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Programmazione Logica
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Kovalsky: programma = logica + controllo

Semantica di un linguaggio di programmazione attraverso un sistema
di deduzione logica.

Teoremi = associazioni programma-semantica.

Dimostrare = Calcolare.
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Kovalsky: programma = logica + controllo

IDEA: Usare direttamente un sistema di deduzione come modello di
calcolo.

Sintassi più o meno quella della logica del primo ordine.

Immediata semantica dichiarativa.

Esecuzione come dimostrazione di un teorema.
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Sintassi

Domini sintattici:
v, v′, v1, v2 ∈ V ar sono variabili logiche
f, f ′, f1, f2 ∈ FuncSym sono simboli di funzioni
p, p′, p1, p2 ∈ PredName sono simboli di predicato

Segnatura di funzioni Σ
dove f/n ∈ Σ sono coppie simbolo di funzione e relativa arietà

Segnatura di predicati Π
dove p/n ∈ Π sono coppie simbolo di predicato e relativa arietà
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Termini

Termini ground (universo di Herbrand)

τ(Σ) =
⋃

f/n∈Σ
{f(t1, . . . , tn) | {t1, . . . , tn} ⊆ τ(Σ)}

Termini

τ(Σ, V ar) = V ar ∪
⋃

f/n∈Σ
{f(t1, . . . , tn) | {t1, . . . , tn} ⊆ τ(Σ, V ar)}
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Formule

Formule atomiche

α(Σ, V ar,Π) = {p(t1, . . . , tn) | p/n ∈ Π ∧ {t1, . . . , tn} ⊆ τ(Σ, V ar)}

Clausole

C(Σ, V ar,Π) = {A← B | A ∈ α(Σ, V ar,Π) ∧B ∈ body(Σ, V ar,Π)}

A viene chiamata testa della clausola
B viene chiamata corpo della clausola
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Formule

Clausole

{A← B | A ∈ α(Σ, V ar,Π) ∧B ∈ body(Σ, V ar,Π)}

La testa di una clausola deve essere una formula atomica.

body(Σ, V ar,Π) dipende dal linguaggio, il caso più semplice è quello di
Prolog nel quale contiene solo congiunzioni di letterali (clausole di Horn).
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Programmi

Programmi

P ⊆fin C(Σ, V ar,Π)

Un programma è un insieme finito di clausole.
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Semantica Dichiarativa

Significato delle clausole

Con A← G intendiamo ∀X. A← ∃Y. G dove X sono tutte e sole le
variabili presenti in A e Y sono tutte e sole le variabili presenti in G e non
in A.

Significato di un programma

La semantica di un programma logico può essere semplicemente ricondotto
a quella dell’insieme di predicati del primo ordine che contiene. Semantica
denotazionale basata sui modelli e sulla conseguenza logica.
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Semantica Dichiarativa

Semantica di un programma mediante dimostrabilità.

La semantica Dichiarativa di un programma logico è l’insieme di tutte e
sole le formule atomiche deducibili dalle clausole del programma (modello
minimo di Herbrand).

In Prolog si usa una sola regola di derivazione (risoluzione)

L1 ∨ · · · ∨ Ln ∨A
L′1 ∨ · · · ∨ L′m ∨ ¬A′
θ = mgu(A,A′)

θ(L1) ∨ · · · ∨ θ(Ln) ∨ θ(L′1) ∨ · · · ∨ θ(L′m)

Dove mgu stà per most general unifier.
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Semantica

La risoluzione è completa per refutazione.

P,¬A `ris false ⇐⇒ P ` A

Le due semantiche definite sono equivalenti.

Per ogni programma P , per ogni formula atomica ground A,

P � A ⇐⇒ P,¬A `ris false
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Problemi
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Problema di dimostrazione

Dimostrazione come algoritmo di ricerca su un albero infinito.

In teoria la regola di risoluzione è completa.

Occorre anche che la regola di derivazione sia applicata in una certa
maniera.

Alcuni algoritmi, come una ricerca per livelli, sono completi,
altri, come la ricerca in profondità non lo sono.

Lorenzo Ceragioli Mode System per linguaggi logici June 5, 2017 15 / 198



Problema di dimostrazione

Prolog usa una strategia di dimostrazione del secondo tipo
Ricerca in profondità con backtrack
L’ordine dei rami dipende dall’ordine di definizione delle clausole
E da quello dei letterali nelle clausole

Questo contraddice la semantica dichiarativa del programma
l’ordine influenza la semantica
le formule dimostrabili sono un sottoinsieme delle conseguenze
logiche del programma
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Esempio

Programma1

sposati(X,Y) :-
sposati(Y,X).

sposati(abramo, sara).

Programma2

sposati(abramo, sara).
sposati(X,Y) :-

sposati(Y,X).
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Esempio

Programma1

sposati(X,Y) :-
sposati(Y,X).

sposati(abramo, sara).

Semantica dichiarativa:

{sposati(abramo, sara),
sposati(sara, abramo)}.

Programma2

sposati(abramo, sara).
sposati(X,Y) :-

sposati(Y,X).

Semantica dichiarativa:

{sposati(abramo, sara),
sposati(sara, abramo)}.
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Esempio

Programma1

sposati(X,Y) :-
sposati(Y,X).

sposati(abramo, sara).

Semantica dichiarativa:

{sposati(abramo, sara),
sposati(sara, abramo)}.

Semantica Prolog :

{}.

Programma2

sposati(abramo, sara).
sposati(X,Y) :-

sposati(Y,X).

Semantica dichiarativa:

{sposati(abramo, sara),
sposati(sara, abramo)}.

Semantica Prolog :

{sposati(abramo, sara),
sposati(sara, abramo)}.
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Inciso

Problema:
Ricerca di una dimostrazione per la semantica negli altri linguaggi.

Esempio (IMP)

x := 0;
if x = 0 then skip else (while true do skip)

Sempre prima la regola relativa al ramo else.
Sempre semantica dei comandi e poi della guardia.

Dettaglio trascurabile: semantica small step definisce l’ordine effettivo.
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Altri problemi

costrutti non dichiarativi per input, output
costrutti non dichiarativi per influenzare la strategia di
dimostrazione

tagli
predicati sulla forma di temini come atom() e gound()

assenza di occur check per ragioni di efficienza
costrutti builtin che richiedono termini ground per funzionare
(errori a tempo di esecuzione)
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Esempio

Programma

sumlist([], [], []).

sumlist([X|Xs], [Y|Ys], [Z|Zs]) :-
Z is X+Y,
sumlist(Xs, Ys, Zs).

goldbachlist(Ns) :-
sumlist(Xs, Ys, Ns),
primes(Xs),
primes(Ys).
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Esempio

Relativamente al nome di predicato goldbachlist

Ci aspetteremmo che la
semantica del programma
precedente contenga

{goldbachlist([]),
goldbachlist([4]),
goldbachlist([5]),

goldbachlist([4, 5]),
. . . }.

In realtà la semantica del
programma precedente
contiene solo

{goldbachlist([])}.

Lorenzo Ceragioli Mode System per linguaggi logici June 5, 2017 23 / 198



Esempio

Se servono soluzioni di goldbach(X) oltre alla lista vuota (X 7→ [])
l’esecuzione terminerebbe lamentando un errore relativo all’istanziazione
dei termini relativo all’operatore is.

is richiede che il termine alla sua destra sia ground.

Questo esprime un vincolo sulla modeness del predicato.
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Soluzioni

approccio dinamico per mezzo di costrutti non dichiarativi quali
ground() ed atom() in Prolog.

approccio statico (mode system) descrittivo.

approccio statico (mode system) prescrittivo.

Lorenzo Ceragioli Mode System per linguaggi logici June 5, 2017 25 / 198



Bonus: come si farebbe in Prolog

sumlist([], [], []).

sumlist([X|Xs], [Y|Ys], [Z|Zs]) :-
ground(Z),
ground(Y),
X is Z-Y,
sumlist(Xs, Ys, Zs).

sumlist([X|Xs], [Y|Ys], [Z|Zs]) :-
ground(X),
ground(Y),
Z is X+Y,
sumlist(Xs, Ys, Zs).

sumlist([X|Xs], [Y|Ys], [Z|Zs]) :-
ground(X),
ground(Z),
Y is Z-X,
sumlist(Xs, Ys, Zs).
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Mode System
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Cos’è un mode di un predicato

Esempio: nessun vincolo sull’istanziazione delle variabili.

append([], Ys, Ys).

append([N|Xs], Ys, [N|Zs]) :-
append(Xs, Ys, Zs).

Il predicato append potrà essere usato con parametri aventi diversi gradi di
istanziazione.
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Cos’è un mode di un predicato

Tutti i seguenti usi sono ragionevoli (usiamo dei valori per chiarezza
dove vogliamo rappresentare un termine ground).

append([1,2,3], [1,2], [1,2,3,1,2]).

append([1,2], [1], [1,1,2]).

append([1,2,3], [1,2], X).

append(X, [1,2], X).

append(A, B, C).

append([X,Y], [1,2], [Z|Zs]).
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Cos’è un mode di un predicato

Ognuna delle applicazioni precedenti corrisponde ad un mode diverso del
predicato append.

Intuitivamente un mode è una specifica sull’istanziazione dei parametri del
predicato.

Per ogni parametro del predicato definisce lo stato di istanziazione che
un termine deve avere quando viene legato e quale sarà lo stato di
istanziazione dopo il binding.

Un predicato può avere più mode.
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Esempio

append([1,2,3], [1,2], [1,2,3,1,2]).

append([1,2], [1], [1,1,2]).

Nel mode relativo a questa occorrenza
il primo termine è ground inizialmente e anche dopo l’applicazione
il secondo termine è ground inizialmente e anche dopo l’applicazione
il terzo termine è ground inizialmente e anche dopo l’applicazione

O meglio, il valore non è definito dopo l’applicazione nel secondo caso,
perché il predicato è sempre falso...

Lorenzo Ceragioli Mode System per linguaggi logici June 5, 2017 31 / 198



Esempio

append([1,2,3], [1,2], X).

Nel mode relativo a questa occorrenza
il primo termine è ground inizialmente e anche dopo l’applicazione
il secondo termine è ground inizialmente e anche dopo l’applicazione
il terzo termine è free inizialmente e dopo l’applicazione è ground
(legato al valore [1,2,3,1,2])
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Esempio

append(A, B, C).

Nel mode relativo a questa occorrenza
il primo termine è free inizialmente, dopo l’applicazione ...
il secondo termine è free inizialmente, dopo l’applicazione ...
il terzo termine è free inizialmente, dopo l’applicazione ...

Otteniamo alcuni legami fra le tre variabili libere, questo dovrà essere
ricordato se una di esse dovesse essere legata a un valore in futuro.
Otteniamo anche delle informazioni riguardo allo stato di istanziazione
che avranno le variabili dopo il binding .

Lorenzo Ceragioli Mode System per linguaggi logici June 5, 2017 33 / 198



Esempio

append([X,Y], [1,2], [Z|Zs]).

?

Lorenzo Ceragioli Mode System per linguaggi logici June 5, 2017 34 / 198



dichiarazioni di mode

In alcuni linguaggi i mode sono dichiarati e verificati dal compilatore o a
tempo di esecuzione.

In Mercury ad esempio per ogni predicato avremo una dichiarazione di tipi
e più dichiarazioni di mode.

:- pred append(list(T), list(T), list(T)).
:- mode append(in , in , out) is det.
:- mode append(out , out , in) is multi.
:- mode append(out , in , in) is semidet.
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Mercury
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Mercury

Mercury è un linguaggio di programmazione

efficiente
funzionale e logico (puro)
con un sistema di tipi forte e statico
con un sistema di modi forte e statico
con un sistema di determinismo forte e statico
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Sintassi

Come detto precedentemente dobbiamo definire che forma può avere il
corpo di una clausola B ∈ body(Σ, V ar,Π).

B ::= p(t1, . . . , tn) |
v = v′ |
v = f(t1, . . . , tn) |
¬B1 |
∧B1, B2, . . . Bn |
∨B1, B2, . . . Bn |
if B1 then B2 else B3

Dove t1, t2, . . . , tn ∈ τ(Σ, V ar)
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Forma normale per i programmi

Termini flattered

τ̃(Σ, V ar) = V ar ∪
⋃

f/n∈Σ
{f(v1, . . . , vn) | {v1, . . . , vn} ⊆ V ar}

Formule atomiche flattered

α̃(Σ, V ar,Π) = {p(v1, . . . , vn) | p/n ∈ Π ∧ {v1, . . . , vn} ⊆ V ar}

Clausole flattered

C̃(Σ, V ar,Π) = {A← B | A ∈ α̃(Σ, V ar,Π) ∧B ∈ b̃ody(Σ, V ar,Π)}
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Forma normale per i programmi

Corpo di una clausola flattered B ∈ b̃ody(Σ, V ar,Π).

B ::= p(v1, . . . , vn) |
v = v′ |
v = f(v1, . . . , vn) |
∃v1, . . . vn. B

1 |
¬B1 |
∧B1, B2, . . . Bn |
∨B1, B2, . . . Bn |
if B1 then B2 else B3
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Forma normale per i programmi

Testa delle clausole è flattered.
Predicati nel corpo della clausola sono flattered.
Termini nel corpo della clausola sono flattered.
Quantificazione esistenziale sulle variabili esplicitata.

uq : b̃ody(Σ, V ar,Π)→ 2V ar

uq(B) = {v ∈ V ar | v occorre non quantificata in B}
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Esempio

append(Xs, Ys, Zs)←
∨ ( ∧(Xs=[],

Ys=Zs

),
∃Xs0,Zs0,X.(
∧ (Xs = [X | Xs0],

Zs = [X | Zs0],

append(Xs0, Ys, Zs0)

)
)

)
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Sistema di tipi

Un tipo definisce un insieme di termini ground .

Una definizione di tipo ha la forma

:- type T (v1, . . . , vn) ---> f1(t11, . . . , t1m1);
. . . ;
fk(tk1, . . . , tkmk

).

Dove:
T è un costruttore di tipo;
v1 . . . vn sono parametri di tipo;
f1 . . . fk ∈ FuncSym sono simboli di funzione;
f1/m1 . . . fk/mk ∈ Σ;
t1 . . . tm sono tipi (parametri ⊆ {v1 . . . vn}).
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Esempio

Prendiamo come esempio il tipo lista

:- type list(T) ---> [];
[T | list(T)].

Il termine [1,2,3,4] è di tipo list(int).

[1 ,2 ,3 ,4] = [ 1|
[ 2|

[ 3|
[ 4|

[]
]

]
]

]
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Stato di istanziazione

Stati di istanziazione (inst)

Inst(Σ) = {free} ∪
{ bound(I) | I ⊆ {f(i1, . . . , in) | f/n ∈ Σ ∧

{i1, . . . , in} ⊆ Inst(Σ)} ∧
ogni f compare al massimo una volta in I }.
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Esempio

Σ = {[ ]/0, [ | ]/2}

Sono stati di istanziazione i1, i2 ∈ Inst(Σ)

i1 = bound({[ ], [free|free]})
i2 = bound({ [ ], [free|bound({ [ ], [free|free] })] })

Non è stato di istanziazione i3 /∈ Inst(Σ)

i3 = bound({[ ], [free|free], [free|bound({[ ], [free|free]})]})
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Funzione di concretizzazione γ

Funzione di concretizzazione γ

γ : Inst(Σ)→ 2τ(Σ,V ar)

γ(free) = { }
γ(bound(I)) =

⋃
f(i1,...,in)∈I

{f(t1, . . . , tn) | ∀j ∈ {1, . . . , n}. tj ∈ γ(ij)}

Dove indichiamo con ∈ V ar una variabile qualunque che non compare
altrove (il nostro semplice mode system non tiene conto degli alias).
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Esempio

i = bound(
{[free|bound(

{[free|bound(
{[free|bound({[ ]})]})]})]})

γ(i) = γ(bound(
{[free|bound(

{[free|bound(
{[free|bound({[ ]})]})]})]}))

Lorenzo Ceragioli Mode System per linguaggi logici June 5, 2017 48 / 198



Esempio

i = bound(
{[free|bound(

{[free|bound(
{[free|bound({[ ]})]})]})]})

γ(i) = {[t1|t2] | t1 ∈ γ(free)∧
t2 ∈ γ(bound(

{[free|bound(
{[free|bound({[ ]})]})]})}))
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Esempio

i = bound(
{[free|bound(

{[free|bound(
{[free|bound({[ ]})]})]})]})

γ(i) = {[t1|t2] | t1 ∈ { } ∧
t2 ∈ γ(bound(

{[free|bound(
{[free|bound({[ ]})]})]})}))
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Esempio

i = bound(
{[free|bound(

{[free|bound(
{[free|bound({[ ]})]})]})]})

γ(i) = {[t1|t2] | t1 = ∧
t2 ∈ γ(bound(

{[free|bound(
{[free|bound({[ ]})]})]})}))
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Esempio

i = bound(
{[free|bound(

{[free|bound(
{[free|bound({[ ]})]})]})]})

γ(i) = {[t1|t2] | t1 = ∧
t2 ∈ {[t3|t4] | t3 = ∧

t4 ∈ γ(bound
{[free|bound({[ ]})]})})}))
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Esempio

i = bound(
{[free|bound(

{[free|bound(
{[free|bound({[ ]})]})]})]})

γ(i) = {[t1|t2] | t1 = ∧
t2 ∈ {[t3|t4] | t3 = ∧

t4 ∈ {[t5|t6] | t5 = ∧
t6 ∈ γ(bound({[ ]})})})}))
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Esempio

i = bound(
{[free|bound(

{[free|bound(
{[free|bound({[ ]})]})]})]})

γ(i) = {[t1|t2] | t1 = ∧
t2 ∈ {[t3|t4] | t3 = ∧

t4 ∈ {[t5|t6] | t5 = ∧
t6 ∈ {[ ]} } } }
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Esempio

i = bound(
{[free|bound(

{[free|bound(
{[free|bound({[ ]})]})]})]})

γ(i) = {[t1|t2] | t1 = ∧
t2 ∈ {[t3|t4] | t3 = ∧

t4 ∈ {[ |[ ]]} } }

Lorenzo Ceragioli Mode System per linguaggi logici June 5, 2017 55 / 198



Esempio

i = bound(
{[free|bound(

{[free|bound(
{[free|bound({[ ]})]})]})]})

γ(i) = {[t1|t2] | t1 = ∧
t2 ∈ {[ |[ |[ ]]]}
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Esempio

i = bound(
{[free|bound(

{[free|bound(
{[free|bound({[ ]})]})]})]})

γ(i) = {[ |[ |[ |[ ]]]]}
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Partial Order �

Definiamo l’ordine parziale � tale che i � i′ se i è istanziato almeno
quanto i′.

i � free
bound(I) � bound(I ′) ⇐⇒

∀f(i1, . . . , in) ∈ I. ∃f(i′1, . . . , i′n) ∈ I ′.
∀j ∈ {1, . . . , n}. ij � i′j

Non vogliamo che il binding fra una variabile ed il parametro di un
predicato modifichi lo stato di istanziazione della variabile in modo tale
che esso sia meno istanziato di quanto non fosse prima.
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Partial Order �

Definiamo il grado di istanziazione not reached

not reached = bound(∅).

Notiamo che

γ(not reached) = ∅.
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Partial Order �

Vale che, per ogni i ∈ Inst(Σ)

not reached � i � free

Inoltre

(Inst(Σ),�) è un Reticolo Completo con
> = free e ⊥ = not reached

Scriviamo f e g per gli operatori meet e join.
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Esempio: diagramma di Hasse

Herbrand Universe = {g(c), h(d)}.

free

bound({g(free), h(free)})

bound({g(bound({c})), h(free)}) bound({g(free), h(bound({d}))})

bound({h(free)}) bound({g(bound({c})), h(bound({d}))}) bound({g(free)})

bound({h(bound({d}))}) bound({g(bound({c}))})

not reached
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ground

Dato Σ definiamo il grado di istanziazione ground

ground = bound({f(ground1, . . . , groundn) | f/n ∈ Σ}).

Notiamo che

γ(gound) = τ(Σ).

Se i ∈ Inst(Σ) � ground allora diciamo che i è uno stato di istanziazione
ground.
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Instmap

Definiamo Instmap(V ar,Σ) l’insieme delle funzioni

Instmap(V ar,Σ) ⊆ V ar → Inst(Σ)

tale che

F ∈ Instmap(V ar,Σ) ⇐⇒
(∃v ∈ dom(F ). F (v) = not reached)

=⇒ (∀v ∈ dom(F ).F (v) = not reached)
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unreachable instmap

Definiamo Unreachable ⊆ Instmap(V ar,Σ)

Unreachable(V ar,Σ) =
{F ∈ Instmap(V ar,Σ) | ∀v ∈ dom(F ). F (v) = not reached}

Chiamiamo unreachable le instmap in Unreachable(V ar,Σ).
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instmap update ⊕

Con il proseguire della dimostrazione le variabili diventeranno via via più
istanziate.

Definiamo instmap update l’operatore ⊕

⊕ : Instmap(V ar,Σ)× Instmap(V ar,Σ)→ Instmap(V ar,Σ)
dove F ⊕ F ′richiede che ∀v ∈ dom(F ′). v ∈ dom(F ) ∧ F ′(v) � F (v)

(F ⊕ F ′)(v) =


not reached se F ∈ Unreachable(V ar,Σ)

∨ F ′ ∈ Unreachable(V ar,Σ)
F ′(v) se v ∈ dom(F ′)
F (v) altrimenti
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Mode
Definiamo Mode(V ar,Σ)

Mode(V ar,Σ) ⊆ Instmap(V ar,Σ)× Instmap(V ar,Σ)
Mode(V ar,Σ) = {〈F, F ′〉 |

dom(F ) = dom(F ′) ∧
∀v ∈ dom(F ). F ′(v) � F (v)}

Notazione

M = 〈F, F ′〉
Minit = F

Mfin = F ′

dom(M) = dom(F ) = dom(F ′)
M ⊕ F = 〈Minit,Mfin ⊕ F 〉
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Partial Order v

Quando definiamo il mode per un predicato stiamo richiedendo che una
variabile abbia un certo stato di istanziazione perché compaia come
parametro di un predicato. In realtà è necessario anche accettare stati di
istanziazione più specifici di quello dichiarato.

Definiamo l’ordine parziale v tale che i v i′ se i è più specifico di i′
(diremo anche i è compatibile con i′).

free v free
not reached v free
bound(I) v bound(I ′) ⇐⇒

∀f(i1, . . . , in) ∈ I. ∃f(i′1, . . . , i′n) ∈ I ′.
∀j ∈ {1, . . . , n}. ij v i′j
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Partial Order v

∀i ∈ Inst(Σ). not reached v i

∀i, i′ ∈ Inst(Σ).i v i′ =⇒ i � i′

⊥v = not reached greatest lower bound esiste sempre
@>v least upper bound no!
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Esempio: diagramma di Hasse

Herbrand Universe = {g(c), h(d)}.

free

bound({g(free), h(free)})

bound({g(bound({c})), h(free)}) bound({g(free), h(bound({d}))})

bound({h(free)}) bound({g(bound({c})), h(bound({d}))}) bound({g(free)})

bound({h(bound({d}))}) bound({g(bound({c}))})

not reached
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Esempio: diagramma di Hasse

Herbrand Universe = {g(c), h(d)}.

free

bound({g(free), h(free)})

bound({g(bound({c})), h(free)}) bound({g(free), h(bound({d}))})

bound({h(free)}) bound({g(bound({c})), h(bound({d}))}) bound({g(free)})

bound({h(bound({d}))}) bound({g(bound({c}))})

not reached

Lorenzo Ceragioli Mode System per linguaggi logici June 5, 2017 70 / 198



Funzione di astrazione α

Funzione di astrazione α

α : 2τ(Σ,V ar) → Inst(Σ)

α(T ) =
⊔
t∈T

α′(t)

α′( ) = free

α′(f(t1, . . . , tn)) = bound({f(α′(t1), . . . , α′(tn))})
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Funzione di astrazione α

Notiamo che α è una funzione parziale.

Non è definita quando non esiste il least upper bound per T .

Non è definita se sono presenti variabili con alias in T .

La coppia di funzioni α e γ formano una connessione di Galois.

(2τ(Σ,V ar),⊆) R−→←−
L

(Inst(Σ),v)
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Esempio

α′([ ]) = bound( {[ ]} )
α′([A]) = bound({ [ free | bound({ [ ] })] })
α′([A,B]) = bound({ [ free | bound({ [ free | bound({ [ ] })] })] })
α′([A,A]) non è definita

α({[ ], [A,B]}) = α′([A,B]) t α′([ ])
= bound( { [ ], [free| bound({ [free| bound({ [ ] })] })] } )

α({[A], [[ ]]}) = non è definita
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ground

Possiamo dare una definizione alternativa di ground

ground = bound({f(ground1, . . . , groundn) | f/n ∈ Σ}).

ground = α(τ(Σ)).
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Procedura

Una procedura è una coppia clausola-mode nella quale mode è
adeguata per la clausola

Proc(Σ, V ar,Π) ⊆ C(Σ, V ar,Π)×Mode(Σ, V ar)

Proc(Σ, V ar,Π) =
{〈p(v1, . . . , vn)← B, M〉 | dom(M) = v1, . . . , vn}
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Operazioni per mode analysis

Definiamo alcune operazioni su mode

operazione di mode sequence .
operazione di restrizione sui mode 	
operazione di mode merge ./

Funzioni parziali: errori di mode per il compilatore.
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Operazioni per mode analysis: .

Operazione di mode sequence .

. : Mode(Σ, V ar)×Mode(Σ, V ar)→Mode(Σ, V ar)

〈F, F ′〉 . 〈F ′, F ′′〉 = 〈F, F ′′〉
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Operazioni per mode analysis: 	

Operazione di restrizione sui mode 	

	 : Mode(Σ, V ar)× 2V ar →Mode(Σ, V ar)

M 	 V = 〈{v 7→Minit(v) | v ∈ dom(M)\V },
{v 7→Mfin(v) | v ∈ dom(M)\V }〉
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Operazioni per mode analysis: ./

Operazione di mode merge ./

./: Mode(Σ, V ar)×Mode(Σ, V ar)→Mode(Σ, V ar)

〈F, F ′〉 . 〈F, F ′′〉 = 〈F, {v 7→ i | v ∈ dom(F )
∧ i = F ′(v) t F ′′(v)}〉
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Unificazione astratta

Unificazione astratta fra due stati di istanziazione i1 e i2 è i

L’unificazione deve essere più instanziata sia di i1 sia di i2 (i � i1,
i � i2).
L’idea è quella del greatest lower bound su (Inst,�).
Problema dell’aliasing delle variabili.
Soluzione banale: stato di istanziazione risultante deve essere ground.

... Liveness information e alias tracking.
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Unificazione astratta fra due stati di istanziazione

Unificazione astratta fra due stati di istanziazione i1 e i2 è i

abs unify inst(i1, i2, i) ⇐⇒ i = i1 f i2 ∧ i � ground
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Esempi

abs unify inst(free, bound({g(bound({c}))}), i)
⇐⇒ i = bound({g(bound({c}))})

abs unify inst( bound({g(bound({c})),
h(bound({d}))}),

bound({g(free)}),
i)

⇐⇒ i = bound({g(bound({c}))})
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Esempi

abs unify inst(bound({h(free)}),
bound({g(free)}),
i)

⇐⇒ i = not reached

abs unify inst(free, bound({g(free)}), i)
non è definito
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Unificazione astratta fra stato istanziazione e termine

Per come la abbiamo definita l’unificazione astratta opera solo su
coppie di stati di istanziazione.
Che corrisponde all’unificazione di due variabili.
Nel linguaggio abbiamo il caso generico di unificazione fra una
variabile ed un termine.
Per via della forma normale possiamo limitarci ai temini flattered.
Serve unificazione astratta che rappresenti questo caso nel dominio
astratto degli stati di istanziazione.
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Funtori di stati di istanziazione

Un funtore di stati di istanziazione è l’applicazione di un simbolo di
funzione a degli stati di instanziazione

f(i1, . . . , in) dove f/n ∈ Σ ∧ ∀j ∈ {1, . . . , n}. ij ∈ Inst(Σ)
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Unificazione astratta fra stato di istanziazione e funtore

Unificazione astratta fra uno stato di istanziazione i1 ed un funtore
f(i1, . . . , in).

abs unify inst func(i, f, {i1, . . . , in}, i′, {i′1, . . . , i′n}) ⇐⇒
abs unify inst(i, bound({f(i1, . . . , in)}), i′) ∧
( i′ = bound({f(i′1, . . . , i′n)}) ∨

(i′ = not reached ∧ ∀j ∈ {1, . . . , n}. i′j = not reached) )
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Correttezza di una procedura

La procedura 〈p(v1, . . . , vn)← B , 〈F, F ′〉〉 è mode corretta solo se

per ogni sostituzione di variabili θ : V ar → Term tale che
∀v ∈ dom(F ). θ(v) ∈ γ(F (v)),

la sostituzione finale θ′ risultante dall’esecuzione del corpo della procedura
è tale che
∀v ∈ dom(F ). θ′(v) ∈ γ(F ′(v)).
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Correttezza di una procedura

Mode judgement

La mode correttezza di una procedura R rispetto ad un ambiente Γ viene
espressa attraverso il mode judgement Γ 
 R.

L’ambiene Γ è un insieme di procedure.

Γ ⊆ Proc(Σ, V ar,Π)
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Correttezza di una formula

Mode judgement

La mode correttezza di una associazione formula-mode B : M rispetto
ad un ambiente esteso 〈Γ, V 〉 viene espressa attraverso il mode judgement
〈Γ, V 〉 ` B : M .

V ⊆ V ar è l’insieme delle variabili non quantificate in B.
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Regola per le procedure

PROC

R ∈ Γ

R = 〈p(v1, . . . , vn)← B,M〉

〈Γ, V 〉 ` B : M ′

dom(M) = dom(M ′) = {v1, . . . , vn} = V = uq(B)

∀v ∈ {v1, . . . , vn}. Minit(v) vM ′init
∀v ∈ {v1, . . . , vn}. M ′fin(v) vMfin

Γ 
 R
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Regole per le formule

CONJ

〈Γ, uq(B1)〉 ` B1 : M1

...

〈Γ, uq(Bn)〉 ` Bn : Mn

M = M1 . · · · . Mn

〈Γ, V 〉 ` ∧ B1, . . . , Bn : M
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Regole per le formule

DISJ

〈Γ, uq(B1)〉 ` B1 : M1

...

〈Γ, uq(Bn)〉 ` Bn : Mn

M = M1 ./ . . . ./ Mn

〈Γ, V 〉 ` ∨ B1, . . . , Bn : M
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Regole per le formule

SOME

〈Γ, V \{v1, . . . , vn}〉 ` B : M ′

M = M ′ 	 {v1, . . . , vn}

〈Γ, V 〉 ` ∃v1, . . . , vn. B : M
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Regole per le formule

NOT

〈Γ, V 〉 ` B : M

nobind(M,V )

〈Γ, V 〉 ` ¬B : M

dove

nobind(M,V ) ⇐⇒ ∀v ∈ V. Minit(v) = Mfin(v)
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Regole per le formule

ITE

〈Γ, uq(B1)〉 ` B1 : M1

〈Γ, uq(B2)〉 ` B2 : M2

〈Γ, uq(B3)〉 ` B3 : M3

nobind(M1, V )

M = (M1 . M2) ./ M3

〈Γ, V 〉 ` if B1 then B2 else B3 : M
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Regole per le formule

CALL

〈p(v′1, . . . , v′n)← B, M ′〉 ∈ Γ

∀j ∈ {1, . . . , n}. Minit(vj) vM ′init(v′j)

Mfin = Minit ⊕ {vj 7→ ij | j ∈ {1, . . . , n}∧
ij = M ′fin(v′j)fMinit(vj)}

〈Γ, V 〉 ` p(v1, . . . , vn) : M
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Regole per le formule

UNIFY-VV

abs unify inst(Minit(v),Minit(v′), i)

Mfin = Minit ⊕ {v 7→ i, v′ 7→ i}

〈Γ, V 〉 ` v = v′ : M
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Regole per le formule

UNIFY-VF

v /∈ {v1, . . . , vn}

i = Minit(v)

ī = 〈Minit(v1), . . . ,Minit(vn)〉

abs unify inst func(i, f, ī, i′, 〈i′1, . . . , i′n〉)

Mfin = Minit ⊕ {v 7→ i′, v1 7→ i′1, . . . , vn 7→ i′n}

〈Γ, V 〉 ` v = f(v1, . . . , vn) : M
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Esempio

append(Xs, Ys, Zs)←
∨( ∧(Xs=[],

Ys=Zs

),
∃Xs0,Zs0,X.(
∧(Xs = [X | Xs0],

append(Xs0, Ys, Zs0),

Zs = [X | Zs0]

)
)

)



(B)
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Esempio

Assumiamo

Γ = {R}
R = 〈 append(Xs, Ys, Zs)← B, M〉
M = 〈{Xs 7→ ground, Ys 7→ ground, Zs 7→ free},

{Xs 7→ ground, Ys 7→ ground, Zs 7→ ground}〉

Vogliamo provare che

Γ 
 R
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Esempio

Γ 
 R

Usiamo PROC

R ∈ Γ

R = 〈p(v1, . . . , vn)← B,M〉

〈Γ, V 〉 ` B : M ′

dom(M) = dom(M ′) = {v1, . . . , vn} = V = uq(B)

∀v ∈ {v1, . . . , vn}. Minit(v) vM ′init
∀v ∈ {v1, . . . , vn}. M ′fin(v) vMfin

Γ 
 R
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Esempio

Γ 
 R

Usiamo PROC

R ∈ Γ

R = 〈p(v1, . . . , vn)← B,M〉

〈Γ, V 〉 ` B : M ′

dom(M) = dom(M ′) = {v1, . . . , vn} = V = uq(B)

∀v ∈ {v1, . . . , vn}. Minit(v) vM ′init
∀v ∈ {v1, . . . , vn}. M ′fin(v) vMfin

Γ 
 R
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Esempio

Γ 
 R

Usiamo PROC

R ∈ Γ

R = 〈append(Xs, Y s, Zs)← B,M〉

〈Γ, V 〉 ` B : M ′

dom(M) = dom(M ′) = {Xs, Y s, Zs} = V = uq(B)

∀v ∈ {Xs, Y s, Zs}. Minit(v) vM ′init
∀v ∈ {Xs, Y s, Zs}. M ′fin(v) vMfin

Γ 
 R
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Esempio

Γ 
 R

Usiamo PROC

R ∈ Γ

R = 〈append(Xs, Y s, Zs)← B,M〉

〈Γ, {Xs, Y s, Zs}〉 ` B : M ′

dom(M) = dom(M ′) = {Xs, Y s, Zs} = V = uq(B)

∀v ∈ {Xs, Y s, Zs}. Minit(v) vM ′init
∀v ∈ {Xs, Y s, Zs}. M ′fin(v) vMfin

Γ 
 R
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Esempio

Γ 
 R

Usiamo PROC

R ∈ Γ

R = 〈append(Xs, Y s, Zs)← B,M〉

〈Γ, {Xs, Y s, Zs}〉 ` B : M ′

dom(M) = dom(M ′) = {Xs, Y s, Zs} = V = uq(B)

∀v ∈ {Xs, Y s, Zs}. Minit(v) vM ′init
∀v ∈ {Xs, Y s, Zs}. M ′fin(v) vMfin

Γ 
 R
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Esempio

Assumiamo che

M ′ = 〈{Xs 7→ . . . , Ys 7→ . . . , Zs 7→ . . . },
{Xs 7→ . . . , Ys 7→ . . . , Zs 7→ . . . }〉

Passiamo a

〈Γ, {Xs, Y s, Zs}〉 ` B : M ′
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Esempio

append(Xs, Ys, Zs)←
∨( ∧(Xs=[],

Ys=Zs

),

 (B1)

∃Xs0,Zs0,X.(
∧(Xs = [X | Xs0],

append(Xs0, Ys, Zs0),

Zs = [X | Zs0]

)
)

)


(B2)
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Esempio

〈Γ, {Xs, Y s, Zs}〉 ` ∨ B1, B2 : M ′

Usiamo DISJ

〈Γ, uq(B1)〉 ` B1 : M1

...

〈Γ, uq(Bn)〉 ` Bn : Mn

M = M1 ./ . . . ./ Mn

〈Γ, V 〉 ` ∨ B1, . . . , Bn : M
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Esempio

〈Γ, {Xs, Y s, Zs}〉 ` ∨ B1, B2 : M ′

Usiamo DISJ

〈Γ, uq(B1)〉 ` B1 : M1

〈Γ, uq(B2)〉 ` B2 : M2

M ′ = M1 ./ M2

〈Γ, {Xs, Y s, Zs}〉 ` ∨ B1, B2 : M ′
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Esempio

〈Γ, {Xs, Y s, Zs}〉 ` ∨ B1, B2 : M ′

Usiamo DISJ

〈Γ, {Xs, Y s, Zs}〉 ` B1 : M1

〈Γ, {Xs, Y s, Zs}〉 ` B2 : M2

M ′ = M1 ./ M2

〈Γ, {Xs, Y s, Zs}〉 ` ∨ B1, B2 : M ′
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Esempio

Notiamo che per definizione di ./ abbiamo che

dom(M1) = dom(M2) = dom(M ′)

Quindi anche M1 ed M2 sono della forma

〈{Xs 7→ . . . , Ys 7→ . . . , Zs 7→ . . . },
{Xs 7→ . . . , Ys 7→ . . . , Zs 7→ . . . }〉

Passiamo a

〈Γ, {Xs, Y s, Zs}〉 ` B1 : M1
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Esempio

append(Xs, Ys, Zs)←
∨ ( ∧(Xs=[], (B11)

Ys=Zs (B12)
),
∃Xs0,Zs0,X.(
∧ (Xs = [X | Xs0],

append(Xs0, Ys, Zs0),

Zs = [X | Zs0]

)
)

)
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Esempio

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B11, B12 : M1

Usiamo CONJ

〈Γ, uq(B1)〉 ` B1 : M1

...

〈Γ, uq(Bn)〉 ` Bn : Mn

M = M1 . · · · . Mn

〈Γ, V 〉 ` ∧ B1, . . . , Bn : M
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Esempio

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B11, B12 : M1

Usiamo CONJ

〈Γ, {Xs}〉 ` B11 : M11

〈Γ, {Y s, Zs}〉 ` B12 : M12

M1 = M11 . M12

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B11, B12 : M1
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Esempio

Notiamo che per definizione di . abbiamo che

dom(M11) = dom(M12) = dom(M1)

Quindi anche M11 ed M12 sono della forma

〈{Xs 7→ . . . , Ys 7→ . . . , Zs 7→ . . . },
{Xs 7→ . . . , Ys 7→ . . . , Zs 7→ . . . }〉

Passiamo a

〈Γ, {Xs}〉 ` B11 : M11
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Esempio

append(Xs, Ys, Zs)←
∨ ( ∧(Xs=[], (B11)

Ys=Zs (B12)
),
∃Xs0,Zs0,X.(
∧ (Xs = [X | Xs0],

append(Xs0, Ys, Zs0),

Zs = [X | Zs0]

)
)

)
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Esempio

〈Γ, {Xs}〉 ` Xs=[] : M11

Usiamo UNIFY-VF

v /∈ {v1, . . . , vn}

i = Minit(v)

ī = 〈Minit(v1), . . . ,Minit(vn)〉

abs unify inst func(i, f, ī, i′, 〈i′1, . . . , i′n〉)

Mfin = Minit ⊕ {v 7→ i′, v1 7→ i′1, . . . , vn 7→ i′n}

〈Γ, V 〉 ` v = f(v1, . . . , vn) : M
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Esempio

〈Γ, {Xs}〉 ` Xs=[] : M11

Usiamo UNIFY-VF

Xs /∈ ∅

i = M11init(Xs)

ī = 〈〉

abs unify inst func(i, [], ī, i′, 〈〉)

M11fin
= M11init ⊕ {Xs 7→ i′}

〈Γ, {Xs}〉 ` Xs=[] : M11
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Esempio

〈Γ, {Xs}〉 ` Xs=[] : M11

Usiamo UNIFY-VF

Xs /∈ ∅

i = M11init(Xs)

ī = 〈〉

abs unify inst func(i, [], ī, i′, 〈〉)

M11fin
= M11init ⊕ {Xs 7→ i′}

〈Γ, {Xs}〉 ` Xs=[] : M11
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Esempio

Assumiamo

i = M11init(Xs) = bound({ [], . . . })

Allora vale che

abs unify inst func(i, [], ī, i′, 〈〉)

se

i′ = bound({ [] })
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Esempio

〈Γ, {Xs}〉 ` Xs=[] : M11

Usiamo UNIFY-VF

Xs /∈ ∅

i = bound({ [], . . . }) = M11init(Xs)

ī = 〈〉

abs unify inst func(i, [], ī, bound({ [] }), 〈〉)

M11fin
= M11init ⊕ {Xs 7→ bound({ [] })}

〈Γ, {Xs}〉 ` Xs=[] : M11
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Esempio

Abbiamo quindi che M11 è della forma

〈{Xs 7→ bound({ [], . . . }), Ys 7→ IY s11 , Zs 7→ IZs11},
{Xs 7→ bound({ [] }), Ys 7→ IY s11 , Zs 7→ IZs11}〉
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Esempio

Torniamo a

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B11, B12 : M1

Usiamo CONJ

〈Γ, {Xs}〉 ` B11 : M11

〈Γ, {Y s, Zs}〉 ` B12 : M12

M1 = M11 . M12

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B11, B12 : M1
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Esempio

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B11, B12 : M1

Usiamo CONJ

〈Γ, {Xs}〉 ` B11 : M11

〈Γ, {Y s, Zs}〉 ` B12 : M12

M1 = M11 . M12

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B11, B12 : M1
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Esempio

Passiamo a

〈Γ, {Y s, Zs}〉 ` B12 : M12

Ovvero a

〈Γ, {Y s, Zs}〉 ` Y s = Zs : M12
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Esempio

〈Γ, {Y s, Zs}〉 ` Y s = Zs : M12

Usiamo UNIFY-VV

abs unify inst(Minit(v),Minit(v′), i)

Mfin = Minit ⊕ {v 7→ i, v′ 7→ i}

〈Γ, V 〉 ` v = v′ : M
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Esempio

〈Γ, {Y s, Zs}〉 ` Y s = Zs : M12

Usiamo UNIFY-VV

abs unify inst(M12init(Y s),M12init(Zs), i)

M12fin
= M12init ⊕ {Y s 7→ i, Zs 7→ i}

〈Γ, {Y s, Zs}〉 ` Y s = Zs : M12

Lorenzo Ceragioli Mode System per linguaggi logici June 5, 2017 127 / 198



Esempio

Assumiamo

M12init(Y s) = bound({ . . . })
M12init(Zs) = free

Allora vale che

abs unify inst(M12init(Y s),M12init(Zs), i)

se

i = M12init(Y s)
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Esempio

〈Γ, {Y s, Zs}〉 ` Y s = Zs : M12

Usiamo UNIFY-VV

abs unify inst(M12init(Y s),M12init(Zs), i)

M12fin
= M12init ⊕ {Y s 7→ i, Zs 7→ i}

〈Γ, {Y s, Zs}〉 ` Y s = Zs : M12
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Esempio

Abbiamo quindi che M12 è della forma

〈{Xs 7→ IXs12 , Ys 7→ bound({ IA12 }), Zs 7→ free},
{Xs 7→ IXs12 , Ys 7→ bound({ IA12 }), Zs 7→ bound({ IA12 })}〉
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Esempio

Torniamo a

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B11, B12 : M1

Usiamo CONJ

〈Γ, {Xs}〉 ` B11 : M11

〈Γ, {Y s, Zs}〉 ` B12 : M12

M1 = M11 . M12

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B11, B12 : M1
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Esempio

M1 = M11 . M12

Richiede che

M11fin
= M12init

e
M1 = 〈M11init , M12fin

〉
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Esempio

Quindi

M11 =〈{Xs 7→ bound({ [], . . . }), Ys 7→ IY s11 , Zs 7→ IZs11},
{Xs 7→ bound({ [] }), Ys 7→ IY s11 , Zs 7→ IZs11}〉

M12 =〈{Xs 7→ IXs12 , Ys 7→ bound({ IA12 }), Zs 7→ free},
{Xs 7→ IXs12 , Ys 7→ bound({ IA12 }), Zs 7→ bound({ IA12 })}〉
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Esempio

Quindi

M11 =〈{Xs 7→ bound({ [], . . . }), Ys 7→ IY s11 , Zs 7→ IZs11},
{Xs 7→ bound({ [] }), Ys 7→ IY s11 , Zs 7→ IZs11}〉

M12 =〈{Xs 7→ IXs12 , Ys 7→ bound({ IA12 }), Zs 7→ free},
{Xs 7→ IXs12 , Ys 7→ bound({ IA12 }), Zs 7→ bound({ IA12 })}〉

sono

M11 =〈{Xs 7→ bound({ [], . . . }), Ys 7→ bound({ IA12 }), Zs 7→ free},
{Xs 7→ bound({ [] }), Ys 7→ bound({ IA12 }), Zs 7→ free}〉

M12 =〈{Xs 7→ bound({ [] }), Ys 7→ bound({ IA12 }), Zs 7→ free},
{Xs 7→ bound({ [] }), Ys 7→ bound({ IA12 }), Zs 7→ bound({ IA12 })}〉
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Esempio

M1 =〈{Xs 7→ bound({ [], . . . }), Ys 7→ bound({ IA12 }), Zs 7→ free},
{Xs 7→ bound({ [] }), Ys 7→ bound({ IA12 }), Zs 7→ bound({ IA12 })}〉
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Esempio

Torniamo a

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B11, B12 : M1

Usiamo CONJ

〈Γ, {Xs}〉 ` B11 : M11

〈Γ, {Y s, Zs}〉 ` B12 : M12

M1 = M11 . M12

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B11, B12 : M1
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Esempio

Torniamo a

〈Γ, {Xs, Y s, Zs}〉 ` ∨ B1, B2 : M ′

Usiamo DISJ

〈Γ, {Xs, Y s, Zs}〉 ` B1 : M1

〈Γ, {Xs, Y s, Zs}〉 ` B2 : M2

M ′ = M1 ./ M2

〈Γ, {Xs, Y s, Zs}〉 ` ∨ B1, B2 : M ′
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Esempio

Dalla definizione di ./ sappiamo che M1init = M2init .

Quindi M2 sarà della forma

〈{Xs 7→ bound({ [], . . . }), Ys 7→ bound({ IA12 }), Zs 7→ free},
{Xs 7→ . . . , Ys 7→ . . . , Zs 7→ . . . }〉

Passiamo a

〈Γ, {Xs, Y s, Zs}〉 ` B2 : M2
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Esempio

append(Xs, Ys, Zs)←
∨ ( ∧(Xs=[],

Ys=Zs

),
∃Xs0,Zs0,X.(
∧(Xs = [X | Xs0],

append(Xs0, Ys, Zs0),

Zs = [X | Zs0]

)

 (B21)

)
)
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Esempio

〈Γ, {Xs, Y s, Zs}〉 ` ∃Xs0,Zs0,X. B21 : M2

Usiamo SOME

〈Γ, V \{v1, . . . , vn}〉 ` B : M ′

M = M ′ 	 {v1, . . . , vn}

〈Γ, V 〉 ` ∃v1, . . . , vn. B : M
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Esempio

〈Γ, {Xs, Y s, Zs}〉 ` ∃Xs0,Zs0,X. B21 : M2

Usiamo SOME

〈Γ, {Xs, Y s, Zs}\{Xs0, Zs0, X}〉 ` B21 : M21

M2 = M21 	 {Xs0, Zs0, X}

〈Γ, {Xs, Y s, Zs}〉 ` ∃Xs0,Zs0,X. B21 : M2
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Esempio

〈Γ, {Xs, Y s, Zs}〉 ` ∃Xs0,Zs0,X. B21 : M2

Usiamo SOME

〈Γ, {Xs, Y s, Zs}〉 ` B21 : M21

M2 = M21 	 {Xs0, Zs0, X}

〈Γ, {Xs, Y s, Zs}〉 ` ∃Xs0,Zs0,X. B21 : M2
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Esempio

M21 è della forma

〈{Xs 7→ bound({ [], . . . }), Ys 7→ bound({ IA12 }), Zs 7→ free,

Xs0 7→ . . . , Zs0 7→ . . . , X 7→ . . . },
{Xs 7→ . . . , Ys 7→ . . . , Zs 7→ . . . , Xs0 7→ . . . , Zs0 7→ . . . , X 7→ . . . }〉

Passiamo a

〈Γ, {Xs, Y s, Zs}〉 ` B21 : M21
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Esempio

append(Xs, Ys, Zs)←
∨ ( ∧(Xs=[],

Ys=Zs

),
∃Xs0,Zs0,X.(
∧ (Xs = [X | Xs0], (B211)

append(Xs0, Ys, Zs0), (B212)
Zs = [X | Zs0] (B213)

)
)

)
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Esempio

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B211, B212, B213 : M21

Usiamo CONJ

〈Γ, uq(B1)〉 ` B1 : M1

...

〈Γ, uq(Bn)〉 ` Bn : Mn

M = M1 . · · · . Mn

〈Γ, V 〉 ` ∧ B1, . . . , Bn : M
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Esempio

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B211, B212, B213 : M21

Usiamo CONJ

〈Γ, uq(B211)〉 ` B211 : M211

〈Γ, uq(B212)〉 ` B212 : M212

〈Γ, uq(B213)〉 ` B213 : M213

M21 = M211 . M212 . M213

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B211, B212, B213 : M21
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Esempio

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B211, B212, B213 : M21

Usiamo CONJ

〈Γ, {X,Xs,Xs0}〉 ` B211 : M211

〈Γ, {Y s, Zs0, Xs0}〉 ` B212 : M212

〈Γ, {X,Zs, Zs0}〉 ` B213 : M213

M21 = M211 . M212 . M213

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B211, B212, B213 : M21
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Esempio

Per . abbiamo che M211init = M21init

Abbiamo quindi che M211 è della forma

〈{Xs 7→ bound({ [], . . . }), Ys 7→ bound({ IA12 }), Zs 7→ free,

Xs0 7→ . . . , Zs0 7→ . . . , X 7→ . . . },
{Xs 7→ . . . , Ys 7→ . . . , Zs 7→ . . . , Xs0 7→ . . . , Zs0 7→ . . . , X 7→ . . . }〉

Passiamo a

〈Γ, {X,Xs,Xs0}〉 ` B211 : M211
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Esempio

append(Xs, Ys, Zs)←
∨ ( ∧(Xs=[],

Ys=Zs

),
∃Xs0,Zs0,X.(
∧ (Xs = [X | Xs0], (B211)

append(Xs0, Ys, Zs0), (B212)
Zs = [X | Zs0] (B213)

)
)

)
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Esempio

〈Γ, {X,Xs,Xs0}〉 ` Xs = [X|Xs0] : M211

Usiamo UNIFY-VF

v /∈ {v1, . . . , vn}

i = Minit(v)

ī = 〈Minit(v1), . . . ,Minit(vn)〉

abs unify inst func(i, f, ī, i′, 〈i′1, . . . , i′n〉)

Mfin = Minit ⊕ {v 7→ i′, v1 7→ i′1, . . . , vn 7→ i′n}

〈Γ, V 〉 ` v = f(v1, . . . , vn) : M
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Esempio

〈Γ, {X,Xs,Xs0}〉 ` Xs = [X|Xs0] : M211

Usiamo UNIFY-VF

Xs /∈ {X,Xs0}

i = M211init(Xs)

ī = 〈M211init(X),M211init(Xs0)〉

abs unify inst func(i, [|], ī, i′, 〈i′1, i′2〉)

M211fin
= M211init ⊕ {Xs 7→ i′, X 7→ i′1, Xs0 7→ i′2}

〈Γ, {X,Xs,Xs0}〉 ` Xs = [X|Xs0] : M211
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Esempio

Assumiamo

M211init(Xs) = bound({[], [ground|ground]})
M211init(X) = M211init(Xs0) = free

Abbiamo quindi

abs unify inst func(i, [|], ī, i′, 〈i′1, i′2〉)
se

i′ = bound({[ground|ground]})
i′1 = i′2 = ground
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Esempio

Abbiamo quindi che M211 è della forma

〈{Xs 7→ bound({[], [ground|ground]}),
Ys 7→ bound({ IA211 }), Zs 7→ free,

Xs0 7→ free, Zs0 7→ IZs0211 , X 7→ free},
{Xs 7→ bound({[ground|ground]}),

Ys 7→ bound({ IA211 }), Zs 7→ free,

Xs0 7→ ground, Zs0 7→ IZs0211 , X 7→ ground}〉
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Esempio

〈Γ, {X,Xs,Xs0}〉 ` Xs = [X|Xs0] : M211

Usiamo UNIFY-VF

Xs /∈ {X,Xs0}

i = M211init(Xs)

ī = 〈M211init(X),M211init(Xs0)〉

abs unify inst func(i, [|], ī, i′, 〈i′1, i′2〉)

M211fin
= M211init ⊕ {Xs 7→ i′, X 7→ i′1, Xs0 7→ i′2}

〈Γ, {X,Xs,Xs0}〉 ` Xs = [X|Xs0] : M211
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Esempio

Torniamo a

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B211, B212, B213 : M21

Usiamo CONJ

〈Γ, {X,Xs,Xs0}〉 ` B211 : M211

〈Γ, {Y s, Zs0, Xs0}〉 ` B212 : M212

〈Γ, {X,Zs, Zs0}〉 ` B213 : M213

M21 = M211 . M212 . M213

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B211, B212, B213 : M21
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Esempio

Per . abbiamo che M212init = M211fin

Abbiamo quindi che M212 è della forma

〈{Xs 7→ bound({[ground|ground]}),
Ys 7→ bound({ IA211 }), Zs 7→ free,

Xs0 7→ ground, Zs0 7→ IZs0211 , X 7→ ground},
{Xs 7→ bound({[ground|ground]}),

Ys 7→ bound({ . . . }), Zs 7→ free,

Xs0 7→ ground, Zs0 7→ . . . , X 7→ ground}〉

Passiamo a

〈Γ, {Y s, Zs0, Xs0}〉 ` B212 : M212
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Esempio

append(Xs, Ys, Zs)←
∨ ( ∧(Xs=[],

Ys=Zs

),
∃Xs0,Zs0,X.(
∧ (Xs = [X | Xs0], (B211)

append(Xs0, Ys, Zs0), (B212)
Zs = [X | Zs0] (B213)

)
)

)
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Esempio

〈Γ, {Y s, Zs0, Xs0}〉 ` append(Xs0, Ys, Zs0) : M212

Usiamo CALL

〈p(v′1, . . . , v′n)← B, M ′〉 ∈ Γ

∀j ∈ {1, . . . , n}. Minit(vj) vM ′init(v′j)

Mfin = Minit ⊕ {vj 7→ ij | j ∈ {1, . . . , n}∧
ij = M ′fin(v′j)fMinit(vj)}

〈Γ, V 〉 ` p(v1, . . . , vn) : M
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Esempio

〈Γ, {Y s, Zs0, Xs0}〉 ` append(Xs0, Ys, Zs0) : M212

Usiamo CALL

〈append(Xs, Ys, Zs)← B, M〉 ∈ Γ

M212init(Xs0) vMinit(Xs) ∧M212init(Y s) vMinit(Y s)
∧ M212init(Zs0) vMinit(Zs)

M212fin
= M212init ⊕ {Xs0 7→Mfin(Xs)fM212init(Xs0),

Y s 7→Mfin(Y s)fM212init(Y s),
Zs0 7→Mfin(Zs)fM212init(Zs)}

〈Γ, {Y s, Zs0, Xs0}〉 ` append(Xs0, Ys, Zs0) : M212
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Esempio

〈Γ, {Y s, Zs0, Xs0}〉 ` append(Xs0, Ys, Zs0) : M212

Usiamo CALL

〈append(Xs, Ys, Zs)← B, M〉 ∈ Γ

M212init(Xs0) vMinit(Xs) ∧M212init(Y s) vMinit(Y s)
∧ M212init(Zs0) vMinit(Zs)

M212fin
= M212init ⊕ {Xs0 7→Mfin(Xs)fM212init(Xs0),

Y s 7→Mfin(Y s)fM212init(Y s),
Zs0 7→Mfin(Zs)fM212init(Zs)}

〈Γ, {Y s, Zs0, Xs0}〉 ` append(Xs0, Ys, Zs0) : M212
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Esempio

Ricordiamo che

M = 〈{Xs 7→ ground, Ys 7→ ground, Zs 7→ free},
{Xs 7→ ground, Ys 7→ ground, Zs 7→ ground}〉
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Esempio

〈Γ, {Y s, Zs0, Xs0}〉 ` append(Xs0, Ys, Zs0) : M212

Usiamo CALL

〈append(Xs, Ys, Zs)← B, M〉 ∈ Γ

ground v ground ∧ bound(IA211) v ground
∧ IZs0211 v free

M212fin
= M212init ⊕ {Xs0 7→ groundf ground,

Y s 7→ groundf bound(IA211),
Zs0 7→ groundf free}

〈Γ, {Y s, Zs0, Xs0}〉 ` append(Xs0, Ys, Zs0) : M212
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Esempio

bound(IA211) v ground
IZs0211 v free

Assumiamo

IZs0211 = free

bound(IA211) = ground
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Esempio

〈Γ, {Y s, Zs0, Xs0}〉 ` append(Xs0, Ys, Zs0) : M212

Usiamo CALL

〈append(Xs, Ys, Zs)← B, M〉 ∈ Γ

ground v ground ∧ ground v ground
∧ free v free

M212fin
= M212init ⊕ {Xs0 7→ groundf ground,

Y s 7→ groundf ground,
Zs0 7→ groundf free}

〈Γ, {Y s, Zs0, Xs0}〉 ` append(Xs0, Ys, Zs0) : M212
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Esempio

〈Γ, {Y s, Zs0, Xs0}〉 ` append(Xs0, Ys, Zs0) : M212

Usiamo CALL

〈append(Xs, Ys, Zs)← B, M〉 ∈ Γ

ground v ground ∧ ground v ground
∧ free v free

M212fin
= M212init ⊕ {Xs0 7→ groundf ground,

Y s 7→ groundf ground,
Zs0 7→ groundf free}

〈Γ, {Y s, Zs0, Xs0}〉 ` append(Xs0, Ys, Zs0) : M212
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Esempio

M212 =〈{Xs 7→ bound({[ground|ground]}),
Ys 7→ ground, Zs 7→ free,

Xs0 7→ ground, Zs0 7→ free, X 7→ ground},
{Xs 7→ bound({[ground|ground]}),

Ys 7→ ground, Zs 7→ free,

Xs0 7→ ground, Zs0 7→ ground, X 7→ ground}〉
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Esempio

Torniamo a

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B211, B212, B213 : M21

Usiamo CONJ

〈Γ, {X,Xs,Xs0}〉 ` B211 : M211

〈Γ, {Y s, Zs0, Xs0}〉 ` B212 : M212

〈Γ, {X,Zs, Zs0}〉 ` B213 : M213

M21 = M211 . M212 . M213

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B211, B212, B213 : M21
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Esempio

Per . abbiamo che M213init = M212fin

Abbiamo quindi che M213 è della forma

〈{Xs 7→ bound({[ground|ground]}),
Ys 7→ ground, Zs 7→ free,

Xs0 7→ ground, Zs0 7→ ground, X 7→ ground},
{Xs 7→ . . . ,

Ys 7→ . . . , Zs 7→ . . . ,

Xs0 7→ . . . , Zs0 7→ . . . , X 7→ . . . }〉

Passiamo a

〈Γ, {X,Zs, Zs0}〉 ` B213 : M213
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Esempio

append(Xs, Ys, Zs)←
∨ ( ∧(Xs=[],

Ys=Zs

),
∃Xs0,Zs0,X.(
∧ (Xs = [X | Xs0], (B211)

append(Xs0, Ys, Zs0), (B212)
Zs = [X | Zs0] (B213)

)
)

)
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Esempio

〈Γ, {X,Zs, Zs0}〉 ` Zs = [X | Zs0] : M213

Usiamo UNIFY-VF

v /∈ {v1, . . . , vn}

i = Minit(v)

ī = 〈Minit(v1), . . . ,Minit(vn)〉

abs unify inst func(i, f, ī, i′, 〈i′1, . . . , i′n〉)

Mfin = Minit ⊕ {v 7→ i′, v1 7→ i′1, . . . , vn 7→ i′n}

〈Γ, V 〉 ` v = f(v1, . . . , vn) : M
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Esempio

〈Γ, {X,Zs, Zs0}〉 ` Zs = [X | Zs0] : M213

Usiamo UNIFY-VF

Zs /∈ {X,Zs0}

i = M213init(Zs)

ī = 〈M213init(X),M213init(Zs0)〉

abs unify inst func(i, [|], ī, i′, 〈i′1, i′2〉)

M213fin
= M213init ⊕ {Zs 7→ i′, X 7→ i′1, Zs0 7→ i′2}

〈Γ, {X,Zs, Zs0}〉 ` Zs = [X | Zs0] : M213
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Esempio

〈Γ, {X,Zs, Zs0}〉 ` Zs = [X | Zs0] : M213

Usiamo UNIFY-VF

Zs /∈ {X,Zs0}

i = free

ī = 〈ground, ground〉

abs unify inst func(i, [|], ī, i′, 〈i′1, i′2〉)

M213fin
= M213init ⊕ {Zs 7→ i′, X 7→ i′1, Zs0 7→ i′2}

〈Γ, {X,Zs, Zs0}〉 ` Zs = [X | Zs0] : M213
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Esempio

〈Γ, {X,Zs, Zs0}〉 ` Zs = [X | Zs0] : M213

Usiamo UNIFY-VF

Zs /∈ {X,Zs0}

i = free

ī = 〈ground, ground〉

abs unify inst func(i, [|], ī, bound({[ground|ground]}),
〈ground, ground〉)

M213fin
= M213init ⊕ {Zs 7→ bound({[ground|ground]}),

X 7→ ground, Zs0 7→ ground}

〈Γ, {X,Zs, Zs0}〉 ` Zs = [X | Zs0] : M213
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Esempio

M213 =〈{Xs 7→ bound({[ground|ground]}),
Ys 7→ ground, Zs 7→ free,

Xs0 7→ ground, Zs0 7→ ground, X 7→ ground},
{Xs 7→ bound({[ground|ground]}),

Ys 7→ ground, Zs 7→ bound({[ground|ground]}),
Xs0 7→ ground, Zs0 7→ ground, X 7→ ground}〉

Lorenzo Ceragioli Mode System per linguaggi logici June 5, 2017 174 / 198



Esempio

Torniamo a

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B211, B212, B213 : M21

Usiamo CONJ

〈Γ, {X,Xs,Xs0}〉 ` B211 : M211

〈Γ, {Y s, Zs0, Xs0}〉 ` B212 : M212

〈Γ, {X,Zs, Zs0}〉 ` B213 : M213

M21 = M211 . M212 . M213

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B211, B212, B213 : M21
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Esempio

Torniamo a

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B211, B212, B213 : M21

Usiamo CONJ

〈Γ, {X,Xs,Xs0}〉 ` B211 : M211

〈Γ, {Y s, Zs0, Xs0}〉 ` B212 : M212

〈Γ, {X,Zs, Zs0}〉 ` B213 : M213

M21 = M211 . M212 . M213

〈Γ, {Xs, Y s, Zs}〉 ` ∧ B211, B212, B213 : M21
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Esempio

M21 =〈{Xs 7→ bound({ [], [ground|ground]}),
Ys 7→ ground, Zs 7→ free,

Xs0 7→ free, Zs0 7→ free, X 7→ free},
{Xs 7→ bound({[ground|ground]}),

Ys 7→ ground, Zs 7→ bound({[ground|ground]}),
Xs0 7→ ground, Zs0 7→ ground, X 7→ ground}〉
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Esempio

Torniamo a

〈Γ, {Xs, Y s, Zs}〉 ` ∃Xs0,Zs0,X. B21 : M2

Usiamo SOME

〈Γ, {Xs, Y s, Zs}〉 ` B21 : M21

M2 = M21 	 {Xs0, Zs0, X}

〈Γ, {Xs, Y s, Zs}〉 ` ∃Xs0,Zs0,X. B21 : M2
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Esempio

Torniamo a

〈Γ, {Xs, Y s, Zs}〉 ` ∃Xs0,Zs0,X. B21 : M2

Usiamo SOME

〈Γ, {Xs, Y s, Zs}〉 ` B21 : M21

M2 = M21 	 {Xs0, Zs0, X}

〈Γ, {Xs, Y s, Zs}〉 ` ∃Xs0,Zs0,X. B21 : M2
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Esempio

M2 =〈{Xs 7→ bound({ [], [ground|ground]}),
Ys 7→ ground, Zs 7→ free},

{Xs 7→ bound({[ground|ground]}),
Ys 7→ ground, Zs 7→ bound({[ground|ground]})}〉
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Esempio

Torniamo a

〈Γ, {Xs, Y s, Zs}〉 ` ∨ B1, B2 : M ′

Usiamo DISJ

〈Γ, {Xs, Y s, Zs}〉 ` B1 : M1

〈Γ, {Xs, Y s, Zs}〉 ` B2 : M2

M ′ = M1 ./ M2

〈Γ, {Xs, Y s, Zs}〉 ` ∨ B1, B2 : M ′
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Esempio

M1 =〈{Xs 7→ bound({ [], [ground|ground]}),
Ys 7→ ground, Zs 7→ free},

{Xs 7→ bound({ [] }), Ys 7→ ground, Zs 7→ ground}〉

M2 =〈{Xs 7→ bound({ [], [ground|ground]}),
Ys 7→ ground, Zs 7→ free},

{Xs 7→ bound({ [ground|ground]}),
Ys 7→ ground, Zs 7→ bound({[ground|ground]})}〉
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Esempio

M ′ =〈{Xs 7→ bound({ [], [ground|ground]}),
Ys 7→ ground, Zs 7→ free},

{Xs 7→ bound({ [] }) t bound({[ground|ground]}),
Ys 7→ ground,

Zs 7→ ground t bound({[ground|ground]})}〉
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Esempio

M ′ =〈{Xs 7→ bound({ [], [ground|ground]}),
Ys 7→ ground, Zs 7→ free},

{Xs 7→ bound({ [], [ground|ground]}),
Ys 7→ ground,

Zs 7→ ground}〉
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Esempio

Torniamo a

〈Γ, {Xs, Y s, Zs}〉 ` ∨ B1, B2 : M ′

Usiamo DISJ

〈Γ, {Xs, Y s, Zs}〉 ` B1 : M1

〈Γ, {Xs, Y s, Zs}〉 ` B2 : M2

M ′ = M1 ./ M2

〈Γ, {Xs, Y s, Zs}〉 ` ∨ B1, B2 : M ′
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Esempio

Finalmente torniamo a

Γ 
 R

Usiamo PROC

R ∈ Γ

R = 〈append(Xs, Y s, Zs)← B,M〉

〈Γ, {Xs, Y s, Zs}〉 ` B : M ′

dom(M) = dom(M ′) = {Xs, Y s, Zs} = V = uq(B)

∀v ∈ {Xs, Y s, Zs}. Minit(v) vM ′init(v)

∀v ∈ {Xs, Y s, Zs}. M ′fin(v) vMfin(v)

Γ 
 R
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Esempio

Finalmente torniamo a

Γ 
 R

Usiamo PROC

R ∈ Γ

R = 〈append(Xs, Y s, Zs)← B,M〉

〈Γ, {Xs, Y s, Zs}〉 ` B : M ′

dom(M) = dom(M ′) = {Xs, Y s, Zs} = V = uq(B)

∀v ∈ {Xs, Y s, Zs}. Minit(v) vM ′init(v)

∀v ∈ {Xs, Y s, Zs}. M ′fin(v) vMfin(v)

Γ 
 R
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Esempio

∀v ∈ {Xs, Y s, Zs}. Minit(v) vM ′init(v)
∀v ∈ {Xs, Y s, Zs}. M ′fin(v) vMfin(v)

Minit(Xs) vM ′init(Xs)
Minit(Y s) vM ′init(Y s)
Minit(Zs) vM ′init(Zs)

M ′fin(Xs) vMfin(Xs)
M ′fin(Y s) vMfin(Y s)
M ′fin(Zs) vMfin(Zs)
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Esempio

∀v ∈ {Xs, Y s, Zs}. Minit(v) vM ′init(v)
∀v ∈ {Xs, Y s, Zs}. M ′fin(v) vMfin(v)

ground v bound({ [], [ground|ground]})
ground v ground
free v free

bound({ [], [ground|ground]}) v ground
ground v ground
ground v ground
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Esempio

∀v ∈ {Xs, Y s, Zs}. Minit(v) vM ′init(v)
∀v ∈ {Xs, Y s, Zs}. M ′fin(v) vMfin(v)

ground v bound({ [], [ground|ground]})
ground v ground
free v free

bound({ [], [ground|ground]}) v ground
ground v ground
ground v ground
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Esempio

ground v bound({ [], [ground|ground]})

Fortunatamente il type system ci dice che per un termine di tipo lista

ground = bound({ [], [ground|ground]})
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Esempio

∀v ∈ {Xs, Y s, Zs}. Minit(v) vM ′init(v)
∀v ∈ {Xs, Y s, Zs}. M ′fin(v) vMfin(v)

ground v bound({ [], [ground|ground]})
ground v ground
free v free

bound({ [], [ground|ground]}) v ground
ground v ground
ground v ground
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Esempio

Γ 
 R

Usiamo PROC

R ∈ Γ

R = 〈append(Xs, Y s, Zs)← B,M〉

〈Γ, {Xs, Y s, Zs}〉 ` B : M ′

dom(M) = dom(M ′) = {Xs, Y s, Zs} = V = uq(B)

∀v ∈ {Xs, Y s, Zs}. Minit(v) vM ′init(v)

∀v ∈ {Xs, Y s, Zs}. M ′fin(v) vMfin(v)

Γ 
 R
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Esempio

Γ 
 R

Usiamo PROC

R ∈ Γ

R = 〈append(Xs, Y s, Zs)← B,M〉

〈Γ, {Xs, Y s, Zs}〉 ` B : M ′

dom(M) = dom(M ′) = {Xs, Y s, Zs} = V = uq(B)

∀v ∈ {Xs, Y s, Zs}. Minit(v) vM ′init(v)

∀v ∈ {Xs, Y s, Zs}. M ′fin(v) vMfin(v)

Γ 
 R
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Esempio

Evviva!
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