
Dataflow - Defined Variables in Depth

Lorenzo Ceragioli
December 5, 2024

IMT Lucca

1



Recap: Defined Variables

Computed Value: Set of defined variables (Registers for the IR)

Analysis State: Associate a pair of values to each block (in and
out)

Local Update: update the value associated with a block

• From the block itself: variables defined at the exit of the block
are those defined when entering plus the ones defined by the
block’s commands

• From a block to the others: variables defined at beginning of a
block are those defined in every preceding block

Global Update: all local updates until fixpoint

Then check that each instruction uses variables that are
defined either at the beginning of the block or in the block
before the current instruction. 2



Simplest: Defined Variables (a forward analysis)

Computed Value: P(R)

Analysis State:

• Formally dv ∶ L ⟶ P(R) × P(R)
• More handy dvin ∶ L ⟶ P(R) and dvout ∶ L ⟶ P(R)

Local Update:

lub(dvout(L)) = dvin(L) ∪ {variables defined in L}

lucf (dvin(L)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{in (register for the input)} if L is initial
⋂(L′,L)∈CFG edges dvout(L′) otherwise

Global Update: gu(dvin)(L) = lucf (dvin(L)) and
gu(dvout)(L) = lub(dvout(L)) until fixpoint

Then check each instruction in blocks.
3



Defined Variables – Example

in:
skip
out:

in:
x ∶= 2
x < 0?
out:

in:
y ∶= x + 3

x ∶= y
out:

in:
out ∶= 1 − y

out:

in:
skip
out:

• The variable y in
out ∶= y − 1 is undefined!

• Notice that the analysis is
very coarse grained, we
can do better!

4



Defined Variables – Example

in:∅
skip
out:∅

in:∅
x ∶= 2
x < 0?
out:∅

in:∅
y ∶= x + 3

x ∶= y
out:∅

in:∅
out ∶= 1 − y

out:∅

in:∅
skip
out:∅

• The variable y in
out ∶= y − 1 is undefined!

• Notice that the analysis is
very coarse grained, we
can do better!

4



Defined Variables – Example

in:{in}
skip
out:∅

in:∅
x ∶= 2
x < 0?
out:{x}

in:∅
y ∶= x + 3

x ∶= y
out:{x , y}

in:∅
out ∶= 1 − y

out:{out}

in:∅
skip
out:∅

• The variable y in
out ∶= y − 1 is undefined!

• Notice that the analysis is
very coarse grained, we
can do better!

4



Defined Variables – Example

in:{in}
skip

out:{in}

in:∅
x ∶= 2
x < 0?
out:{x}

in:{x}
y ∶= x + 3

x ∶= y
out:{x , y}

in:{x}
out ∶= 1 − y

out:{out}

in:{out}
skip
out:∅

• The variable y in
out ∶= y − 1 is undefined!

• Notice that the analysis is
very coarse grained, we
can do better!

4



Defined Variables – Example

in:{in}
skip

out:{in}

in:∅
x ∶= 2
x < 0?
out:{x}

in:{x}
y ∶= x + 3

x ∶= y
out:{x , y}

in:{x}
out ∶= 1 − y
out:{x , out}

in:{out}
skip

out:{out}

• The variable y in
out ∶= y − 1 is undefined!

• Notice that the analysis is
very coarse grained, we
can do better!

4



Defined Variables – Example

in:{in}
skip

out:{in}

in:∅
x ∶= 2
x < 0?
out:{x}

in:{x}
y ∶= x + 3

x ∶= y
out:{x , y}

in:{x}
out ∶= 1 − y
out:{x , out}

in:{x , out}
skip

out:{out}

• The variable y in
out ∶= y − 1 is undefined!

• Notice that the analysis is
very coarse grained, we
can do better!

4



Defined Variables – Example

in:{in}
skip

out:{in}

in:∅
x ∶= 2
x < 0?
out:{x}

in:{x}
y ∶= x + 3

x ∶= y
out:{x , y}

in:{x}
out ∶= 1 − y
out:{x , out}

in:{x , out}
skip

out:{x , out}

• The variable y in
out ∶= y − 1 is undefined!

• Notice that the analysis is
very coarse grained, we
can do better!

4



Recall: Correctness and Completeness of the Analysis

• correctness means that every variable that is deemed defined
by the analysis is actually defined
(recall, in each transition system obtained by computing the
small-step semantics for a given input, when the execution
reach the given instruction or block)

• the analysis always returning x0 associating each block with the
empty set, i.e. deeming that no variable is defined, is a correct
(but useless) analysis

• completeness means that every variable that is actually
defined is deemed defined by the analysis

• no analysis can be correct and complete for some properties –
we must approximate

5



fixpointS

• our global update function gu defines correctness of the analysis
• every fixpoint (x̂ such that gu(x̂) = x̂) is correct, none is

complete
• the nearest fixpoint to a complete analysis is our best

approximation!
• the least fixpoint x̂min is smaller that the maximal fixpoint x̂max

x0 ⊆ x̂min ⊆ x̂max ⊆ actually defined variables

6



How to Compute Fixpoints – Recap

Note, we have a finite CPO with top ⊤ and bottom ⊥ (a finite
lattice), and gu is monotone (and thus complete).

Our CPO is of functions L ⟶ P(R) × P(R) (L and R finite)

• s1 ⊑ s2 if for any l ∈ L, X1 ⊆ X2 and Y1 ⊆ Y2 where
s1(l) = (X1, Y1) and s2(l) = (X2, Y2)

• ⊥ is the function associating every label l with (∅,∅)
• ⊤ is the function associating every label l with (R, R)

Fixpoints for
gu ∶ (L ⟶ P(R) × P(R)) ⟶ (L ⟶ P(R) × P(R))

Kleene’s Theorem: x̂min = ⨆n gun(⊥) x̂max =
d

n gun(⊤)

7



Exploiting Finiteness

Kleene’s Theorem: x̂min = ⨆n gun(⊥) x̂max =
d

n gun(⊤)

For x̂min we are actually computing the values

⊥, gu(⊥), gu(gu(⊥))... until we find gun(⊥) = gun+1(⊥) = x̂min

• we reach such a gun(⊥) because the CPO is finite
• we avoid computing ⨆n because:

• ⊥ ⊑ gu(⊥) by definition of ⊥
• gum(⊥) ⊑ gum+1(⊥) for every m by monotonicity, hence

⊥ ⊑ gu(⊥) ⊑ gu(gu(⊥)) . . . gun−1(⊥) ⊑ gun(⊥)

• x ⊔ x ′
= x ′ if x ⊑ x ′

Warning: this is because of our domain, does not hold in general
8



Defined Variables – Example

in:
skip
out:

in:
x ∶= 2
x < 0?
out:

in:
y ∶= x + 3

x ∶= y
out:

in:
out ∶= 1 − y

out:

in:
skip
out:

Procedure:
•
•
•
•
•

9



Defined Variables – Example

in:∅
skip
out:∅

in:∅
x ∶= 2
x < 0?
out:∅

in:∅
y ∶= x + 3

x ∶= y
out:∅

in:∅
out ∶= 1 − y

out:∅

in:∅
skip
out:∅

Procedure:
• We start with the ⊥ of our CPO
•
•
•
•

9



Defined Variables – Example

in:{in}
skip
out:∅

in:∅
x ∶= 2
x < 0?
out:{x}

in:∅
y ∶= x + 3

x ∶= y
out:{x , y}

in:∅
out ∶= 1 − y

out:{out}

in:∅
skip
out:∅

Procedure:
• We start with the ⊥ of our CPO
• We compute gu(⊥)
•
•
•

9



Defined Variables – Example

in:{in}
skip

out:{in}

in:∅
x ∶= 2
x < 0?
out:{x}

in:{x}
y ∶= x + 3

x ∶= y
out:{x , y}

in:{x}
out ∶= 1 − y

out:{out}

in:{out}
skip
out:∅

Procedure:
• We start with the ⊥ of our CPO
• We compute gu(⊥)
• Then gu(gu(⊥))
•
•

9



Defined Variables – Example

in:{in}
skip

out:{in}

in:∅
x ∶= 2
x < 0?
out:{x}

in:{x}
y ∶= x + 3

x ∶= y
out:{x , y}

in:{x}
out ∶= 1 − y
out:{x , out}

in:{out}
skip

out:{out}

Procedure:
• We start with the ⊥ of our CPO
• We compute gu(⊥)
• Then gu(gu(⊥))
• ...
•

9



Defined Variables – Example

in:{in}
skip

out:{in}

in:∅
x ∶= 2
x < 0?
out:{x}

in:{x}
y ∶= x + 3

x ∶= y
out:{x , y}

in:{x}
out ∶= 1 − y
out:{x , out}

in:{x , out}
skip

out:{out}

Procedure:
• We start with the ⊥ of our CPO
• We compute gu(⊥)
• Then gu(gu(⊥))
• ...
•

9



Defined Variables – Example

in:{in}
skip

out:{in}

in:∅
x ∶= 2
x < 0?
out:{x}

in:{x}
y ∶= x + 3

x ∶= y
out:{x , y}

in:{x}
out ∶= 1 − y
out:{x , out}

in:{x , out}
skip

out:{x , out}

Procedure:
• We start with the ⊥ of our CPO
• We compute gu(⊥)
• Then gu(gu(⊥))
• ...
• We reach a fixpoint, guaranteed to

be the minimal one!

9



Computing the Greatest Fixpoint

Kleene’s Theorem: x̂min = ⨆n gun(⊥) x̂max =
d

n gun(⊤)

For x̂max we compute

⊤, gu(⊤), gu(gu(⊤))... until we find gun(⊤) = gun+1(⊤) = x̂max

• we reach such a gun(⊤) because the CPO is finite
• we avoid computing

d
n because:

• gu(⊤) ⊑ ⊤ by definition of ⊤
• gum+1(⊤) ⊑ gum(⊤) for every m by monotonicity, hence

⊤ ⊒ gu(⊤) ⊒ gu(gu(⊤)) . . . gun−1(x) ⊒ gun(x)

• x ⊓ x ′
= x ′ if x ⊒ x ′

Warning: this is because of our domain, does not hold in general
10



Defined Variables – A better approximation

in:
skip
out:

in:
x ∶= 2
x < 0?
out:

in:
y ∶= x + 3

x ∶= y
out:

in:
out ∶= 1 − y

out:

in:
skip
out:

Procedure:
•
•
•
•
•

11



Defined Variables – A better approximation

in:{in, out, x , y}
skip

out:{in, out, x , y}

in:{in, out, x , y}
x ∶= 2
x < 0?

out:{in, out, x , y}

in:{in, out, x , y}
y ∶= x + 3

x ∶= y
out:{in, out, x , y}

in:{in, out, x , y}
out ∶= 1 − y

out:{in, out, x , y}

in:{in, out, x , y}
skip

out:{in, out, x , y}

Procedure:
• We start with the ⊤

of our CPO!
•
•
•
•

11



Defined Variables – A better approximation

in:{in}
skip

out:{in, out, x , y}

in:{in, out, x , y}
x ∶= 2
x < 0?

out:{in, out, x , y}

in:{in, out, x , y}
y ∶= x + 3

x ∶= y
out:{in, out, x , y}

in:{in, out, x , y}
out ∶= 1 − y

out:{in, out, x , y}

in:{in, out, x , y}
skip

out:{in, out, x , y}

Procedure:
• We start with the ⊤

of our CPO!
• We compute gu(⊤)
•
•
•

11



Defined Variables – A better approximation

in:{in}
skip

out:{in}

in:{in, out, x , y}
x ∶= 2
x < 0?

out:{in, out, x , y}

in:{in, out, x , y}
y ∶= x + 3

x ∶= y
out:{in, out, x , y}

in:{in, out, x , y}
out ∶= 1 − y

out:{in, out, x , y}

in:{in, out, x , y}
skip

out:{in, out, x , y}

Procedure:
• We start with the ⊤

of our CPO!
• We compute gu(⊤)
• Then gu(gu(⊤))
•
•

11



Defined Variables – A better approximation

in:{in}
skip

out:{in}

in:{in}
x ∶= 2
x < 0?

out:{in, out, x , y}

in:{in, out, x , y}
y ∶= x + 3

x ∶= y
out:{in, out, x , y}

in:{in, out, x , y}
out ∶= 1 − y

out:{in, out, x , y}

in:{in, out, x , y}
skip

out:{in, out, x , y}

Procedure:
• We start with the ⊤

of our CPO!
• We compute gu(⊤)
• Then gu(gu(⊤))
• ...
•

11



Defined Variables – A better approximation

in:{in}
skip

out:{in}

in:{in}
x ∶= 2
x < 0?

out:{in, x}

in:{in, out, x , y}
y ∶= x + 3

x ∶= y
out:{in, out, x , y}

in:{in, out, x , y}
out ∶= 1 − y

out:{in, out, x , y}

in:{in, out, x , y}
skip

out:{in, out, x , y}

Procedure:
• We start with the ⊤

of our CPO!
• We compute gu(⊤)
• Then gu(gu(⊤))
• ...
•

11



Defined Variables – A better approximation

in:{in}
skip

out:{in}

in:{in}
x ∶= 2
x < 0?

out:{in, x}

in:{in, x}
y ∶= x + 3

x ∶= y
out:{in, out, x , y}

in:{in, x}
out ∶= 1 − y

out:{in, out, x , y}

in:{in, out, x , y}
skip

out:{in, out, x , y}

Procedure:
• We start with the ⊤

of our CPO!
• We compute gu(⊤)
• Then gu(gu(⊤))
• ...
•

11



Defined Variables – A better approximation

in:{in}
skip

out:{in}

in:{in}
x ∶= 2
x < 0?

out:{in, x}

in:{in, x}
y ∶= x + 3

x ∶= y
out:{in, x , y}

in:{in, x}
out ∶= 1 − y

out:{in, out, x}

in:{in, out, x , y}
skip

out:{in, out, x , y}

Procedure:
• We start with the ⊤

of our CPO!
• We compute gu(⊤)
• Then gu(gu(⊤))
• ...
•

11



Defined Variables – A better approximation

in:{in}
skip

out:{in}

in:{in}
x ∶= 2
x < 0?

out:{in, x}

in:{in, x}
y ∶= x + 3

x ∶= y
out:{in, x , y}

in:{in, x}
out ∶= 1 − y

out:{in, out, x}

in:{in, out, x}
skip

out:{in, out, x , y}

Procedure:
• We start with the ⊤

of our CPO!
• We compute gu(⊤)
• Then gu(gu(⊤))
• ...
•

11



Defined Variables – A better approximation

in:{in}
skip

out:{in}

in:{in}
x ∶= 2
x < 0?

out:{in, x}

in:{in, x}
y ∶= x + 3

x ∶= y
out:{in, x , y}

in:{in, x}
out ∶= 1 − y

out:{in, out, x}

in:{in, out, x}
skip

out:{in, out, x}

Procedure:
• We start with the ⊤

of our CPO!
• We compute gu(⊤)
• Then gu(gu(⊤))
• ...
• We reach a fixpoint,

guaranteed to be the
maximal one!

11



Why Greatest Fixpoint for Defined Variables

Safety defines when an analysis is acceptable for us:

• Definite Variables is a ”definite” analysis ⟶ safety is
correctness

• we are happy only if all variables deemed defined by the analysis
are actually defined

• some of them may be deemed not defined incorrectly, but that
is acceptable

• (sometimes we will refuse to execute programs that are correct
but we will never execute a faulty one)

• all fixpoints are correct (safe), we want the maximal which is
the nearest to completeness

12



Why Least Fixpoint for Live Variables

Safety defines when an analysis is acceptable for us:

• Live Variables is a ”possible” analysis ⟶ safety is
completeness

• we are happy only if all variables that are actually live are
deemed live by the analysis

• some of them may be deemed live incorrectly, but that is
acceptable

• (acceptable because we use the information for guiding
optimization: we will treat variables deemed live as still
important for the program. Even if sometimes they are not
really important, the optimization still preserves the semantics
of the program)

• All fixpoints are complete (safe), we want the minimal which is
the nearest to correctness

13



Project Fragment

• Write a function for checking that no register is ever used
before being initialized with some value in a MiniRISC CFG
(mind the initial register in which is always initialized, and out
which is always used – if you prefer, you can perform this task
on the MiniImp CFG of the program)

• Edit: better to use the greatest fixpoint, but the least is fine

14


