Intermediate Representation Code Generation

Lorenzo Ceragioli
November 20, 2024

IMT Lucca

MiniRISC

Language for our Next Steps

MiniRISC: A simplified RISC Assembly for programming our
abstract machine.

= Simple operations over integers and registers

= commands for reading and writing values on the memory
We assume that everything is an integer:

= integers
= boolean values

= memory addresses

We also assume an infinite amount of registers (for the language)

The Role of MiniRISC for our Project

We use MiniRISC as

= Our target language

= Our intermediate representation via its control-flow graph

The other difference between the intermediate representation and
the target language is the run-time environment:

= In the IR we will assume an infinite amount of registers

= For the target code, they will be limited

A RISC Assembly

MiniRISC program: labelled blocks (lists of instructions)

MiniRISC instructions:

comm :=mnop | brop r r => r | bioprn => r|uropr =>r

| load r => r|loadI n => r | store r => r

| jump / | cjump r I/

add | sub | mult | and | less
addI | subI | multI | andI

brop :

biop :

urop = not | copy

where [is a label, r is a register, n is an integer

RISC Architecture

We have two memories

= Registers — og : R — Z MiniRISC Code
n RAM — oM 8 Z —> Z

(R are registers)

We also assume a function

* Code—¢&: L c* Control
. Registers]
= Special label: main (where Unit
the computation starts)

= Special registers

= in — for user input ‘ ‘

= out — for user output
Memory

(L are labels, C are commands)

Semantics

Program

<£7£(main)7aR[in = ianIt]vaM> —" <§7 €, U;'—ho—;\/l)

(¢, 0r, oM, input) —> og(out)

Small-Step Semantics of Commands

nop

<£»n0p : ba URaUM> - (55 bv 0R70M>

n=og(r) op or(r)
(f,(brop nr => r3) : b,O'R,O'M) — (é? b,O'R[I’?, ~ n]7UM>

brop

Where op is the operator corresponding to brop

= add, sub,mult are as expected
= and and less require encoding boolean values as integers

= (for false
=] for true

Small-Step Semantics of Commands

n' =op(r) op n

(€, (biop ry n => 1) - b,og, o) — (£, b,0p[r = n'],om)

biop

n=ogr(n) 5
Py
(€, (copy n => 1)+ b,or,om) — (&, b,or[r = n],om)
n = not(or(n))
not

<£7 (HOt n => r2) : b7UR70M> — <£7 b70R[r2 =2 n]7JM>
Where

= addl,subl,multl are as expected

= andl requires encoding boolean values as integers

Small-Step Semantics of Commands

n=oy(or(n))
(57(10ad rno=> r2) : b7 UR70M> - <§7 b7 UR[rZ =2 n]70M>

load

(€, (Loadl n => r)- b,og,om) — (& b, orlr = nl,om) 02

n=og(rn) n' = ogr(r)

(f,(store n => I’2) : b7UR70M> (57 b7UR70M[n’ = n])

Store

Small-Step Semantics of Commands

(€, (Gunp 1) - b,or, om) — (&€, omrom) T
or(r) =1 cjumpt
(& (cjump r [1) - byog,om) — (£,E(1),0r, om)
o) = cjumpf

(& (cjump r 1 I') - bor,am) — (&,E(1'),0r, oMm)

10

Generating Intermediate Code

Intermediate Representation

MiniRISC simple statements

scomm :=nop | brop r r => r | biop rn => r|uropr =>r
| load r => r|loadI n => r | storer => r
brop := add | sub | mult | and | less
biop := addI | subl | multI | andI
urop := not | copy
Recall

= IR is the control-flow graph of our RISC Assembly
= blocks are lists of MiniRISC simple statements

= of course labels are associated to blocks!

11

Recap: Compiling Minilmp

Minilmp CFG

Minilmp Code .
(input y, output x)

MiniRISC CFG

def main with i = :
in with input y output x as x:i=2
X = 2; y <07 _

if y <0 then (

= : ? ?
y =Xk 3; > yi=x+3 xi=1-y >
X:i=y

) xi=y

else
:

12

Generating MiniRISC Simple Statements

= Map variables to registers
= (mind the input and output registers and variables)

= We need other additional registers
= intermediate values for computing arithmetical expressions
= result of boolean guards b? compilation

= Compile a Minilmp simple statement into a list of MiniRISC
simple statements
= skip ~ [nop]
= x := aexp — [compute aexp and write it in the register for x]

13

Generating MiniRISC Code

MiniRISC CFG MiniRISC Code

main: addrnmr =>n

addrr => loadI b =>
loadI 5 => g cjump ry 11 12

11: addIn 3 =>n,

copy ry => rs jump 13

12: subrpn =>r3

jump 13

13: nop

14

Generating MiniRISC Code

Idea:

= Associate a label to each block

= Transform transitions into jumps
Note:

= We will need the CFG for static analysis

= The target language is MiniRISC, but we will have constraints
on the architecture

5

Project Fragment

= Write a module for MiniRISC (syntax and simple statements,
the semantics is not required)

= Implement a translation from Minilmp CFG to MiniRISC CFG
= Implement a translation from MiniRISC CFG to MiniRISC

= Detail your translations in the report

16

	MiniRISC
	Generating Intermediate Code

