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Recap: Defined Variables

Computed Value: Set of defined variables (Registers for the IR)

Analysis State: Associate a pair of values to each block (in and
out)

Local Update: update the value associated with a block

• From the block itself: variables defined at the exit of the block
are those defined when entering plus the ones defined by the
block’s commands

• From a block to the others: variables defined at beginning of a
block are those defined in every preceding block

Global Update: all local updates until fixpoint

Then check that each instruction uses variables that are
defined either at the beginning of the block or in the block
before the current instruction. 2



Simplest: Defined Variables (a forward analysis)

Computed Value: P(R)

Analysis State:

• Formally dv ∶ L ⟶ P(R) × P(R)
• More handy dvin ∶ L ⟶ P(R) and dvout ∶ L ⟶ P(R)

Local Update:

lub(dvout(L)) = dvin(L) ∪ {variables defined in L}

lucf (dvin(L)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{in (register for the input)} if L is initial
⋂(L′,L)∈CFG edges dvout(L′) otherwise

Global Update: gu(dvin)(L) = lucf (dvin(L)) and
gu(dvout)(L) = lub(dvout(L)) until fixpoint

Then check each instruction in blocks.
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Defined Variables – Example

in:
skip
out:

in:
x ∶= 2
x < 0?
out:

in:
y ∶= x + 3

x ∶= y
out:

in:
out ∶= 1 − y

out:

in:
skip
out:

• The variable y in
out ∶= y − 1 is undefined!

• Notice that the analysis is
very coarse grained, we
can do better!
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in:{in}
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in:∅
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Recall: Correctness and Completeness of the Analysis

• correctness means that every variable that is deemed defined
by the analysis is actually defined
(recall, in each transition system obtained by computing the
small-step semantics for a given input, when the execution
reach the given instruction or block)

• the analysis always returning x0 associating each block with the
empty set, i.e. deeming that no variable is defined, is a correct
(but useless) analysis

• completeness means that every variable that is actually
defined is deemed defined by the analysis

• no analysis can be correct and complete for some properties –
we must approximate
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fixpointS

• our global update function gu defines correctness of the analysis
• every fixpoint (x̂ such that gu(x̂) = x̂) is correct, none is

complete
• the nearest fixpoint to a complete analysis is our best

approximation!
• the least fixpoint x̂min is smaller that the maximal fixpoint x̂max

x0 ⊆ x̂min ⊆ x̂max ⊆ actually defined variables

6



How to Compute Fixpoints – Recap

Note, we have a finite CPO with top ⊤ and bottom ⊥ (a finite
lattice), and gu is monotone (and thus complete).

Our CPO is of functions L ⟶ P(R) × P(R) (L and R finite)

• s1 ⊑ s2 if for any l ∈ L, X1 ⊆ X2 and Y1 ⊆ Y2 where
s1(l) = (X1, Y1) and s2(l) = (X2, Y2)

• ⊥ is the function associating every label l with (∅,∅)
• ⊤ is the function associating every label l with (R, R)

Fixpoints for
gu ∶ (L ⟶ P(R) × P(R)) ⟶ (L ⟶ P(R) × P(R))

Kleene’s Theorem: x̂min = ⨆n gun(⊥) x̂max =
d

n gun(⊤)
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Exploiting Finiteness

Kleene’s Theorem: x̂min = ⨆n gun(⊥) x̂max =
d

n gun(⊤)

For x̂min we are actually computing the values

⊥, gu(⊥), gu(gu(⊥))... until we find gun(⊥) = gun+1(⊥) = x̂min

• we reach such a gun(⊥) because the CPO is finite
• we avoid computing ⨆n because:

• ⊥ ⊑ gu(⊥) by definition of ⊥
• gum(⊥) ⊑ gum+1(⊥) for every m by monotonicity, hence

⊥ ⊑ gu(⊥) ⊑ gu(gu(⊥)) . . . gun−1(⊥) ⊑ gun(⊥)

• x ⊔ x ′
= x ′ if x ⊑ x ′

Warning: this is because of our domain, does not hold in general
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Defined Variables – Example

in:
skip
out:

in:
x ∶= 2
x < 0?
out:

in:
y ∶= x + 3

x ∶= y
out:

in:
out ∶= 1 − y

out:

in:
skip
out:

Procedure:
•
•
•
•
•
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Defined Variables – Example
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y ∶= x + 3

x ∶= y
out:{x , y}
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Procedure:
• We start with the ⊥ of our CPO
• We compute gu(⊥)
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• ...
• We reach a fixpoint, guaranteed to

be the minimal one!
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Computing the Greatest Fixpoint

Kleene’s Theorem: x̂min = ⨆n gun(⊥) x̂max =
d

n gun(⊤)

For x̂max we compute

⊤, gu(⊤), gu(gu(⊤))... until we find gun(⊤) = gun+1(⊤) = x̂max

• we reach such a gun(⊤) because the CPO is finite
• we avoid computing

d
n because:

• gu(⊤) ⊑ ⊤ by definition of ⊤
• gum+1(⊤) ⊑ gum(⊤) for every m by monotonicity, hence

⊤ ⊒ gu(⊤) ⊒ gu(gu(⊤)) . . . gun−1(x) ⊒ gun(x)

• x ⊓ x ′
= x ′ if x ⊒ x ′

Warning: this is because of our domain, does not hold in general
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Defined Variables – A better approximation

in:
skip
out:

in:
x ∶= 2
x < 0?
out:

in:
y ∶= x + 3

x ∶= y
out:

in:
out ∶= 1 − y

out:

in:
skip
out:

Procedure:
•
•
•
•
•
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Defined Variables – A better approximation

in:{in, out, x , y}
skip

out:{in, out, x , y}

in:{in, out, x , y}
x ∶= 2
x < 0?

out:{in, out, x , y}

in:{in, out, x , y}
y ∶= x + 3

x ∶= y
out:{in, out, x , y}

in:{in, out, x , y}
out ∶= 1 − y

out:{in, out, x , y}

in:{in, out, x , y}
skip

out:{in, out, x , y}

Procedure:
• We start with the ⊤

of our CPO!
•
•
•
•
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Defined Variables – A better approximation

in:{in}
skip

out:{in}

in:{in}
x ∶= 2
x < 0?

out:{in, x}

in:{in, x}
y ∶= x + 3

x ∶= y
out:{in, x , y}

in:{in, x}
out ∶= 1 − y

out:{in, out, x}
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skip
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Procedure:
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of our CPO!
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Defined Variables – A better approximation

in:{in}
skip

out:{in}

in:{in}
x ∶= 2
x < 0?

out:{in, x}

in:{in, x}
y ∶= x + 3

x ∶= y
out:{in, x , y}

in:{in, x}
out ∶= 1 − y

out:{in, out, x}

in:{in, out, x}
skip

out:{in, out, x}

Procedure:
• We start with the ⊤

of our CPO!
• We compute gu(⊤)
• Then gu(gu(⊤))
• ...
• We reach a fixpoint,

guaranteed to be the
maximal one!
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Why Greatest Fixpoint for Defined Variables

Safety defines when an analysis is acceptable for us:

• Definite Variables is a ”definite” analysis ⟶ safety is
correctness

• we are happy only if all variables deemed defined by the analysis
are actually defined

• some of them may be deemed not defined incorrectly, but that
is acceptable

• (sometimes we will refuse to execute programs that are correct
but we will never execute a faulty one)

• all fixpoints are correct (safe), we want the maximal which is
the nearest to completeness
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Why Least Fixpoint for Live Variables

Safety defines when an analysis is acceptable for us:

• Live Variables is a ”possible” analysis ⟶ safety is
completeness

• we are happy only if all variables that are actually live are
deemed live by the analysis

• some of them may be deemed live incorrectly, but that is
acceptable

• (acceptable because we use the information for guiding
optimization: we will treat variables deemed live as still
important for the program. Even if sometimes they are not
really important, the optimization still preserves the semantics
of the program)

• All fixpoints are complete (safe), we want the minimal which is
the nearest to correctness
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Project Fragment

• Write a function for checking that no register is ever used
before being initialized with some value in a MiniRISC CFG
(mind the initial register in which is always initialized, and out
which is always used – if you prefer, you can perform this task
on the MiniImp CFG of the program)

• Edit: better to use the greatest fixpoint, but the least is fine
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