
Model Checking 
Quantum Circuits
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Approach

● Based on the paper by 
Ying

● A pragmatic approach 

● We will give some 
context and reason 
about choices
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● Modeling Quantum Circuits as Transition Systems

● A Logic for Temporal Properties on Quantum Systems

● Reduction to CTL model checking

● Dealing with Mixed States

● Optimization via Tensor Networks
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Quantum Circuits
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Qubits

● Two classic states ∣0〉and ∣1〉
● Pure states (superposition of classic states) 

      ∣φ〉= a∣0〉+ b∣1〉
      a, b ∊ ℂ   |a|² + |b|² = 1

- probability of each classic state
- wave phase (interference)

∣1〉
∣0〉

∣0〉=             ∣1〉= 
     

1

0

0

1
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Measurements

Outcome on ∣φ〉= a∣0〉+ b∣1〉

The system decays in the observed classical state

- ∣0〉with probability |a|²
- ∣1〉with probability |b|²

∣φ’〉= 1∣0〉+ 0∣1〉

∣φ’’〉= 0∣0〉+ 1∣1〉
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Dynamics of an (isolated) quantum system

∣φ〉→ ∣φ’〉 with ∣φ’〉= U ∣φ〉

U is a transformation
● Linear:    U ( a∣0〉+ b∣1〉) = a U∣0〉+ b U∣1〉
● Unitary:   U  U = U U  = I† †
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Single Qubit Transformations (Gates)

∣φ〉→ ∣φ’〉 with ∣φ’〉= U ∣φ〉
where ∣φ〉= a∣0〉+ b∣1〉

U
∣φ〉 ∣φ’〉

Xa∣0〉+ b∣1〉

Z

H

b∣0〉+ a∣1〉

a∣0〉+ b∣1〉 a∣0〉-  b∣1〉

∣0〉      ∣0〉  ∣1〉(      +      )

H∣1〉      ∣0〉  ∣1〉(      -       )
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Multiple Qubits Systems

● Classic states ∣00〉, ∣01〉, ∣10〉and ∣11〉
● Pure states

      ∣φ〉= a∣00〉+ b∣01〉+ c∣10〉+ d∣11〉
      a, b, c, d ∊ ℂ   |a|² + |b|² + |c|² + |d|² = 1

∣1〉
∣0〉

∣1〉
∣0〉
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Entangled States

∣φ〉=         ∣00〉+           ∣11〉

● ∣0〉or  ∣1〉with equal probability for both qubits
● BUT they must be equal 

○ when one is measured, both of them decay

You cannot decompose the system in two components
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Two Qubits Transformations (Gates)

∣φ〉→ ∣φ’〉 with ∣φ’〉= U ∣φ〉
where ∣φ〉=  a∣00〉+ b∣01〉+ c∣10〉+ d∣11〉

Only a specific case

● control qubit

● target qubit

U
∣φ〉 ∣φ’〉

U

∣0,x〉→ ∣0,x〉
∣1,x〉→ ∣1,Ux〉
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Controlled NOT

∣φ〉→ ∣φ’〉

CNOT can create entanglement

∣φ〉is non entangled   

∣φ’〉is entangled     

X

∣0x〉→ ∣0x〉
∣10〉→ ∣11〉
∣11〉→ ∣10〉
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Measurements (Again)

Outcome of measuring the first qubit of
∣φ〉= a∣00〉+ b∣01〉+ c∣10〉+ d∣11〉
- ∣0〉with probability p(0) = |a|² + |b|²
- ∣1〉with probability p(1) = |c|² + |d|²

The system decays according to the observed classical state
Operators that applied to ∣φ〉returns the new state:
● M∣0〉/ √ p(0)    where M∣0〉= ∣0〉     with〈0∣ = ( 1 0 )
● M∣1〉/ √ p(1)    where M∣1〉= ∣1〉     with〈1∣ = ( 0 1 )

∣φ〉

classical
wire

〈0∣
〈1∣
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Combinatorial Quantum Circuits

X

H Z

Just a composition of gates on qubit wires
Measurements only at the end of computation
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Dynamic Quantum Circuits

X

● Quantum bit wires
● Classical bit wires
● Quantum Gates (also controlled by classical bits)
● Measurements in arbitrary points of the computation

ZX

H
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Quantum Teleportation

● Alice send ∣φ〉to Bob using classical communication
● They can start with entangled qubits

∣φ〉

∣φ〉
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Quantum Teleportation

● Alice send ∣φ〉to Bob using classical communication
● They can start with entangled qubits

∣φ〉

∣φ〉

?

?
∣?〉
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Quantum Teleportation

∣φ〉

∣φ〉
∣ψ〉

The solution

∣ψ〉=           ∣00〉     ∣11〉 (        +        )

ZX

H

X
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Quantum Teleportation - Explanation

∣φ〉

∣φ〉
∣ψ〉

∣φ〉= a∣0〉+ b∣1〉  

∣ψ〉=           ∣00〉     ∣11〉 (        +        )

ZX

H

X
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Quantum Teleportation - Explanation

∣φ〉

∣φ〉
∣ψ〉

     (a ∣0〉(  ∣00〉+ ∣11〉)  + b ∣1〉(  ∣00〉+ ∣11〉))

ZX

H

X
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Quantum Teleportation - Explanation

∣φ〉

∣φ〉
∣ψ〉

ZX

H

X
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Quantum Teleportation - Explanation

∣φ〉

∣φ〉
∣ψ〉

ZX

H

X
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Quantum Teleportation - Explanation

∣φ〉

∣φ〉
∣ψ〉

     (a ( ∣0〉+  ∣1〉) (  ∣00〉+ ∣11〉)  + b ( ∣0〉-  ∣1〉)(  ∣10〉+ ∣01〉))

     (    a (   ∣000〉+  ∣100〉+  ∣011〉+  ∣111〉)  
+ b (  ∣010〉+   ∣001〉-  ∣110〉-  ∣101〉))

ZX

H

X
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Quantum Teleportation - Explanation

     (    a (   ∣000〉+  ∣100〉+  ∣011〉+  ∣111〉)  
+ b (  ∣010〉+   ∣001〉-  ∣110〉-  ∣101〉))

Measurement of the first two qubit

0  0  → a∣0〉+ b∣1〉

0  1  → a∣1〉+ b∣0〉

1  0  → a∣0〉-  b∣1〉

1  1  → a∣1〉-  b∣0〉
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X is needed

Z is needed



Models and Properties
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Quantum Transition System

● H  - Hilbert space (state space for the quantum system)
● L  - set of locations l, l’, l’’, …, l0

● l0  - initial location
● T  - transitions (l, l’, U) or (l, l’, Mm)

When representing Quantum Circuits
- Transformation gates cause deterministic transitions
- Measurements cause nondeterministic transitions 

- create one branch for each possible result 
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Quantum Teleportation as Transition System

ZX

H
X
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Quantum Teleportation as Transition System

l0 l1 l2
CX1,2 H1

ZX

H
X
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Quantum Teleportation as Transition System

l0 l1 l2

l3

l4

l5

l6

CX1,2 H1

M2,∣0〉

M2,∣1〉

I

X3

ZX

H
X
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Quantum Teleportation as Transition System

l0 l1 l2

l3

l4

l5

l8 l12

l7 l11

l6

l10 l14

l9 l13

CX1,2 H1

M2,∣0〉

M2,∣1〉

M1,∣0〉

M1,∣1〉

M1,∣0〉

M1,∣1〉

I

X3

I

I

Z3

Z3

ZX

H
X
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Birkhoff-von Neumann logic 

H  - state space of the quantum system (Hilbert space)

Atomic propositions χ - closed subspaces of H
e.g. 
● the quantum particle has x position in the interval [a, b]
● the first qubit of the system is ∣φ’〉or -1 ∣φ’〉

A ::= χ | ¬A | A ∧ A | A ∨ A 
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Birkhoff-von Neumann logic

The semantics of a proposition A is a subset of H
∣φ〉⊨ A   iff   ∣φ〉∈  [[A]]

    [[χ]] = χ
       [[¬A]] = { ∣φ〉|〈 ψ ∣φ 〉= 0,  ψ ∈  [[A]] }
[[A ∧ A’]] = [[A]] ∩ [[A’]] 
[[A ∨ A’]] = { a∣φ〉+ b∣ψ〉|  ∣φ〉∈  [[A]],  ∣ψ〉∈  [[A’]] }

[[A]]

[[A’]]

[[A∧A’]]

[[A∨A’]]

[[¬A]]
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Birkhoff-von Neumann logic

p ∧ (q ∨ r) ≠ (p ∧ q) ∨ (p ∧ r)

p = p ∧ (q ∨ 
r)

q

r

q ∨ r

p

q

r
(p ∧ q) = (p ∧ r) =
(p ∧ q) ∨ (p ∧ r)
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Temporal Extension

You can take any temporal logic with Birkhoff-von Neumann 
propositions instead of the classical propositions.

Computation Tree Quantum Logic

State formulas    Φ ::= A | ∃ P | ∀ P | ¬Φ | Φ ∧ Φ
Path formulas     P ::= OΦ | ΦUΦ
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Temporal Extension

You can take any temporal logic with Birkhoff-von Neumann 
propositions instead of the classical propositions.

Computation Tree Quantum Logic

State formulas    Φ ::= A | ∃ P | ∀ P | ¬Φ | Φ ∧ Φ
Path formulas     P ::= OΦ | ΦUΦ

[[A]]

[[A’]]
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Temporal Extension

You can take any temporal logic with Birkhoff-von Neumann 
propositions instead of the classical propositions.

Computation Tree Quantum Logic

State formulas    Φ ::= A | ∃ P | ∀ P | ¬Φ | Φ ∧ Φ
Path formulas     P ::= OΦ | ΦUΦ

[[A]]∨
[[A’]]
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Traces of a Quantum Transition System (L, l0, T)

Traces π are sequences of pairs ( l, ∣φ〉)
( l0, ∣φ0〉) ( l1, ∣φ1〉) … ( li, ∣φi〉) … 

s.t. for each consecutive pair ( li, ∣φi〉) ( li+1, ∣φi+1〉)
(li,  li+1, U) ∈ T and  ∣φi+1〉= U ∣φi〉

l0 l1 l2

l3

l4

l5

l8 l12

l7 l11

l6

l10 l14

l9 l13

CX1,2 H1

M2,∣0〉

M2,∣1〉

M1,∣0〉

M1,∣1〉

M1,∣0〉

M1,∣1〉

I

X3

I

I

Z3

Z3
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Semantics of CTQL

( l, ∣φ〉) ⊨ A            iff   ∣φ〉∈  [[A]]
( l, ∣φ〉) ⊨ ∃ P         iff   π ⊨ P for some π starting from ( l, ∣φ〉) 
( l, ∣φ〉) ⊨ ∀ P         iff   π ⊨ P for all π starting from ( l, ∣φ〉) 
( l, ∣φ〉) ⊨ ¬Φ         iff   ( l, ∣φ〉) ⊭ Φ
( l, ∣φ〉) ⊨ Φ ∧ Φ’  iff   ( l, ∣φ〉) ⊨ Φ and ( l, ∣φ〉) ⊨ Φ’

     π ⊨ OΦ        iff  π[1] ⊨ OΦ
     π ⊨ ΦUΦ’     iff  Ǝi. π[i] ⊨ Φ’ and ∀j < i. π[j] ⊨ Φ’

Note that the satisfaction depends on the initial state ∣φ〉
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Simulation-based semantics 

When we check the state of the system to know if it verifies a 
property, the state is not disturbed

This means that our analysis runs on a simulation of the 
quantum circuit

In the measurement-based semantics, when we check a 
property the system decays
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Quantitative Extension of CTQL

in Probabilistic Temporal Logic you have P[a,b][P]
i.e. P is true with probability between a and b

We need to change the model

Arrows encode both transformations and (quantum) probabilities

l1 l2

l3

l4

H1

M2,∣0〉

M2,∣1〉

l1 l2

l3

l4

~H1

ε∣0〉

ε∣1〉
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Quantitative Extension of CTQL

Generalization of the classical probability measure
- classically we give probability ∈ [0, 1] to an infinite path 

based on the probability of the finite extensions of its finite 
prefixes

- we can proceed similarly in quantum with M ∈ [0, I] 

State formulas    Φ ::= A | Q~M[P] | ¬Φ | Φ ∧ Φ
Path formulas     P ::= OΦ | ΦUΦ
● ~ ∈ { ⊑, ⊒, = }
● M ∈ [0, I] 41



CTQL Model Checking
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CTQL Model Checking

Problem: given
- QTS S = (H, L, l0, T)
- Initial state ∣φ〉
- CTQL state formula Φ

check ( S, ∣φ〉) ⊨ Φ       [ i.e. ( l0, ∣φ〉) ⊨ Φ ]

We build a classical Transition System S’∣φ〉s.t.
( S, ∣φ〉) ⊨ Φ  iff   S’∣φ〉⊨ Φ
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CTQL reduced to CTL

S’∣φ〉= (L’, ( l0, ∣φ〉), T’, Ap, Lab)
where:

- L’ = L x H 
- (( li, ∣φi〉), ( lj, ∣φj〉)) ∈ T’ iff (li,  lj, U) ∈ T and  ∣φj〉= U ∣φi〉

- Ap is the set of Birkhoff-von Neumann propositions
- A ∈ Lab ( li, ∣φi〉) iff  ∣φi〉⊨ A

Theorem
( S, ∣φ〉) ⊨ Φ  iff   S’∣φ〉⊨ Φ
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CTQL reduced to CTL

S’∣φ〉= (L’, ( l0, ∣φ〉), T’, Ap, Lab)
where:

- L’ = L x H  (Actually just the reachable configurations) 
- (( li, ∣φi〉), ( lj, ∣φj〉)) ∈ T’ iff (li,  lj, U) ∈ T and  ∣φj〉= U ∣φi〉

- Ap is the set of Birkhoff-von Neumann propositions
- A ∈ Lab ( li, ∣φi〉) iff  ∣φi〉⊨ A

Theorem
( S, ∣φ〉) ⊨ Φ  iff   S’∣φ〉⊨ Φ
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Reachability Analysis of Quantum Circuits

A simpler case: 
the system evolves as described by ε (Quantum Markov Chain)

The image of a subspace X under ε is 
ε(X) = span ( ⋃∣φ〉∈ X  supp(ε(∣φ〉    )))

We actually need the states reachable with ε, ε, ε, ε … 

Theorem 

span (⋃i = 0…d  supp( ε ({ ∣φ〉}))) = supp (∑i = 0…d ε ({ ∣φ〉}))

〈φ∣
0      1      2      3

i                                                                                         i
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Reachability Analysis of Quantum Circuits

L’ =  configurations reachable from ( l0, ∣φ〉)

Compute the reachable subspace w.r.t. Q ∋ (l, l’, ε)    
Q

l0 l1 l2

l3

l4

l5
l8 l1

2

l7 l1
1

l6

l10 l14

l9 l1
3

CX1,2 H1

M2,∣0〉

M2,∣1〉

M1,∣0〉

M1,∣1〉

M1,∣0〉

M1,∣1〉

I

X3

I

I

Z3

Z3
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Something More
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Dealing with Mixed States

● Pure states (superposition of classic states) 
      ∣φ〉= a∣0〉+ b∣1〉
      a, b ∊ ℂ   |a|² + |b|² = 1

● Mixed states are classical mixture of pure quantum states
{ (∣φi〉,  pi) }   s.t. ∀i. pi ≥ 1 and ∑i   pi = 1

○ The system is in state ∣φi〉with probability pi

Represent missing information and not isolated states
e.g. one qubit of an entangled pair
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Dynamics of Mixed States

● Mixed states are represented by density matrices ρ
{ (∣φi〉,  pi) }   
ρ = ∑i   pi  ∣φi〉

● Isolated System Evolution  ρ → ρ’
○ Unitary transformation  ρ’ = U ρ U
○ Measurement  ρ’ = Mm ρ Mm  / tr (Mm Mm ρ)

● Open System Evolution  ρ’ = ε (ρ)
○ ε  is a Linear Transformation (super-operator) s.t. … 

〈φi∣

†

† †
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Super-operators

● Can represent Unitary Operators U
ε (ρ) = U ρ U

● Can represent the decay for a measurement with result m
εm (ρ) = Mm ρ Mm

● Can represent the decay for a measurement

ε (ρ) = ∑m   Mm ρ Mm

● Can represent quantum noises and noisy gates

†

†

†
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Open Systems

● Given a composite system S + E in state ρS+E ∈ HS+E

● The state of the subsystem S is defined as

ρS = trE (ρS+E)

● And its evolution is according a super-operator ε
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Open Systems

                                                       εU

Closed Composite      ρS+E (t0)                              ρS+E (t1)
         System                                  εU

    trE                                                                  trE

                                                        ε
Open Subsystem      ρS (t0)                                  ρS (t1)

-1
Crossing the 
line causes 
a lost of 
information:y
ou cannot 
go back
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Model Checking with Mixed States

● Everything seen so far works with mixed states ρ

○ In quantum transition systems:
arrows are labeled with super-operators ε

○ In Quantum Logic: ρ ⊨ A   iff   supp(ρ) ⊆ [[A]]

○ In CTQL: (l, ρ) ⊨ A   iff   supp(ρ) ⊆ [[A]]

● We can model check noisy circuits! 
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Optimization via Tensor Networks

A Tensor is a multidimensional matrix with named indexes.
Formally: 

Given a set of indexes Ī = (i1, … in), 
a Tensor is a mapping 

T : {0, 1}  ⟶ ℂĪ
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i2f h

c d

Tensor Representation of Quantum States

● Single qubit      
∣φ〉= a∣0〉+  b∣1〉

● Pair of qubits      
∣φ〉= a∣00〉+  b∣01〉+  c∣10〉+  d∣11〉

● Triplet of qubits
∣φ〉= a∣000〉+ b∣001〉+ c∣010〉+ d∣011〉
+ e∣100〉+  f∣101〉+  g∣110〉+  h∣111〉

e g

a b

a b

0 1

i1

i1

i3

1 c d

0 a b

0 1

i1

i2 Ti1,i2 (1, 1) = d
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Tensor Representation of Gates

Gates on n qubits can be represented as tensors
with indices (i1, … in, i1’, … in’)

   inputs   outputs

Tensor Network is a hyper-graph with
● Tensors as nodes
● hyper-edges are the shared indexes
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Tensor Contraction

A generalization of Matrix product
● T1 on indices Ī1Īc

● T2 on indices Ī2Īc

Contraction returns a Tensor T’ on indices Ī1Ī2

T’Ī1Ī2  (ā,ē) = ∑ TĪ1Īc(ā,ō) · TĪ2Īc(ē,ō)

● Composing transformations
● Applying transformation to qubits

ō∈{0,1}Īc

In any order
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Tensor Contraction

ZX

H
X∣φ〉

TεCNOT
TεH

∣φ〉

TεM TεZ

TεM

TεX 59



Why Tensor Networks

● Contraction cost depends on the actual information stored 
in the system (linked to entanglement)

● You can choose any order
● Thus you can exploit regularity and locality in the quantum 

circuit
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Conclusions
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Conclusions

● We have seen
○ Quantum Transition Systems
○ CTQL 
○ Reduction to CTL model checking
○ Works with Open Systems and noisy gates
○ Optimization via Tensor Networks

● With a small comparison w.r.t.
○ More expressive modeling and logics
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