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ABSTRACT

Along with the development of quantum communication protocols,

quantum extensions of process calculi have been explored together

with different notions of behavioural equivalence. Recent works

have shown that defining a bisimilarity that matches the obser-

vational properties of a quantum-capable system is a surprisingly

difficult task. Moreover, the two proposals explicitly addressing this

issue, namely qCCS and lqCCS, do not define an algorithmic verifi-

cation scheme: in order to prove the bisimilarity of two processes,

one has to compare their behaviour under any possible input state.

We introduce a new semantic model based on effects, i.e. probabilis-

tic predicates on quantum states that represent their observable

properties. We define and investigate the properties of effect distri-

butions and effect labelled transition systems (eLTS), generalizing

probability distributions and probabilistic labelled transition sys-

tems (pLTS), respectively. We give an eLTS-based semantics for a

minimal quantum process algebra, featuring concurrent and non-

deterministic behaviour, quantum measurements and unitaries, and

we prove that this semantics is sound and complete with respect to

the observable probabilistic behaviour of quantum processes. To

the best of our knowledge, ours is the first algorithmically verifiable

proposal that abides to the properties of quantum theory.

1 INTRODUCTION

Recent years have seen a flourishing development of quantum

technologies for computer science, in the form of quantum compu-
tation and quantum communication. Both of them exploit quantum

phenomena like superposition and entanglement: the former is in-

terested in harvesting the (supposedly) higher computational power

of quantum computers, while the latter strives to achieve secure

and reliable communication, featuring solutions for key distribu-

tion [30], cryptographic coin tossing [2], direct communication [27],

and private information retrieval [13]. Protocols like BB84 QKD [2]

are unconditionally secure [28], meaning that they are protected

against all physically possible attackers. Quantum communication

also promises to allow linking multiple computers via the Quantum
Internet [4, 34], therefore providing quantum algorithms with large

enough memories for practical applications.
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Despite the rich theory and the potential applications, there is

no accepted standard to model and verify quantum concurrent

systems and protocols. Numerous works [6, 11, 14, 24, 33] rely

on quantum process calculi, an algebraic formalism that has been

successfully applied to classical protocols and concurrent systems.

Their semantics is given by means of a labeled transition system
(LTS) (𝑆,𝐴𝑐𝑡,→): the relation → ⊆ 𝑆 × 𝐴𝑐𝑡 × 𝑆 specifies how a

state 𝑠 ∈ 𝑆 may evolve performing an action 𝛼 ∈ 𝐴𝑐𝑡 . The standard

equivalence for such LTSs is bisimilarity, the largest relation on

states that is “stable” for→, meaning that bisimilar states evolve in

bisimilar states.

There have been several attempts [6–9, 23] to adapt existing

techniques to the quantum setting, mainly in terms of probabilistic
LTSs (pLTs) (𝐶𝑜𝑛𝑓 ,𝐴𝑐𝑡,→), where𝐶𝑜𝑛𝑓 = H×𝑆 is a set of configu-
rations composed by a quantum state (an element of a Hilbert space

H ) and a process, and→⊆ 𝐶𝑜𝑛𝑓 ×𝐴𝑐𝑡 ×D(𝐶𝑜𝑛𝑓 ) withD(𝐶𝑜𝑛𝑓 )
probability distributions of configurations. This approach led to

a plethora of different bisimilarities, yet most of them unsatisfac-

tory since they spuriously distinguish processes that are deemed

indistinguishable by the prescriptions of quantum theory [7, 12, 22].

Moreover, assessing bisimilarity of processes requires comparing

infinitely many LTSs (one for each possible quantum state). Indeed,

algorithmic verification is still missing. In [6], the root of these

problems is identified in the peculiarities of the semantic model

described above, a non-deterministic pLTS made of quantum states

and processes.

We propose effect labelled transition systems (eLTSs) as a novel
semantic model for non-deterministic and concurrent quantum

systems, generalizing pLTSs. In physics, effects represent the ob-
servable behaviour of quantum states, thus building on them allows

us to express the correct observable properties of more complex

structures, like effect distributions and eLTSs. At the same time,

effects encode probabilistic properties that are parametric with re-

spect to quantum states. We study effect distributions and eLTSs,

either generalising the known results on probabilistic systems when

possible, or proving they do not hold otherwise. We explore several

notions of bisimilarity and investigate their relation with the pre-

scriptions of quantum theory. We show that a Larsen-Skou-style

bisimilarity is indeed adequate for comparing quantum systems.

To assess our proposal, we define a minimal quantum process al-
gebra (mQPA) featuring actions, synchronisation, non-determinism,
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parallel composition, destructive measurements and unitary trans-

formations, and we enrich it with two different semantics: a stateful

Schrödinger-style semantics that given a quantum state as input re-

turns a pLTS representing the observable behaviour of the system;

and an Heisenberg-style semantics in the form of an eLTS that is

independent of the actual quantum input, in the style of [10, 19].

We prove that the Heisenberg-style eLTS is indeed the “symbolic”

version of the Schrödinger-style pLTSs of the same system. In a

nutshell, this means that we can prove bisimilarity just once on the

Heisenberg semantics, and have it automatically verified for all the

possible “ground” systems obtained by instantiating the quantum

input. Notably, our notion of bisimilarity can be efficiently verified

with standard techniques [21].

Synopsis. In section 2 we give some background about proba-

bility distributions and quantum theory. In section 3 we introduce

effect distributions and eLTSs, we investigate their properties and

compare eLTS bisimilarities. In section 4 we present our minimal

process algebra, enriched with both a stateful and a stateless se-

mantics, which are proved to coincide. Finally, we compare with

related works in section 5, and we conclude in section 6. The full

proofs of our results are postponed to the Appendix.

2 BACKGROUND

We recall some background on probability distributions, and we in-

troduce quantum computing. Finally, we present density operators,

modelling probability distributions of quantum systems. We refer

to [29] for further reading on quantum computing.

2.1 Probability Distributions

A probability (sub)distribution over a set 𝑆 is a function Δ : 𝑆 →
[0, 1] such that

∑
𝑠∈𝑆 Δ(𝑠) ≤ 1. We call the support of a distribution

Δ, written suppΔ, the set {𝑠 ∈ 𝑆 | Δ(𝑠) > 0}. We write D𝑆 for

the set of finitely supported distributions over 𝑆 . We say that a

probability distribution Δ is total when
∑
𝑠∈𝑆 Δ(𝑠) = 1.

For each 𝑠 ∈ 𝑆 , we let 𝑠 be the point distribution that assigns

1 to 𝑠 . Given a finite set of non-negatives reals {𝑝𝑖 }𝑖∈𝐼 such that∑
𝑖∈𝐼 𝑝𝑖 ≤ 1, we write

∑
𝑖∈𝐼 𝑝𝑖 · Δ𝑖 for the distribution determined

by (∑𝑖∈𝐼 𝑝𝑖 · Δ𝑖 ) (𝑠) =
∑
𝑖∈𝐼 𝑝𝑖Δ𝑖 (𝑠).

Probability distributions form a convex set [3], meaning that for

any two distribution Δ,Θ and any real 𝑝 ∈ [0, 1] there exists a

distribution Δ ⊕𝑝 Θ defined as 𝑝 ·Δ1 + (1−𝑝) ·Δ2. Given a function

𝑓 between convex sets 𝑋 and 𝑌 , we call 𝑓 convex if it preserves

the ⊕𝑝 operator, i.e. if 𝑓 (𝑥1 ⊕𝑝 𝑥2) = 𝑓 (𝑥1) ⊕𝑝 𝑓 (𝑥2). We denote

as Conv(𝑋,𝑌 ) the set of convex functions between 𝑋 and 𝑌 .

2.2 State Space

A (finite-dimensional) Hilbert space, denoted as H , is a complex

vector space equipped with a binary operator ⟨ · | · ⟩ : H ×H → C
called inner product, defined as ⟨𝜓 |𝜙⟩ =

∑
𝑖 𝛼

∗
𝑖
𝛽𝑖 , where |𝜓 ⟩ =

(𝛼1, . . . , 𝛼𝑖 )𝑇 and |𝜙⟩ = (𝛽1, . . . , 𝛽𝑖 )𝑇 . We indicate column vectors

as |𝜓 ⟩ and their conjugate transpose as ⟨𝜓 | = |𝜓 ⟩†. The state of an
isolated physical system is represented as a unit vector |𝜓 ⟩ (called
state vector), i.e. a vector such that ⟨𝜓 |𝜓 ⟩ = 1. The simplest example

of a quantum physical system is a qubit, which is associated with the
two-dimensional Hilbert space C2. The vectors {|0⟩ = (1, 0)𝑇 , |1⟩ =
(0, 1)𝑇 } form an orthonormal basis of C2, called the computational

basis. Other important vectors in C2 are |+⟩ = 1√
2

( |0⟩ + |1⟩) and
|−⟩ = 1√

2

( |0⟩ − |1⟩), which form the Hadamard basis.
Intuitively, different bases represent different observable prop-

erties of a quantum system. Note that |+⟩ and |−⟩ are non-trivial
linear combinations of |0⟩ and |1⟩, roughly meaning that the prop-

erty associated with the computational basis is undetermined in

|+⟩ and |−⟩. In the quantum jargon, |+⟩ and |−⟩ are superpositions
with respect to the computational basis. Symmetrically, |0⟩ and |1⟩
are superpositions with respect to the Hadamard one.

2.3 Unitary Transformations

For each linear operator 𝐴 on a Hilbert spaceH , there is a linear

operator 𝐴†
, the adjoint of 𝐴, which is given by the conjugate

transpose of 𝐴 and is the unique operator such that ⟨𝜓 |𝐴|𝜙⟩ =〈
𝐴†𝜓

��𝜙〉
. A linear operator 𝑈 is said to be unitary when 𝑈𝑈 † =

𝑈 †𝑈 = I. In quantum physics, the evolution of a closed system

is described by a unitary transformation: the state |𝜓 ⟩ at time 𝑡0
is related to |𝜓 ′⟩ at time 𝑡1 by a unitary operator 𝑈 , which only

depends on 𝑡0 and 𝑡1, i.e. |𝜓 ′⟩ = 𝑈 |𝜓 ⟩.
In quantum computing, the programmer manipulates the state

of qubits by applying unitary transformations. Some of the most

common transformations on single qubits are: 𝑋 that transforms

the qubit |0⟩ into |1⟩ and vice-versa (corresponding to the classical

logical not); 𝑍 that given |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ returns 𝛼 |0⟩ − 𝛽 |1⟩;
and 𝐻 that maps |0⟩ and |1⟩ into |+⟩ and |−⟩, respectively.

𝑋 =

[
0 1

1 0

]
𝑍 =

[
1 0

0 −1

]
𝐻 =

1

√
2

[
1 1

1 −1

]
2.4 Measurement

Quantum measurements are needed for describing systems that

exchange information with the environment. Performing a mea-

surement on a quantum state returns a probabilistic classical result

and either destroys or otherwise changes the quantum system. We

focus in this paper on destructive measurements.

The simplest kind of measurements are effects, i.e. yes-no tests

over quantum systems. A complex matrix 𝐴 is called positive semi-
definite, shortly positive, when ⟨𝜓 |𝐴|𝜓 ⟩ ≥ 0 for any |𝜓 ⟩. The Löwner
order is the partial order defined by𝐴 ⊑ 𝐵 whenever𝐵−𝐴 is positive.

Each effect can be represented as a positive matrix smaller than

the identity in the Löwner order. We denote the set of effects on

a 𝑑-dimensional Hilbert space as follows, where I𝑑 is the 𝑑 × 𝑑

identity matrix.

E𝑓𝑑 =
{
𝐸 ∈ C𝑑×𝑑 | 0𝑑 ⊑ 𝐸 ⊑ I𝑑

}
The probability of getting a “yes” outcome when measuring an

effect 𝐸 on a state |𝜓 ⟩ is given by ⟨𝜓 |𝐸 |𝜓 ⟩.
In general, a measurement with 𝑛 different outcomes is a set

{𝐸1, . . . 𝐸𝑛} of effects, such that the completeness equation
∑𝑛
𝑖=1 𝐸𝑖 =

I holds. If the state of the system is |𝜓 ⟩ before the measurement,

then the probability of the 𝑖 outcome occurring is 𝑝𝑖 = ⟨𝜓 | 𝐸𝑖 |𝜓 ⟩.
As examples of measurements, consider𝑀01 and𝑀± that project

a state into the elements of the computational and Hadamard basis

ofC2 respectively. Themeasurement𝑀01 is defined as {|0⟩⟨0| , |1⟩⟨1|}
and𝑀± as {|+⟩⟨+| , |−⟩⟨−|}.
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Applying the measurement𝑀01 on |0⟩ returns the outcome asso-

ciated with |0⟩⟨0| with probability 1. When measuring |+⟩, instead,
the same result occurs with probability

1

2
.

2.5 Composite Quantum Systems

We represent the state space of a composite physical system as the

tensor product of the state spaces of its components. Let H𝐴 and

H𝐵 be 𝑛 and𝑚-dimensional Hilbert spaces: their tensor product

H𝐴 ⊗ H𝐵 is an 𝑛 ·𝑚 Hilbert space. Moreover, if {|𝜓1⟩ , . . . , |𝜓𝑛⟩}
and {|𝜙1⟩ , . . . , |𝜙𝑚⟩} are bases of respectively H𝐴 and H𝐵 , then

{|𝜓𝑖 ⟩ ⊗
��𝜙 𝑗

〉
| 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . ,𝑚} is a basis of H𝐴 ⊗ H𝐵 ,

where |𝜓 ⟩ ⊗ |𝜙⟩ is the Kronecker product, defined as
𝑥1,1 · · · 𝑥1,𝑛
.
.
.

. . .
.
.
.

𝑥𝑚,1 · · · 𝑥𝑚,𝑛

 ⊗ 𝐴 =


𝑥1,1𝐴 · · · 𝑥1,𝑛𝐴

.

.

.
. . .

.

.

.

𝑥𝑚,1𝐴 · · · 𝑥𝑚,𝑛𝐴


We often omit the tensor product and write |𝜓 ⟩ |𝜙⟩ or |𝜓𝜙⟩.

A measurement for a composite system may measure only some

of the qubits, e.g. {𝐸0 ⊗ I, 𝐸1 ⊗ I} measures (in the computational

basis) the first qubit of a pair.

A quantum state in H𝐴 ⊗ H𝐵 is separable when it can be ex-

pressed as the Kronecker product of two vectors of H𝐴 and H𝐵 .

Otherwise, it is entangled, like the so-called Bell states:��Φ+〉 = 1

√
2

( |00⟩ + |11⟩) |Φ−⟩ = 1

√
2

( |00⟩ − |11⟩)��Ψ+〉 = 1

√
2

( |01⟩ + |10⟩) |Ψ−⟩ = 1

√
2

( |01⟩ − |10⟩) .

When two qubits are entangled, the evolution of one depends

on the transformations applied to the other. E.g. measuring the

first qubit of

��Φ+〉
in the computational basis causes the second

qubit to decay into either |0⟩ or |1⟩ with equal probability, as will

be explained in the next section. Note that, this means that even

when performing a destructive measurement on a qubit, the state

of the remaining part of the composite system must be updated in

general, as the two components may be entangled.

2.6 Density Operator Formalism

The density operator formalism puts together quantum systems and

probability by considering mixed states, i.e. probabilistic mixture
of quantum states. A point distribution |𝜓 ⟩ (called a pure state) is
represented by the matrix |𝜓 ⟩⟨𝜓 |. In general, a total probability

distribution Δ of 𝑛-dimensional states is represented as the matrix

𝜌 ∈ C𝑛×𝑛 , known as its density operator, with 𝜌 =
∑
𝑖 Δ(𝜓𝑖 ) |𝜓𝑖 ⟩⟨𝜓𝑖 |.

For example, the mixed state |0⟩ ⊕
1/3 |+⟩ being |0⟩ with probability

1/3 and in |+⟩ with probability 2/3 is represented as

1

3

|0⟩⟨0| + 2

3

|+⟩⟨+| = 1

3

[
2 1

1 1

]
Given an 𝑛-dimensional Hilbert space, the density operators con-

structed in this way are all and only the positive matrices of trace

one. We denote such set as 𝐷𝑀𝑛

𝐷𝑀𝑛 =
{
𝜌 ∈ C𝑑×𝑑 | 𝜌 ⊒ 0𝑑 , tr(𝜌) = 1

}
Note that the encoding of probabilistic mixtures of quantum states

as density operators is not injective. For example,
1

2
I is called the

maximally mixed state and represents both the distribution Δ𝐶 =

|0⟩ ⊕
1/2 |1⟩ and Δ𝐻 = |+⟩ ⊕

1/2 |−⟩. This is a desired feature, as

the laws of quantum mechanics deem indistinguishable all the

distributions that result in the same density operator.

Density operators form a convex set, where the convex com-

bination operator is defined by 𝜌 ⊕𝑝 𝜎 = 𝑝𝜌 + (1 − 𝑝)𝜎 . Density
operators and effects are dual, as effects are isomorphic to the con-

vex functions from the set of density operators to the probability

interval. The isomorphism is given by the so-called Born rule.

Theorem 1. It holds that E𝑓𝑛 � Conv(𝐷𝑀𝑛, [0, 1]) through the
isomorphism 𝐸 ↦→ 𝜆𝜌. 𝑡𝑟 (𝐸𝜌) [17].

Roughly, effects can be considered as probabilities parametrized
on an unknown quantum state.

Density operators can be used to describe the state of a sub-

system of a composite quantum system. Let H𝐴𝐵 = H𝐴 ⊗ H𝐵

represent a composite system, with subsystems 𝐴 and 𝐵. Given a

(not necessarily separable) 𝜌𝐴𝐵 ∈ H𝐴𝐵 , the reduced density operator
of system𝐴, 𝜌𝐴 = tr𝐵 (𝜌𝐴𝐵), describes the state of the subsystem𝐴,

with tr𝐵 the partial trace over 𝐵, defined as the linear transformation

such that tr𝐵 ( |𝜓 ⟩⟨𝜓 ′ | ⊗ |𝜙⟩⟨𝜙 ′ |) = |𝜓 ⟩⟨𝜓 ′ | tr( |𝜙⟩⟨𝜙 ′ |). When applied

to pure separable states, the partial trace returns the actual state

of the subsystem. When applied to an entangled state, instead, it

returns a probability distribution of states. For example, the partial

trace over the first qubit of

��Φ+〉〈Φ+��
is the maximally mixed state.

The evolution of density operators is given as a trace preserv-
ing superoperator E : 𝐷𝑀𝑛 → 𝐷𝑀𝑚 , a function defined by its

Kraus operator sum decomposition {𝐸𝑖 }𝑖 for a finite set of indexes
𝑖 = 1, . . . , 𝑛 × 𝑚, satisfying that 𝐸𝑖 ∈ C𝑚×𝑛, E(𝜌) =

∑
𝑖 𝐸𝑖𝜌𝐸

†
𝑖

and

∑
𝑖 𝐸

†
𝑖
𝐸𝑖 = I𝑛 . Superoperators can represent any unitary trans-

formations 𝑈 as the superoperator E𝑈 having {𝑈 } as its Kraus

decomposition. The tensor product of density operators 𝜌 ⊗ 𝜎 is

defined as their Kronecker product, and of superoperators E ⊗ F
as the superoperator having Kraus decomposition {𝐸𝑖 ⊗ 𝐹 𝑗 }𝑖, 𝑗 with
{𝐸𝑖 }𝑖 and {𝐹 𝑗 } 𝑗 Kraus decompositions of E and F .

In the final section of this paper we will employ sub-probability

distributions of pure states, thus leading to the notion of partial
density operators and trace non-increasing superoperators. To each

sub-probability distribution we associate a partial density operator,

belonging to the set

𝑝𝐷𝑀𝑛 =
{
𝜌 ∈ C𝑑×𝑑 | 𝜌 ⊒ 0𝑑 , tr(𝜌) ≤ 1

}
.

Transformations between such density operators are trace non-

increasing superoperators E : 𝑝𝐷𝑀𝑛 → 𝑝𝐷𝑀𝑚 , having Kraus

operators {𝐸𝑖 }𝑖 satisfying
∑
𝑖 𝐸

†
𝑖
𝐸𝑖 ⊑ I𝑛 . We let SO𝑑 be the set of

non-increasing superoperators with input in 𝑝𝐷𝑀𝑑 .

Trace non-increasing superoperators allow us to describe how

entangled systems change after a destructive measurement. Sup-

pose having a compound system associated to a Hilbert space

H𝐴 ⊗H𝐵 . If we measure only the 𝐴 sub-system using the measure-

ment𝑀 = {𝐸1, . . . 𝐸𝑛}, we can describe the transformation applied

by this measurement with superoperators. For each effect 𝐸𝑖 we

define the associated superoperatorM𝐸𝑖 :

M𝐸𝑖 (𝜌) = 𝑡𝑟𝐴 ((
√︁
𝐸𝑖 ⊗ I𝐵)𝜌 (

√︁
𝐸𝑖 ⊗ I𝐵))
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We have that, if the system was in a state 𝜌 , after observing the 𝑖-th

measurement outcome the 𝐵 sub-system will be in stateM𝐸𝑖 (𝜌),
which in general is a partial density operator, whose trace is exactly

the probability of observing the 𝑖-th outcome.

Superoperators gives us information on both the probability of

an outcome and how the state is modified. Thus, we can define also

the converse operation, introducing for each superoperator E its

associated effect
𝐸E =

∑︁
𝑖

𝐸
†
𝑖
𝐸𝑖

where {𝐸𝑖 }𝑖 is any Kraus decomposition of E.

3 EFFECT-BASED MODELS

We generalize probability distributions and pLTSs to effect distribu-

tions and eLTSs, and we investigate which properties of probability

distributions can be lifted to the quantum case. We adapt the two

most used definitions of bisimilarity for pLTS to eLTS, namely, the

Aczel-Mendler and Larsen-Skou bisimilarities. Even if the two coin-

cide in the probabilistic case, this is not the case for eLTSs, and we

advocate for the latter being adequate for comparing the behaviour

of quantum systems. Finally, we define semantic operations over

eLTSs suited for modelling concurrent quantum systems, and we

study their limitations.

3.1 Effect Distribution

We introduce effect distributions, i.e. functions associating each

element of a given set 𝑋 with some d-dimensional effect.

Definition 1. Given a set 𝑋 , the set of 𝑑-dimensional finite effect

(sub)distributions over 𝑋 is

Q𝑑𝑋 =

𝔇 ∈ E𝑓𝑑 𝑋

������ supp(𝔇) is finite,
∑︁

𝑥∈supp(𝔇)
𝔇(𝑥) ⊑ 𝐼𝑑


where supp(𝔇) is the set { 𝑥 ∈ 𝑋 | 𝔇(𝑥) ≠ 0𝑑 }.

Effect distributions are finite non-normalized POVMs [17] and

they generalize probability distributions. More in detail, 1 × 1 posi-

tive matrices are isomorphic to real numbers, hence Q1𝑋 coincides

with the usual set of probability distributions D𝑋 .

Since effects can be regarded as functions from states to proba-

bilities, an effect distribution 𝔇 ∈ Q𝑑𝑋 denotes a function 𝔇↓_∈
(D𝑋 )𝐷𝑀𝑑

associating any 𝜌 ∈ 𝐷𝑀𝑑 with the probability distribu-

tion𝔇↓𝜌 such that𝔇↓𝜌 (𝑥) = 𝑡𝑟 (𝔇(𝑥) ·𝜌) for any 𝑥 ∈ 𝑋 . Hence, an

effect distribution corresponds to the parameterized probabilistic

outcome of performing a finite destructive measurement on some

unknown input quantum state.

In particular, we have the following isomorphism (formally, a

convex set isomorphism).

Theorem 2. Effect distributions correspond to all and only the
parameterized sub-probability distributions that are convex and have
an “overall” finite support.

Q𝑑 �

{
𝔇↓_∈ (D(𝑋 ))𝐷𝑀𝑑

���� 𝔇↓𝜌 ⊕𝑝 𝜎 = (𝔇↓𝜌 ) ⊕𝑝 (𝔇↓𝜎 )⋃
𝜌∈𝐷𝑀𝑑

supp(𝔇↓𝜌 ) is finite

}
Proof sketch. We begin from the isomorphism between effects

and functions in Conv(𝐷𝑀𝑑 , [0, 1]), and we lift it in a point-wise

manner to effect distributions, making them isomorphic to func-

tions in Conv(𝐷𝑀𝑑 , [0, 1])𝑋 . Thus, we swap the arguments and

check both convexity and finiteness of the union of supports. □

We represent effect distributions as indexed sets of pairs 𝔇 =

{𝑥1 ▷ 𝐸1, 𝑥2 ▷ 𝐸2, . . . , 𝑥𝑛 ▷ 𝐸𝑛} with possibly repeated 𝑥𝑖 , meaning

𝔇(𝑥𝑖 ) =
∑
𝑥𝑖=𝑥 𝐸𝑖 . For example, {𝑥 ▷ 𝐸1, 𝑥 ▷ 𝐸2, 𝑦 ▷ 𝐸3} and {𝑥 ▷

𝐸1 + 𝐸2, 𝑦 ▷ 𝐸3} denote the same distribution. We let 𝑥 ∈ Q1𝑋 be

the point distribution 𝑥 (𝑥) = 1.

Example 1. Let𝑋 = {𝑥,𝑦}. The effect distribution𝔇 = {𝑥▷ 1

2
, 𝑦▷ 1

2
}

is indeed a fair probability distribution, i.e. an effect distribution in a
1-dimensional Hilbert space.

A similar distribution on a two-dimensional Hilbert space is𝔊 =

{𝑥 ▷ 1

2
I, 𝑦 ▷ 1

2
I}, associating 𝑥 and 𝑦 with the same probability once

an input quantum state is given.
Finally, given the quantum input 𝜌 = 1

2
|0⟩⟨0| + 1

2
|+⟩⟨+| and the

distribution 𝔗 = {𝑥 ▷ |0⟩⟨0| , 𝑦 ▷ |1⟩⟨1|}, the probability distribution
𝔗↓𝜌 associates 𝑥 with the probability 3

4
and 𝑦 with 1

4
.

As for probability distributions, we compose multiple effect dis-

tributions in an effect-weighted sum.

Definition 2. Given 𝑛 effect distributions {𝔇𝔦}𝑖∈𝐼 , and 𝑛 effects
{𝐸𝑖 }𝑖∈𝐼 such that

∑
𝑖 𝐸𝑖 ⊑ I, the weighted sum of {𝔇𝔦}𝑖∈𝐼 with effects

{𝐸𝑖 }𝑖∈𝐼 is an effect distribution∑︁
𝑖∈𝐼

𝐸𝑖 ⊗𝔇𝑖 such that

(∑︁
𝑖∈𝐼

𝐸𝑖 ⊗𝔇𝑖

)
(𝑥) =

∑︁
𝑖∈𝐼

𝐸𝑖 ⊗𝔇𝑖 (𝑥)

This composition results in a distribution on a Hilbert space of

dimension 𝑑 · 𝑑′, and coincides with the usual weighted sum of

probability distributions if 𝑑 = 𝑑′ = 1. Intuitively, 𝔇 measures a

portion of the quantum state to choose between the distributions

𝔇𝑖 (which in turn behave accordingly to the quantum state). We

will sometimes write 𝐸1 ⊗𝔇1 + · · · + 𝐸𝑛 ⊗𝔇𝑛 for

∑
𝑖 𝐸𝑖 ⊗𝔇𝑖 .

Example 2. Take 𝔊 and 𝔗 of Example 1. The effect distribution
|+⟩⟨+| ⊗𝔊 + |−⟩⟨−| ⊗ 𝔗 can be rewritten as{

𝑥 ▷
1

2

|+⟩⟨+| ⊗ I, 𝑦 ▷ 1

2

|+⟩⟨+| ⊗ I, 𝑥 ▷ |−0⟩⟨−0| , 𝑦 ▷ |−1⟩⟨−1|
}
.

Intuitively, this represents the probabilistic outcome of applying the
following cascade of two measurement procedures to the input quan-
tum state: measure the first qubit over the Hadamard basis, if the qubit
is found in |+⟩ then discard the second qubit and returns either 𝑥 or 𝑦
with the same probability, otherwise measure the second qubit in the
computational basis and return 𝑥 if you observe |0⟩ and 𝑦 otherwise.

In the probabilistic case, it is usual to consider just the binary

composition Δ ⊕𝑝 Θ, defined as 𝑝 · Δ + (1 − 𝑝) · Θ. This is a safe
simplification as any finite probability distribution can be obtained

by repeatedly applying ⊕𝑝 over point distributions. Unfortunately,

this is not the case for effect distributions in general, as we show

in the following.

Definition 3. Let𝔇 ⊕
𝐸

𝔗 be the weighted sum 𝐸 ⊗𝔇+ (I−𝐸) ⊗𝔗.

Some effect distributions with support bigger than two can be

defined by a nesting of ⊕ expressions over point distributions.
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Example 3. The effect distribution over 𝑆 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}

𝔇 = {𝑥1 ▷ |0+⟩⟨0+| , 𝑥2 ▷ |0−⟩⟨0−| ,
𝑥3 ▷ |1+⟩⟨1+| , 𝑥4 ▷ |1−⟩⟨1−|}

can be obtained as (𝑥1 ⊕|+⟩⟨+| 𝑥2) ⊕|0⟩⟨0 | (𝑥3 ⊕|+⟩⟨+| 𝑥4).

We define now the set of distributions that can be obtained

starting from point distributions and applying (an arbitrary number

of times) the binary operator ⊕ .

Definition 4. Given a set 𝑋 , we let Q⊕𝑋 be the smallest family of
sets Q⊕

𝑑
𝑋 ⊆ Q𝑑𝑋 such that Q⊕

1
𝑋 contains 𝑥 for any 𝑥 ∈ 𝑋 , and, if

𝔇,𝔗 ∈ Q⊕
𝑑
𝑋 then𝔇 ⊕

𝐸
𝔗 ∈ Q⊕

𝑑 ·𝑑 ′𝑋 for any effect 𝐸 ∈ E𝑓𝑑 ′ .

Some (finite support) effect distributions cannot be defined using

⊕, as stated by the following theorem.

Theorem 3. If the cardinality of 𝑋 and 𝑑 are at least four, then
Q⊕
𝑑
𝑋 ≠ Q𝑑𝑋 .

Proof sketch. First, we show that the effect

��Φ+〉〈Φ+��
cannot

be expressed as the tensor product of two-dimensional effects. We

then consider the following effect distribution

{𝑥1 ▷
��Φ+〉〈Φ+�� , 𝑥2 ▷ |Φ−⟩⟨Φ− | , 𝑥3 ▷

��Ψ+〉〈Ψ+�� , 𝑥4 ▷ |Ψ−⟩⟨Ψ− |}

and we prove by induction that it is not in Q⊕
4
𝑋 . □

Adhering with the previous result, we use general n-ary compo-

sition of effect distributions.

As it is common for the probabilistic case, it is sometimes useful

to see a relation between elements of a given set 𝑋 as a relation

over effect distributions over 𝑋 . In particular, we lift a relation on

states to one on effect distributions of states by requiring paired

distributions to associate related states with the same effects.

Definition 5. For any dimension 𝑑 , we let
□

R𝑑 ⊆ Q𝑑𝑋 × Q𝑑𝑋 be
the lifting of dimension 𝑑 of R ⊆ 𝑋 × 𝑋 given as the least relation
satisfying the following rules

𝑠 R 𝑡

𝑠
□

R1 𝑡

𝔇𝑖

□

R𝑑 ′ 𝔗𝑖

(∑𝑖∈𝐼 𝐸𝑖 ⊗𝔇𝑖 )
□

R𝑑 ·𝑑 ′ (∑𝑖∈𝐼 𝐸𝑖 ⊗ 𝔗𝑖 )
(𝐸𝑖 ∈ E𝑓𝑑 )

Note that

□

R1 is the usual probabilistic lifting of [18]. We then

recover the following property, known as decomposability.

Lemma 1. Let R ⊆ 𝑋 × 𝑋 . Then𝔇
□

R𝑑 𝔗 if and only if there is a
finite index set 𝐼 and an effect set 𝐸𝑖 ∈ E𝑓𝑑 such that

(1) 𝔇 = {𝑥𝑖 ▷ 𝐸𝑖 }𝑖∈𝐼
(2) 𝔗 = {𝑦𝑖 ▷ 𝐸𝑖 }𝑖∈𝐼
(3) 𝑥𝑖 R 𝑦𝑖 for each 𝑖 ∈ 𝐼

Proof sketch. Proving that this condition implies𝔇
□

R𝑑 𝔗 is

trivial. Then we proceed by induction on the rules of the lifting. □

3.2 Effect Transition Systems

To model quantum systems and protocols we introduce effect la-

belled transition systems (eLTSs). Then we investigate different

notions of bisimilarity.

𝑠1

𝑠4 𝑠5

𝛼

|0⟩⟨0 | |1⟩⟨1 |

𝑠2

𝑠4

𝛼

I

𝑠3

𝑠4 𝑠5

𝛼

|+⟩⟨+| |−⟩⟨− |

Figure 1: ELTs for the states of Example 4.

Definition 6. An eLTS of dimension 𝑑 is a triple (𝑆,𝐴𝑐𝑡,→) where
𝑆 is a set of states, 𝐴𝑐𝑡 is a set of labels, and→ ⊆ 𝑆 ×𝐴𝑐𝑡 × Q𝑑𝑆 is

the transition relation. As usual, we write 𝑠
𝜇
−→ 𝔇 for (𝑠, 𝜇,𝔇) ∈ →.

Hereafter, we assume as given a 𝑑-dimensional eLTS (𝑆,𝐴𝑐𝑡,→).
We instantiate two distinct definitions of semantic equivalence

on quantum systems: Aczel-Mendler and Larsen-Skou bisimilari-

ties [32]. They are known to coincide on classical probabilistic

processes [18]. Notably, they do not in the quantum case.

Definition 7. A symmetric relationR ⊆ 𝑆×𝑆 is anAM-bisimulation

if for any 𝑠R𝑡

if 𝑠
𝜇
−→ 𝔇 then 𝑡

𝜇
−→ 𝔗 for some 𝔗 such that𝔇

□

R𝑑 𝔗

Let AM-bisimilarity ∼𝑎𝑚 be the largest AM-bisimulation.

Example 4. Consider the states 𝑠1, 𝑠2, 𝑠3, 𝑠4 and 𝑠5 such that:

• 𝑠1 transitions with 𝛼 to𝔇 = {𝑠4 ▷ |0⟩⟨0| , 𝑠5 ▷ |1⟩⟨1|};
• 𝑠2 transitions with 𝛼 to𝔊 = {𝑠4 ▷ I};
• 𝑠3 transitions with 𝛼 to 𝔗 = {𝑠4 ▷ |+⟩⟨+| , 𝑠5 ▷ |−⟩⟨−|};
• there is no other transition for 𝑠1, 𝑠2, 𝑠3, 𝑠4 and 𝑠5.

We depict their eLTSs in Figure 1 (note that 𝑠4 and 𝑠5 are deadlock
states). We have that 𝑠1 ∼𝑎𝑚 𝑠2 and 𝑠2 ∼𝑎𝑚 𝑠3. Indeed,

|0⟩⟨0| + |1⟩⟨1| = 𝐼 = |+⟩⟨+| + |−⟩⟨−| , and hence

𝔇
□∼𝑎𝑚 {𝑌 ▷ |0⟩⟨0| , 𝑠4 ▷ |1⟩⟨1|} = 𝔊,

𝔗
□∼𝑎𝑚 {𝑌 ▷ |+⟩⟨+| , 𝑠4 ▷ |−⟩⟨−|} = 𝔊.

Nonetheless, 𝑠1 ̸∼𝑎𝑚 𝑠3 as we cannot write𝔇 and 𝔗 using the same
effects, as it would be required by Lemma 1.

This example, inspired by [31], proves that ∼𝑎𝑚 is not transitive.

We thus generalize Larsen-Skou bisimilarity [25] to the quantum

case (named kernel bisimilarity in [32]).

Definition 8. An equivalence relationR ⊆ 𝑆×𝑆 is an LS-bisimulation

if for any 𝑠R𝑡

if 𝑠
𝜇
−→ 𝔇 then 𝑡

𝜇
−→ 𝔗 for some 𝔗 such that

∀𝐶 ∈ 𝑆/R
∑︁
𝑥∈𝐶

𝔇(𝑥) =
∑︁
𝑥∈𝐶

𝔗(𝑥)

with 𝑆/R the equivalence classes of 𝑆 . Let LS-bisimilarity ∼𝑙𝑠 be the
largest LS-bisimulation.

We show that ∼𝑙𝑠 behaves differently from ∼𝑎𝑚 .

Example 5. Consider Example 4. We can see that 𝑠1 ∼𝑙𝑠 𝑠3 as both
𝔇 and 𝔗 associate the equivalence class {𝑠4, 𝑠5} with the effect I.

Indeed, LS-bisimilarity is coarser than AM-bisimilarity.
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Theorem 4. For any eLTS, ∼𝑎𝑚 ⊆ ∼𝑙𝑠 . Moreover, ∼𝑎𝑚 = ∼𝑙𝑠 in
eLTSs of dimension one, and ∼𝑎𝑚 ⊊ ∼𝑙𝑠 for any eLTS of dimension
at least two with 𝑆 of cardinality at least four.

Proof. For ⊆ it is sufficient to show that 𝔇
□

R 𝔗 requires 𝔇

and 𝔗 to assign the same effect to each class in 𝑆/R , by Lemma 1.

The equality ∼𝑎𝑚 = ∼𝑙𝑠 in eLTSs of dimension one is a classical for

pLTSs [18]. Then it suffices to consider Example 5. □

LS-bisimilarity is also trivially an equivalence relation. In the fol-

lowing we discuss its adequacy as quantum semantic equivalence.

Since probabilistic behaviour is the only observable property of

quantum systems, we consider this characterization as the ground

truth our behavioural equivalence must comply with. We now de-

fine a parameterized version of probabilistic bisimilarity for eLTSs,

stating that equivalent states should express the same probabilistic

behaviour when instantiated with any possible quantum state.

Definition 9. Given 𝜌 ∈ 𝐷𝑀𝑑 , a symmetric relation R ⊆ 𝑆 × 𝑆 is a
𝜌-bisimulation if for any 𝑠R𝑡

if 𝑠
𝜇
−→ 𝔇 then 𝑡

𝜇
−→ 𝔗 for some 𝔗 such that𝔇↓𝜌

□

R1 𝔗↓𝜌
Let 𝜌-bisimilarity ∼𝜌 be the largest 𝜌-bisimulation. We define proba-
bilistic behavioural equivalence ≃𝑝𝑏𝑒 as the relation pairing states if
and only if they are indistinguishable when every possible quantum
state is considered, i.e.

≃𝑝𝑏𝑒 =
⋂

𝜌∈𝐷𝑀𝑑

∼𝜌

As effects and effect distributions are convex parameterized prob-

abilities and probability distributions respectively, eLTSs are can

be seen as parameterized pLTSs. Along the same correspondence,

LS-bisimilarity can be shown to relate states that behave the same

for every possible choice of quantum input at every step. We define

such a relation as a locally-parameterised probabilistic bisimilarity.

Definition 10. A symmetric relationR ⊆ 𝑆×𝑆 is a lpp-bisimulation

if for any 𝑠R𝑡

if 𝑠
𝜇
−→ 𝔇 then 𝑡

𝜇
−→ 𝔗 for some 𝔗 such that

𝔇↓𝜌
□

R1 𝔗↓𝜌 for any 𝜌 ∈ 𝐷𝑀𝑑

Let lpp-bisimilarity ∼𝑙𝑝𝑝 be the largest lpp-bisimulation.

Theorem 5. For any 𝑠, 𝑡 ∈ 𝑆 , 𝑠 ∼𝑙𝑠 𝑡 if and only if 𝑠 ∼𝑙𝑝𝑝 𝑡 .

Proof sketch. We employ Theorem 2, telling us that comparing

effects directly or through their probabilistic behaviour is the same.

Thus, LS-bisimilarity is a lpp-bisimulation, and vice versa. □

Note that the difference between lpp-bisimilarity and probabilis-

tic behavioural equivalence (our ground truth) is essentially that

for disproving bisimilarity one can choose a different state 𝜌 at any

step for the former and a single, global one for the latter.

Example 6. Consider the eLTS in Figure 2. To show that 𝑠1 ≁𝑙𝑝𝑝 𝑠2
it suffices to choose |0⟩⟨0| for the first reduction of 𝑠 and |+⟩⟨+| for
the second one. Formally, since 𝔇↓ |0⟩⟨0 |= 𝑠3 and 𝔗↓ |0⟩⟨0 |= 𝑠4, we
must have that 𝑠3 ∼𝑙𝑝𝑝 𝑠4. But, since𝔊↓ |+⟩⟨+|= 𝑠5 and ℜ↓ |+⟩⟨+|=

𝑠1 𝑠2

𝔇 𝔗

𝑠4𝑠3

ℜ𝔊

𝛾𝛿𝛿 𝛾

𝛼 𝛼

𝛽𝛽

|1⟩⟨1 |

|0⟩⟨0 | |0⟩⟨0 |

|1⟩⟨1 |

|+⟩⟨+||−⟩⟨− ||+⟩⟨+| |−⟩⟨− |

Figure 2: An eLTS where 𝑠1 ≁𝑙𝑝𝑝 𝑠2.

𝑠8, 𝑠3 ∼𝑙𝑝𝑝 𝑠4 requires 𝑠5 ∼𝑙𝑝𝑝 𝑠8 which is trivially disproved by
observing the labels of the available transitions.

Finally, note that neither |0⟩⟨0| nor |+⟩⟨+| are capable of distinguish-
ing 𝑠1 and 𝑠2, as indeed𝔊↓ |0⟩⟨0 |= ℜ↓ |0⟩⟨0 | and𝔇↓ |+⟩⟨+|= 𝔗↓ |+⟩⟨+| ,
and hence 𝑠1 ∼ | 𝑗 ⟩⟨ 𝑗 | 𝑠2 for | 𝑗⟩ ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}.

Quite surprisingly, for finite eLTSs the two relations ∼𝑙𝑝𝑝 and

≃𝑝𝑏𝑒 coincides in spite of that, and hence, we deem LS-bisimilarity

as ours bisimilarity of choice, as it precisely capture the observable

properties of quantum systems.

Theorem 6. For any 𝑠, 𝑡 ∈ 𝑆 , 𝑠 ∼𝑙𝑠 𝑡 implies 𝑠 ≃𝑝𝑏𝑒 𝑡 . Moreover,
if 𝑆 is finitely dimensional, then 𝑠 ≃𝑝𝑏𝑒 𝑡 implies 𝑠 ∼𝑙𝑠 𝑡 .

Proof sketch. By Theorem 5, for proving ∼𝑙𝑠⊆≃𝑝𝑏𝑒 it suffices

to show that ∼𝑙𝑝𝑝⊆≃𝑝𝑏𝑒 , which holds by definition.

For ≃𝑝𝑏𝑒⊆∼𝑙𝑠 , we consider the (finite) set of effects E that may

be applied to equivalence classes in the eLTS, and we build a density

operator 𝜌E that distinguish all the effects in E. This allows us to
prove that ∼𝜌E is an LS-bisimilarity, since associating the same

probability to all classes with quantum input 𝜌E requires the effects

to be the same. We conclude by noticing that ≃𝑝𝑏𝑒⊆∼𝜌E⊆∼𝑙𝑠 . □

Indeed, 𝑠1 ≃𝑝𝑏𝑒 𝑠3 for 𝑠1 and 𝑠3 of Example 4, and a single

quantum state is sufficient for distinguishing 𝑠1 and 𝑠2 of Example 6.

Example 7. Consider Figure 2, and let 𝜌 = |0⟩⟨0| ⊕
1

2

|+⟩⟨+|. Then
𝑠1 ≁𝜌 𝑠2 (and hence 𝑠1 ;𝑝𝑏𝑒 𝑠2). Note that 𝔇↓𝜌= 𝑠3 ⊕

3

4

𝑠4 and

𝔗↓𝜌= 𝑠3 ⊕
1

4

𝑠4. For 𝑠1 to be 𝜌-bisimilar to 𝑠2, it must be that 𝑠3 ∼𝜌 𝑠4.

Since 𝔊↓𝜌= 𝛿 ⊕
3

4

𝛾 and ℜ↓𝜌= 𝛿 ⊕
1

4

𝛾 , 𝑠3 ∼𝜌 𝑠4 implies 𝛿 ∼𝜌 𝛾 ,

which is trivially disproved.

3.3 Operators on eLTSs

Languages for defining labelled transition systems commonly relies

on suitable composition operators, in the fashion of process algebras

like CCS and CSP. In particular, when distributions are considered,

like for pLTSs and eLTSs, one usually considers both operators

acting on states and on distributions.

3.3.1 Operators on States. In the following we will discuss the lift-

ing of operators commonly considered for probabilistic systems to

the case of eLTSs, starting from nondeterministic sum and parallel
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𝑠
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2
|0⟩⟨0 | 1

2
|1⟩⟨1 |

Figure 3: A 4-dimensional ELTS and its quantum partial evaluated version with 𝜌 = 1

2
|0⟩⟨0| + 1

2
|1⟩⟨1|.

composition of states. We will then propose a new operator that is

tailored for the quantum case.

Definition 11. Given two 𝑑-dimensional eLTSs (𝑆1, 𝐴𝑐𝑡1,→1) and
(𝑆2, 𝐴𝑐𝑡2,→2), their non-deterministic sum is a 𝑑-dimensional eLTS
with states 𝑆1 ∪ 𝑆2 ∪ {𝑠1 + 𝑠2 with 𝑠𝑖 ∈ 𝑆𝑖 for 𝑖 = 1, 2}, actions
𝐴𝑐𝑡1 ∪𝐴𝑐𝑡2 and such that the transitions is the smallest set including
both →1 and→2 and satisfying the following rules

𝑠1
𝜇
−→ 𝔇

𝑠1 + 𝑠2
𝜇
−→ 𝔇

ExtL
𝑠2

𝜇
−→ 𝔇

𝑠1 + 𝑠2
𝜇
−→ 𝔇

ExtR

Theorem 7. If 𝑠1 ∼𝑙𝑠 𝑠2 and 𝑡1 ∼𝑙𝑠 𝑡2 then 𝑠1 + 𝑡1 ∼𝑙𝑠 𝑠2 + 𝑡2.

Proof sketch. By cases on the rules ExtL and ExtR. □

Synchronization is a crucial aspect of protocols and process

algebras. Therefore, from now on we assume that 𝐴𝑐𝑡 contains a

distinguished element 𝜏 , and that every other operation 𝛼 ∈ 𝐴𝑐𝑡

has in inverse 𝛼 such that 𝛼 = 𝛼 .

Definition 12. Given two eLTSs (𝑆1, 𝐴𝑐𝑡1,→1) of dimension 𝑑 and
(𝑆2, 𝐴𝑐𝑡2,→2) of dimension 𝑑′, their parallel composition is a eLTS
of dimension 𝑑 · 𝑑′ with states 𝑠1 ∥ 𝑠2 with 𝑠𝑖 ∈ 𝑆𝑖 for 𝑖 = 1, 2, actions
𝐴𝑐𝑡1 ∪𝐴𝑐𝑡2 and such that the transitions are defined by

𝑠1
𝜇
−→ 𝔇

𝑠1 ∥ 𝑠2
𝜇
−→ 𝔇 ∥ {𝑠2 ▷ I𝑑 ′ }

ParL
𝑠2

𝜇
−→ 𝔇

𝑠1 ∥ 𝑠2
𝜇
−→ {𝑠1 ▷ I𝑑 } ∥ 𝔇

ParR

𝑠1
𝜇
−→ 𝔇 𝑠2

𝜇
−→ 𝔗

𝑠1 ∥ 𝑠2
𝜏−→ 𝔇 ∥ 𝔗

Synch

where (𝔇 ∥ 𝔗) (𝑠) =
{
𝔇(𝑠1) ⊗ 𝔗(𝑠2) if 𝑠 = 𝑠1 ∥ 𝑠2
0 otherwise

Theorem 8. If 𝑠1 ∼𝑙𝑠 𝑠2 and 𝑡1 ∼𝑙𝑠 𝑡2, then 𝑠1 ∥ 𝑡1 ∼𝑙𝑠 𝑠2 ∥ 𝑡2.

Proof sketch. By cases on the rules ParL, ParR and Synch. □

The next operator is specific for the quantum case. Since effects

are essentially classical probabilities parameterized over an input

quantum state, it is reasonable to consider the operation of instan-

tiating some of the input qubits of an eLTS via a partial evaluation.

As expected, the result will be an eLTS that takes as input a quan-

tum state in a smaller Hilbert space (possibly even no input at all,

meaning that the behaviour is now unconditionally probabilistic).

We first define partial evaluation of an effect.

Definition 13. Let 𝐴 and 𝐵 be two quantum systems, with states
in the Hilbert spaces H𝐴 and H𝐵 , respectively. Let 𝜌 be a density
operator inH𝐴 and 𝐸 be an effect onH𝐴⊗H𝐵 . The partial evaluation
of 𝐸 with input 𝜌 is the effect

𝐸
��
𝜌
= 𝑡𝑟𝐴 (𝐸 (𝜌 ⊗ I𝐶 )).

We can now instantiate the same over states of an eLTS.

Definition 14. Given an eLTSs (𝑆,𝐴𝑐𝑡,→) of dimension 𝑑 · 𝑑′ and
a density operator 𝜌 ∈ 𝐷𝑀𝑑 , the quantum partial evaluation of the
eLTS with 𝜌 is a 𝑑′-dimensional eLTS with states 𝑠 |𝜌 for 𝑠 ∈ 𝑆 , actions
𝐴𝑐𝑡 and such that the transitions are defined by the following rule

𝑠
𝜇
−→ 𝔇

𝑠 |𝜌
𝜇
−→ 𝔇|𝜌

QInst

where𝔇
��
𝜌
(𝑠) =

{
𝔇(𝑠′) |𝜌 if 𝑠 = 𝑠′ |𝜌
0 otherwise

Theorem 9. If 𝑠 ∼𝑙𝑠 𝑡 then 𝑠 |𝜌 ∼𝑙𝑠 𝑡 |𝜌 for any 𝜌 .

Proof sketch. By definition of 𝑠 |𝜌 and𝔇|𝜌 . □

As previously stated, for 𝜌 sufficiently large the partial evaluation

returns a probabilistic system obtained by taking the same quantum

input for each effect distribution of the eLTS. This means that

𝑠 |𝜌 ∼𝑙𝑠 𝑡 |𝜌 corresponds to verifying 𝑠 ∼𝜌 𝑡 , hence, as a corollary

of Theorem 6, it allows also to prove LS-bisimilarity.

Corollary 1. Given a𝑑-dimensional eLTS (𝑆,𝐴𝑐𝑡,→) and two states
𝑠, 𝑡 ∈ 𝑆 , if for any 𝜌 ∈ 𝐷𝑀𝑑 we have 𝑠 |𝜌 ∼𝑙𝑠 𝑡 |𝜌 , then 𝑠 ∼𝑙𝑠 𝑡 .

Proof sketch. We show that if 𝑠 |𝜌 ∼𝑙𝑠 𝑡 |𝜌 , then 𝑠 and 𝑡 are

𝜌-bisimilar, thus allowing us to apply Theorem 6. □

Example 8. Consider the eLTS of Figure 3, where 𝑠 |𝜌 is the partial
evaluation of 𝑠 with 𝜌 = 1

2
|0⟩⟨0| + 1

2
|1⟩⟨1|.

3.3.2 Operators on Distributions. We now discuss how effect dis-

tributions can be composed, extending the usual definitions for

probabilistic systems. We present a pair of no-go theorems that

distinguishes the quantum case from the classical probabilistic one.

Common simplifications and extensions that can be safely applied

for probabilistic systems make no sense or impact the expressivity

when modelling quantum systems.

A corollary of Theorem 3 is that it is possible with n-ary compo-

sition to define eLTSs with states for which no bisimilar state can
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be defined using the binary operator ⊕ only. Roughly, this means

that the lack of expressivity of ⊕ is not only syntactical.

Corollary 2. There exists 𝑆1, 𝐴𝑐𝑡, 𝑠1 ∈ 𝑆1, and→1∈ 𝑆1×𝐴𝑐𝑡×Q𝑑𝑆1
such that 𝑠1 ≁𝑙𝑠 𝑠2 in all the eLTSs (𝑆1 ∪ 𝑆2, 𝐴𝑐𝑡,→1 ∪ →2) with 𝑆2
disjoint from 𝑆1, and→2∈ 𝑆2 ×𝐴𝑐𝑡 × Q⊕

𝑑
𝑆2.

Proof sketch. We give an example of a state that evolves in

a distribution 𝔇 ∉ Q⊕
𝑑
𝑆1. Then it is shown that it is not possible

to build 𝔗 ∈ Q⊕
𝑑
𝑆1 associating the needed effects to equivalence

classes without violating Theorem 3. □

Our last remark is about non-deterministic composition of ef-

fect distributions. It may be desirable to extend the notion of non-

deterministic sum of Definition 11 to effect distributions as it is

commonly done for probabilistic distributions [18]. The semantic

of a non-deterministic sum of probability distributions Δ + Θ is

usually defined as

(Δ + Θ) (𝑠) =
{
Δ(𝑠1) · Θ(𝑠2) if 𝑠 = 𝑠1 + 𝑠2
0 otherwise

Given the interpretation of effect distributions as parameterized

probability distributions, we can lift the previous definition to the

quantum case.

Definition 15. Given a pair of 𝑑-dimensional effect distributions
𝔇,𝔗 over 𝑆 , a distribution 𝔇 + 𝔗 is a non-deterministic sum of 𝔇
and 𝔗 if for any density operator 𝜌 ∈ 𝐷𝑀𝑑 ,

(𝔇 + 𝔗)↓𝜌 (𝑠) =
{
𝔇↓𝜌 (𝑠1) · 𝔗↓𝜌 (𝑠2) if 𝑠 = 𝑠1 + 𝑠2
0 otherwise

Example 9. Consider the following distributions

𝔇 = {𝑠1 ▷ |0⟩⟨0| , 𝑠2 ▷ |1⟩⟨1|} and 𝔗 = {𝑠3 ▷
1

2

I, 𝑠4 ▷
1

2

I}

The non-deterministic sum𝔇 + 𝔗 is then

𝔇 + 𝔗 = {𝑠1 + 𝑠3 ▷
1

2

|0⟩⟨0| , 𝑠1 + 𝑠4 ▷
1

2

|0⟩⟨0| ,

𝑠2 + 𝑠3 ▷
1

2

|1⟩⟨1| , 𝑠2 + 𝑠4 ▷
1

2

|1⟩⟨1|}

In this example the effect distribution𝔇 is non-deterministically

composed with a rather “probability-like” distribution 𝔗, being

𝑡𝑟 ( 1
2
I · 𝜌) = 1

2
for any 𝜌 . Indeed, the non-deterministic composition

of effect distributions is not defined in general. More in details, it is

undefined between “purely quantum” effects.

Theorem 10. If the dimension of the Hilbert space is two or greater,
then𝔇 +𝔗 is undefined if𝔇(𝑠) = |𝜓 ⟩⟨𝜓 | and 𝔗(𝑡) = |𝜙⟩⟨𝜙 | for some
states 𝑠, 𝑡 ∈ 𝑆 and quantum states |𝜓 ⟩ and |𝜙⟩.

Proof sketch. We exploit the fact that |𝜓 ⟩ has at least an or-

thogonal vector |𝑎⟩ if the dimension is at least two. We show that

the convexity of 𝐸 = (𝔇+𝔗) (𝑠 +𝑡) leads to contradiction, requiring
𝑡𝑟 (𝐸 · |𝑎⟩⟨𝑎 |) to be negative. □

This is a quite severe limitation for non-deterministic sum of

effect distributions.

Example 10. Let 𝔇 = {𝑠1 ▷ |0⟩⟨0| , 𝑠2 ▷ |1⟩⟨1|} and 𝔗 = {𝑠3 ▷
|+⟩⟨+| , 𝑠4 ▷ |−⟩⟨−|}. There is no effect distribution that is a non-
deterministic sum for𝔇 +𝔇,𝔇 + 𝔗 or 𝔗 + 𝔗.

The results above give suggestions and limitations for the defini-

tion of a process algebra for quantum processes: two proposals are

given in the following section.

4 MODELLING PROCESSES WITH eLTSs

In this section, we explore the design of a process algebra evaluated

over eLTSs. More in details, we enrich our algebra with a pair of

different semantics: the stateful Schrödinger-style one is a fairly

standard pLTS semantics for a quantum process algebra, and it

assumes a given quantum input; the stateless Heisenberg-style

instead returns a unique eLTS that is parametric with respect to

the input quantum state. We prove that the two coincide, also

when unitary transformations are considered, paving the way for

automatic verification using standard techniques [21].

4.1 A Minimal Quantum Process Algebra

We will follow the tradition of using CCS-style process calculi

to describe LTSs. The minimal quantum process algebra (mQPA)

features a parallel operator, a non-deterministic choice operator

and destructive measurements. An mQPA process 𝑃 is defined as

𝑃 F 𝑠 | ( [𝐸𝑖 ]𝑃𝑖 )𝑖∈𝐼
𝑠 F 𝜇.𝑃 | 0 | 𝑠 + 𝑠 | 𝑠 ∥ 𝑠

where 𝜇 ∈ 𝐴𝑐𝑡 is an action and {𝑃𝑖 ▷ 𝐸𝑖 }𝑖∈𝐼 is a full effect distribu-
tion over mQPA processes. Intuitively, an atomic process 𝑠 controls
the behaviour of the quantum system, while 𝑃 represents an effect

distribution of atomic processes. Note that we use n-ary composi-

tion of effects, as a binary operator would have been less expressive,

and that we do not consider ill-defined non-deterministic sum over

general processes (Theorem 10). In the following, we sometimes

write 𝜇 for the process 𝜇.0.
In order to simplify the definition of the semantics of mQPA,

we define a syntactic flattening operation, translating sequences of

syntactic effect distributions (i.e. destructive measurements) into a

single effect distribution.

Definition 16. The flattening operator flat( · ) on mQPA processes
is described by the following inductive rules

flat(𝑠) = ( [1]𝑠)
flat(𝑃𝑖 ) = ( [𝐸𝑖 𝑗 ]𝑠𝑖 𝑗 ) 𝑗∈ 𝐽𝑖

flat( [𝐸𝑖 ]𝑃𝑖 )𝑖∈𝐼 = ( [𝐸𝑖 ⊗ 𝐸𝑖 𝑗 ]𝑠𝑖 𝑗 )𝑖∈𝐼 , 𝑗∈ 𝐽𝑖
Note that a mQPA process needs a Hilbert space of a given di-

mension from which the input quantum states are taken. We define

the operator dim, returning the required Hilbert space dimension.

Roughly, this is the maximum number of qubits needed by any

branch of the process to perform its measurements.

Definition 17. The minimum dimension for a mQPA process 𝑃 is
called dim(𝑃), where

dim(0) = 1 dim(𝜇.𝑃) = dim(𝑃)
dim(𝑠 + 𝑡) = max{dim(𝑠), dim(𝑡)} dim(𝑠 ∥ 𝑡) = dim(𝑠) · dim(𝑡)

dim(( [𝐸𝑖 ]𝑃𝑖 )𝑖∈𝐼 ) = max{dim(𝐸𝑖 ) · dim(𝑃𝑖 )}𝑖∈𝐼

Finally, we define an operator that lifts an effect to a larger

Hilbert space with the identity effect
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flat(𝑠) = ( [𝐸𝑖 ]𝑠𝑖 )𝑖∈𝐼
⟨𝜌, 𝜇.𝑠⟩

𝜇
−→ {⟨M𝐸𝑖 (𝜌), 𝑠𝑖 ⟩ ▷ tr

(
M𝐸𝑖 (𝜌)

)
}𝑖∈𝐼

SPre

⟨𝜌, 𝑠⟩
𝜇
−→ 𝔇

⟨𝜌, 𝑠 + 𝑡⟩
𝜇
−→ 𝔇

SSumL

⟨𝜌, 𝑡⟩
𝜇
−→ 𝔇

⟨𝜌, 𝑠 + 𝑡⟩
𝜇
−→ 𝔇

SSumR

⟨𝜌, 𝑠⟩
𝜇
−→ {⟨𝜌𝑖 , 𝑠𝑖 ⟩ ▷ 𝑝𝑖 }𝑖∈𝐼

⟨𝜌, 𝑠 ∥ 𝑡⟩
𝜇
−→ {⟨𝑝𝑖 , 𝑠𝑖 ∥ 𝑡⟩ ▷ 𝑝𝑖 }𝑖∈𝐼

SParL

⟨𝜌, 𝑡⟩
𝜇
−→ {⟨𝜌 𝑗 , 𝑡 𝑗 ⟩ ▷ 𝑝 𝑗 } 𝑗∈ 𝐽

⟨𝜌, 𝑠 ∥ 𝑡⟩
𝜇
−→ {⟨𝑝 𝑗 , 𝑠 ∥ 𝑡 𝑗 ⟩ ▷ 𝑝 𝑗 } 𝑗∈ 𝐽

SParR

⟨𝜌, 𝑠⟩
𝜇
−→ {⟨𝜌𝑖 , 𝑠𝑖 ⟩ ▷ 𝑝𝑖 }𝑖∈𝐼 ⟨𝜌𝑖 , 𝑡⟩

𝜇
−→ {⟨𝜌𝑖 𝑗 , 𝑡 𝑗 ⟩ ▷ 𝑝𝑖 𝑗 } 𝑗∈ 𝐽

⟨𝜌, 𝑠 ∥ 𝑡⟩ 𝜏−→ {⟨𝜌𝑖 𝑗 , 𝑠𝑖 ∥ 𝑡 𝑗 ⟩ ▷ 𝑝𝑖 𝑗 } (𝑖, 𝑗 ) ∈𝐼× 𝐽
SSyncL

⟨𝜌, 𝑡⟩
𝜇
−→ {⟨𝜌𝑖 , 𝑡𝑖 ⟩ ▷ 𝑝𝑖 }𝑖∈𝐼 ⟨𝜌𝑖 , 𝑠⟩

𝜇
−→ {⟨𝜌𝑖 𝑗 , 𝑠 𝑗 ⟩ ▷ 𝑝𝑖 𝑗 } 𝑗∈ 𝐽

⟨𝜌, 𝑠 ∥ 𝑡⟩ 𝜏−→ {⟨𝜌𝑖 𝑗 , 𝑠𝑖 ∥ 𝑡 𝑗 ⟩ ▷ 𝑝𝑖 𝑗 } (𝑖, 𝑗 ) ∈𝐼× 𝐽
SSyncR

(a) Rules for Schrödinger-style stateful semantics

flat(𝑠) = ( [𝐸𝑖 ]𝑠𝑖 )𝑖∈𝐼
⟨1, 𝜇.𝑠⟩

𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ⟩ ▷ pad𝐷 (𝐸𝑖 )}𝑖∈𝐼

HPre

⟨1, 𝑠⟩
𝜇
−→ 𝔇

⟨1, 𝑠 + 𝑡⟩
𝜇
−→ 𝔇

HSumL

⟨1, 𝑡⟩
𝜇
−→ 𝔇

⟨1, 𝑠 + 𝑡⟩
𝜇
−→ 𝔇

HSumR

⟨1, 𝑠⟩
𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ⟩ ▷ pad𝐷 (𝐸𝑖 )}𝑖∈𝐼

⟨1, 𝑠 ∥ 𝑡⟩
𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ∥ 𝑡⟩ ▷ pad𝐷 (𝐸𝑖 )}𝑖∈𝐼

HParL

⟨1, 𝑡⟩
𝜇
−→ {⟨𝐸 𝑗 , 𝑡 𝑗 ⟩ ▷ pad𝐷 (𝐸 𝑗 )} 𝑗∈ 𝐽

⟨1, 𝑠 ∥ 𝑡⟩
𝜇
−→ {⟨𝐸 𝑗 , 𝑠 ∥ 𝑡 𝑗 ⟩ ▷ pad𝐷 (𝐸 𝑗 )} 𝑗∈ 𝐽

HParR

⟨1, 𝑠⟩
𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ⟩ ▷ pad𝐷 (𝐸𝑖 )}𝑖∈𝐼 ⟨1, 𝑡⟩

𝜇
−→ {⟨𝐸 𝑗 , 𝑡 𝑗 ⟩ ▷ pad𝐷 (𝐸 𝑗 )} 𝑗∈ 𝐽

⟨1, 𝑠 ∥ 𝑡⟩ 𝜏−→ {⟨𝐸𝑖 ⊗ 𝐸 𝑗 , 𝑠𝑖 ∥ 𝑡 𝑗 ⟩ ▷ pad𝐷 (𝐸𝑖 ⊗ 𝐸 𝑗 )} (𝑖, 𝑗 ) ∈𝐼× 𝐽
HSyncL

⟨1, 𝑠⟩
𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ⟩ ▷ pad𝐷 (𝐸𝑖 )}𝑖∈𝐼 ⟨1, 𝑡⟩

𝜇
−→ {⟨𝐸 𝑗 , 𝑡 𝑗 ⟩ ▷ pad𝐷 (𝐸 𝑗 )} 𝑗∈ 𝐽

⟨1, 𝑠 ∥ 𝑡⟩ 𝜏−→ {⟨𝐸 𝑗 ⊗ 𝐸𝑖 , 𝑠𝑖 ∥ 𝑡 𝑗 ⟩ ▷ pad𝐷 (𝐸 𝑗 ⊗ 𝐸𝑖 )} (𝑖, 𝑗 ) ∈𝐼× 𝐽
HSyncR

⟨1, 𝑠⟩
𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ⟩ ▷ 𝐸𝑖 }𝑖∈𝐼

⟨𝐸, 𝑠⟩
𝜇
−→ {⟨𝐸 ⊗ 𝐸𝑖 , 𝑠𝑖 ⟩ ▷ pad𝐷 (𝐸 ⊗ 𝐸𝑖 )}𝑖∈𝐼

HLift

(b) Rules for Heisenberg-style stateless semantics

Figure 4: Stateful and stateless semantics for mQPA processes

Definition 18. The padding operator that lifts an effect to a larger
Hilbert space of dimension 𝐷 is called pad𝐷 ( · )

pad𝐷 :

⋃
𝑑≤𝐷

E𝑓𝑑 → E𝑓𝐷

pad𝐷 (𝐸) = 𝐸 ⊗ I𝐷−𝑑

4.2 Schrödinger approach

A natural, stateful semantics for an atomic mQPA process 𝑠 is given

in terms of a pLTS, where each state is a pair of a density operator

and an atomic process. The pLTS is rooted in the pair ⟨𝜌, 𝑠⟩, where
𝜌 ∈ 𝐷𝑀

dim(𝑠 ) . All the successor states have some subterm 𝑠′ of
𝑠 , and some possibly smaller state 𝜌′ ∈ 𝑝𝐷𝑀𝑑 with 𝑑 ≤ dim(𝑠),
because of destructive measurements. The transition relation is the

smallest relation satisfying the rules in Figure 4a. In the SPre rule

the quantum state is updated with the destructive measurement

operatorM𝐸𝑖 (𝜌) associated to the effect 𝐸𝑖 in the process. Note that
the resulting effect distribution is always a probability distribution,

obtained by tracing the measured density operator. As a result of

that, the eLTS is a pLTS, as expected when the quantum input is

fully instantiated. We remark that SSyncL and SSyncR only differ

in the order of the application of measurements between the two

branches of the parallel operator, as both the orderings are possible.

A trivial consequence of the rules is that all the distributions in the

right-hand side of→ are of the form {⟨𝜌𝑖 , 𝑠𝑖 ⟩ ▷ tr(𝜌𝑖 )}𝑖∈𝐼 .

Example 11. Consider a process 𝑃 that first performs a one-qubit
measurement in the computational basis and then measure another

qubit in the Hadamard basis

𝑃 = 𝜏 .( [|0⟩⟨0|]𝑄, [|1⟩⟨1|]𝑅), with
𝑄 = 𝜏 .( [|+⟩⟨+|]𝛼, [|−⟩⟨−|]𝛽) and 𝑅 = 𝜏 .( [|+⟩⟨+|]𝛾, [|−⟩⟨−|]𝛿) .

The stateful semantics of ⟨
��Φ+〉〈Φ+�� , 𝑃⟩ is given in Figure 5a. Note

that measurements are destructive and do not cause a 𝜏-transition
(contrary of other approaches [6, 8]) and thus after the measure-
ment the distribution is {⟨|0⟩⟨0| , 𝑄⟩ ▷ 1

2
, ⟨|1⟩⟨1| , 𝑅⟩ ▷ 1

2
} and not

{⟨|00⟩⟨00| , 𝑄⟩ ▷ 1

2
, ⟨|11⟩⟨11| , 𝑅⟩ ▷ 1

2
}.

4.3 Heisenberg approach

For any given atomic process 𝑠 , the stateful semantics results in in-

finitely many distinct pLTSs according to the input quantum state 𝜌 .

We seek an alternative stateless characterization, adequate for algo-

rithmic verification. We therefore give a new semantics for mQPA

processes whose states are pairs of effects 𝐸 and atomic processes 𝑠 .

For each 𝐷-dimensional atomic process 𝑠 we build a 𝐷-dimensional

eLTS rooted in ⟨1, 𝑠⟩, where 1 is the unit 1-dimensional effect. The

transition relation is defined as the smallest relation satisfying the

rules in Figure 4b. Note that, while in the Schrödinger semantics 𝑠

is paired with the remaining part of the input quantum state, in this

new Heisenberg semantics, 𝑠 is paired with an effect describing the

measurements done so far. The HPre rule simply records the effect

that must be observed in order to reach the paired mQPA state. As

in the stateful semantics, HSyncL and HSyncR differ only in the ap-

plication order of the measurements. Note that we are dealing with

destructive measurements, while in general eLTS allows applying

different effects on the same qubit over and over. This is forbidden
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in mQPA, where consecutive measurements act on different qubits,

and thus must be scaled up via tensor product. Storing the effects

along the mQPA processes is needed for constraining subsequent

distributions to be consistent with the previously measured qubits,

which allows for correctly dealing with entangled inputs.

Example 12. Consider the process 𝑃 of Example 11. Figure 5c shows
its stateless semantics, instantiated in Figure 5b with

��Φ+〉〈Φ+�� by the
quantum partial evaluation operator on eLTSs of Definition 14. As
expected, the evaluated eLTS is indistinguishable from the pLTS of
the stateful semantics in Figure 5a.

This example hints at a connection between the two semantics,

which is to be expected given the duality between effects and states

in quantum theory. Indeed, the eLTSs produced by instantiating the

stateless semantics have exactly the same transitions of the stateful

semantics, thus they are bisimilar.

Theorem 11. For any atomic state 𝑠 and 𝜌 ∈ 𝐷𝑀
dim(𝑠 )

⟨1, 𝑠⟩
��
𝜌
∼𝑙𝑠 ⟨𝜌, 𝑠⟩

Proof sketch. Take the relation

R =

{(
⟨𝐸, 𝑠⟩

��
𝜌
, ⟨M𝐸 (𝜌), 𝑠⟩

) �� 𝜌 ∈ 𝐷𝑀𝑑 , 𝐸 ∈ E𝑓𝑑 ′ , 𝑑 ≥ 𝑑′ · dim(𝑠)
}

The result follows from the inductively demonstrable lemma

⟨𝐸, 𝑠⟩
��
𝜌

𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ 𝑝𝑖 } iff ⟨M𝐸 (𝜌), 𝑠⟩

𝜇
−→ {M𝐸𝑖 (𝜌) ▷ 𝑝𝑖 } □

It follows that we can verify whether two processes are bisimilar

for any input just by looking at their Heisenberg semantics.

Theorem 12. Given two 𝑑-dimensional atomic processes 𝑠 and 𝑡 ,
⟨1, 𝑠⟩ ∼𝑙𝑠 ⟨1, 𝑡⟩ if and only if for any 𝜌 ∈ 𝐷𝑀𝑑 , ⟨𝜌, 𝑠⟩ ∼𝑙𝑠 ⟨𝜌, 𝑡⟩.

Proof. We can prove by Theorem 9 and Corollary 1 that the

hypothesis is equivalent to ⟨1, 𝑠⟩|𝜌 ∼𝑙𝑠 ⟨1, 𝑡⟩|𝜌 . Then we can apply

the duality result of Theorem 11, thus getting ⟨𝜌, 𝑠⟩ ∼𝑙𝑠 ⟨𝜌, 𝑡⟩. □

4.4 Unitary extension

Our proposed eLTSs are sufficiently expressive to model also lan-

guages with unitaries. As before, we will define both a stateful and

a stateless semantics. The syntax of mQPA processes is extended

with unitary transformations. As for measurement, unitaries are

not observable actions.

𝑃 F 𝑠 | ( [𝐸𝑖 ]𝑃𝑖 )𝑖∈𝐼 | 𝑈 ; 𝑃

𝑠 F 𝜇.𝑃 | 0 | 𝑠 + 𝑠 | 𝑠 ∥ 𝑠
We extend the dimension operator imposing that dim(𝑈 ; 𝑃) =

max{𝑑, dim(𝑃)} when 𝑈 is a 𝑑-dimensional matrix. To give the

semantics of a 𝐷-dimensional atomic process 𝑠 , we update the flat-

tening function with a rule for unitaries. Note that, instead of effects,

it returns processes guarded by 𝐷-dimensional superoperators.

flat(𝑠) = ( [I𝐷 ]𝑠)
flat(𝑃𝑖 ) = ( [E𝑖 𝑗 ]𝑠𝑖 𝑗 ) 𝑗∈ 𝐽

flat( [𝐸𝑖 ]𝑃𝑖 )𝑖∈𝐼 = ( [E𝑖 𝑗 ◦M𝐸𝑖 ]𝑠𝑖 𝑗 ) (𝑖, 𝑗 ) ∈𝐼× 𝐽
flat(𝑃) = ( [E𝑖 ]𝑠𝑖 )𝑖∈𝐼

flat(𝑈 ; 𝑃) = ( [E𝑖 ◦ E𝑈 ]𝑠𝑖 )𝑖∈𝐼
where E𝑈 (𝜌) = 𝑈𝜌𝑈 †

is the superoperator corresponding to the

unitary 𝑈 , I𝑑 is the identity superoperator of dimension 𝑑 and

E ◦ F is the composition on superoperators where F is tensored

with identity operators in order to reach the same dimension of E,
e.g. (E𝐶𝑁𝑂𝑇 ◦ E𝐻 (𝜌)) = 𝐶𝑁𝑂𝑇 (𝐻 ⊗ I)𝜌 (𝐻 ⊗ I)𝐶𝑁𝑂𝑇 .

The Schrödinger-style semantics is defined over the same con-

figurations as before. The transition relation is the smallest relation

satisfying the previous rules with the following updated SPre

flat(𝑠) = ( [E𝑖 ]𝑠𝑖 )𝑖∈𝐼
⟨𝜌, 𝜇.𝑠⟩

𝜇
−→ {⟨E(𝜌), 𝑠𝑖 ⟩ ▷ tr(E𝑖 (𝜌))}𝑖∈𝐼

SPre

The Heisenberg-style semantics of an atomic𝐷-dimensional pro-

cess is defined as a 𝐷-dimensional eLTS made of pairs ⟨E, 𝑠⟩, where
the superoperator E represents at the same time measurements and

unitaries. The transition relation is the smallest relation satisfying

the rules in Figure 6, where 𝐸E is the effect associated with the

superoperator E.
Note that, while the states of the transition system contain super-

operators, the resulting semantics is still an eLTS. On the one hand,

indeed, superoperators are only required for describing how the

quantum input evolves upon unitaries and measurements, while

the visible, probabilistic behaviour is still encoded as effect distri-

butions. On the other hand, effects in mQPA processes represent

destructive measurements, therefore they can be represented as

superoperators and composed with the unitary transformations.

As before, we formalize the connection between the two seman-

tics in terms of bisimulations.

Theorem 13. For any 𝑑-dimensional atomic process 𝑠 and any
𝜌 ∈ 𝐷𝑀𝑑 , ⟨I𝑑 , 𝑠⟩|𝜌 ∼𝑙𝑠 ⟨𝜌, 𝑠⟩.

Proof sketch. Take the relation

R =

{(
⟨E, 𝑠⟩

��
𝜌
, ⟨E(𝜌), 𝑠⟩

)
| 𝜌 ∈ 𝐷𝑀𝑑 , E ∈ SO𝑑

}
The results follow trivially from the inductively demonstrable lemma

⟨E, 𝑠⟩
��
𝜌

𝜇
−→ {⟨E𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ 𝑝𝑖 } ⇔ ⟨E(𝜌), 𝑠⟩

𝜇
−→ {E𝑖 (𝜌) ▷ 𝑝𝑖 } □

Thus, we can restate Theorem 12 for our extension of mQPA.

Theorem 14. Given two 𝑑-dimensional atomic processes 𝑠 and 𝑡 ,
⟨I𝑑 , 𝑠⟩ ∼𝑙𝑠 ⟨I𝑑 , 𝑠⟩ if and only if for any 𝜌 ∈ 𝐷𝑀𝑑 , ⟨𝜌, 𝑠⟩ ∼𝑙𝑠 ⟨𝜌, 𝑡⟩.

Proof. As for Theorem 12, but using the duality that is described

in Theorem 13. □

5 RELATEDWORKS

In our work we follow a foundational approach to quantum bisimi-

larity, extending what is done by [18] for probabilistic bisimilarity.

We employ effect distributions (i.e. finite non-normalized POVMs)

as a generalization of sub-probability distributions, finding them

particularly well suited to model the observable behaviour of quan-

tum systems. Our notion generalizes the quantum monad of [1],

which is based on projectors, and it instantiates the abstract “effect

algebra monad” of [20]. More in depth, the author in [20] proposes

effects monoids, i.e. effect algebras with multiplication, and use

them as weights of distributions. Our effects do have tensoring as a

multiplication operator, but it does not form a proper effect monoid

since it changes the effects dimensions. These works come from the

fields of quantum complexity and quantum logic, we instead apply
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(a) Schrödinger-style semantics of 𝑃 with 𝜌 = |Φ+ ⟩⟨Φ+ |

⟨1, 𝑃⟩|𝜌

⟨|1⟩⟨1| , 𝑅⟩|𝜌⟨|0⟩⟨0| , 𝑄⟩|𝜌

⟨|0+⟩⟨0+| , 𝛼⟩|𝜌 ⟨|0−⟩⟨0−| , 𝛽⟩|𝜌 ⟨|1+⟩⟨1+| , 𝛾⟩|𝜌 ⟨|1−⟩⟨1−| , 𝛿⟩|𝜌
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(b) Heisenberg-style semantics of 𝑃 |𝜌 with 𝜌 = |Φ+ ⟩⟨Φ+ |
⟨1, 𝑃⟩

⟨|1⟩⟨1| , 𝑅⟩⟨|0⟩⟨0| , 𝑄⟩

⟨|0+⟩⟨0+| , 𝛼⟩ ⟨|0−⟩⟨0−| , 𝛽⟩ ⟨|1+⟩⟨1+| , 𝛾⟩ ⟨|1−⟩⟨1−| , 𝛿⟩

𝜏

|1⟩⟨1 | ⊗ I|0⟩⟨0 | ⊗ I

𝜏 𝜏

|0+⟩⟨0+| |0−⟩⟨0−| |1+⟩⟨1+| |1−⟩⟨1−|

(c) Heisenberg-style semantics of 𝑃

Figure 5: Semantics eLTSs for the process 𝑃 = 𝜏 .( [|0⟩⟨0|]𝑄, [|1⟩⟨1|]𝑅) with𝑄 = 𝜏 .( [|+⟩⟨+|]𝛼, [|−⟩⟨−|]𝛽) and 𝑅 = 𝜏 .( [|+⟩⟨+|]𝛾, [|−⟩⟨−|]𝛿).

⟨I, 𝑠⟩
𝜇
−→ {⟨E𝑖 , 𝑠𝑖 ⟩ ▷ 𝐸E𝑖

}𝑖∈𝐼

⟨E, 𝑠⟩
𝜇
−→ {⟨E𝑖 ◦ E, 𝑠𝑖 ⟩ ▷ 𝐸E𝑖◦E }𝑖∈𝐼

HLift

flat(𝑠) = ( [E𝑖 ]𝑠𝑖 )𝑖∈𝐼
⟨I, 𝜇.𝑃⟩

𝜇
−→ {⟨E, 𝑠𝑖 ⟩ ▷ 𝐸E }𝑖∈𝐼

HPre

⟨I, 𝑠⟩
𝜇
−→ 𝔇

⟨I, 𝑠 + 𝑡⟩
𝜇
−→ 𝔇

HSumL

⟨I, 𝑡⟩
𝜇
−→ 𝔇

⟨I, 𝑠 + 𝑡⟩
𝜇
−→ 𝔇

HSumR

⟨I, 𝑠⟩
𝜇
−→ {⟨E𝑖 , 𝑠𝑖 ⟩ ▷ 𝐸E𝑖

}𝑖∈𝐼

⟨I, 𝑠 ∥ 𝑡⟩
𝜇
−→ {⟨E𝑖 , 𝑠𝑖 ∥ 𝑡⟩ ▷ 𝐸E𝑖

}𝑖∈𝐼
HParL

⟨I, 𝑡⟩
𝜇
−→ {⟨E 𝑗 , 𝑡 𝑗 ⟩ ▷ 𝐸E 𝑗

} 𝑗∈ 𝐽

⟨I, 𝑠 ∥ 𝑡⟩
𝜇
−→ {⟨E 𝑗 , 𝑠 ∥ 𝑡 𝑗 ⟩ ▷ 𝐸E 𝑗

} 𝑗∈ 𝐽
HParR

⟨I, 𝑠⟩
𝜇
−→ {⟨E𝑖 , 𝑠𝑖 ⟩ ▷ 𝐸E𝑖

}𝑖∈𝐼 ⟨I, 𝑡⟩
𝜇
−→ {⟨E 𝑗 , 𝑡 𝑗 ⟩ ▷ 𝐸E 𝑗

} 𝑗∈ 𝐽

⟨I, 𝑠 ∥ 𝑡⟩ 𝜏−→ {⟨E 𝑗 ◦ E𝑖 , 𝑠𝑖 ∥ 𝑡 𝑗 ⟩ ▷ 𝐸E 𝑗◦E𝑖
} (𝑖, 𝑗 ) ∈𝐼× 𝐽

HSyncL

⟨I, 𝑡⟩
𝜇
−→ {⟨E𝑖 , 𝑡𝑖 ⟩ ▷ 𝐸E𝑖

}𝑖∈𝐼 ⟨I, 𝑠⟩
𝜇
−→ {⟨E 𝑗 , 𝑠 𝑗 ⟩ ▷ 𝐸E 𝑗

} 𝑗∈ 𝐽

⟨I, 𝑠 ∥ 𝑡⟩ 𝜏−→ {⟨E 𝑗 ◦ E𝑖 , 𝑠𝑖 ∥ 𝑡 𝑗 ⟩ ▷ 𝐸E 𝑗◦E𝑖
} (𝑖, 𝑗 ) ∈𝐼× 𝐽

HSyncR

Figure 6: Heisenberg-style semantics for mQPA processes with unitaries
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(a) Example of Schrödinger-style semantics

⟨I, 𝜏 .𝐻 ;𝜏 .( [|0⟩⟨0|]𝛼, [|1⟩⟨1|]𝛽)⟩

⟨E𝐻 , 𝜏 .( [|0⟩⟨0|]𝛼, [|1⟩⟨1|]𝛽)⟩

⟨M |+⟩⟨+| , 𝛼⟩ ⟨M |−⟩⟨− | , 𝛽⟩

𝜏

I

𝜏

|+⟩⟨+| |−⟩⟨− |

(b) Example of Heisenberg-style semantics

Figure 7: Example of stateful and stateless semantics for mQPA processes with unitaries
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these concepts to quantum protocol semantics, introducing eLTSs

and studying their composition and their behavioural equivalences.

Our eLTS can be seen as a labelled, non-deterministic version

of the effect-valued Quantum Markov Chain of [15], where tensor

products is used instead of sequential effect composition. The most

general model of “quantum transition system” is the one of [26,

31], where the weights are superoperators instead of effects, so to

capture also non-destructive measurements and qubit initialization.

The author of [31] introduces two different notions of bisimilarity,

that we recover in our minimal, effect-based setting as AM and LS

bisimilarity. However, none of these works feature nondeterminism,

nor do they apply the proposed coalgebraic model to process calculi

suitable for expressing quantum protocols.

Usually in the literature the semantics of quantum processes is

described via pLTSs and probabilistic bisimilarity [6–9, 23]. Despite

their differences, these works all define a pLTS made of configura-

tions, i.e. pairs of quantum values and syntactic processes. Bisimilar

systems exhibit the same probabilistic behaviour as labels or barbs,

and the same observable quantum values inside the configurations.

Many of the existing works have to tweak the natural definition

of probabilistic bisimilarity in an ad hoc manner, in order to cap-

ture the peculiar observable properties of quantum values. We

instead introduce a purely quantum transition system, and we do

not manipulate directly quantum values but only their observable

probabilistic behaviour in the form of effects. Moreover, to verify

the equivalence of two processes the previous proposals have to

instantiate them with each possible quantum input, impeding al-

gorithmic verification. Using effects, instead, we can describe the

“symbolic” semantics of a protocol, abstracting away from the input,

as done in Theorem 12 and Theorem 14.

Most similar to our work is [10], which introduces superoperator-

valued quantum distributions, analogous to the ones in [16, 26, 31].

This allows modelling the more expressive non-destructive mea-

surements and quantum communication, but their proposed bisim-

ilarity does not respect the observational properties prescribed

by quantum theory [6, 12, 22]. When giving the operational se-

mantics of their language, they employ configurations composed

of superoperators and processes, and they build a superoperator-

weighted transition system made of such configurations. In subsec-

tion 4.4, we use the same kind of configurations, but we propose an

effect-weighted transition system. They compare superoperators

via pointwise Loewner order, which is equivalent to comparing the

superoperators effects as in subsection 4.4.

The bisimilarity proposed in [10] is proven to be equivalent to

the one in [9], and it is strictly finer than ours. The authors require

bisimilar transition systems to have bisimilar configurations with

the same weights, leading to a form of AM-bisimilarity finer than

of our LS-bisimilarity. For example, it discriminates the following

example, written in mQPA syntax.

Example 13. Let 𝑃 and 𝑄 be the processes

𝑃 = ( [|0⟩⟨0|]𝑅, [|1⟩⟨1|]𝑅′) and 𝑄 = ( [|+⟩⟨+|]𝑅, [|−⟩⟨−|]𝑅′)

where 𝑅 and 𝑅′ are two deadlock processes which maintain the owner-
ship of the measured qubit (recall that [10] considers non-destructive
measurements) thus making it unobservable. In other words, 𝑃 and 𝑄
perform some local measurement on their qubit, without leaking any

classical information to an external observer. Nonetheless, 𝑃 and 𝑄
are not bisimilar for the symbolic/open bisimilarity of [9, 10], as can
be seen studying the ground behaviour of ⟨Φ+, 𝑃⟩ and ⟨Φ+, 𝑄⟩.

The two processes above are instead considered bisimilar in our

proposals, as well as in other more recent works [6, 8, 22]. The

bisimilarity of [9] has been relaxed in subsequent works [8, 12], but

no symbolic version of this coarser bisimilarity has been proposed.

6 CONCLUSIONS

We provided a purely quantum-based semantics of quantum proto-

cols and proved its correctness with respect to the observable prob-

abilistic behaviour prescribed by quantum theory. The advantages

of using LS-bisimilarity and eLTSs is that it provides a symbolic

and algorithmically verifiable semantic equivalence. To assess two

processes probabilistically, their behaviour must be compared on

every possible quantum state, thus considering a continuously in-

finite set of cases. This is the standard approach in the quantum

process calculi literature [5–9, 23]. Our eLTSs instead allow the de-

scription of quantum systems in general, implicitly parameterising

them with respect to the initial quantum state and thus permitting

algorithmic verification. Indeed, eLTSs can be easily defined in a

coalgebraic fashion, allowing e.g. to resort to the general algorithm

for partition refinement of [21] for proving LS-bisimilarity.

Future work. We proved that non-deterministic sum and parallel

composition of eLTSs preserves bisimilarity. As a future work, we

will address the same problem over all mQPA operators, thus in-

vestigating whether our bisimilarity is a congruence. We assessed

our approach in a minimal setting, i.e. only considering destructive

measurements, unitaries and non-determinism. We plan to include

recursively defined processes and quantum value passing, i.e. allow-

ing processes to exchange qubits, as in [10], and we will investigate

the extension of our results in this framework.
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A PROOFS

We list some known facts about effects that directly comes from

linear algebra.

Proposition 1. Given two effects 𝐸1 and 𝐸2, if 𝐸1 +𝐸2 = |𝜓 ⟩⟨𝜓 | then
𝐸𝑖 = 𝑝𝑖 |𝜓 ⟩⟨𝜓 | for some 𝑃𝑖 , 𝑖 = 1, 2.

Proposition 2. Given two effects 𝐸1 and 𝐸2, if 𝐸1 ⊕𝑝 𝐸2 = |𝜓 ⟩⟨𝜓 |
then 𝐸𝑖 = |𝜓 ⟩⟨𝜓 | for 𝑖 = 1, 2.

Theorem 2. Effect distributions correspond to all and only the
parameterized sub-probability distributions that are convex and have
an “overall” finite support.

Q𝑑 �

{
𝔇↓_∈ (D(𝑋 ))𝐷𝑀𝑑

���� 𝔇↓𝜌 ⊕𝑝 𝜎 = (𝔇↓𝜌 ) ⊕𝑝 (𝔇↓𝜎 )⋃
𝜌∈𝐷𝑀𝑑

supp(𝔇↓𝜌 ) is finite

}
Proof. Recall that (E𝑓𝑑 , 0𝑑 , +) forms a Partial Commutative

Monoid (PCM), i.e. an algebraic structure where the sum between

two elements is not always defined. Each PCM has a partial order,

defined as 𝑎 ⪯ 𝑏 if and only if ∃𝑐.𝑎 + 𝑐 = 𝑏. In the case of E𝑓𝑑 , two
effects can be summed if and only if their sum is smaller or equal to

𝐼𝑑 in the l owner order, and the resulting partial order ⪯ is exactly

⊑. We employ a known result in quantum theory [17], specifying

that the set of effects E𝑓𝑑 is isomorphic to Conv(𝐷𝑀𝑑 , [0, 1]), the
set of convex maps from 𝐷𝑀𝑑 to the real interval [0, 1]. Moreover,

Conv(𝐷𝑀𝑑 , [0, 1]) forms a PCM, where the monoid identity is 𝜆𝜌.0

and the summation of functions is defined pointwise. Since the

isomorphism between E𝑓𝑑 and Conv(𝐷𝑀𝑑 , [0, 1]) is a PCM isomor-

phism, it follows that

Q𝑑 �

𝔇 : 𝑋 → 𝐷𝑀𝑑 → [0, 1]

������
∀𝑥 𝔇(𝑥) is convex
supp(𝔇) is finite∑
𝑥∈supp(𝔇) 𝔇𝑥 ⪯ 𝜆𝜌.1


where supp(𝔇) is defined as {𝑥 ∈ 𝑋 | 𝔇(𝑥) ≠ 𝜆𝜌.0} and ⪯ is the

pointwise ordering between functions. Now, we will prove that the

set above is isomorphic to𝔇↓_: 𝐷𝑀𝑑 → 𝑋 → [0, 1]

������
𝔇↓_ is convex

∪𝜌 supp(𝔇↓𝜌 ) is finite
∀𝜌 ∑

𝑥∈supp(𝔇↓𝜌 ) 𝔇↓𝜌 𝑥 ≤ 1


from which the theorem follows. To prove this isomorphism, we

provide an invertible function 𝑓 (𝔇) = 𝜆𝜌.𝜆𝑥 .𝔇(𝑥) (𝜌) which pre-

serves and reflects the three properties we are interested in. For

convexity, we have that

∀𝑥 𝔇(𝑥) is convex
⇔

∀𝑥 𝔇(𝑥) (𝜌 ⊕𝑝 𝜎) = (𝔇(𝑥) (𝜌)) ⊕𝑝 (𝔇(𝑥) (𝜎))
⇔

∀𝑥 𝑓 (𝔇) (𝜌 ⊕𝑝 𝜎) (𝑥) = (𝑓 (𝔇) (𝜌) (𝑥)) ⊕𝑝 (𝑓 (𝔇) (𝜎) (𝑥))
⇔

𝑓 (𝔇) (𝜌 ⊕𝑝 𝜎) = 𝑓 (𝔇) (𝜌) ⊕𝑝 𝑓 (𝔇) (𝜎)
⇔

𝑓 (𝔇)is convex
For the finite support, we have that

supp(𝔇) = {𝑥 ∈ 𝑋 | 𝔇(𝑥) ≠ 𝜆𝜌.0} =
{𝑥 ∈ 𝑋 | ∃𝜌.𝔇(𝑥) (𝜌) ≠ 0} =

∪𝜌 {𝑥 ∈ 𝑋 | 𝔇(𝑥) (𝜌) ≠ 0} = ∪𝜌 supp(𝑓 (𝔇))

For the sum over the support, we have that∑︁
𝑥∈supp(𝔇)

𝔇𝑥 ⪯ 𝜆𝜌.1

⇔

∀𝜌.
∑︁

𝑥∈supp(𝔇)
𝔇(𝑥) (𝜌) ≤ 1

⇔

∀𝜌.
∑︁

𝑥∈supp(𝔇)
𝔇(𝑥 ) (𝜌 )≠0

𝔇(𝑥) (𝜌) ≤ 1

⇔

∀𝜌.
∑︁

supp(𝑓 (𝔇)𝜌 )
𝔇(𝑥) (𝜌) ≤ 1

⇔

∀𝜌.
∑︁

supp(𝑓 (𝔇)𝜌 )
𝑓 (𝔇) (𝜌) (𝑥) ≤ 1

□

Lemma 1. Let R ⊆ 𝑋 × 𝑋 . Then𝔇
□

R𝑑 𝔗 if and only if there is a
finite index set 𝐼 and an effect set 𝐸𝑖 ∈ E𝑓𝑑 such that

(1) 𝔇 = {𝑥𝑖 ▷ 𝐸𝑖 }𝑖∈𝐼
(2) 𝔗 = {𝑦𝑖 ▷ 𝐸𝑖 }𝑖∈𝐼
(3) 𝑥𝑖 R 𝑦𝑖 for each 𝑖 ∈ 𝐼

Proof. (⇐) Suppose there is a finite index set 𝐼 such that (1)

𝔇 = {𝑠𝑖 ▷ 𝐸𝑖 }𝑖∈𝐼 , (2) 𝔗 = {𝑡𝑖 ▷ 𝐸𝑖 }𝑖∈𝐼 and (3) 𝑠𝑖 R 𝑡𝑖 for each 𝑖 ∈ 𝐼 .

By (3) and by definition, it follows that 𝑠𝑖
□

R 𝑡𝑖 for each 𝑖 ∈ 𝐼 . Then,

by Definition 5,𝔇 = (∑𝑖∈𝐼 𝐸𝑖 ⊗ 𝑠𝑖 )
□

R1×𝑑 (∑𝑖∈𝐼 𝐸𝑖 ⊗ 𝑡𝑖 ) = 𝔗.

(⇒) By induction on the rules for

□

R𝑑 : For the first rule, assume

𝑠 R 𝑡 and 𝑠 R𝑡 , then 𝑠 = {𝑠 ▷ 1} and 𝑡 = {𝑡 ▷ 1}. For the second
rule, assume𝔇𝑖 R𝔗𝑖 . Then by induction hypothesis, for any 𝑖 ∈ 𝐼 ,

it holds that 𝔇𝑖 = {𝑠𝑖, 𝑗 ▷ 𝐸𝑖, 𝑗 } 𝑗∈𝑖𝑖 and 𝔗𝑖 = {𝑡𝑖, 𝑗 ▷ 𝐸𝑖, 𝑗 } 𝑗∈𝑖𝑖 , with
𝑠𝑖, 𝑗 R 𝑡𝑖, 𝑗 . Hence it is true that∑︁

𝑖∈𝐼
𝐸𝑖 ⊗𝔇𝑖 = {𝑠𝑖, 𝑗 ▷ 𝐸𝑖 ⊗ 𝐸𝑖, 𝑗 }𝑖∈𝐼 , 𝑗∈𝑖𝑖∑︁

𝑖∈𝐼
𝐸𝑖 ⊗ 𝔗𝑖 = {𝑡𝑖, 𝑗 ▷ 𝐸𝑖 ⊗ 𝐸𝑖, 𝑗 }𝑖∈𝐼 , 𝑗∈𝑖𝑖

And the result follows by definition. □

Lemma 2. Let
��Φ+〉 = 1√

2

( |00⟩ + |11⟩), the effect
��Φ+〉〈Φ+�� cannot

be expressed as the tensor product of two-dimensional effects.

Proof. It is simply not possible to obtain

��Φ+〉〈Φ+��
as the tensor

product of two 2𝑥2 matrices. Note that

��Φ+〉〈Φ+�� = 
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1


Assume

��Φ+〉〈Φ+�� = 𝐴 ⊗ 𝐵. Then 𝐴0,0𝐵0,0 = 1 and 𝐴0,1𝐵0,1 = 1, but

since 𝐴0,0𝐵0,1 = 0 then either 𝐴0,0 = 0 or 𝐵0,1 = 0. □
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Lemma 3. Let {𝑠𝛼 , 𝑠𝛽 , 𝑠𝛾 , 𝑠𝛿 } ⊆ 𝑋 , and let𝔇 be defined as

𝔇 = {𝑠𝛼 ▷
��Φ+〉〈Φ+�� , 𝑠𝛽 ▷ |Φ−⟩⟨Φ− | ,

𝑠𝛾 ▷
��Ψ+〉〈Ψ+�� , 𝑠𝛿 ▷ |Ψ−⟩⟨Ψ− |},

where
��Φ+〉 = 1

√
2

( |00⟩ + |11⟩), |Φ−⟩ = 1

√
2

( |00⟩ − |11⟩)

There is no 𝔗 ∈ Q⊕
4
𝑋 and subsets 𝑋𝛼 , 𝑋𝛽 , 𝑋𝛾 , 𝑋𝛿 of 𝑋 such that∑︁

𝑥∈𝑋𝑦

𝔗(𝑥) = 𝔇(𝑠𝑦) for 𝑦 ∈ {𝛼, 𝛽,𝛾, 𝛿}.

Proof. We proceed by induction on the number of application

of ⊕. No point distribution can verify this, hence the base case

is trivial. Assume 𝔗1 and 𝔗2 can be defined by using ⊕ 𝑛 times

starting from point distributions, and let𝔗 = 𝔗1 ⊕
𝐸

𝔗2. We proceed

by cases on the dimension 𝑑 of the Hilbert space of the effect 𝐸.

If 𝑑 = 1, then 𝐸 = 𝑝 for some 𝑝 and∑︁
𝑥∈𝑋𝑦

𝑝 · 𝔗1 (𝑥) + (1 − 𝑝) · 𝔗2 (𝑥) =

= 𝑝 ·
∑︁
𝑥∈𝑋𝑦

𝔗1 (𝑥) + (1 − 𝑝) ·
∑︁
𝑥∈𝑋𝑦

𝔗2 (𝑥) = 𝔇(𝑠𝑦).

If 𝑝 is 0 or 1, then 𝔗 = 𝔗1 or 𝔗2, and the result directly follows

from induction hypothesis.

Otherwise, since𝔇(𝑠𝑦) is of the form |𝜓 ⟩⟨𝜓 | for each𝑦, by Propo-
sition 2, both

∑
𝑥∈𝑋𝑦

𝔗1 (𝑥) and
∑
𝑥∈𝑋𝑦

𝔗2 (𝑥) are equal to𝔇(𝑠𝑦).
Consider now the case 𝑑 = 2, then 𝔗1 and 𝔗2 also must be of

dimension 2, and it must be that∑︁
𝑥∈𝑋𝛼

𝐸 ⊗ 𝔗1 (𝑥) + (I − 𝐸) ⊗ 𝔗2 (𝑥) =

= 𝐸 ⊗
∑︁
𝑥∈𝑋𝑦

𝔗1 (𝑥) + (I − 𝐸) ⊗
∑︁
𝑥∈𝑋𝑦

𝔗2 (𝑥) =
��Φ+〉〈Φ+�� .

By Proposition 1, 𝐸 ⊗∑
𝑥∈𝑋𝑦

must be equal to 𝑝 ·
��Φ+〉〈Φ+��

for some

𝑝 . But then, 1

𝑝 𝐸 ⊗ ∑
𝑥∈𝑋𝑦

=
��Φ+〉〈Φ+��

, contradicting Lemma 2.

The dimension 𝑑 cannot be 3 since𝔇 is of dimension 4.

If 𝑑 = 4, then 𝔗1 and 𝔗2 can only be of dimension 1, and the

effects in 𝔇 must be all expressible as 𝑝𝐸 or 𝑝 (I − 𝐸) for some

probability 𝑝 , but this is not the case.

Finally, note that 𝑑 cannot be grater than 4, because 𝔇 is of

dimension 4. □

Theorem 3. If the cardinality of 𝑋 and 𝑑 are at least four, then
Q⊕
𝑑
𝑋 ≠ Q𝑑𝑋 .

Proof. For 𝑑 = 4 it is sufficient to note that this equivalence

would contradict Lemma 3. This trivially generalizes to higher

dimensional Hilbert spaces. □

Corollary 2. There exists 𝑆1, 𝐴𝑐𝑡, 𝑠1 ∈ 𝑆1, and→1∈ 𝑆1×𝐴𝑐𝑡×Q𝑑𝑆1
such that 𝑠1 ≁𝑙𝑠 𝑠2 in all the eLTSs (𝑆1 ∪ 𝑆2, 𝐴𝑐𝑡,→1 ∪ →2) with 𝑆2
disjoint from 𝑆1, and→2∈ 𝑆2 ×𝐴𝑐𝑡 × Q⊕

𝑑
𝑆2.

Proof. Let 𝑆1 = {𝑠1, 𝑠𝛼 , 𝑠𝛽 , 𝑠𝛾 , 𝑠𝛿 , 𝑠0}, 𝐴𝑐𝑡 = {𝜏, 𝛼, 𝛽,𝛾, 𝛿}, and
let→1 be defined as

𝑠1
𝜏−→1𝔇 = {𝑠𝛼 ▷

��Φ+〉〈Φ+�� , 𝑠𝛽 ▷ |Φ−⟩⟨Φ− | ,
𝑠𝛾 ▷

��Ψ+〉〈Ψ+�� , 𝑠𝛿 ▷ |Ψ−⟩⟨Ψ− |}, and

𝑠𝑥
𝑥−→1𝑠0 for 𝑥 ∈ {𝛼, 𝛽,𝛾, 𝛿}

where

��Φ+〉 = 1

√
2

( |00⟩ + |11⟩), |Φ−⟩ = 1

√
2

( |00⟩ − |11⟩)��Ψ+〉 = 1

√
2

( |01⟩ + |10⟩), |Ψ−⟩ = 1

√
2

( |01⟩ − |10⟩) .

Note that 𝑠𝑥 ≁ 𝑠𝑦 for any 𝑥 ≠ 𝑦 ∈ {𝛼, 𝛽,𝛾, 𝛿}.
Now, assume 𝑠1 ∼𝑙𝑠 𝑠2, then it must be that 𝑠2

𝜏−→2 𝔗 with∑︁
𝑥∼𝑠𝑦

𝔗(𝑥) = 𝔇(𝑠𝑦) for 𝑦 ∈ {𝛼, 𝛽,𝛾, 𝛿}.

It is sufficient to note that this would contradict Lemma 3 with 𝑋𝑦

the equivalence class of {𝑥 ∈ 𝑋 | 𝑥 ∼𝑙𝑠 𝑦}. Hence, no 𝔗 satisfying

this condition is in Q⊕𝑆2. □

Theorem 5. For any 𝑠, 𝑡 ∈ 𝑆 , 𝑠 ∼𝑙𝑠 𝑡 if and only if 𝑠 ∼𝑙𝑝𝑝 𝑡 .

Proof. It is easy to show that ∼𝑙𝑠 is a lpp-bisimulation and that

∼𝑙𝑝𝑝 is a ls-bisimulation. For the first direction, take 𝑠 ∼𝑙𝑠 𝑡 and

suppose that 𝑠
𝜇
−→ 𝔇, then there exists 𝑡

𝜇
−→ 𝔗 such that ∀𝐶 ∈

𝑆/∼𝑙𝑠
𝔇(𝐶) = 𝔗(𝐶), where 𝔇(𝐶) =

∑
𝑥∈𝐶 𝔇(𝑥), and similarly

for 𝔗. In other words, we know that𝔇 and 𝔗 are identical when

considered as effect distributions on the set of equivalence classes.

Thus, applying Theorem 2, we know that𝔇↓_= 𝔗↓_, i.e. that for
any 𝜌 they give the same probability distribution on equivalence

classes, as required by the definition of lpp-bisimulation.

The other direction is identical, employing the isomorphism of

Theorem 2 in the other direction. □

Lemma 4. Given a set of effects E of a fixed dimension, there exists
a state 𝜌 such that

∀𝑖, 𝑗 ∈ E. 𝑡𝑟 (𝐸𝑖𝜌E) = 𝑡𝑟 (𝐸 𝑗𝜌E) iff 𝑖 = 𝑗 .

Proof. Note that, for any pair of distinct effects 𝐸𝑖 , 𝐸 𝑗 there is

a state 𝜌𝑖, 𝑗 such that 𝑡𝑟 (𝐸𝑖𝜌𝑖, 𝑗 ) ≠ 𝑡𝑟 (𝐸 𝑗𝜌𝑖, 𝑗 ). Let 𝑝𝑘𝑖,𝑗 = 𝑡𝑟 (𝐸𝑘𝜌𝑖, 𝑗 ).
Note also that {𝑝𝑘

𝑖,𝑗
}𝑖, 𝑗,𝑘 is in the algebraic closure of Q ∪𝑇 with 𝑇

a finite set of transcendental numbers.

Let 𝑞𝑖, 𝑗 be transcendental numbers not in 𝑇 such that for each

𝑖, 𝑗 , 𝑞𝑖, 𝑗 is not in the algebraic closure of Q ∪ 𝑇 ∪ {𝑞𝑎,𝑏 | 𝑎 ≠

𝑖 or 𝑏 ≠ 𝑗} (there are enough transcendental numbers, otherwise

we could prove R to be denumerable). We now let 𝑞′ be defined as

(1−∑
𝑖, 𝑗 𝑞𝑖, 𝑗 ), and we use it to scale the 𝑞𝑖, 𝑗 to the weights of a full

probability distribution, letting 𝑥𝑖, 𝑗 = 𝑞𝑖, 𝑗𝑞
′
.

We let 𝜌E =
∑
𝑖, 𝑗 𝑥𝑖, 𝑗𝜌𝑖, 𝑗 and prove by refutation that it distin-

guishes all the effects in E. Assume that 𝑡𝑟 (𝐸𝑎𝜌E) = 𝑡𝑟 (𝐸𝑏𝜌E) for
some indexes 𝑎 ≠ 𝑏. We observe that, for 𝑘 ∈ {𝑎, 𝑏},

𝑡𝑟 (𝐸𝑘𝜌E) =
∑︁
𝑖, 𝑗

𝑥𝑖, 𝑗 𝑡𝑟 (𝐸𝑘𝜌𝑖, 𝑗 ) =
∑︁
𝑖, 𝑗

𝑥𝑖, 𝑗𝑝
𝑘
𝑖,𝑗 = 𝑞′

∑︁
𝑖, 𝑗

𝑞𝑖, 𝑗𝑝
𝑘
𝑖,𝑗 .

Hence, we can rewrite our assumption as

∑
𝑖, 𝑗 𝑞𝑖, 𝑗𝑝

𝑎
𝑖,𝑗

=
∑
𝑖, 𝑗 𝑞𝑖, 𝑗𝑝

𝑏
𝑖,𝑗
.

Note that, for each pair of indexes 𝑐 and 𝑑 , we can rewrite the

formula above as

𝑞𝑐,𝑑 (𝑝𝑎𝑐,𝑑 − 𝑝𝑏
𝑐,𝑑

) =
∑︁

𝑖, 𝑗≠𝑐,𝑑

𝑞𝑖, 𝑗𝑝
𝑏
𝑖,𝑗 −

∑︁
𝑖, 𝑗≠𝑐,𝑑

𝑞𝑖, 𝑗𝑝
𝑎
𝑖,𝑗

If for some 𝑐 or𝑑 , 𝑝𝑎
𝑐,𝑑

−𝑝𝑏
𝑐,𝑑

is not zero, thenwe can divide both sides

for 𝑝𝑎
𝑐,𝑑

− 𝑝𝑏
𝑐,𝑑

, proving that 𝑞𝑐,𝑑 is indeed in the algebraic closure
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of Q ∪𝑇 ∪ {𝑞𝑒,𝑓 | 𝑒 ≠ 𝑐 or 𝑓 ≠ 𝑑}. Since this would contradict our

hypothesis, we must assume that 𝑝𝑎
𝑐,𝑑

− 𝑝𝑏
𝑐,𝑑

= 0 for any choice of

𝑐 and 𝑑 , but this is a contradiction with the definition of 𝑝𝑘
𝑖,𝑗
, since

𝑝𝑎
𝑎,𝑏

≠ 𝑝𝑏
𝑎,𝑏

by construction. □

Theorem 6. For any 𝑠, 𝑡 ∈ 𝑆 , 𝑠 ∼𝑙𝑠 𝑡 implies 𝑠 ≃𝑝𝑏𝑒 𝑡 . Moreover,
if 𝑆 is finitely dimensional, then 𝑠 ≃𝑝𝑏𝑒 𝑡 implies 𝑠 ∼𝑙𝑠 𝑡 .

Proof. By Theorem 5, for proving ∼𝑙𝑠⊆≃𝑝𝑏𝑒 it suffices to show

that ∼𝑙𝑝𝑝⊆≃𝑝𝑏𝑒 , which holds by definition.

For (≃𝑝𝑏𝑒⊆∼𝑙𝑠 ), let 𝑛𝑒𝑥𝑡 (𝑠, 𝜇) be defined as

𝑛𝑒𝑥𝑡 (𝑠, 𝜇) = {𝔇 | ∃𝑠′ ∈ 𝑆.𝑠
𝜇
−→ 𝔇}.

We let 𝑛 be the maximum of the cardinality of 𝑋 for 𝑋 ∈ 𝑛𝑒𝑥𝑡 (𝑠, 𝜇)
for some 𝑠 and 𝜇.

Consider now the following set of effects:

E0 = {𝐸 | ∃𝑠, 𝑠′ ∈ 𝑆, 𝜇 ∈ 𝐴𝑐𝑡 .𝑠
𝜇
−→ 𝔇 and𝔇(𝑠′) = 𝐸}

We let E be the set of the effects obtained by summing up to 𝑛

effects in E0.
By Lemma 4, there is a quantum state 𝜌E such that

∀𝐸𝑖 , 𝐸 𝑗 ∈ E.𝑡𝑟 (𝐸𝑖𝜌E) = 𝑡𝑟 (𝐸 𝑗𝜌E) iff 𝐸𝑖 = 𝐸 𝑗 .

Note that≃𝑝𝑏𝑒⊆∼𝜌E by definition of≃𝑝𝑏𝑒 . Note also that by proving
∼𝜌E⊆∼𝑙𝑠 we would get the thesis by transitivity. We will prove

that ∼𝜌E is a LS-bisimulation. Assume 𝑠 ∼𝜌E 𝑡 , and that 𝑠
𝜇
−→ 𝔇,

then 𝑡
𝜇
−→ 𝔗 with 𝔇↓𝜌E

□∼𝜌E1
𝔗↓𝜌E . Note that, since LS and AM-

bisimilarity coincides in the probabilistic case, the relation above

implies that

∀𝐶 ∈ 𝑆/∼𝜌E
.
∑︁
𝑥∈𝐶

𝔇↓𝜌E (𝑥) =
∑︁
𝑥∈𝐶

𝔗↓𝜌E (𝑥)

We are left with proving that

∀𝐶 ∈ 𝑆/∼𝜌E
.
∑︁
𝑥∈𝐶

𝔇(𝑥) =
∑︁
𝑥∈𝐶

𝔗(𝑥)

Assume by refutation that this is not the case, i.e. there is some 𝐶

for which the condition above does not hold. Then it suffices to

note that∑︁
𝑥∈𝐶

𝔇↓𝜌E (𝑥) =
∑︁
𝑥∈𝐶

𝑡𝑟 (𝔇(𝑥)𝜌E) = 𝑡𝑟 ((
∑︁
𝑥∈𝐶

𝔇(𝑥))𝜌E)∑︁
𝑥∈𝐶

𝔗↓𝜌E (𝑥) =
∑︁
𝑥∈𝐶

𝑡𝑟 (𝔗(𝑥)𝜌E) = 𝑡𝑟 ((
∑︁
𝑥∈𝐶

𝔗(𝑥))𝜌E)

Since

∑
𝑥∈𝐶 𝔇(𝑥) and ∑

𝑥∈𝐶 𝔗(𝑥) are both effects in E, we have
that

𝑡𝑟 ((
∑︁
𝑥∈𝐶

𝔇(𝑥))𝜌E) = 𝑡𝑟 ((
∑︁
𝑥∈𝐶

𝔗(𝑥))𝜌E)

implies

∑
𝑥∈𝐶 𝔇(𝑥) = ∑

𝑥∈𝐶 𝔗(𝑥), contradicting our assumption.

□

Theorem 7. If 𝑠1 ∼𝑙𝑠 𝑠2 and 𝑡1 ∼𝑙𝑠 𝑡2 then 𝑠1 + 𝑡1 ∼𝑙𝑠 𝑠2 + 𝑡2.

Proof. LetR𝑠 (R𝑡 ) be the LS-bisimilarity of the eLTS of 𝑠1 and 𝑠2
(of 𝑡1 and 𝑡2 rispectively). We will show that the following relation

is a LS-bisimulation in the non-deterministic sum eLTS.

R = R𝑠+𝑡 ∪ R𝑠 ∪ R𝑡 where

R𝑠+𝑡 = {(𝑠1 + 𝑡1, 𝑠2 + 𝑡2) | 𝑠1R𝑠𝑠2, 𝑡1R𝑡 𝑡2}

Assume 𝑥R𝑦, then either 𝑥R𝑠𝑦, 𝑥R𝑡𝑦 or 𝑠R𝑠+𝑡 𝑡 . The first two cases
are trivial, since R𝑠 and R𝑡 are bisimilarity and are included in R.
Assume then that 𝑥 = 𝑠1 + 𝑡1 and 𝑦 = 𝑠2 + 𝑡2, and that 𝑠1 + 𝑡1

𝜇
−→ 𝔇.

By definition of nondeterministic sum, either 𝑠1
𝜇
−→ 𝔇 or 𝑡1

𝜇
−→ 𝔇.

In the first case, since 𝑠1 ∼ 𝑠2, 𝑠2
𝜇
−→ 𝔗 with

∀𝐶 ∈ 𝑆/R𝑠

∑︁
𝑥∈𝐶

𝔇(𝑥) =
∑︁
𝑥∈𝐶

𝔗(𝑥).

and by Ext.L, 𝑠2 + 𝑡
𝜇
−→ 𝔗.

We are left with proving that

∀𝐶 ∈ 𝑆/R
∑︁
𝑥∈𝐶

𝔇(𝑥) =
∑︁
𝑥∈𝐶

𝔗(𝑥) .

We can reduce this condition to the former by simply noticing that

𝑆/R= 𝑆/R𝑠
∪𝑆/R𝑡

∪𝑆/R𝑠+𝑡 , and that

∀𝐶 ∈ (𝑆/R𝑡
∪𝑆/R𝑠+𝑡 )

∑︁
𝑥∈𝐶

𝔇(𝑥) =
∑︁
𝑥∈𝐶

𝔗(𝑥) = 0.

The second case, 𝑡1
𝜇
−→ 𝔇 is similar, by considering Ext.R. □

Theorem 8. If 𝑠1 ∼𝑙𝑠 𝑠2 and 𝑡1 ∼𝑙𝑠 𝑡2, then 𝑠1 ∥ 𝑡1 ∼𝑙𝑠 𝑠2 ∥ 𝑡2.

Proof. LetR𝑠 (R𝑡 ) be the LS-bisimilarity of the eLTS of 𝑠1 and 𝑠2
with states 𝑆𝑠 (of 𝑡1 and 𝑡2 in 𝑆𝑡 respectively). We will show that the

following relation is a LS-bisimulation in the parallel composition

eLTS.

R =
{
(𝑠1 ∥ 𝑡1, 𝑠2 ∥ 𝑡2) | 𝑠1R𝑠𝑠2, 𝑡1R𝑡 𝑡2

}
Take (𝑠1 ∥ 𝑡1, 𝑠2 ∥ 𝑡2) ∈ R, and assume 𝑠1 ∥ 𝑡1 performs a reduction,

then it bust be one of the forms of the rules in Definition 12.

(Case ParL)We have that 𝑠1 ∥ 𝑡1
𝜇
−→ 𝔇 ∥ {𝑡1 ▷ I}, and 𝑠1

𝜇
−→ 𝔇.

Then, since 𝑠1 ∼ 𝑠2, it holds that 𝑠2
𝜇
−→ 𝔗 with

∀𝐶 ∈ 𝑆𝑠/R𝑠

∑︁
𝑥∈𝐶

𝔇(𝑥) =
∑︁
𝑥∈𝐶

𝔗(𝑥).

By rule ParL, 𝑠2 ∥ 𝑡2
𝜇
−→ 𝔗 ∥ {𝑡2 ▷ I}.

We are left with proving that

∀𝐶 ∈ 𝑆/R
∑︁
𝑥∈𝐶

(𝔇 ∥ {𝑡1 ▷ I})(𝑥) =
∑︁
𝑥∈𝐶

(𝔗 ∥ {𝑡2 ▷ I})(𝑥) .

We can rewrite this condition as follows, by omitting elements that

are not in the support of the effect distributions.

∀𝐶 ∈ 𝑆/R
∑︁

𝑥 ∥𝑡1∈𝐶
(𝔇 ∥ {𝑡1 ▷ I})(𝑥) =

∑︁
𝑥 ∥𝑡2∈𝐶

(𝔗 ∥ {𝑡2 ▷ I})(𝑥).

Moreover, we can define equivalence classes explicitly,

∀𝑠 ∈ 𝑆𝑠

∑︁
𝑥 ∥𝑡1 s.t. 𝑠R𝑠𝑥

(𝔇 ∥ {𝑡1▷I})(𝑥) =
∑︁

𝑥 ∥𝑡2 s.t. 𝑠R𝑠𝑥

(𝔗 ∥ {𝑡2▷I})(𝑥) .

We substitute the parallel composition of distributions with its

definition.

∀𝑠 ∈ 𝑆𝑠

∑︁
𝑥 s.t. 𝑠R𝑠𝑥

(𝔇(𝑥) ⊗ I) =
∑︁

𝑥 s.t. 𝑠R𝑠𝑥

(𝔗(𝑥) ⊗ I) .

which clearly derives from our hypothesis by linearity of ⊗.
(Case ParR) It is similar to the previous case.
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(Case Synch) We have that 𝑠1 ∥ 𝑡1
𝜏−→ 𝔇1 ∥ 𝔗1, and both 𝑠1

𝜇
−→

𝔇1 and 𝑡1
𝜇
−→ 𝔗1. Since 𝑠1 ∼ 𝑠2, it holds that 𝑠2

𝜇
−→ 𝔇2, with𝔇1 and

𝔇2 satisfying the following

∀𝐶 ∈ 𝑆𝑠/R𝑠

∑︁
𝑥∈𝐶

𝔇1 (𝑥) =
∑︁
𝑥∈𝐶

𝔇2 (𝑥).

Similarly, 𝑡2
𝜇
−→ 𝔗2, with 𝔗1 and 𝔗2 satisfying

∀𝐶 ∈ 𝑆𝑡/R𝑡

∑︁
𝑥∈𝐶

𝔗1 (𝑥) =
∑︁
𝑥∈𝐶

𝔗2 (𝑥) .

Then, by rule Synch, 𝑠2 ∥ 𝑡2
𝜏−→ 𝔇2 ∥ 𝔗2.

We are left with proving that

∀𝐶 ∈ 𝑆/R
∑︁
𝑥∈𝐶

(𝔇1 ∥ 𝔗1) (𝑥) =
∑︁
𝑥∈𝐶

(𝔇2 ∥ 𝔗2) (𝑥).

Notice that by construction of R,
𝑆/R= {{𝑥 ∥ 𝑦 | 𝑥 ∈ 𝐶𝑠 , 𝑦 ∈ 𝐶𝑡 } | 𝐶𝑠 ∈ 𝑆𝑠/R𝑠

,𝐶𝑡 ∈ 𝑆𝑡/R𝑡
}.

we can therefore rewrite our condition as

∀𝐶𝑠 ∈ 𝑆𝑠/R𝑠
,𝐶𝑡 ∈ 𝑆𝑡/R𝑡∑︁

𝑥∈𝐶𝑠 ,𝑦∈𝐶𝑡

(𝔇1 ∥ 𝔗1) (𝑥 ∥ 𝑦) =
∑︁

𝑥∈𝐶𝑠 ,𝑦∈𝐶𝑡

(𝔇2 ∥ 𝔗2) (𝑥 ∥ 𝑦)

By definition of the parallel composition of distributions, we obtain

the following.

∀𝐶𝑠 ∈ 𝑆𝑠/R𝑠
,𝐶𝑡 ∈ 𝑆𝑡/R𝑡∑︁

𝑥∈𝐶𝑠 ,𝑦∈𝐶𝑡

𝔇1 (𝑥) ⊗ 𝔗1 (𝑦) =
∑︁

𝑥∈𝐶𝑠 ,𝑦∈𝐶𝑡

𝔇2 (𝑥) ⊗ 𝔗2 (𝑦)

It is the sufficient to resort to linearity of ⊗ to obtain the following

which is trivially derivable from our hypothesis

∀𝐶𝑠 ∈ 𝑆𝑠/R𝑠
,𝐶𝑡 ∈ 𝑆𝑡/R𝑡©­«

∑︁
𝑥∈𝐶𝑠

𝔇1 (𝑥)ª®¬ ⊗ ©­«
∑︁
𝑦∈𝐶𝑡

𝔗1 (𝑦)ª®¬ =
©­«
∑︁
𝑥∈𝐶𝑠

𝔇2 (𝑥)ª®¬ ⊗ ©­«
∑︁
𝑦∈𝐶𝑡

𝔗2 (𝑦)ª®¬
□

Theorem 9. If 𝑠 ∼𝑙𝑠 𝑡 then 𝑠 |𝜌 ∼𝑙𝑠 𝑡 |𝜌 for any 𝜌 .

Proof. We prove the following R to be a ls-bisimulation.

R =
{
(𝑠
��
𝜌
, 𝑡
��
𝜌
) | 𝑠 ∼𝑙𝑠 𝑡, 𝜌 ∈ 𝐷𝑀

}
Take (𝑠 |𝜌 , 𝑡 |𝜌 ) ∈ R, and assume 𝑠 |𝜌 performs a reduction, then,

by Definition 14 it must be of the form 𝑠 |𝜌
𝜇
−→ 𝔇|𝜌 , and it must be

that 𝑠
𝜇
−→ 𝔇.

Since 𝑠 ∼𝑙𝑠 𝑡 , 𝑡
𝜇
−→ 𝔗 such that

∀𝐶 ∈ 𝑆/∼𝑙𝑠

∑︁
𝑥∈𝐶

𝔇(𝑥) =
∑︁
𝑥∈𝐶

𝔗(𝑥). (1)

Moreover, 𝑡 |𝜌
𝜇
−→ 𝔗 |𝜌 by Definition 14.

We are left with proving that

∀𝐶 ∈ 𝑆/R
∑︁
𝑥∈𝐶

𝔇
��
𝜌
(𝑥) =

∑︁
𝑥∈𝐶

𝔗
��
𝜌
(𝑥).

Note that, by definition of R, given any 𝜌 ∈ 𝐷𝑀 ,

𝐶 ∈ 𝑆/∼𝑙𝑠
if and only if

{
𝑥
��
𝜌
| 𝑥 ∈ 𝐶

}
∈ 𝑆/R .

Therefore, we can rewrite our condition as

∀𝐶 ∈ 𝑆/∼𝑙𝑠

∑︁
𝑥∈𝐶

𝔇
��
𝜌
(𝑥

��
𝜌
) =

∑︁
𝑥∈𝐶

𝔗
��
𝜌
(𝑥

��
𝜌
),

which clearly derives from Equation 1, by definition of𝔇|𝜌 in Defi-

nition 14. □

Lemma 5. For any 𝑑-dimensional eLTS (𝑆,𝐴𝑐𝑡,→) and state 𝜌 ∈
𝐷𝑀𝑑 , given a relation R ⊆ 𝑆 × 𝑆 we have that R is a 𝜌-bisimulation
if and only if R|𝜌 is a bisimulation, where R|𝜌 is defined as

𝑠
��
𝜌
R
��
𝜌
𝑡
��
𝜌
if and only if 𝑠 R 𝑡

Proof. First of all note that for any two distribution 𝔇,𝔗, it

holds

𝔇↓𝜌
□

R 𝔗↓𝜌 iff𝔇
��
𝜌

□

R
��
𝜌

𝔗
��
𝜌

since𝔇↓𝜌 and𝔇|𝜌 assign the same probability the same elements,

modulo the |𝜌 renaming.

Now we prove the "only if" direction, proving that R|𝜌 is a

bisimulation. The other direction is similar. Suppose 𝑠 |𝜌 R|𝜌 𝑡 |𝜌 ,
then if 𝑠 |𝜌

𝜇
−→ 𝔇|𝜌 it must be 𝑠

𝜇
−→ 𝔇. As 𝑡 is 𝜌-bisimilar, we know

that 𝑡
𝜇
−→ 𝔗 and 𝔇↓𝜌

□

R 𝔗↓𝜌 , because since they are probability

distributions the equivalence class condition of 𝜌 bisimilarity is

equivalent to the relational lifting. Thus we get 𝔇|𝜌
□

R|𝜌 𝔗 |𝜌 ,
showing that R|𝜌 is a bisimulation. □

Corollary 1. Given a𝑑-dimensional eLTS (𝑆,𝐴𝑐𝑡,→) and two states
𝑠, 𝑡 ∈ 𝑆 , if for any 𝜌 ∈ 𝐷𝑀𝑑 we have 𝑠 |𝜌 ∼𝑙𝑠 𝑡 |𝜌 , then 𝑠 ∼𝑙𝑠 𝑡 .

Proof. We build the relation R = {(𝑥,𝑦) | 𝑥 |𝜌 ∼𝑙𝑠 𝑦 |𝜌 }, and of

course we have 𝑠R𝑡 . Then we can show that R|𝜌 is a bisimulation,

because when 𝑥 |𝜌
𝜇
−→ 𝔇|𝜌 we have 𝑦 |𝜌

𝜇
−→ 𝑞𝑇 |𝜌 , and𝔇|𝜌 ,𝔗 |𝜌 are

not only in
□∼𝑙𝑠 , but also in

□

R|𝜌 . Thus, for Lemma 5, it must be

that R is a 𝜌-bisimulation, and so 𝑠 and 𝑡 are 𝜌-bisimilar for any 𝜌 .

Tanks to Theorem 6, they are LS-bisimilar. □

Theorem 10. If the dimension of the Hilbert space is two or greater,
then𝔇 +𝔗 is undefined if𝔇(𝑠) = |𝜓 ⟩⟨𝜓 | and 𝔗(𝑡) = |𝜙⟩⟨𝜙 | for some
states 𝑠, 𝑡 ∈ 𝑆 and quantum states |𝜓 ⟩ and |𝜙⟩.

Proof. Assume𝔇+𝔗 exists. Then 𝑡𝑟 ( |𝜓 ⟩⟨𝜓 | ·𝜌) ·𝑡𝑟 ( |𝜙⟩⟨𝜙 | ·𝜌) =
𝑡𝑟 (𝐸 · 𝜌) for any 𝜌 where 𝐸 = (𝔇 +𝔗) (𝑠 + 𝑡). Take 𝜌 = |𝜓 ⟩⟨𝜓 |, then

𝑡𝑟 ( |𝜓 ⟩⟨𝜓 | · 𝜌) · 𝑡𝑟 ( |𝜙⟩⟨𝜙 | · 𝜌) =
= ⟨𝜓 |𝜓 ⟩ ⟨𝜓 |𝜓 ⟩ · ⟨𝜓 |𝜙⟩ ⟨𝜙 |𝜓 ⟩ =
= ⟨𝜓 |𝜙⟩ ⟨𝜙 |𝜓 ⟩ must be equal to 𝑡𝑟 (𝐸 · |𝜓 ⟩⟨𝜓 |) .

Similarly, by considering 𝜌 = |𝜙⟩⟨𝜙 |, then
𝑡𝑟 ( |𝜓 ⟩⟨𝜓 | · 𝜌) · 𝑡𝑟 ( |𝜙⟩⟨𝜙 | · 𝜌) =
= ⟨𝜙 |𝜓 ⟩ ⟨𝜓 |𝜙⟩ · ⟨𝜙 |𝜙⟩ ⟨𝜙 |𝜙⟩ =
= ⟨𝜙 |𝜓 ⟩ ⟨𝜓 |𝜙⟩ = ⟨𝜓 |𝜙⟩ ⟨𝜙 |𝜓 ⟩
must be equal to 𝑡𝑟 (𝐸 · |𝜙⟩⟨𝜙 |) = 𝑡𝑟 (𝐸 · |𝜓 ⟩⟨𝜓 |) .



Conference’17, July 2017, Washington, DC, USA Lorenzo Ceragioli, Fabio Gadducci, Giuseppe Lomurno, and Gabriele Tedeschi

Consider now 𝜌 = 1

2
|𝜓 ⟩⟨𝜓 | + 1

2
|𝜙⟩⟨𝜙 |.

𝑡𝑟 ( |𝜓 ⟩⟨𝜓 | · 𝜌) · 𝑡𝑟 ( |𝜙⟩⟨𝜙 | · 𝜌) =

= 𝑡𝑟 ( |𝜓 ⟩⟨𝜓 | · ( 1
2

|𝜓 ⟩⟨𝜓 | + 1

2

|𝜙⟩⟨𝜙 |)) ·

𝑡𝑟 ( |𝜙⟩⟨𝜙 | · ( 1
2

|𝜓 ⟩⟨𝜓 | + 1

2

|𝜙⟩⟨𝜙 |)) =

=
1

2

𝑡𝑟 ( |𝜓 ⟩⟨𝜓 | · |𝜓 ⟩⟨𝜓 | + |𝜓 ⟩⟨𝜓 | · |𝜙⟩⟨𝜙 |) ·
1

2

𝑡𝑟 ( |𝜙⟩⟨𝜙 | · |𝜓 ⟩⟨𝜓 | + |𝜙⟩⟨𝜙 | · |𝜙⟩⟨𝜙 |) =

=
1

2

(𝑡𝑟 ( |𝜓 ⟩⟨𝜓 | · |𝜓 ⟩⟨𝜓 |) + 𝑡𝑟 ( |𝜓 ⟩⟨𝜓 | · |𝜙⟩⟨𝜙 |)) ·
1

2

(𝑡𝑟 ( |𝜙⟩⟨𝜙 | · |𝜓 ⟩⟨𝜓 |) + 𝑡𝑟 ( |𝜙⟩⟨𝜙 | · |𝜙⟩⟨𝜙 |)) =

=
1

2

(⟨𝜓 |𝜓 ⟩ ⟨𝜓 |𝜓 ⟩ + ⟨𝜙 |𝜓 ⟩ ⟨𝜓 |𝜙⟩) ·
1

2

(⟨𝜙 |𝜓 ⟩ ⟨𝜓 |𝜙⟩ + ⟨𝜙 |𝜙⟩ ⟨𝜙 |𝜙⟩) =

=
1

2

(1 + ⟨𝜙 |𝜓 ⟩ ⟨𝜓 |𝜙⟩) · 1
2

(⟨𝜙 |𝜓 ⟩ ⟨𝜓 |𝜙⟩ + 1)

must be equal to

𝑡𝑟 (𝐸 · 𝜌) = 𝑡𝑟 (𝐸 · ( 1
2

|𝜓 ⟩⟨𝜓 | + 1

2

|𝜙⟩⟨𝜙 |)) =

=
1

2

𝑡𝑟 (𝐸 · |𝜓 ⟩⟨𝜓 | + 𝐸 · |𝜙⟩⟨𝜙 |) =

=
1

2

𝑡𝑟 (𝐸 · |𝜓 ⟩⟨𝜓 |) + 1

2

𝑡𝑟 (𝐸 · |𝜙⟩⟨𝜙 |) =

=
1

2

⟨𝜓 |𝜙⟩ ⟨𝜙 |𝜓 ⟩ + 1

2

⟨𝜓 |𝜙⟩ ⟨𝜙 |𝜓 ⟩ = ⟨𝜓 |𝜙⟩ ⟨𝜙 |𝜓 ⟩ .

The only solution is that 𝑡𝑟 (𝐸·|𝜙⟩⟨𝜙 |) = 𝑡𝑟 (𝐸·|𝜓 ⟩⟨𝜓 |) = ⟨𝜓 |𝜙⟩ ⟨𝜙 |𝜓 ⟩ =
1.

Since the dimension of the Hilbert space is at least 2, we can

choose a state |𝑎⟩ such that ⟨𝑎 |𝜓 ⟩ ⟨𝜓 |𝑎⟩ = 0. Then also ⟨𝑎 |𝜙⟩ ⟨𝜙 |𝑎⟩ =
0. Take then 𝜌 = 1

2
|𝜓 ⟩⟨𝜓 | + 1

2
|𝑎⟩⟨𝑎 |.

𝑡𝑟 ( |𝜓 ⟩⟨𝜓 | · 𝜌) · 𝑡𝑟 ( |𝜙⟩⟨𝜙 | · 𝜌) =

=
1

2

(⟨𝜓 |𝜓 ⟩ ⟨𝜓 |𝜓 ⟩ + ⟨𝑎 |𝜓 ⟩ ⟨𝜓 |𝑎⟩) ·
1

2

(⟨𝜙 |𝜓 ⟩ ⟨𝜓 |𝜙⟩ + ⟨𝑎 |𝜙⟩ ⟨𝜙 |𝑎⟩) = 1

4

must be equal to

𝑡𝑟 (𝐸 · 𝜌) = 𝑡𝑟 (𝐸 · ( 1
2

|𝜓 ⟩⟨𝜓 | + 1

2

|𝑎⟩⟨𝑎 |)) =

=
1

2

𝑡𝑟 (𝐸 · |𝜓 ⟩⟨𝜓 |) + 1

2

𝑡𝑟 (𝐸 · |𝑎⟩⟨𝑎 |) =

=
1

2

+ 1

2

𝑡𝑟 (𝐸 · |𝑎⟩⟨𝑎 |) .

Hence, 𝑡𝑟 (𝐸 · |𝑎⟩⟨𝑎 |) = − 1

2
, which is impossible for an effect. □

Lemma 6. Let 𝜌 ∈ 𝐷𝑀𝐷 , 𝐸 ∈ E𝑓𝑑 , and 𝑠 such that 𝑑 · dim(𝑠) ≤ 𝐷 .
Then

⟨𝐸, 𝑠⟩
��
𝜌

𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ 𝑝𝑖 } ⇔ ⟨M𝐸 (𝜌), 𝑠⟩

𝜇
−→ {M𝐸𝑖 (𝜌) ▷ 𝑝𝑖 }

Proof. First, let us prove

⟨𝐸, 𝑠⟩
��
𝜌

𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ 𝑝𝑖 } ⇒ ⟨M𝐸 (𝜌), 𝑠⟩

𝜇
−→ {M𝐸𝑖 (𝜌) ▷ 𝑝𝑖 }

by induction on the transitions obtained by instantiating the only

rule for · |𝜌 with each rule of the Heisenberg-style semantics.

(Case HPre) By induction hypothesis, it must be that flat(𝑠) =
( [𝐸𝑖 ]𝑠𝑖 )𝑖∈𝐼 for some set 𝐼 . Therefore, the SPre rule is applicable to

⟨𝜌, 𝛼 .𝑃⟩.

⟨1, 𝛼 .𝑃⟩
��
𝜌

𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ tr((𝐸𝑖 ⊗ I)𝜌)}

⇕

⟨𝜌, 𝛼 .𝑃⟩
𝜇
−→ {⟨M𝐸𝑖 (𝜌), 𝑠𝑖 ⟩ ▷ tr

(
M𝐸𝑖 (𝜌)

)
}

It straightforward to show that tr(M𝐸 (𝜌)) = tr((𝐸 ⊗ I)𝜌) for any
effect 𝐸 and any partial density matrix 𝜌 , defined over a state possi-

bly larger than the state of 𝐸

tr(M𝐸 (𝜌)) = tr

(
tr𝐴

((√
𝐸 ⊗ I

)
𝜌

(√
𝐸 ⊗ I

)))
= tr

((√
𝐸 ⊗ I

)
𝜌

(√
𝐸 ⊗ I

))
= tr((𝐸 ⊗ I)𝜌)

(Case HSumL) By induction hypothesis, we have

⟨1, 𝑠⟩
��
𝜌

𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ tr((𝐸𝑖 ⊗ 𝐼 )𝜌)}

⇕

⟨𝜌, 𝑠⟩
𝜇
−→ {⟨M𝐸𝑖 (𝜌), 𝑠𝑖 ⟩ ▷ tr((𝐸𝑖 ⊗ 𝐼 )𝜌)}

Therefore, the SSumL rule is applicable to ⟨𝜌, 𝑠 + 𝑡⟩.

⟨1, 𝑠 + 𝑡⟩
��
𝜌

𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ tr((𝐸𝑖 ⊗ 𝐼 )𝜌)}

⇕

⟨𝜌, 𝑠 + 𝑡⟩
𝜇
−→ {⟨M𝐸𝑖 (𝜌), 𝑠𝑖 ⟩ ▷ tr((𝐸𝑖 ⊗ 𝐼 )𝜌)}

(Case HSumR) Analogous to the case for HSumL

(Case HParL) By induction hypothesis, we have

⟨1, 𝑠⟩
��
𝜌

𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ tr((𝐸𝑖 ⊗ 𝐼 )𝜌)}

⇕

⟨𝜌, 𝑠⟩
𝜇
−→ {⟨M𝐸𝑖 (𝜌), 𝑠𝑖 ⟩ ▷ tr((𝐸𝑖 ⊗ 𝐼 )𝜌)}

Therefore, the SParL rule is applicable to ⟨𝜌, 𝑠 ∥ 𝑡⟩.

⟨1, 𝑠 ∥ 𝑡⟩
��
𝜌

𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ∥ 𝑡⟩

��
𝜌
▷ tr((𝐸𝑖 ⊗ 𝐼 )𝜌)}

⇕

⟨𝜌, 𝑠 ∥ 𝑡⟩
𝜇
−→ {⟨M𝐸𝑖 (𝜌), 𝑠𝑖 ∥ 𝑡⟩ ▷ tr((𝐸𝑖 ⊗ 𝐼 )𝜌)}

(Case HParR) Analogous to the case for HParL

(Case HSyncL) By induction hypothesis, we have

⟨1, 𝑠⟩
��
𝜌

𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ tr((𝐸𝑖 ⊗ 𝐼 )𝜌)}

⇕

⟨𝜌, 𝑠⟩
𝜇
−→ {⟨M𝐸𝑖 (𝜌), 𝑠𝑖 ⟩ ▷ tr((𝐸𝑖 ⊗ 𝐼 )𝜌)}

and

⟨1, 𝑡⟩
��
𝜌

𝜇
−→ {⟨𝐸 𝑗 , 𝑡 𝑗 ⟩

��
𝜌
▷ tr

(
(𝐸 𝑗 ⊗ 𝐼 )𝜌

)
}

⇕

⟨𝜌, 𝑡⟩
𝜇
−→ {⟨M𝐸 𝑗

(𝜌), 𝑡 𝑗 ⟩ ▷ tr
(
(𝐸 𝑗 ⊗ 𝐼 )𝜌

)
}
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Therefore, the SSyncL rule is applicable to ⟨𝜌, 𝑠 ∥ 𝑡⟩.

⟨1, 𝑠 ∥ 𝑡⟩
��
𝜌

𝜏−→ {⟨𝐸𝑖 ⊗ 𝐸 𝑗 , 𝑠𝑖 ∥ 𝑡 𝑗 ⟩
��
𝜌
▷ tr

(
((𝐸𝑖 ⊗ 𝐸 𝑗 ) ⊗ I)𝜌

)
}

⇕

⟨𝜌, 𝑠 ∥ 𝑡⟩ 𝜏−→ {⟨M𝐹 𝑗 (M𝐸𝑖 (𝜌)), 𝑠𝑖 ∥ 𝑡 𝑗 ⟩ ▷ tr
(
M𝐸 𝑗

(M𝐸𝑖 (𝜌))
)
}

However, since measurements are destructive, it holds that

tr

(
M𝐸 𝑗

(M𝐸𝑖 (𝜌))
)
= tr

(
M𝐸𝑖⊗𝐸 𝑗

(𝜌)
)
= tr

(
((𝐸𝑖 ⊗ 𝐸 𝑗 ) ⊗ I)𝜌

)
(Case HSyncR) Analogous to the case for HSyncL

(Case HLift) By induction hypothesis,

⟨1, 𝑠⟩
��
𝜌

𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ tr((𝐸𝑖 ⊗ 𝐼 )𝜌)}

⇕

⟨𝜌, 𝑠⟩
𝜇
−→ {⟨M𝐸𝑖 (𝜌), 𝑠𝑖 ⟩ ▷ tr((𝐸𝑖 ⊗ 𝐼 )𝜌)}

Notice that, if ⟨𝜎, 𝑠⟩
𝜇
−→ {⟨M𝐸𝑖 (𝜎), 𝑠𝑖 ⟩ ▷ tr((𝐸𝑖 ⊗ 𝐼 )𝜎)} for some

𝜎 , then all 𝜎′ behaves similarly with possibly different weights, i.e.

⟨𝜎′, 𝑠⟩
𝜇
−→ {⟨M𝐸𝑖 (𝜎

′), 𝑠𝑖 ⟩ ▷ tr
(
(𝐸𝑖 ⊗ 𝐼 )𝜎′

)
}

Therefore,

⟨𝐸, 𝑠⟩
��
𝜌

𝜇
−→ {⟨𝐸 ⊗ 𝐸𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ tr(((𝐸 ⊗ 𝐸𝑖 ) ⊗ 𝐼 )𝜌)}

⇕

⟨M𝐸 (𝜌), 𝑠⟩
𝜇
−→ {⟨M𝐸𝑖 (M𝐸 (𝜌)), 𝑠𝑖 ⟩ ▷ tr

(
M𝐸𝑖 (M𝐸 (𝜌))

)
}

As for the previous case, tr

(
M𝐸𝑖 (M𝐸 (𝜌))

)
= tr(((𝐸 ⊗ 𝐸𝑖 ) ⊗ I)𝜌).

Second, let us prove

⟨𝐸, 𝑠⟩
��
𝜌

𝜇
−→ {⟨𝐸𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ 𝑝𝑖 } ⇐ ⟨M𝐸 (𝜌), 𝑠⟩

𝜇
−→ {M𝐸𝑖 (𝜌) ▷ 𝑝𝑖 }

by induction on the transitions in the Schrödinger-style semantics.

(Case SPre)By rule precondition itmust be that flat(𝑠) = ( [𝐸𝑖 ]𝑠𝑖 )𝑖∈𝐼
for some set 𝐼 . Therefore, the HLift followed by the HPre rule are

applicable to ⟨𝐸, 𝜇.𝑃⟩.

⟨M𝐸 (𝜌), 𝜇.𝑃⟩
𝜇
−→ {⟨M𝐸𝑖 (M𝐸 (𝜌)), 𝑠𝑖 ⟩ ▷ tr

(
M𝐸𝑖 (M𝐸 (𝜌))

)
}

⇕

⟨𝐸, 𝜇.𝑃⟩
��
𝜌

𝜇
−→ {⟨𝐸 ⊗ 𝐸𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ tr((𝐸 ⊗ 𝐸𝑖 ⊗ I)𝜌)}

But, as showed before, tr

(
M𝐸𝑖 (M𝐸 (𝜌))

)
= tr((𝐸 ⊗ 𝐸𝑖 ⊗ I) (𝜌))

(Other cases) All other cases follow the same line of reasoning

of SPre, where we first need to apply a HLift. □

Theorem 11. For any atomic state 𝑠 and 𝜌 ∈ 𝐷𝑀
dim(𝑠 )

⟨1, 𝑠⟩
��
𝜌
∼𝑙𝑠 ⟨𝜌, 𝑠⟩

Proof. Let 𝐷 = 𝑑𝑖𝑚(𝑠), take the relation

R𝐷 =

{(
⟨𝐸, 𝑡⟩

��
𝜌
, ⟨M𝐸 (𝜌), 𝑡⟩

) ���� 𝑡 ∈ 𝑆, 𝜌 ∈ 𝐷𝑀𝐷 , 𝐸 ∈ E𝑓𝑑
𝑑 · dim(𝑡) ≤ 𝐷

}
From Lemma 6 it is trivial to show that such relation is a bisimula-

tion and it includes (⟨1, 𝑠⟩|𝜌 , ⟨𝜌, 𝑠⟩) □

Lemma 7. Let 𝜌 ∈ 𝐷𝑀𝑑 with 𝑑 ≥ dim(𝑠),

⟨E, 𝑠⟩
��
𝜌

𝜇
−→ {⟨E𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ 𝑝𝑖 } ⇔ ⟨E(𝜌), 𝑠⟩

𝜇
−→ {E𝑖 (𝜌) ▷ 𝑝𝑖 }

Proof. First, let us prove

⟨E, 𝑠⟩
��
𝜌

𝜇
−→ {⟨E𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ 𝑝𝑖 } ⇒ ⟨E(𝜌), 𝑠⟩

𝜇
−→ {E𝑖 (𝜌) ▷ 𝑝𝑖 }

by induction on the transitions in the restricted Heisenberg-style

semantics.

(CaseHPre)By rule precondition itmust be that flat(𝑠) = ( [E𝑖 ]𝑠𝑖 )𝑖∈𝐼
for some set 𝐼 . Therefore, the SPre rule is applicable to ⟨𝜌, 𝛼 .𝑃⟩.

⟨I, 𝛼 .𝑃⟩
��
𝜌

𝜇
−→ {⟨E𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ tr

(
𝐸E𝑖

(𝜌)
)
}

⇕

⟨𝜌, 𝛼 .𝑃⟩
𝜇
−→ {⟨E𝑖 (𝜌), 𝑠𝑖 ⟩ ▷ tr(E𝑖 (𝜌))}

It is straightforward to show that tr

(
𝐸E𝑖

𝜌
)
= tr(E𝑖 (𝜌)):

tr

(
𝐸E𝑖

𝜌
)
= tr

((∑︁
𝑘

𝐸
†
𝑘
𝐸𝑘

)
𝜌

)
= tr

(∑︁
𝑘

𝐸𝑘𝜌𝐸
†
𝑘

)
= tr(E𝑖 (𝜌))

where {𝐸𝑘 }𝑘 is a Kraus decomposition of E𝑖 .
(Case HSumL) By induction on the precondition

⟨I, 𝑠⟩
��
𝜌

𝜇
−→ {⟨E𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ tr

(
𝐸E𝑖

𝜌
)
}

⇕

⟨𝜌, 𝑠⟩
𝜇
−→ {⟨E𝑖 (𝜌), 𝑠𝑖 ⟩ ▷ tr

(
𝐸E𝑖

𝜌
)
}

Therefore, the SSumL rule is applicable to ⟨𝜌, 𝑠 + 𝑡⟩.

⟨I, 𝑠 + 𝑡⟩
��
𝜌

𝜇
−→ {⟨E𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ tr

(
𝐸E𝑖

𝜌
)
}

⇕

⟨𝜌, 𝑠 + 𝑡⟩
𝜇
−→ {⟨E𝑖 (𝜌), 𝑠𝑖 ⟩ ▷ tr

(
𝐸E𝑖

𝜌
)
}

(Case HSumR) Analogous to the case for HSumL

(Case HParL) By induction on the precondition

⟨I, 𝑠⟩
��
𝜌

𝜇
−→ {⟨E𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ tr

(
𝐸E𝑖

𝜌
)
}

⇕

⟨𝜌, 𝑠⟩
𝜇
−→ {⟨E𝑖 (𝜌), 𝑠𝑖 ⟩ ▷ tr

(
𝐸E𝑖

𝜌
)
}

Therefore, the SParL rule is applicable to ⟨𝜌, 𝑠 ∥ 𝑡⟩.

⟨I, 𝑠 ∥ 𝑡⟩
��
𝜌

𝜇
−→ {⟨E𝑖 , 𝑠𝑖 ∥ 𝑡⟩

��
𝜌
▷ tr

(
𝐸E𝑖

𝜌
)
}

⇕

⟨𝜌, 𝑠 ∥ 𝑡⟩
𝜇
−→ {⟨E𝑖 (𝜌), 𝑠𝑖 ∥ 𝑡⟩ ▷ tr

(
𝐸E𝑖

𝜌
)
}

(Case HParR) Analogous to the case for HParL

(Case HSyncL) By induction on the preconditions

⟨I, 𝑠⟩
��
𝜌

𝜇
−→ {⟨E𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ tr

(
𝐸E𝑖

𝜌
)
}

⇕

⟨𝜌, 𝑠⟩
𝜇
−→ {⟨E𝑖 (𝜌), 𝑠𝑖 ⟩ ▷ tr

(
𝐸E𝑖

𝜌
)
}
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and

⟨I, 𝑡⟩
��
𝜌

𝜇
−→ {⟨E 𝑗 , 𝑡 𝑗 ⟩

��
𝜌
▷ tr

(
𝐸E 𝑗

𝜌

)
}

⇕

⟨𝜌, 𝑡⟩
𝜇
−→ {⟨E 𝑗 (𝜌), 𝑡 𝑗 ⟩ ▷ tr

(
𝐸E 𝑗

𝜌

)
}

Therefore, the SSyncL rule is applicable to ⟨𝜌, 𝑠 ∥ 𝑡⟩.

⟨I, 𝑠 ∥ 𝑡⟩
��
𝜌

𝜏−→ {⟨E 𝑗 ◦ E𝑖 , 𝑠𝑖 ∥ 𝑡 𝑗 ⟩
��
𝜌
▷ tr

(
𝐸E𝑖⊗E 𝑗

𝜌

)
}

⇕

⟨𝜌, 𝑠 ∥ 𝑡⟩ 𝜏−→ {⟨E 𝑗 (E𝑖 (𝜌)), 𝑠𝑖 ∥ 𝑡 𝑗 ⟩ ▷ tr
(
E 𝑗 (E𝑖 (𝜌))

)
}

However, tr

(
E 𝑗 (E𝑖 (𝜌))

)
= tr

(
𝐸E 𝑗◦E𝑖

𝜌

)
tr

(
E 𝑗 (E𝑖 (𝜌))

)
= tr

(
(E 𝑗 ◦ E𝑖 ) (𝜌)

)
= tr

(
𝐸E 𝑗◦E𝑖

𝜌

)
(Case HSyncR) Analogous to the case for HSyncL

(Case HLift) By induction on the precondition

⟨I, 𝑠⟩
��
𝜌

𝜇
−→ {⟨E𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ tr

(
𝐸E𝑖

𝜌
)
}

⇕

⟨𝜌, 𝑠⟩
𝜇
−→ {⟨E𝑖 (𝜌), 𝑠𝑖 ⟩ ▷ tr

(
𝐸E𝑖

𝜌
)
}

Therefore, by selecting 𝜌 = M𝐸 (𝜌)

⟨E, 𝑠⟩
��
𝜌

𝜇
−→ {⟨E𝑖 ◦ E, 𝑠𝑖 ⟩

��
𝜌
▷ tr

(
𝐸E𝑖◦E𝜌

)
}

⇕

⟨M𝐸 (𝜌), 𝑠⟩
𝜇
−→ {⟨E𝑖 (E(𝜌)), 𝑠𝑖 ⟩ ▷ tr(E𝑖 (E(𝜌)))}

As for the previous case, tr(E𝑖 (E(𝜌))) = tr

(
𝐸E𝑖◦E𝜌

)
.

Second, let us prove

⟨E, 𝑠⟩
��
𝜌

𝜇
−→ {⟨E𝑖 , 𝑠𝑖 ⟩

��
𝜌
▷ 𝑝𝑖 } ⇐ ⟨E(𝜌), 𝑠⟩

𝜇
−→ {E𝑖 (𝜌) ▷ 𝑝𝑖 }

by induction on the transitions in the Schrödinger-style semantics.

(Case SPre)By rule precondition itmust be that flat(𝑠) = ( [E𝑖 ]𝑠𝑖 )𝑖∈𝐼
for some set 𝐼 . Therefore, the HLift followed by the HPre rule are

applicable to ⟨E, 𝜇.𝑃⟩.

⟨E𝑖 (E(𝜌)), 𝜇.𝑃⟩
𝜇
−→ {⟨E𝑖 (E(𝜌)), 𝑠𝑖 ⟩ ▷ tr(E𝑖 (E(𝜌)))}

⇕

⟨E, 𝜇.𝑃⟩
��
𝜌

𝜇
−→ {⟨E𝑖 ◦ E,𝑠𝑖 ⟩

��
𝜌
▷ tr

(
𝐸E𝑖◦E𝜌

)
}

But, as showed before, tr(E𝑖 (E(𝜌))) = tr

(
𝐸E𝑖◦E𝜌

)
(Other cases) All other cases follow the same line of reasoning

of SPre, where we first need to apply a HLift. □

Theorem 13. For any 𝑑-dimensional atomic process 𝑠 and any
𝜌 ∈ 𝐷𝑀𝑑 , ⟨I𝑑 , 𝑠⟩|𝜌 ∼𝑙𝑠 ⟨𝜌, 𝑠⟩.

Proof. Take the relation

R =

{(
⟨E, 𝑠⟩

��
𝜌
, ⟨E(𝜌), 𝑠⟩

)
| 𝑠 ∈ 𝑆, 𝜌 ∈ 𝐷𝑀𝑑 , E ∈ SO𝑑

}
From Lemma 7 it is trivial to show that such relation is a bisimula-

tion and thus the theorem holds. □
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