MuAC

Access Control Language for Mutual Benefits
ITASEC 2020
Lorenzo Ceragioli (Universita di Pisa)

Pierpaolo Degano (Universita di Pisa)
Letterio Galletta (Scuola IMT Alti Studi Lucca)

Access Control - Based on ...

- Some requester quality (attribute, trust, roles)
- Some relationship between owner and requester

- Something that the owner will have in return?

Context: collaboration... with an eye to mutuality

e e

LOG

System-SEC System-SEC
; ; a
» ak"
Network-SEC LanguageBased-SEC

})LOEE %g

Network-SEC LanguageBased-SEC

Context: collaboration... with an eye to mutuality

#mﬁ ;ﬁ

ofn &

Network-SEC LanguageBased-SEC

Lng ageBas dSEC

Policy - What to ask in return

You can ask something

e for you or for someone else
e from the or from someone else

Policy - What to ask in return

You can ask something

e for you or someone else
e from the or someone else

{1k - if one of your colleagues shares i with me

[Los S - if you share [Los O F¥with a colleague of mine

A - with every colleague of mine

MuAC Language

U : Me, . user variables u, u’ ...
R : Resource, resource variablesr, r’ ...

D: atomic predicates p, q, p’, q' ...

®>¢u=pU)|pR) | Allows(U,R,U) | ¢,¢

o U — 2%

Direct Exchange Policies

&

Network-SEC

tool(Resource), Allows(Me, r,), computational-power(r)

She is asking for a direct exchange of
computation-power for tools

Direct Exchange Policies

&

Network-SEC

tool(Resource), Allows(Me, r,), computational-power(r)

She is asking for a direct exchange of
computation-power for tools

System-SEC

Wants to use
Alice’s tools

Direct Exchange Policies

&

Network-SEC

tool(Resource), Allows(Me, r,), computational-power(r)

Wants to use
She is asking for a direct exchange of Alice’s tools

computation-power for tools

System-SEC

Network-SEC(), computational-power(Resource)

He allows Network-SEC members access computation-power
5

Direct Exchange Policies

(-] OK!

&

Network-SEC

tool(Resource), Allows(Me, r,), computational-power(r)

Wants to use
She is asking for a direct exchange of Alice’s tools

computation-power for tools

System-SEC

Network-SEC(), computational-power(Resource)

He allows Network-SEC members access computation-power
5

Direct Exchange Policies

&

Network-SEC

tool(Resource), Allows(Me, r,), computational-power(r)
Wants to use
She is asking for a direct exchange of Alice’s tools
computation-power for tools

System-SEC
Network-SEC(), computational-power(Resource),
Allows(Me, r,), tool(r)

He allows Network-SEC members to access
computation-power if they allow him access tools

Direct Exchange Policies

(-] OK!

&

Network-SEC

tool(Resource), Allows(Me, r,), computational-power(r)
Wants to use
She is asking for a direct exchange of Alice’s tools
computation-power for tools

System-SEC
Network-SEC(), computational-power(Resource),
Allows(Me, r,), tool(r)

He allows Network-SEC members to access
computation-power if they allow him access tools

Group-related Policies

&

Network-SEC

computational-power(Resource), System-SEC(u),
Allows(Me, r, u), log(r), System-SEC()

She asks someone in System-SEC group to give her logs
for her computation-power

Group-related Policies

Wants to use

.@. Alice’s
>t computational
power
Network-SEC System-SEC
computational-power(Resource), System-SEC(u),
Allows(Me, r, u), log(r), System-SEC()

She asks someone in System-SEC group to give her logs
for her computation-power

Group-related Policies

Wants to use

.@. Alice’s
>t computational
power
Network-SEC System-SEC
computational-power(Resource), System-SEC(u),
Allows(Me, r, u), log(r), System-SEC() log(Resource), Network-SEC(u’), System-SEC(u),
Allows(u’, r, u), tool(r), Network-SEC()

She asks someone in System-SEC group to give her logs
for her computation-power He asks for someone of Network-SEC group to give tools
to someone in his group for his logs

Group-related Policies

Wants to use

.@. Alice’s
>t computational

power

Network-SEC System-SEC
computational-power(Resource), System-SEC(u), log(Resource), Network-SEC(u’), System-SEC(u),
Allows(Me, r, u), log(r), System-SEC() Allows(u’, r, u), tool(r), Network-SEC()
She asks someone in System-SEC group to give her logs He asks for someone of Network-SEC group to give tools
for her computation-power to someone in his group for his logs
Network-SEC
tool(Resource), System-SEC(u),
Allows(Me, r, u), log(r), System-SEC()
He asks someone in System-SEC group 6

to give him logs for his tools

Group-related Policies

Wants to use

.@. Alice’s
¢ OK! computational

power

Network-SEC System-SEC
computational-power(Resource), System-SEC(u), log(Resource), Network-SEC(u’), System-SEC(u),
Allows(Me, r, u), log(r), System-SEC() Allows(u’, r, u), tool(r), Network-SEC()
She asks someone in System-SEC group to give her logs He asks for someone of Network-SEC group to give tools
for her computation-power to someone in his group for his logs
Network-SEC
tool(Resource), System-SEC(u),
Allows(Me, r, u), log(r), System-SEC()
He asks someone in System-SEC group 6

to give him logs for his tools

Context - Every user defines his policy in isolation

To evaluate a request
Y < T -

e check owner policy
E System—SE

e check recursively other

policies that affect the

System-S
> k" result (U U)
Network-SEC LanguageBased-SEC

(136 » We rely on

Network-SEC LanguageBased-SEC L ,
Propositional Contract Logic

Propositional Contract Logic (PCL)

“A Calculus of Contracting Processes” by Bartoletti & Zunino - LICS 2010

Intuitionistic propositional logic with Contractual Implication

P — q :apromise that “qwill be satisfied if also Pis”
F(p—>q) A(@—>p)=>pAg

Decidable (deduction is PSPACE complete)
The theorem prover with acceptable performance for common examples

Propositional Contract Logic (PCL)

“A Calculus of Contracting Processes” by Bartoletti & Zunino - Symposium on Logic in Computer Science, 2010

F(p—> g AN(@g—~p) >pAg
FpP—>gN(g@—>r)=>P—>T)
@ —=pAP—>q9 — @ 9
Fe—>aAN(@—=4qd)—)
Fp A —>q) —q

Fq— (p—>q)

MuAC Language Semantics

Rules @interpreted as sets of promises Me

!
Allows(Alice, log1.txt,), ... Allows(, tool1.sh, Carl) —» Allow(, log2.txt, Alice)
T

From configuration g to PCL theory I' Resource

Access request asks(, log2.txt) allowed iff

I - Allows(Bob, log2.txt, Alice)

where Alice is the owner of log2.txt

10

Future Work: still a lot to do!

Efficient algorithm for access control decision

we only have a proof-of-concept algorithm

there are implicit quantifications in rules (but not in PCL)

maybe we can use

distributed implementation

11

Future Work: still a lot to do!

Trust and usage control - dealing with malicious users
- trust is assumed between all users
- time is not considered

- Eve may grab what she wants and run (free-rider)

- Declare to share all she have for nothing
- Make a copy of what she wants as soon as possible
- Leave the system before someone can actually access her resources

12

Future Work: still a lot to do!

Language extension

- deny rules
- conflicts resolution

- not-Allows as condition ?
- Conflict-of-Interest policies
- Embargo policies Network-SEC
logs(Resource), not-Allows(u, r,), LanguageBased-SEC(u)

To access her logs, she asks the requester to share nothing
with LanguageBased-SEC members
13

