
Dataflow Analysis

Lorenzo Ceragioli
November 29, 2024

IMT Lucca

1



Static Analysis

Objectives

• Assess Formal Correctness
• Compute Information (e.g. for optimization)

Example of pipeline

• Controlflow analysis (build the CFG) – trivial for us
• Dataflow analysis – compute available data at different

locations of the program

2



Dataflow Analyses

Different kinds of information depending on the analysis

• Live variables: which variables (or registers) hold values that
will be (possibly) used later

• Reaching definitions: which definitions (may) have determined
the value of variables (or registers)

Roughly the same (parametric) procedure

1. Associate initial value to each block of the CFG
2. Define how the local information is updated w.r.t. the value of

the neighbors
3. Iterate the updates until a fixpoint is reached

3



Dataflow Analysis Recap

Computed Value: some Complete Partial Order

Analysis State: Associate a pair of values to each block (in and
out)

Local Update: update the value associated with a block

• From the block itself (in to out or vice-versa)
• From a block to the others (next or preceding blocks)

Global Update: all local updates are repeated until fixpoint is
reached (there are more clever ideas, but this is enough for us)

... then possibly refine the analysis for the single instructions
inside the block.

4



Two Alternatives for CFG

Maximal Blocks

x ∶= 2
y < 0?

y ∶= x + 3
x ∶= y

x ∶= 1 − y

skip

1) Perform the analysis on
blocks
2) Recover information for
single instructions

Minimal Blocks

x ∶= 2

y < 0?

y ∶= x + 3

x ∶= y

x ∶= 1 − y

skip

Blocks are single instructions
:)

5



Simplest: Defined Variables

Computed Value: Set of defined variables (Registers for the IR)

Analysis State: Associate a pair of values to each block (in and
out)

Local Update: update the value associated with a block

• From the block itself: variables defined at the exit of the block
are those defined when entering plus the ones defined by the
block’s commands

• From a block to the others: variables defined at beginning of a
block are those defined in every preceding block

Global Update: all local updates until fixpoint

Then check that each instruction uses variables that are
defined either at the beginning of the block or in the block
before the current instruction. 6



Simplest: Defined Variables (a forward analysis)

Computed Value: P(R)

Analysis State:

• Formally dv ∶ L ⟶ P(R) × P(R)
• More handy dvin ∶ L ⟶ P(R) and dvout ∶ L ⟶ P(R)

Local Update:

lub(dvout(L)) = dvin(L) ∪ {variables defined in L}

lucf (dvin(L)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{in (register for the input)} if L is initial
⋂(L′,L)∈CFG edges dvout(L′) otherwise

Global Update: gu(dvin)(L) = lucf (dvin(L)) and
gu(dvout)(L) = lub(dvout(L)) until fixpoint

Then check each instruction in blocks.
7



Defined Variables – Example

in:
skip
out:

in:
x ∶= 2
x < 0?
out:

in:
y ∶= x + 3

x ∶= y
out:

in:
out ∶= 1 − y

out:

in:
skip
out:

• The variable y in
out ∶= y − 1 is undefined!

• Notice that the analysis is
very coarse grained, we can
do better, as we will se in
the next lesson

8



Defined Variables – Example

in:∅
skip
out:∅

in:∅
x ∶= 2
x < 0?
out:∅

in:∅
y ∶= x + 3

x ∶= y
out:∅

in:∅
out ∶= 1 − y

out:∅

in:∅
skip
out:∅

• The variable y in
out ∶= y − 1 is undefined!

• Notice that the analysis is
very coarse grained, we can
do better, as we will se in
the next lesson

8



Defined Variables – Example

in:{in}
skip
out:∅

in:∅
x ∶= 2
x < 0?
out:{x}

in:∅
y ∶= x + 3

x ∶= y
out:{x , y}

in:∅
out ∶= 1 − y

out:{out}

in:∅
skip
out:∅

• The variable y in
out ∶= y − 1 is undefined!

• Notice that the analysis is
very coarse grained, we can
do better, as we will se in
the next lesson

8



Defined Variables – Example

in:{in}
skip

out:{in}

in:∅
x ∶= 2
x < 0?
out:{x}

in:{x}
y ∶= x + 3

x ∶= y
out:{x , y}

in:{x}
out ∶= 1 − y

out:{out}

in:{out}
skip
out:∅

• The variable y in
out ∶= y − 1 is undefined!

• Notice that the analysis is
very coarse grained, we can
do better, as we will se in
the next lesson

8



Defined Variables – Example

in:{in}
skip

out:{in}

in:∅
x ∶= 2
x < 0?
out:{x}

in:{x}
y ∶= x + 3

x ∶= y
out:{x , y}

in:{x}
out ∶= 1 − y
out:{x , out}

in:{out}
skip

out:{out}

• The variable y in
out ∶= y − 1 is undefined!

• Notice that the analysis is
very coarse grained, we can
do better, as we will se in
the next lesson

8



Defined Variables – Example

in:{in}
skip

out:{in}

in:∅
x ∶= 2
x < 0?
out:{x}

in:{x}
y ∶= x + 3

x ∶= y
out:{x , y}

in:{x}
out ∶= 1 − y
out:{x , out}

in:{x , out}
skip

out:{out}

• The variable y in
out ∶= y − 1 is undefined!

• Notice that the analysis is
very coarse grained, we can
do better, as we will se in
the next lesson

8



Defined Variables – Example

in:{in}
skip

out:{in}

in:∅
x ∶= 2
x < 0?
out:{x}

in:{x}
y ∶= x + 3

x ∶= y
out:{x , y}

in:{x}
out ∶= 1 − y
out:{x , out}

in:{x , out}
skip

out:{x , out}

• The variable y in
out ∶= y − 1 is undefined!

• Notice that the analysis is
very coarse grained, we can
do better, as we will se in
the next lesson

8



A More Intricate Case: Live Variables (or Registers)

Roughly: a variable is live if it is defined and not overwritten before
its next usage... may or must?

x ∶= 2
y < 0?

y ∶= x + 3 y ∶= 3

skip

We focus on may: we want to be sure that it cannot be live (we
can overwrite it)

9



Liveness – Formally

Liveness is better described in the transition system defined by the
small step semantics for a given input.

In MiniRISC, the register r is live before ⟨ξ, b, σR , σM⟩ if

• σR(r) is defined, and
• there exists ⟨ξ, c ⋅ b′

, σ
′
R , σ

′
M⟩ such that:

• ⟨ξ, b, σR , σM⟩ ⟶∗ ⟨ξ, c ⋅ b′
, σ

′
R , σ

′
M⟩;

• c reads the register r ;
• for any ⟨ξ, c ′ ⋅ b′′

, σ
′′
R , σ

′′
M⟩ such that

⟨ξ, b, σR , σM⟩ ⟶∗ ⟨ξ, c ′ ⋅ b′′
, σ

′′
R , σ

′′
M⟩ ⟶+ ⟨ξ, c ⋅ b′

, σ
′
R , σ

′
M⟩,

c ′ does not overwrite the register r

But this information is not decidable

10



May Liveness

May Liveness is instead defined on the CFG of the program

• Instead of considering all the possible (infinite) transition
systems for the program (one for any input integer), we
consider its CFG, which approximates these concrete transition
systems

• Instead of considering the points in time of the concrete
executions, we consider positions in the code

11



Points in Time to Points in the Code – Approximation

x ∶= 1
y ∶= 0

x < 1?

x ∶= x − 1
y ∶= y + in

skip

Is y live at the exit of the guard
block x < 1?

12



Different Inputs and Different Executions – Approximation

x ∶= 2
in < 0?

x ∶= x − 1
y ∶= y + in

y ∶= 0

skip

Is x live at the exit of the initial
block?

13



Why Liveness Analysis? Register Reuse

Registers are not infinite in the real world, nor they will be infinite in
our target system

• Not a problem, we have memory
• But accessing memory is time consuming, better to avoid it if

possible
• Reuse registers if the current value is not used later
• If different registers are not live together, they can be merged

(mapped to the same concrete register of the target machine)

14



How to perform Liveness Analysis (a backward analysis)

Computed Value: P(R)

Analysis State:

• lvin ∶ L ⟶ P(R) and lvout ∶ L ⟶ P(R)

Local Update:

lub(lvin(L)) = {r used in L} ∪ (lvout(L) \ {r defined in L})

lucf (lvout(L)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{out (register for the output)} if L is final
⋃(L,L′)∈CFG edges dvin(L′) otherwise

Global Update applies all the local updates as before.

• The used is informal, there is some missing detail if you use
maximal blocks

• The defined is missing a detail for the initial node
15



Project Fragment

• Write a function for checking that no register is ever used
before being initialized with some value in a MiniRISC CFG
(mind the initial register in which is always initialized, and out
which is always used – if you prefer, you can perform this task
on the MiniImp CFG of the program)

• Write a module containing a function for computing liveness
analysis on MiniRISC CFGs (we will use it later)

• Detail your implementation choices in the report

16


