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Access Control - Based on ...

- Some requester quality (attribute, trust, roles)
- Some relationship between owner and requester

- Something that the owner will have in return?



Context: collaboration... with an eye to mutuality
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Policy - What to ask in return

You can ask something

e for you or for someone else
e from the or from someone else




Policy - What to ask in return

You can ask something

e for you or someone else
e from the or someone else

{1k - if one of your colleagues shares i with me

[Los S - if you share [Los O F¥with a colleague of mine

A - with every colleague of mine



MuAC Language

U : Me, . user variables u, u’ ...
R : Resource, resource variablesr, r’ ...

D: atomic predicates p, q, p’, q' ...

®>¢u=pU)|pR) | Allows(U,R,U) | ¢,¢

o U — 2%




Direct Exchange Policies
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She is asking for a direct exchange of
computation-power for tools
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Group-related Policies
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She asks someone in System-SEC group to give her logs
for her computation-power



Group-related Policies
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Context - Every user defines his policy in isolation

To evaluate a request
Y < T -

e check owner policy
E System—SE

e check recursively other

policies that affect the

System-S
> k" result ( U U )
Network-SEC LanguageBased-SEC

(136 » We rely on

Network-SEC LanguageBased-SEC L ,
Propositional Contract Logic




Propositional Contract Logic (PCL)

“A Calculus of Contracting Processes” by Bartoletti & Zunino - LICS 2010

Intuitionistic propositional logic with Contractual Implication

P — q :apromise that “qwill be satisfied if also Pis”
F(p—>q) A(@—>p)=>pAg

Decidable (deduction is PSPACE complete)
The theorem prover with acceptable performance for common examples



Propositional Contract Logic (PCL)

“A Calculus of Contracting Processes” by Bartoletti & Zunino - Symposium on Logic in Computer Science, 2010

F(p—> g AN(@g—~p) >pAg
FpP—>gN(g@—>r)=>P—>T)
@ —=pAP—>q9 — @ 9
Fe—>aAN(@—=4qd)— )
Fp A —>q) —q

Fq— (p—>q)



MuAC Language Semantics

Rules @interpreted as sets of promises Me

!
Allows(Alice, log1.txt, ), ... Allows( , tool1.sh, Carl) —» Allow( , log2.txt, Alice)
T

From configuration g to PCL theory I' Resource

Access request asks( , log2.txt) allowed iff

I - Allows(Bob, log2.txt, Alice)

where Alice is the owner of log2.txt
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Future Work: still a lot to do!

Efficient algorithm for access control decision

we only have a proof-of-concept algorithm

there are implicit quantifications in rules (but not in PCL)

maybe we can use

distributed implementation
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Future Work: still a lot to do!

Trust and usage control - dealing with malicious users
- trust is assumed between all users
- time is not considered

- Eve may grab what she wants and run (free-rider)

- Declare to share all she have for nothing
- Make a copy of what she wants as soon as possible
- Leave the system before someone can actually access her resources
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Future Work: still a lot to do!

Language extension

- deny rules
- conflicts resolution

- not-Allows as condition ?
- Conflict-of-Interest policies
- Embargo policies Network-SEC
logs(Resource), not-Allows(u, r, ), LanguageBased-SEC(u)

To access her logs, she asks the requester to share nothing
with LanguageBased-SEC members
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