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Abstract. In this talk, we will describe a framework for assertion-based veri-
fication (ABV) of quantum circuits by applying model checking techniques for
quantum systems developed in our previous work, in which:

- Noiseless and noisy uantum circuits are modelled as operator- and super-
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Content

e Brief Introduction to Quantum Circuits

e Modeling Quantum Circuits as Transition Systems

e A Logic for Temporal Properties on Quantum Systems
e Reduction to CTL model checking

e Dealing with Mixed States

e Optimization via Tensor Networks



Quantum Circuits



Qubits

e Two classic states [0)and |1)

e Pure states (superposition of classic states)
lp)=al0)+bl|1)
a,beC |a*+|bf*=1

- probability of each classic state
- wave phase (interference) 0= [ 1
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Measurements
- | 0) with probability |a|?

- | 1) with probability |b[?
The system decays in the observed classical state

‘ / lo)=1]0)+0]1)
T =010+ 111

Outcome on |¢)=2a|0)+b]|1)



Dynamics of an (isolated) quantum system

l[o)— |@’) with [0)=U |o)

U is a transformation
e Linear: U(al0)+bl1))=aU|0)+bU|I)
e Unitary: UTU=UUT=1



Single Qubit Transformations (Gates)

o) —> |9”) with |¢)=U |o)
where |¢)=al0)+b|1)

al0)+bl1) —

al0)+bll) ——
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Multiple Qubits Systems

e Classic states |00), |01), |10)and |11)

e Pure states
lp)=2al00)+b|01)+
a,b,c,de€C Ja*+|b
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Entangled States

0= 5 000+ T5l1D)

e |0)or |1)with equal probability for both qubits
e BUT they must be equal
o when one is measured, both of them decay

You cannot decompose the system in two components
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Two Qubits Transformations (Gates)

o) | e
) — [¢”) with [¢)=U |¢) u
where @)= al00)+b|01)+c|10)+d]|11)
Only a specific case
e control qubit ? 10,x)— |0,x)
1y 11.x)— [ 1,Ux)

e target qubit
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Controlled NOT

0x)
lo)— @) ¢ 1)(;:
X

11)—

CNOT can create entanglement

¢’)is entangled % (100> + [11))

0x)
11)
10)

») is non entangled % (10 +11))® [0) = %(IOO) +110) )
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Measurements (Again)

classical
Outcome of measuring the first qubit of wire

\(P>=a\0.0>+b|01>4.r.c\10>+_d\121> 2 ol FNTTTT
- | 0) with probability p(0) = |af? + |b|
- | 1) with probability p(1) = |c[> + |d]?

The system decays according to the observed classical state
Operators that applied to |¢) returns the new state:

® M/ Vp0) where M= 0)0|with(0|=(10)
® Mi/Vp(l) where Min=|1){1|with{l1|=(01)
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Combinatorial Quantum Circuits

Just a composition of gates on qubit wires
Measurements only at the end of computation
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Dynamic Quantum Circuits

Quantum bit wires

Classical bit wires

Quantum Gates (also controlled by classical bits)
Measurements in arbitrary points of the computation
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Quantum Teleportation

e Alice send |¢)to Bob using classical communication
e They can start with entangled qubits
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Quantum Teleportation

e Alice send |¢)to Bob using classical communication
e They can start with entangled qubits
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Quantum Teleportation

The solution

= 75 (100) +11) )
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Quantum Teleportation - Explanation
[@)=al0)+Dbl1)

= 75 (100) +11) )

r

K0y T H
X
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Quantum Teleportation - Explanation

J5 @ 10)( [00)+ 1)) +b [1( 000+ 11)))

K0y T H
f X

[y <

N|——®

S0
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Quantum Teleportation - Explanation

0) (

0) (

00) +

00) +

117 ) +b 1) (

11) ) +b 1) (

|00) +

110) +

11

01)
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Quantum Teleportation - Explanation

7(
1
2

Joy,

[y <

al|0y

( 00> +[11) ) +b

T H
X

11| ( [10) +1]01) ))

@(loy + 112 )( 100y +[11) ) +b(l0) -

(A
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11> )( [10) +[01) )

S0
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Quantum Teleportation - Explanation

@O+ D) 1000+ [11)) +b(|0)- 1)) 100+ [01)))
(

a( [000)+ [100)+ [011)+ [111)) ~ a single
+b( [010)+ [001)- [110)- |101))) qubit

= N

ALt

[y <

K0y T H m L
o I
Z

S0
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Quantum Teleportation - Explanation

L a( l000)+ [100)+ 011+ [111))
2 b ( [010)+ [00D)- [110)- [101)))

Measurement of the first two qubit

00 —al0)+bll)

X is needed

0[l] —»al1)+bl0)
10 —>al0o)- bl D) ><
1][t] —»al1)- bl0) Z is needed
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Models and Properties



Quantum Transition System

H - Hilbert space (state space for the quantum system)
L -setoflocations 1, 1’,1”, ..., lo

lo - initial location

T - transitions (I, I’, U) or (I, I’, Mm)

When representing Quantum Circuits

Transformation gates cause deterministic transitions
Measurements cause nondeterministic transitions
- create one branch for each possible result
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Quantum Teleportation as Transition System
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Quantum Teleportation as Transition System
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Quantum Teleportation as Transition System




Quantum Teleportation as Transition System
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Birkhoff-von Neumann logic
H - state space of the quantum system (Hilbert space)

Atomic propositions ¥ - closed subspaces of H

e.g.
e the quantum particle has x position in the interval [a, b]
e the first qubit of the systemis |¢’)or-1 | @)

A:=y|"A|ANAJAV A
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Birkhoff-von Neumann logic

The semantics of a proposition A is a subset of H

. [[A’]]
A Iff o) E [[A]]

[dl =% -
ALl ={ |o)| (v l9)=0, y € [A]]} @AA’H A
A A A’ = [[A]] N [[A]]
IAV Al ={aled*+bly)| o) [A]L |y e AT}
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Birkhoff-von Neumann logic

pAN@QVDEEAQV (p /A1)

PAQg)=

(P Arp=

(p A Q) V)p/\r
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Temporal Extension

You can take any temporal logic with Birkhoff-von Neumann
propositions instead of the classical propositions.

Computation Tree Quantum Logic

State formulas ®::=A| I P|VP|—D|D A ©
Path formulas P ::= 00 | dU®
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Temporal Extension

You can take any temporal logic with Birkhoff-von Neumann
propositions instead of the classical propositions.

Computation Tree Quantum Logic [A]]

State formulas ®::=A| I P|VP|D|D A & .
Path formulas P ::= 00 | dU®
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Temporal Extension

You can take any temporal logic with Birkhoff-von Neumann
propositions instead of the classical propositions.

Computation Tree Quantum Logic

State formulas ®::=A| I P|VP|D|D A &

A]]V

Path formulas P ::= 00 | dU®
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Traces of a Quantum Transition System (L, lo, T)

Traces & are sequences of pairs (1, [¢))

(lo, l@0)) (11, [@)) ... (L, |gi)) ...
s.t. for each consecutive pair (L, |¢i) ( Li+1, |@i+1))
(I, lirr, U) € Tand |¢ir1)=U |gi)
M1, 0)

° | °
Mz, 10 M1, 11

TN

Z3

M1, 10

M, 1) 73
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Semantics of CTQL

, o)) FA iff o)< [[A]l

, o)) I P iff © = P for some =« starting from (1, |¢))
)=V P iff == P for all = starting from (1, |¢))

, lp)) F D iff (L, [¢))¥rd

o) ED A\ @iff (1, [e)rDand (1, o)) F @’

n=O0d iff n[1]+= OD

n=oUP iff 3i. n[i] =P’ and Vj<i.xn[j]F D’

Note that the satisfaction depends on the initial state |¢)
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Simulation-based semantics

When we check the state of the system to know if it verifies a
property, the state is not disturbed

This means that our analysis runs on a simulation of the
quantum circuit

In the measurement-based semantics, when we check a
property the system decays
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Quantitative Extension of CTQL

iIn Probabilistic Temporal Logic you have Pp.y[P]
l.e. P is true with probability between a and b

We need to change the model

Arrows encode both transformations and (quantum) probabilities
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Quantitative Extension of CTQL

Generalization of the classical probability measure
- classically we give probability € [0, 1] to an infinite path
based on the probability of the finite extensions of its finite
prefixes
- we can proceed similarly in quantum with M € [0, I]

State formulas ® = A |Qm[P]|~® | D A @

Path formulas P ::= 00 | dU®
e ~ & {E ] :}

-9 /)

e M & [0,]I]
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CTQL Model Checking



CTQL Model Checking

Problem: given
- QTS S=(H, L, 1, T)
- Initial state |¢)
- CTQL state formula ®
check (S, [@)F® [i.e.(l, |[¢))F D]

We build a classical Transition System S’|¢s.t.
(S, |@)E®D iff S’ pFd
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CTQL reduced to CTL

S’ 1= (L", (o, |¢)), T, Ap, Lab)
where:
- I’=LxH
- (L o), (L, lop)) € Tiff (I, ;, U) € Tand |¢p=U |¢y)
- Ap is the set of Birkhoff-von Neumann propositions
- A€ Lab (1;, |o»)iff [gp=A

Theorem
(S, @)D iff S’ D
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CTQL reduced to CTL

S’ 9= (L, (1o, |¢)), T, Ap, Lab)
where:
- L’=LxH (Actually just the reachable configurations)
- (L o), (L, lop)) € Tiff (I, ;, U) € Tand |¢p=U |¢y)
- Ap is the set of Birkhoff-von Neumann propositions
- A€ Lab (1 |g»)iff |gnF A

Theorem
(S, @)D iff S’ D
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Reachability Analysis of Quantum Circuits

A simpler case:
the system evolves as described by € (Quantum Markov Chain)

The image of a subspace X under € is

g(X) = span (Uip<=x supp(e(loXe)))
We actually need the states reachable with €; €, €/ €”...

Theorem

span (Ui-o..a supp( € ({ |o)}))) = supp (Ji-o..a € ({ [o)}))
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Reachability Analysis of Quantum Circuits

L’ = configurations reachable from ( lo, [¢))

Compute the reachable subspace w.rt. Q = (I, ', €)

A
4
O
| M'],‘O
M2, 10) Q G M. 1) Q Z3
D
|
M2, 1) Q X3 M1'0> @
M1, 1D @ Z3

w \) [—
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Something More



Dealing with Mixed States

e Pure states (superposition of classic states)
lp)=al0)+bl|1)
a,beC |a*+|bf*=1
e Mixed states are classical mixture of pure quantum states
{(lo), p)} st Vip>land)ipi=1
o The system is in state | ¢i) with probability p;

Represent missing information and not isolated states
e.g. one qubit of an entangled pair
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Dynamics of Mixed States

e Mixed states are represented by density matrices p
{(lov, p)}
0= pi | gif®
e Isolated System Evolution p — p’
o Unitary transformation p’=U p ut
o Measurement p’=Mmp M2/ tr (MmTMm P)
e Open System Evolution p’=¢(p)

o ¢ is a Linear Transformation (super-operator) s.t. ...
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Super-operators

e Can represent Unitary Operators U
e(p)=UpUT

e Can represent the decay for a measurement with result m
en (P) = M p Mu!

e Can represent the decay for a measurement
£(P) = Ym Mnp M

e Can represent quantum noises and noisy gates
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Open Systems

e Given a composite system S + E in state ps«e € Hs+e
e The state of the subsystem S is defined as

Ps= tre (Ps+E)
e And its evolution is according a super-operator ¢
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Open Systems

Closed Composite
System

€u
Ps+E (10) Ps+E (t1)
eu”
BT e
\J c \J
Ps (o) Ps (1)

Crossing the
line causes
a lost of
information:y
ou cannot
go back

53



Model Checking with Mixed States

e Everything seen so far works with mixed states p

o In quantum transition systems:
arrows are labeled with super-operators ¢

o In Quantum Logic: p A iff supp(p) < [[A]]
o InCTQL: (1, p) FA iff supp(p) < [[A]]

e We can model check noisy circuits!
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Optimization via Tensor Networks

A Tensor is a multidimensional matrix with named indexes.
Formally:

Given a set of indexes [ = (i1, ... in),

a Tensor is a mapping

T:{0, M 6
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Tensor Representation of Quantum States

A

i, Tiik(l,1)=d

e Single qubit i l

o)=al0)+ bl 1) 4 1 ©

0 1
0 l1

e Pair of qubits . g

[@)=al00)+ b|01)+ c[10)+ d|11) A

f j, h

e Triplet of qubits
[@)=2al000)+b|001)+c|010)+d|011) ¢ @
+ ¢[100)+ f|101)+ g|110)+ h|111)




Tensor Representation of Gates

Gates on n qubits can be represented as tensors
with indices (i1, ... in, i1, ... In")

\\ J \\ J
Y Y

iInputs outputs

Tensor Network is a hyper-graph with
e Tensors as nodes
e hyper-edges are the shared indexes
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Tensor Contraction

A generalization of Matrix product
e Tionindices lilc
e T2on indices l2lc

Contraction returns a Tensor T’ on indices ]2
T (a,€) Z T|1|C (a,0) - Tr1(€,0)

o< {0, 1}
e Composing transformations

. . . In any order
e Applying transformation to qubits
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Tensor Contraction

e {H A}
o < —X AL
\ X Z
Tecvor — Ten Tew
— Tem \TSZ

~N

| (P> Tex
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Why Tensor Networks

e Contraction cost depends on the actual information stored
in the system (linked to entanglement)

e You can choose any order

e Thus you can exploit regularity and locality in the quantum
circuit
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Conclusions
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Conclusions

e \We have seen
o Quantum Transition Systems
o CTQL
o Reduction to CTL model checking
o Works with Open Systems and noisy gates
o Optimization via Tensor Networks
e With a small comparison w.r.t.
o More expressive modeling and logics
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