
Intermediate Representation Code Generation

Lorenzo Ceragioli
November 20, 2024

IMT Lucca

1

MiniRISC

Language for our Next Steps

MiniRISC: A simplified RISC Assembly for programming our
abstract machine.

• Simple operations over integers and registers
• commands for reading and writing values on the memory

We assume that everything is an integer:

• integers
• boolean values
• memory addresses

We also assume an infinite amount of registers (for the language)

2

The Role of MiniRISC for our Project

We use MiniRISC as

• Our target language
• Our intermediate representation via its control-flow graph

The other difference between the intermediate representation and
the target language is the run-time environment:

• In the IR we will assume an infinite amount of registers
• For the target code, they will be limited

3

A RISC Assembly

MiniRISC program: labelled blocks (lists of instructions)

MiniRISC instructions:

comm ≔ nop ∣ brop r r => r ∣ biop r n => r ∣ urop r => r
∣ load r => r ∣ loadI n => r ∣ store r => r
∣ jump l ∣ cjump r l l

brop ≔ add ∣ sub ∣ mult ∣ and ∣ less

biop ≔ addI ∣ subI ∣ multI ∣ andI

urop ≔ not ∣ copy

where l is a label, r is a register, n is an integer

4

RISC Architecture

We have two memories
• Registers — σR ∶ R ⟶ Z

• RAM — σM ∶ Z ⟶ Z

(R are registers)
We also assume a function

• Code — ξ ∶ L ⟶ C∗

• Special label: main (where
the computation starts)

• Special registers
• in – for user input
• out – for user output

(L are labels, C are commands)

Control
UnitRegisters

MiniRISC Code

.
Memory

5

Semantics

Program

⟨ξ, ξ(main), σR[in ↦ input], σM⟩ ⟶∗ ⟨ξ, ϵ, σ
′
R , σ

′
M⟩

⟨ξ, σR , σM , input⟩ ⟶ σ
′
R(out)

6

Small-Step Semantics of Commands

⟨ξ, nop ⋅ b, σR , σM⟩ ⟶ ⟨ξ, b, σR , σM⟩
nop

n = σR(r1) op σR(r2)
⟨ξ, (brop r1 r2 => r3) ⋅ b, σR , σM⟩ ⟶ ⟨ξ, b, σR[r3 ↦ n], σM⟩ brop

Where op is the operator corresponding to brop

• add, sub, mult are as expected
• and and less require encoding boolean values as integers

• 0 for false
• 1 for true

7

Small-Step Semantics of Commands

n′
= σR(r1) op n

⟨ξ, (biop r1 n => r2) ⋅ b, σR , σM⟩ ⟶ ⟨ξ, b, σR[r2 ↦ n′], σM⟩
biop

n = σR(r1)
⟨ξ, (copy r1 => r2) ⋅ b, σR , σM⟩ ⟶ ⟨ξ, b, σR[r2 ↦ n], σM⟩

copy

n = not(σR(r1))
⟨ξ, (not r1 => r2) ⋅ b, σR , σM⟩ ⟶ ⟨ξ, b, σR[r2 ↦ n], σM⟩ not

Where

• addI, subI, multI are as expected
• andI requires encoding boolean values as integers

8

Small-Step Semantics of Commands

n = σM(σR(r1))
⟨ξ, (load r1 => r2) ⋅ b, σR , σM⟩ ⟶ ⟨ξ, b, σR[r2 ↦ n], σM⟩ load

⟨ξ, (loadI n => r) ⋅ b, σR , σM⟩ ⟶ ⟨ξ, b, σR[r ↦ n], σM⟩ loadI

n = σR(r1) n′
= σR(r2)

⟨ξ, (store r1 => r2) ⋅ b, σR , σM⟩ ⟶ ⟨ξ, b, σR , σM[n′
↦ n]⟩

store

9

Small-Step Semantics of Commands

⟨ξ, (jump l) ⋅ b, σR , σM⟩ ⟶ ⟨ξ, ξ(l), σR , σM⟩ jump

σR(r) = 1
⟨ξ, (cjump r l l ′) ⋅ b, σR , σM⟩ ⟶ ⟨ξ, ξ(l), σR , σM⟩

cjumpt

σR(r) = 0
⟨ξ, (cjump r l l ′) ⋅ b, σR , σM⟩ ⟶ ⟨ξ, ξ(l ′), σR , σM⟩

cjumpf

10

Generating Intermediate Code

Intermediate Representation

MiniRISC simple statements

scomm ≔ nop ∣ brop r r => r ∣ biop r n => r ∣ urop r => r
∣ load r => r ∣ loadI n => r ∣ store r => r

brop ≔ add ∣ sub ∣ mult ∣ and ∣ less

biop ≔ addI ∣ subI ∣ multI ∣ andI

urop ≔ not ∣ copy

Recall

• IR is the control-flow graph of our RISC Assembly
• blocks are lists of MiniRISC simple statements
• of course labels are associated to blocks!

11

Recap: Compiling MiniImp

MiniImp Code MiniImp CFG
(input y, output x) MiniRISC CFG

def main with input y output x as
x := 2;
if y < 0 then (

y := x + 3;
x := y

)
else

x := 1 - y

x ∶= 2
y < 0?

y ∶= x + 3
x ∶= y

x ∶= 1 − y

skip

?

? ?

?

12

Generating MiniRISC Simple Statements

• Map variables to registers
• (mind the input and output registers and variables)
• We need other additional registers

• intermediate values for computing arithmetical expressions
• result of boolean guards b? compilation

• Compile a MiniImp simple statement into a list of MiniRISC
simple statements

• skip ↦ [nop]
• x ∶= aexp ↦ [compute aexp and write it in the register for x]

13

Generating MiniRISC Code

MiniRISC CFG MiniRISC Code

add r2 r3 => r4
loadI 5 => r4

addI r1 3 => r2
copy r4 => r5

sub r1 r2 => r3

nop

main: add r2 r3 => r4

loadI 5 => r4

cjump r4 l1 l2

l1: addI r1 3 => r2

copy r4 => r5

jump l3

l2: sub r1 r2 => r3

jump l3

l3: nop

14

Generating MiniRISC Code

Idea:

• Associate a label to each block
• Transform transitions into jumps

Note:

• We will need the CFG for static analysis
• The target language is MiniRISC, but we will have constraints

on the architecture

15

Project Fragment

• Write a module for MiniRISC (syntax and simple statements,
the semantics is not required)

• Implement a translation from MiniImp CFG to MiniRISC CFG
• Implement a translation from MiniRISC CFG to MiniRISC
• Detail your translations in the report

16

	MiniRISC
	Generating Intermediate Code

