPARR
(sl t) = {(Eisi | t) > Eg, }ier sty = {(&Ejs N tj) > Eg;tjey
H H H H
(I,s) = {{8isiy > Eg,tier (L,t) = {(&).tj) > Eg;}jey Ity > {{&iti) > Eg, tier (L.s) = {{&).5j) > Eg; }jey
p HSyncL p HSyNcR
sty = {{8j o &isill 1)) > Eg o8, } (i j)elxy (Isllt) = {{8j o &isill tj) > Eg o8, } (i j)elxy

Figure 6: Heisenberg-style semantics for mQPA processes with unitaries

{[0Xo[, .H; r.([[0X0[]a, [I11X1]18)) (I, r.H;7.([|0X0]]a, [|1X1]15))

3 3

([+X+ L z.([loX0l e, [11X1118)) (Ex, T.([10X0[]e, [11X1118))
%ﬁ% [+ X+ =X~

(G.a) (3B My @) My, )

(a) Example of Schrédinger-style semantics (b) Example of Heisenberg-style semantics

Figure 7: Example of stateful and stateless semantics for mQPA processes with unitaries
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these concepts to quantum protocol semantics, introducing eLTSs
and studying their composition and their behavioural equivalences.

Our eLTS can be seen as a labelled, non-deterministic version
of the effect-valued Quantum Markov Chain of [15], where tensor
products is used instead of sequential effect composition. The most
general model of “quantum transition system” is the one of [26,
31], where the weights are superoperators instead of effects, so to
capture also non-destructive measurements and qubit initialization.
The author of [31] introduces two different notions of bisimilarity,
that we recover in our minimal, effect-based setting as AM and LS
bisimilarity. However, none of these works feature nondeterminism,
nor do they apply the proposed coalgebraic model to process calculi
suitable for expressing quantum protocols.

Usually in the literature the semantics of quantum processes is
described via pLTSs and probabilistic bisimilarity [6-9, 23]. Despite
their differences, these works all define a pLTS made of configura-
tions, i.e. pairs of quantum values and syntactic processes. Bisimilar
systems exhibit the same probabilistic behaviour as labels or barbs,
and the same observable quantum values inside the configurations.
Many of the existing works have to tweak the natural definition
of probabilistic bisimilarity in an ad hoc manner, in order to cap-
ture the peculiar observable properties of quantum values. We
instead introduce a purely quantum transition system, and we do
not manipulate directly quantum values but only their observable
probabilistic behaviour in the form of effects. Moreover, to verify
the equivalence of two processes the previous proposals have to
instantiate them with each possible quantum input, impeding al-
gorithmic verification. Using effects, instead, we can describe the
“symbolic” semantics of a protocol, abstracting away from the input,
as done in Theorem 12 and Theorem 14.

Most similar to our work is [10], which introduces superoperator-
valued quantum distributions, analogous to the ones in [16, 26, 31].
This allows modelling the more expressive non-destructive mea-
surements and quantum communication, but their proposed bisim-
ilarity does not respect the observational properties prescribed
by quantum theory [6, 12, 22]. When giving the operational se-
mantics of their language, they employ configurations composed
of superoperators and processes, and they build a superoperator-
weighted transition system made of such configurations. In subsec-
tion 4.4, we use the same kind of configurations, but we propose an
effect-weighted transition system. They compare superoperators
via pointwise Loewner order, which is equivalent to comparing the
superoperators effects as in subsection 4.4.

The bisimilarity proposed in [10] is proven to be equivalent to
the one in [9], and it is strictly finer than ours. The authors require
bisimilar transition systems to have bisimilar configurations with
the same weights, leading to a form of AM-bisimilarity finer than
of our LS-bisimilarity. For example, it discriminates the following
example, written in mQPA syntax.

Example 13. Let P and Q be the processes
P = ([IoX0[IR, [[1X1[1R") and Q = ([[+X+[IR. [I-X~IR")

where R and R’ are two deadlock processes which maintain the owner-
ship of the measured qubit (recall that [10] considers non-destructive
measurements) thus making it unobservable. In other words, P and Q
perform some local measurement on their qubit, without leaking any
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classical information to an external observer. Nonetheless, P and Q
are not bisimilar for the symbolic/open bisimilarity of [9, 10], as can
be seen studying the ground behaviour of (®*, P) and (®*, Q).

The two processes above are instead considered bisimilar in our
proposals, as well as in other more recent works [6, 8, 22]. The
bisimilarity of [9] has been relaxed in subsequent works [8, 12], but
no symbolic version of this coarser bisimilarity has been proposed.

6 CONCLUSIONS

We provided a purely quantum-based semantics of quantum proto-
cols and proved its correctness with respect to the observable prob-
abilistic behaviour prescribed by quantum theory. The advantages
of using LS-bisimilarity and eLTSs is that it provides a symbolic
and algorithmically verifiable semantic equivalence. To assess two
processes probabilistically, their behaviour must be compared on
every possible quantum state, thus considering a continuously in-
finite set of cases. This is the standard approach in the quantum
process calculi literature [5-9, 23]. Our eLTSs instead allow the de-
scription of quantum systems in general, implicitly parameterising
them with respect to the initial quantum state and thus permitting
algorithmic verification. Indeed, eLTSs can be easily defined in a
coalgebraic fashion, allowing e.g. to resort to the general algorithm
for partition refinement of [21] for proving LS-bisimilarity.

Future work. We proved that non-deterministic sum and parallel
composition of eLTSs preserves bisimilarity. As a future work, we
will address the same problem over all mQPA operators, thus in-
vestigating whether our bisimilarity is a congruence. We assessed
our approach in a minimal setting, i.e. only considering destructive
measurements, unitaries and non-determinism. We plan to include
recursively defined processes and quantum value passing, i.e. allow-
ing processes to exchange qubits, as in [10], and we will investigate
the extension of our results in this framework.
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A PROOFS

We list some known facts about effects that directly comes from
linear algebra.

Proposition 1. Given two effects E; and Ep, if E1 + E3 = [y Xy| then
E; = pi [y Xy| for some P, i =1,2.

Proposition 2. Given two effects E1 and E, if E1 ,® Ez = [ X
then E; = [¢yXy| fori=1,2.

THEOREM 2. Effect distributions correspond to all and only the
parameterized sub-probability distributions that are convex and have
an “overall” finite support.

adz{m e (D(x))PMd| Dlopoo= (D) p© (Dlo) }

UpEDMd Supp(ﬁlp) is finite

Proor. Recall that (&Efy,04,+) forms a Partial Commutative
Monoid (PCM), i.e. an algebraic structure where the sum between
two elements is not always defined. Each PCM has a partial order,
defined as a < b if and only if 3c.a + ¢ = b. In the case of &f;, two
effects can be summed if and only if their sum is smaller or equal to
I; in the ] owner order, and the resulting partial order < is exactly
C. We employ a known result in quantum theory [17], specifying
that the set of effects &fy is isomorphic to Conv(DMy, [0, 1]), the
set of convex maps from DM to the real interval [0, 1]. Moreover,
Conv(DMy, [0, 1]) forms a PCM, where the monoid identity is Ap.0
and the summation of functions is defined pointwise. Since the
isomorphism between &f; and Conv(DMy, [0, 1]) is a PCM isomor-
phism, it follows that

Vx D(x) is convex
Qg =1{D:X — DMy — [0,1]| supp(D) is finite
ersupp(D) Dx < Ap.1
where supp (D) is defined as {x € X | D(x) # Ap.0} and < is the
pointwise ordering between functions. Now, we will prove that the
set above is isomorphic to

D|_ is convex
D] : DMy — X — [0,1]| Up supp(D,) is finite
Vp ersupp(ﬁp) D‘Lp x<1
from which the theorem follows. To prove this isomorphism, we
provide an invertible function f(D) = Ap.Ax.D(x)(p) which pre-
serves and reflects the three properties we are interested in. For
convexity, we have that

Vx D(x) is convex

s
Vx D(x)(p p® 0) = (D(x)(p)) ,® (D(x)(0))
s
Vx f(D)(p p® 0)(x) = (f(D)(p)(x)) p@ (f(D)(0)(x))
s
FD)(p ,® 0) = F(D)(p) & F(D) (o)
s
f(D)is convex

For the finite support, we have that
supp(D) = {x € X | D(x) # Ap.0} =
{x e X | 3p.D(x)(p) # 0} =
Uptx € X [ D(x)(p) # 0} = Up supp(f (D))
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For the sum over the support, we have that

Dx < Ap.1
xesupp(D)

s
Vp. Z

D(x)(p) =1
xesupp(D)

Vo >

xesupp(D)
D(x)(p)#0

=1

Vo ), D=1
supp(f(®)p)

o
Vp. Z

F®)(p)(x) <1
supp(f(D)p)

=1

Dx)(p) <1

[m]

Lemma 1. LetR € X X X. Then © %d % if and only if there is a
finite index set I and an effect set E; € Efy such that

(1) D= {xi > Ei}ier

(2) T={yi> Ei}ier

(3) xi Ry; foreachiel

PROOF. (&) Suppose there is a finite index set I such that (1)
D={si>Ei}ier, (2) T ={t; > E;};jcy and (3) s; Rt; for each i € I.
o _
By (3) and by definition, it follows that 5; R t; for each i € I. Then,
o p—
by Definition 5, ® = (X;er Ei ® 5i) Rixa QierEi ®ti) = T.
o
(=) By induction on the rules for R ;: For the first rule, assume
sRtands Rt, thens = {s> 1} and ¢ = {t > 1}. For the second
rule, assume D; RY;. Then by induction hypothesis, for any i € I,
it holds that D; = {Si)j > Ei,j}jeii and I; = {t,”j > Ei,j}jei,», with
si,j R ti j. Hence it is true that
ZEi ® D; = {si,j > E; ® Ej j }iel jei;
iel
ZEi ® T; = {tij > Ei ® Ej j}icl,jei,
iel
And the result follows by definition. O

Lemma 2. Let |d%) = \/ii(|00> +11)), the effect |F Y ®*| cannot
be expressed as the tensor product of two-dimensional effects.

Proor. It is simply not possible to obtain |CI>+><<I>+| as the tensor
product of two 2x2 matrices. Note that

1 0 0 1
0 0 0 O
+\/ | —
[0 X*| = 0 0 0 0
1 0 0 1
Assume |<I>+><(I)+| = A® B. Then Ap,0Boo =1 and Ag,1Bo1 =1, but
since Ag,0Bo,1 = 0 then either Agg = 0 or Bp; = 0. ]
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Lemma 3. Let {sq, B> Sy» ss} € X, and let D be defined as
D = {sq > [@"N ], 55> [O7 XD,
sy & [TENE 55> [T XE (L
1 1
where |®) = —(]00) +[11)), |®7) = —(]00) — |11
I)\/i(l>l>)l ) \/5(|>|>)

Thereisno ¥ € foX and subsets Xa,Xﬁ, Xy, Xs of X such that
Z T(x) = D(sy) fory € {a, p, v, 6}.

x€Xy

ProoFr. We proceed by induction on the number of application
of ®. No point distribution can verify this, hence the base case
is trivial. Assume ¥; and ¥ can be defined by using @ n times
starting from point distributions, and let T = T4 9 T. We proceed
by cases on the dimension d of the Hilbert space of the effect E.

If d = 1, then E = p for some p and

Dlp T+ (1-p) Talx) =

x€Xy

=p ), T +(1-p)- ) Ta(x) = Dsy).
x€Xy x€Xy

If pis 0 or 1, then T = Ty or T, and the result directly follows
from induction hypothesis.

Otherwise, since D(sy) is of the form [y X/ for each y, by Propo-
sition 2, both erXy T1(x) and erXy T2 (x) are equal to D(sy).

Consider now the case d = 2, then ¥; and T, also must be of
dimension 2, and it must be that

Z E®@Ti(x)+(I-E)® Ty(x) =
x€Xy

=E® Z Ti(x)+(I-E)® Z Ty(x) = |@* Y @*|.

xe€Xy x€Xy

By Proposition 1, E® }xc x, must be equal to p- |@* ) @*| for some
p. But then, %E ® erxy = i¢>+><<1>+|, contradicting Lemma 2.

The dimension d cannot be 3 since D is of dimension 4.

If d = 4, then T; and T, can only be of dimension 1, and the
effects in D must be all expressible as pE or p(I — E) for some
probability p, but this is not the case.

Finally, note that d cannot be grater than 4, because D is of
dimension 4. ]

THEOREM 3. If the cardinality of X and d are at least four, then
QIX # QX.

Proor. For d = 4 it is sufficient to note that this equivalence
would contradict Lemma 3. This trivially generalizes to higher
dimensional Hilbert spaces. o

Corollary 2. There exists S1, Act, s1 € S1, and —1€ S; X Act XQyS1
such that s1 +jg sp in all the eLTSs (S1 U Sa, Act, —1 U —3) with Sy
disjoint from S1, and —32€ Sy X Act X Q;‘;Sz.
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Proor. Let §1 = {sl,sa,Sﬁ, Sy, ssss0}, Act = {r,a, B,y, 6}, and
let —1 be defined as

511D = {sq >[0T N, 55 |07 XD,
sy & [PHX¥H] s> 197X} and
Sx i>lso for x € {a, B, v, 5}

where &) = %000) + 1)), @) = %(mo) ~ 1)

[¥*) = %(IOD +10)), [¥7) = %(ml) ~[10)).

Note that sy + sy for any x # y € {a, B, v, 5}.

Now, assume s1 ~g s2, then it must be that s i)z T with

Z T(x) = D(sy) for y € {a, By, 6).

.X'"‘Sy
It is sufficient to note that this would contradict Lemma 3 with Xy,
the equivalence class of {x € X | x ~/; y}. Hence, no ¥ satisfying
this condition is in Q®S;. m]

THEOREM 5. Foranys,t € S,s ~|g t if and only if's ~pp, t.

Proor. It is easy to show that ~j is a Ipp-bisimulation and that
~1pp is a Is-bisimulation. For the first direction, take s ~j5 ¢ and

suppose that s LR D, then there exists t 2, % such that VC e
S/ D(C) = T(C), where D(C) = Yyec D(x), and similarly
for . In other words, we know that © and T are identical when
considered as effect distributions on the set of equivalence classes.
Thus, applying Theorem 2, we know that D] = T| , i.e. that for
any p they give the same probability distribution on equivalence
classes, as required by the definition of lpp-bisimulation.

The other direction is identical, employing the isomorphism of
Theorem 2 in the other direction. O

Lemma 4. Given a set of effects E of a fixed dimension, there exists
a state p such that

Vi, j € E. tr(Eipg) = tr(Ejpg) iffi = j.

Proor. Note that, for any pair of distinct effects E;, E; there is
a state p; j such that tr(E;p; j) # tr(Ejpi ). Let pffj = tr(Expi,j)-
Note also that { pf.c j} i,j k is in the algebraic closure of QU T with T
a finite set of transcendental numbers.

Let g; j be transcendental numbers not in T such that for each
i, j, gi,j is not in the algebraic closure of QU T U {q,p | a #
iorb # j} (there are enough transcendental numbers, otherwise
we could prove R to be denumerable). We now let ¢’ be defined as
(1- 2 9i,j), and we use it to scale the g; j to the weights of a full
probability distribution, letting x; ; = g; jq’.

We let pg = ; j xi jpi,j and prove by refutation that it distin-
guishes all the effects in E. Assume that tr(Eqpg) = tr(Eppg) for
some indexes a # b. We observe that, for k € {a, b},

k k

tr(Egps) = ) xijtr(Eepig) = ) xijpk; =4 > qipf.
Lj Lj Lj

Hence, we can rewrite our assumption as 3; ; q,-,jpi“j =i qi,jpll.’j.

Note that, for each pair of indexes ¢ and d, we can rewrite the
formula above as

b b
Gea(Plq =0l = D> qupli— D, quipt;
i,j#c,d i,j#c,d
If for some cor d, pf d—pf d is not zero, then we can divide both sides

for pgy q- pf, > proving that g 4 is indeed in the algebraic closure
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of QUT U{ge r | e # cor f # d}. Since this would contradict our
hypothesis, we must assume that p? , - pi’d = 0 for any choice of
¢ and d, but this is a contradiction w’ith the, definition of pgf J since
Pap# pz’b by construction. o

THEOREM 6. Foranys,t € S, s ~js t implies s =ppe t. Moreover,
if S is finitely dimensional, then s ~pp, t implies s ~j; 1.

Proor. By Theorem 5, for proving ~jsC=yp, it suffices to show
that ~,,C=~ 5., which holds by definition.
For (=,pe C~s), let next(s, ) be defined as

next(s,u) ={® | 3s" €S.s LR D}.

We let n be the maximum of the cardinality of X for X € next(s, 1)
for some s and .
Consider now the following set of effects:

E'={E|3s,s’ €5, p€ Acts 2 D and D(s’) = E}
We let E be the set of the effects obtained by summing up to n
effects in EC.
By Lemma 4, there is a quantum state pg such that
VEi,Ej € E.tr(Eipg) = tr(EjpE) iff E; = E;.

Note that =, C~p by definition of ;.. Note also that by proving
~ps E~1s we would get the thesis by transitivity. We will prove
that ~pg isa LS-bisimulation. Assume s ~pg b and that s i) D,

then t 2 T with D py N?)m | pg- Note that, since LS and AM-
bisimilarity coincides in the probabilistic case, the relation above
implies that
vCes/., . Z D . (x) = Z T ps (%)

xeC xeC

We are left with proving that
vCeS/, . Z D(x) = Z T(x)
xeC xeC

Assume by refutation that this is not the case, i.e. there is some C
for which the condition above does not hold. Then it suffices to
note that

D Olps () = ) tr(D(x)pe) = tr(( Y D(x)pr)

xeC xeC xeC
D Thps () = ) tr(T(x)pr) = tr(( Y T(x))p)
xeC xeC xeC

Since Y ec D(x) and Y e T(x) are both effects in E, we have
that

tr(( ), DE))pe) = tr(( Y, T(x))pe)
xeC xeC
implies Y\ cc D(x) = Yyec T(x), contradicting our assumption.
(]

THEOREM 7. If's1 ~js s2 and t; ~js ta then sy +t1 ~s S2 + ta.

ProOF. Let R (R;) be the LS-bisimilarity of the eLTS of s; and s3
(of t; and ty rispectively). We will show that the following relation
is a LS-bisimulation in the non-deterministic sum eLTS.

R = Rsir URs UR; where
Rstt = {(s1+ 11,52 + 12) | 51Rs52, 11 R12}
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Assume xRy, then either xRy, xR;y or sRsst. The first two cases
are trivial, since Rs and R; are bisimilarity and are included in R.

i
Assume then that x = s1 +t; and y = sp + 2, and that 51 + t; — D.
. . . H H
By definition of nondeterministic sum, either s; — D or t; — D.
. H .
In the first case, since s; ~ s2, s2 — T with

VC € S/, Z D(x) = Z T(x).

xeC xeC
and by Exr.L, sp + t 5q
We are left with proving that
VC e S/ Z D(x) = Z T(x).
xeC xeC

We can reduce this condition to the former by simply noticing that
S/g=S/®,US/®,US/R,,,, and that

VC € (S/R,US/Rep) . D(x) = > T(x) =0.

xeC xeC
H L . .
The second case, t; — D is similar, by considering Ext.R. O
THEOREM 8. If31 ~Is $2 and t; ~Is t2, then s1 || 11~ S2 || 2.

ProOF. Let R (R;) be the LS-bisimilarity of the eLTS of s; and s3
with states Ss (of t; and t; in S; respectively). We will show that the
following relation is a LS-bisimulation in the parallel composition
eLTS.

R ={(s1 |l tr.s2 Il t2) | s1Rss2, 1Rtz }
Take (s1 || t1,s2 || t2) € R, and assume s; || #; performs a reduction,
then it bust be one of the forms of the rules in Definition 12.
(Case ParL) We have that s || t; L D || {t > I}, and s; LN D.

Then, since s; ~ s2, it holds that s LN T with
VC € S5/, Z D(x) = Z T(x).
xeC xeC
By rule ParL, 52 || £ 4> T || {t2 > 1}.
We are left with proving that
VCeS/g D (DI {teTH(x) = Y (T {t2>1H(X).
xeC xeC

We can rewrite this condition as follows, by omitting elements that
are not in the support of the effect distributions.

VCeS/g Y, @I {neE = > (Tl{>k.
x|l eC x|[t€C
Moreover, we can define equivalence classes explicitly,
Vsess Y @@= Y (Tl e
x|ty s.t. sRsx x|tz s.t. sRsx
We substitute the parallel composition of distributions with its

definition.

Vs € S Z (D(x)®I) = Z (T(x) ®1).

x s.t. sRsx x s.t. sRsx
which clearly derives from our hypothesis by linearity of ®.

(Case ParR) It is similar to the previous case.
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(Case syncu) We have that s || #; 5 Dy || T1, and both s; L

Dy and ty i) T1. Since s1 ~ sg, it holds that s L Dy, with D7 and
D, satisfying the following

VCeSi/r, ), Di(x) = ) Do),

xeC xeC
Similarly, ¢, L T, with T1 and T satisfying

VCe SR, ), T = ) Talx).

xeC xeC

Then, by rule Syncs, s3 || £2 5o, || To.
We are left with proving that

VCeS/g Y (D1l TG = ) (D || T)(x).

xeC xeC

Notice that by construction of R,
S/g={{xly|x€Cs, y€Ct}|Cs€Ss/g,,Ct € St/®r,}
we can therefore rewrite our condition as

VCs € Ss/R,.Ct € St/ R,
Y, @&y =

x€Cs,yeCy

> @Il Ty

x€Cs,yeCy

By definition of the parallel composition of distributions, we obtain
the following.

VCs € SS/R5>Ct (S St/Rt

Y. DweTiy= ),

x€Cs,yeCy x€Cs,yeCy

D2(x) © T2(y)

It is the sufficient to resort to linearity of ® to obtain the following
which is trivially derivable from our hypothesis

VCs € SS/-RS,Ct S St/'Rt

(Z :ol(x>)®(z zl(y>)=(z :oz<x>)®(z 3:2<y>)
x€Cs yeC, xeCs yeCy
O

THEOREM 9. If's ~ t thens|, ~s t|, for any p.
Proor. We prove the following R to be a Is-bisimulation.
R = {(s|p,t|p) |s~i s tpe DM}
Take (s| o t| p) € R, and assume s|,, performs a reduction, then,

by Definition 14 it must be of the form s|p L ®|p, and it must be

that s 2> D.
Since s ~s ¢, t 2, % such that

VC €S/, Z D(x) = Z T(x). (1)

xeC xeC

Moreover, t|p LN ‘I|p by Definition 14.
We are left with proving that

VC e S/ Z |, (x) = Z T, (x).

xeC xeC
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Note that, by definition of R, given any p € DM,
C e S/~ if and only if {xlp | x € C} €S/g.
Therefore, we can rewrite our condition as

Ve e s/, Y ol 0l,) = Y 3, ¢,

xeC xeC

which clearly derives from Equation 1, by definition of D|,, in Defi-
nition 14. m|

Lemma 5. For any d-dimensional eLTS (S, Act,—) and state p €
DMy, given a relation R C S X S we have that R is a p-bisimulation
if and only if R|, is a bisimulation, where R|, is defined as

s|p Rlp tlp ifand only if s R t
Proor. First of all note that for any two distribution D, T, it
holds .
DlpR Tp iff D], R|, T,
since D], and D|,, assign the same probability the same elements,
modulo the |, renaming.

Now we prove the "only if" direction, proving that R|, is a
bisimulation. The other direction is similar. Suppose s| p R| p tlp,

then ifs|p LA ®|p it must be s 25 D. As t is p-bisimilar, we know
o
that t £ T and Dlp R Tlp, because since they are probability
distributions the equivalence class condition of p bisimilarity is
o
equivalent to the relational lifting. Thus we get D|, R|, Z|,,

showing that R|, is a bisimulation. O

Corollary 1. Given ad-dimensional eLTS (S, Act, —) and two states
s,t €S, if for any p € DMy we haves|, ~is t|,,, then's ~; t.

Proor. We build the relation R = {(x,y) | x|, ~s y|p}, and of
course we have sRt. Then we can show that R| P is a bisimulation,

u u
because when x|, — D], we have y|p — qT|p, and D|,, T, are
o

not only in ~E1's, but also in Rlp. Thus, for Lemma 5, it must be
that R is a p-bisimulation, and so s and ¢ are p-bisimilar for any p.
Tanks to Theorem 6, they are LS-bisimilar. O

THEOREM 10. Ifthe dimension of the Hilbert space is two or greater,
then © + T is undefined if D(s) = |[YX¢| and T(t) = |pXP| for some
states s, t € S and quantum states ) and |¢).

ProoF. Assume D+ exists. Then tr ([ Xy - p) - tr(|¢pX¢|-p) =
tr(E - p) for any p where E = (D + ) (s +t). Take p = [y X¢|, then
tr(lyXyl- p) - tr(lgpXel - p) =
=Wl Yl - Y1g) (Ply) =
= (V14 (¢ly) must be equal to tr(E - [y Xy1).
Similarly, by considering p = |¢p)X¢/|, then
tr([Y Xyl - p) - tr(I¢Xgl - p) =
= (PlY) (Vlg) - (D1¢) (Pl¢) =
= (9lY) (Ylg) = Y1) (P1¥)
must be equal to tr(E - |pX¢|) = tr(E - [y X¢])-
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Consider now p = £ [y Xy] + 3 I$X4].
(XY - p) - tr(I$Xg| - p) =

= r(YXU1- G XY+ 5 19X6D)

r(8X91 - (5 XYL+ 5 1Y) =

= %tr(llﬁ)(llfl XYL+ XYL - 19X -
%tr(|¢><¢| XYL+ 19XS1 - [9Xo1) =
= %(tr(llﬁ)(llfl XY + tr(ly Xyl - 19X9D) -

%(tr(|¢><¢| YXYD +tr(19Xel - [9Xe1) =

= %((lﬁllﬁ) 1) +Bly) Y1) -

SUBIY W) + (G199 (B19)) =
= S+ W) 581 W1+ 1)

must be equal to
(B p) = tr(E- (5 [UXY1+ 5 19X6D) =
= Str(E- [UXY1+E - 16Xg1) =

= Str(E- XD + (B X9 =

= S W19 G0) + 5 W19 GIY) = 1) GI9)

The only solution is that tr (E-|pX¢|) = tr(E- [y Xy1) = (¥|¢) ($1¥)
1

Since the dimension of the Hilbert space is at least 2, we can
choose a state |a) such that {(a|y/) (¢|a) = 0. Then also (a|¢) (p|a) =
0. Take then p = 1 [yXy| + 1 |aXal.

tr([y Xyl - p) - tr(1pXdl - p) =
= %((V/Ilﬁ) W1y +(aly) (Yla)) -

SB19) (16} + (alg) (Bla) = §

must be equal to

tr(E - p) = tr(E - (% [y Xyl + % laXal)) =
= Str(E - 1YXYI) + 5tr(E - laXa) =

1 1
=5 + Etr(E - laXal).

Hence, tr(E - |aXal) = —%, which is impossible for an effect. o

Lemma 6. Let p € DMp, E € &fy, and s such thatd - dim(s) < D.
Then

H H
(E,S)|p — {(Ei, 3i>|p >pi} @ (Mg(p),s) = {Mg,(p) > pi}
Proor. First, let us prove

(E5), = {(Eusi)|, > pit = Me(p)s) = (Mg, (p) > pi)
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by induction on the transitions obtained by instantiating the only
rule for - |, with each rule of the Heisenberg-style semantics.

(Case HPre) By induction hypothesis, it must be that flat(s) =
([Ei]si)ier for some set I. Therefore, the SPRE rule is applicable to
(p,a.P).

(LaP)|, 5 ((Bisi], > (B 0 )p)}
(i
(p.a.P) 5 (Mg, (p). 1) & tr (M, (p))}

It straightforward to show that tr(Mg(p)) = tr((E ® I)p) for any
effect E and any partial density matrix p, defined over a state possi-
bly larger than the state of E

uMg(p) = trtea ((VE® 1) p (VE®1)))

= tr((\/E ® H) p (\/E@ JI))
= t(E®T)p)
(Case HsumL) By induction hypothesis, we have
u
W), & (Ensil, > (B o Dp))
0
i
(p.s) = {ME,(p).siy > tr((E; @ I)p) }
Therefore, the SSUML rule is applicable to {p,s + t).
(Ls+0)], 5 ()|, > tr((E; @ Dp)}
g

(pos+1) 5 (Mg, (p), si) > tr((E: @ I)p)}

(Case HsumR) Analogous to the case for HSumL
(Case HParL) By induction hypothesis, we have

()], 5 {(Es s, & tr(E; ® Dp)}
)
(pys) = {M,(p).si) > (B @ D)}
Therefore, the SPARL rule is applicable to (p, s || t).
(s D], 5 (CEssi Il D], > tr(E; @ Dp))
)
(s | 1) 55 (M, (p).si || 1) & e ((E; @ Dp)}

(Case HParR) Analogous to the case for HPARL
(Case HsyncL) By induction hypothesis, we have

()|, S (B, > (B ® Dp))
g

(p,s) D5 (M, (p), s:) & tr((E; ® D)p)}
and

wnl, B (e, > el @ D))
(3

(9 1) D (Mg, (0. 1) > te((E; © D)}
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Therefore, the SSYNCL rule is applicable to {(p,s || t).
sl )], > (E@Ejsi || )], > tr((Ei @ Ep) @ Dp)}
)
(P51l £) 5 {ME, (M, (p)).si I 1) & tr( M, (M, (p))))
However, since measurements are destructive, it holds that
(M, (M, (p))) = tr( M08, (0)) = tr((E:  E) ® Dp)

(Case HSyncR) Analogous to the case for HSyncL
(Case HLirr) By induction hypothesis,

()|, 5 (Eisi)|, > (B ® Dp))
)
(ps) 55 {M, (p), 5:) & tr((E; @ )p)}

Notice that, if (o, s) L {{ME,(0),si) > tr((E; ® I)o)} for some
o, then all ¢’ behaves similarly with possibly different weights, i.e.

(@',5) 5 (M, (o), 51) > tr((Es ® Do)}
Therefore,
ES), 5 (E@Eus)|, > tr(Ee E) @ D)}
)
H
(ME(p),s) = {{ME,(MEe(p)),si) > tr(ME,(Me(p)))}
As for the previous case, tr(Mg,(Mg(p))) = tr(((E ® E;) ® I)p).
Second, let us prove
I u
(E,S>’p - {<Ei’5i>‘p > pi} & (MEg(p),s) — {Mg;(p) > pi}
by induction on the transitions in the Schrédinger-style semantics.
(Case spPre) By rule precondition it must be that flat(s) = ([E;i]si)ier
for some set I. Therefore, the HLIFT followed by the HPRE rule are
applicable to (E, y.P).
u
(Mg (p), p.Py = {{MEg,(ME(p)). si) & tr(ME,(Me(p)))}
)

(P, L e Eisi)|,, > tr((E® E; @ 1))}

But, as showed before, tr(Mg, (Mg(p))) = tr((E ® E; @ I)(p))
(Other cases) All other cases follow the same line of reasoning
of SPRE, where we first need to apply a HLIFT. O

TuEOREM 11. For any atomic state s and p € DMgim(s)
W), ~1s (p5)

Proor. Let D = dim(s), take the relation
_ teS, peDMp,E e &fy
Rp = {(<E 2 d-dim(t) < D
From Lemma 6 it is trivial to show that such relation is a bisimula-
tion and it includes ({1, )|, (p. s)) O

p Me(p). 1))

Lemma 7. Let p € DMy withd > dim(s),

&), > (s, > pi} & Ep).5) > (Eilp) > pi)
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Proor. First, let us prove

&), > (sl > pi} = E(p).s) = (Eilp) > pi)

by induction on the transitions in the restricted Heisenberg-style
semantics.

(Case HPre) By rule precondition it must be that flat(s) = ([E;]si)ier
for some set I. Therefore, the SPRE rule is applicable to {p, a.P).

(TP, = (Ensi)], > tr(Ee, (p)}
i
(p.a.P) 55 ((&ilp).si) > tr(Ei(p)))
It is straightforward to show that tr(Eg, p) = tr(E;(p)):

tr(Eg,p) = tr((z EZEk) p)
k
= tr(z Eka;i)
k

= tr(&i(p))

where {E} } is a Kraus decomposition of &;.
(Case HsumL) By induction on the precondition

i
(I,Sﬂp = {(&i, 5i>|p >tr(Eg,p)}
)
i
(p.s) = {(&ilp).si) > tr(Eg,p) }
Therefore, the SSUML rule is applicable to {p, s + ¢).
7
(I,s+ t)lp 5 {<al—,sl—>yp > tr(Eg,p)}
)

(p.s+1) 5 ((Ei(p).si) > tr(Eg,p)}

(Case HsumR) Analogous to the case for HSumL
(Case HParL) By induction on the precondition

p
<I,S>|p — {(&i, Si>|p >tr(Eg;p)}
()
p
(p.s) = {(&i(p),si) > tr(Eg,p) }
Therefore, the SPARL rule is applicable to (p, s || t).
H
sl t)|p = {{&isi |l t>|p >tr(Eg;p)}
g

(s Ity 5 {(&ilp),si I £) > tr(Eg,p)}

(Case HParR) Analogous to the case for HPARL
(Case HSyncL) By induction on the preconditions

(9|, 5 (i, > r(Bs,)}
(i

(p,s) B {(Ei(p), si) > tr(Eg, p)}
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and
0], 5 &g, = (B, 0))
0
(0.1 5 (485(0), 1) o (B )
Therefore, the SSyncL rule is applicable to {p, s || £).
(LD, 5 (& 0 Eusi Il )], > tr(Egee,0)}
0
(s 111y 5 ((81(Ei(p)).si Il 1) > tr(E(Ei(p))))
However, tr(8;(&i(p))) = tr(Eg 08,
w(E(Ei(p)) = (8 0 E)(p)) = tr(Eg o6

(Case HSyncR) Analogous to the case for HSyncL
(Case HLirr) By induction on the precondition

(T3, S (s, > tr(Bs,p)}
0

(p.5) = {(Eilp).si) > tr(Eg, )}
Therefore, by selecting p = MEg(p)
& 5), 5 (i 0 &.50)|, > tr(Eg,050)}
g
ME(p).s) 5 {(E:(E(p)). 1) & r(Ei(E(p)))}
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As for the previous case, tr(&;(E(p))) = tr(Eg,0ep)-
Second, let us prove
H p
&), 5 (Ensdl, > pid = (E).5) L (Ei(p) b pi}

by induction on the transitions in the Schrédinger-style semantics.

(Case spre) By rule precondition it must be that flat(s) = ([E;]si)ier
for some set I. Therefore, the HL1FT followed by the HPRE rule are
applicable to (&, p1.P).

(E1(8(p)). 1P) 5 ((Ei(E(p)).51) b tr(E:(E(p))}
8
& pP), 5 (&1 0 E 50, > r(Eg,o8p)}

But, as showed before, tr(&;(E(p))) = tr(ESioé)p)
(Other cases) All other cases follow the same line of reasoning
of SPRE, where we first need to apply a HLIFT. O

THEOREM 13. For any d-dimensional atomic process s and any
p € DMy, (Zg. )|, ~15 (ps)-

Proor. Take the relation
R = {((8,s)|p, <a(p),s>) |seS,peDMy,& e sod}

From Lemma 7 it is trivial to show that such relation is a bisimula-
tion and thus the theorem holds. ]
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