
A Quick Introduction to OCaml

Lorenzo Ceragioli
October 1, 2024

IMT Lucca

1

Functional Languages

• Programs are constructed by applying and composing functions
• Functional Languages are declarative: function definitions are

expressions (mapping values to values)
• Heavily based on expressions
• Roughly abstracting away from the memory
• Functions are as every other value: first-class citizens
• In contrast to imperative languages where

• Expressions are only a small part of the constructs
• The programmer defines and uses commands for updating the

memory

2

Pure Functions

• In a pure functional language, functions are mathematical
functions (i.e. same input implies same output)

• Functional languages are often enriched with imperative
features, i.e. not all functions are mathematical functions.

• For example for generating random numbers
• We will mostly deal with the pure fragment of OCaml, please

avoid imperative features unless they are really needed!

3

How to Program in a Pure Functional Languages

• Use recursion instead of loops
• Recall that functions are first class citizens: you can have them

as input and outputs of your functions
• Lots of library functions are like this: use them!
• No assignments implies no value can be updated: you usually

create a new value each time
• The compiler is smart enough to avoid copying the data

structure and just updates it if it is legal

4

OCaml Basics

REPL - utop

OCaml Read Evaluate Print Loop
1 user@machine : ˜ $ utop
2 # 5 + 4 ; ; (∗ e x p r e s s i o n ∗)
3 − : i n t = 9 (∗ i t s type and v a l u e ∗)
4
5 # l e t s = ” h e l l o wor ld ” ; ; (∗ e x p r e s s i o n d e f i n i t i o n ∗)
6 v a l s : s t r i n g = ” h e l l o wor ld ”
7 (∗ i t s name , type and v a l u e ∗)
8
9 # p r i n t e n d l i n e s ; ; (∗ command ∗)

10 h e l l o wor ld (∗ e x e c u t i n g i t ∗)
11 − : u n i t = () (∗ r e t u r n e d type and v a l u e ∗)

5

Hello World and Comments

The program helloworld.ml:
1 l e t () = p r i n t e n d l i n e ” He l l o , World ! ”
2 (∗ t h i s i s a m u l t i l i n e
3 comment ∗)

Compiling it:
$ ocamlc −o main main . ml

Executing it:
$. / main
He l l o , World !

... but it is simpler to use dune!

6

Some basic types ...

Type Name Values
Integer numbers int 1, 2, 3, . . .
Boolean bool true, false
String string "a", "b", "aa", . . .
Unit type unit ()

Note: There is no implicit conversion, e.g. from int to string

7

And operators

Integer arithmetic +, -, *, /, mod
Boolean operators not, &&, ||
Structural Equivalence =, <>
Physical Equivalence ==, != ← avoid this
Comparison <, >, <=, >=
String append ˆ

8

If-then-else

if expr1 then expr2 else expr3

Note:

• Choose between expressions, not commands or blocks
• The else case is mandatory!
• expr1 must evaluate to a boolean (strongly inferred types!)
• expr2 and expr3 must have the same (inferred) type

1 # i f ”a” = ”a” then 42 e l s e 1 7 ; ;
2 − : i n t = 42

9

let and let ... in

Defining names globally ∶ let name = expr
Defining names locally ∶ let name = expr1 in expr2

1 # l e t a =
2 l e t b = ” c i a o ” i n
3 i f b <> ” c i a o ” then 42 e l s e 1 7 ; ;
4 v a l a : i n t = 17
5
6 # p r i n t i n t a ; ;
7 17
8 − : u n i t = ()
9

10 # p r i n t s t r i n g b ; ;
11 E r r o r : Unbound va lue x

10

let is not an assignment

Note: you can redefine the value of a name based on the previous
name, but it is not an assignment as in imperative languages

1 # l e t a = 4 ; ;
2
3 # l e t g e t a x = a ; ;
4
5 # l e t a = 4 + a ; ;
6 v a l a : i n t = 8
7
8 # g e t a 3 ; ;
9 − : i n t = 4

The name a is really just a name for a value!

Subsequent definitions update the names, not the values!

11

Simple Functions (finally having some fun!)

Functions are values in OCaml, i.e. fully evaluated expressions
1 # fun x −> x + 1 ; ;
2 − : i n t −> i n t = <fun> (∗ i n f e r r e d type (no code) ∗)
3
4 # (fun x −> x + 1) 5 ; ; (∗ fun a p p l i c a t i o n ∗)
5 −: i n t = 6
6
7 # l e t i n c = fun x −> x + 1 ; ; (∗ naming a f u n c t i o n ∗)
8 v a l i n c : i n t −> i n t = <fun>
9

10 # l e t i n c x = x + 1 ; ; (∗ same as b e f o r e ∗)
11 v a l i n c : i n t −> i n t = <fun>

12

Mind the definition order!

Functions are defined in order
1 # l e t i n c x = (dec x) + 2
2 l e t dec x = x − 1 ; ;
3 E r r o r : Unbound va lue dec
4
5 # l e t dec x = x − 1
6 l e t i n c x = (dec x) + 2 ; ;
7 v a l dec : i n t −> i n t = <fun>
8 v a l i n c : i n t −> i n t = <fun>

13

Polymorphic Functions

In OCaml types are inferred, what if multiple types are possible?
1 # l e t i d x = x
2 v a l i d : ’ a −> ’ a = <fun>

• The identity function works with every possible type
• ’a is a type variable, it stands for any type
• Note that the return type is also any type, but it coincides with

the input type
• We will see polymorphic types that are not ”any type”

14

Recursive Functions

Really just use the rec keyword and you can use the function name
inside the function code

1 # l e t rec bang x = (∗ naming the f u n c t i o n ∗)
2 i f x = 0 then 1 (∗ base ca se ∗)
3 e l s e x ∗ (bang (x−1)) ; ; (∗ r e c u r s i o n ∗)
4 v a l bang : i n t −> i n t = <fun>

Mind that recursive functions may diverge, e.g. bang -1

15

Mutually Recursive Functions

Recall: functions must be defined before they are used in the body
of other functions

If you want f to be defined in terms of g and vice-versa, use rec
and the and keywords

1 # l e t rec f x = (∗ d e f i n e s f ∗)
2 i f x < 1 then t r u e
3 e l s e g (x−1) (∗ u s e s g ∗)
4 and g x = (∗ d e f i n e s g ∗)
5 i f x < 1 then f a l s e
6 e l s e f (x−1) ; ; (∗ u s e s f ∗)
7 v a l f : i n t −> boo l = <fun>
8 v a l g : i n t −> boo l = <fun>

What do f and g compute?

16

Simple modules: .ml and .mli files

Idea: Split the code into modules and to hide the implementation.

The interface define the visible values promised by the module
modulename.mli ← the interface
v a l i n c : i n t −> i n t

The implementation must satisfy the promises
modulename.ml ← the implementation
l e t dec x = x − 1 (∗ not v i s i b l e ∗)
l e t i n c x = (dec x) + 2 (∗ v i s i b l e ∗)

Accessing the module’s function from outside
1 l e t two = Modulename . i n c 1

17

Compiling Modules (better to use dune)

modulename.mli ← the interface
v a l i n c : i n t −> i n t

modulename.ml ← the implementation
l e t dec x = x − 1 (∗ not v i s i b l e ∗)
l e t i n c x = (dec x) + 2 (∗ v i s i b l e ∗)

main.ml ← the program
l e t () = p r i n t i n t Modulename . i n c 1

$ ocamlc −c modulename . ml <−− (c r e a t e s modulename . cmi)
$ ocamlc −c modulename . ml <−− (c r e a t e s modulename . cmo)
$ ocamlc −c main . ml <−− (c r e a t e s main . cmo)
$ ocamlc −o ex modulename . cmo main . cmo <−− (c r e a t e s ex)
$. / ex
2

18

Types

Pairs

Ordered pairs of elements of possibly different types
1 # l e t a = (4 , ” c i a o ”) ; ;
2 v a l a : i n t ∗ s t r i n g = (4 , ” c i a o ”)
3
4 # f s t a ; ;
5 − : i n t = 4
6
7 # snd a ; ;
8 − : s t r i n g = ” c i a o ”
9

10 # f s t ; ;
11 − : ’ a ∗ ’ b −> ’ a = <fun>
12
13 # l e t sum (x , y) = x + y ; ;
14 v a l sum : i n t ∗ i n t −> i n t = <fun>

19

Tuples

Ordered collections of elements of possibly different types (pairs are
a special case)

1 # l e t b = (1 , 5 , (6 , t r u e)) ; ;
2 v a l b : i n t ∗ i n t ∗ (i n t ∗ boo l) = (1 , 5 , (6 , t r u e))
3
4 # f s t b ; ;
5 E r r o r : Th i s e x p r e s s i o n has type i n t ∗ i n t ∗ (i n t ∗ boo l)
6 but an e x p r e s s i o n was expec t ed of type ’ a ∗ ’ b
7
8 # f s t ; ; (∗ f s t and snd on l y d e f i n e d on p a i r s ∗)
9 − : ’ a ∗ ’ b −> ’ a = <fun>

Note: the type depends on the length of the tuple!

20

Lists

1 # [] ; ; (∗ Empty l i s t . . . ∗)
2 − : ’ a l i s t = [] (∗ . . . i s po l ymorph i c ! ∗)
3
4 # [1] ; ;
5 − : i n t l i s t = [1]
6
7 # [1 ; 2 ; 3 ; 4 ; 5 ; 6] ; ;
8 − : i n t l i s t = [1 ; 2 ; 3 ; 4 ; 5 ; 6]
9

10 # [”a” ; 4] ; ;
11 E r r o r : Th i s e x p r e s s i o n has type i n t but an e x p r e s s i o n
12 was expec t ed of type s t r i n g

Note: all elements must be of the same type

Note: the type do NOT depend on the length

21

Lists/Tuple confusion

1 # [(4 , 5) ; (6 , 7) ; (8 , 9)] ; ;
2 − : (i n t ∗ i n t) l i s t = [(4 , 5) ; (6 , 7) ; (8 , 9)]
3
4 # [(4 , 5)] ; ;
5 − : (i n t ∗ i n t) l i s t = [(4 , 5)]
6
7 # [4 , 5] ; ;
8 − : (i n t ∗ i n t) l i s t = [(4 , 5)]
9

10 # 4 , 5 ; ; (∗ because p a r e n t h e s i s a r e o p t i o n a l ! ∗)
11 − : i n t ∗ i n t = (4 , 5)
12
13 # [4 , 5 , 6 , 7] ; ;
14 − : (i n t ∗ i n t ∗ i n t ∗ i n t) l i s t = [(4 , 5 , 6 , 7)]

Note: use semicolon for lists!

22

Operations on Lists

Operation Example Note
Cons 4::[1;2;3] = [4;1;2;3] fast
Concat [4;5;6]@[1;2;3] = [4;5;6;1;2;3] O(n)
Head List.hd [4;5;6] = 4 fast
Tail List.tl [4;5;6] = [5;6] fast
Reverse List.rev [4;5;6] = [6;5;4] O(n)

Note: List is the module of lists, several useful functions other
than hd, tl, and rev.

23

User Defined Types

• Users can define their own types with the type construct
• Types can be recursive (no need for rec keyword)
• Polymorphic types defined through type parameters
• Some examples follow

24

Records

Idea: like tuples but with names
1 # type p o i n t = { x : i n t ; y : i n t ; z : i n t } ; ;
2 type p o i n t = { x : i n t ; y : i n t ; z : i n t ; }
3
4 # l e t o r i g i n = { x = 0 ; y = 0 ; z = 0 } ; ;
5 v a l o r i g i n : p o i n t = {x = 0 ; y = 0 ; z = 0}
6
7 (∗ a new p o i n t w i th some changed v a l u e s ∗)
8 # l e t p = { o r i g i n with x = 10 ; y = 5 } ; ;
9 v a l p : p o i n t = {x = 10 ; y = 5 ; z = 0}

10
11 # p . x ; ;
12 − : i n t = 10

Note: must be explicitly defined as types!

25

Variants

Elements can ne of either of the given (named) shapes.
1 type qua l temp = Hot | Cold | F ine
2
3 type temp =
4 P r e c i s e of i n t
5 | Approx of qua l temp

• qual temp is an enumeration of atomic values
• temp is either a qual temp (tagged as Approx) or a precise int

for the degrees (tagged as Precise)
• Tags must be globally unique and start with a capital letter

26

Recursive Variants

Arithmetic expressions
1 type a exp =
2 Aval of i n t
3 | Plus of a exp ∗ a exp
4 | Minus of a exp ∗ a exp
5 | Times of a exp ∗ a exp

• You can define exp in terms of exp itself
• This is useful for defining the abstract syntax trees of

programming languages

27

Mutually Recursive Variants

Arithmetic and boolean expressions
1 type a exp =
2 Aval of i n t
3 | Plus of a exp ∗ a exp
4 | Minus of a exp ∗ a exp
5 | Times of a exp ∗ a exp
6
7 type b exp =
8 Bval of boo l
9 | And of b exp ∗ b exp

10 | Or of b exp ∗ b exp
11 | Not of b exp
12 | Minor of a exp ∗ a exp

• Boolean expressions defined in terms of arithmetic expressions
• What if we want a boolean to be considered also an integer

(e.g. false = 0 and true = 1 as in C)? 28

Mutually Recursive Variants

Arithmetic and boolean expressions
1 type a exp =
2 Aval of i n t
3 | Plus of a exp ∗ a exp
4 | Minus of a exp ∗ a exp
5 | Times of a exp ∗ a exp
6 | Of boo l of bexp
7 and b exp =
8 Bval of boo l
9 | And of b exp ∗ b exp

10 | Or of b exp ∗ b exp
11 | Not of b exp
12 | Minor of a exp ∗ a exp

Note: we use and as in mutually recursive functions

29

Polymorphic Variants

Like for lists, we can define polymorphic types through type
parameters

1 type ’ a b t r e e =
2 Lea f of ’ a
3 | Node of ’ a b t r e e ∗ ’ a b t r e e
4
5 l e t t r e e 1 =
6 Node (Lea f 1 ,
7 Node (Lea f 2 , Lea f 3))
8 (∗ i s o f type i n t t r e e ∗)
9

10 l e t t r e e 2 =
11 Node (Lea f ”a” ,
12 Node (Lea f ”b” , Lea f ” c ”))
13 (∗ i s o f type s t r i n g t r e e ∗)

30

Pattern Matching

Pattern matching is a form of branching similar to switch case

1 l e t f x =
2 match x with
3 | 0
4 | 1 −> ” one or l e s s ”
5 | 2
6 | 3 −> ” two or t h r e e ”
7 | −> ” f o u r or more”

Note: the wildcard match everything

31

Pattern Matching Variants

Pattern matching can

• branch based on the syntactic structure (i.e. how the value is
build according to the type definition)

• bind the values of subterms to local names

1 l e t rec c o u n t l e a v e s x =
2 match x with
3 | Lea f −> 1
4 (∗ I don ’ t c a r e the v a l u e i n s i d e the l e a f ∗)
5 | Node (x , y) −>
6 (∗ x and y a r e l o c a l names f o r the subte rms ∗)
7 (c o u n t l e a v e s x) + (c o u n t l e a v e s y)

Note: the compiler will complain if some case is missing

32

Function Syntax

Pattern matching can be used implicitly with the keyword function

1 l e t rec c o u n t l e a v e s x =
2 match x with
3 | Lea f −> 1
4 | Node (x , y) −>
5 (c o u n t l e a v e s x) + (c o u n t l e a v e s y)

Is the same as
1 l e t rec c o u n t l e a v e s = f unct ion
2 | Lea f −> 1
3 | Node (x , y) −>
4 (c o u n t l e a v e s x) + (c o u n t l e a v e s y)

33

Pattern Matching Variants: as and when

Computing a list of leaves containing a value smaller then 10 (the
type of the tree is automatically inferred)

1 l e t rec l e s s t e n l e a v e s x =
2 match x with
3 | Lea f n as l e a f when n < 10 −> [l e a f]
4 (∗ n i s the name o f the subterm ∗)
5 (∗ l e a f i s the name o f the whole term ∗)
6 (∗ therms a r e matched on l y when n < 10 ∗)
7 | Lea f −> []
8 (∗ a l l the o t h e r k ind o f l e a v e s , i . e . n >= 10 ∗)
9 | Node (x , y) −>

10 (l e s s t e n l e a v e s x) @ (l e s s t e n l e a v e s y)

Note: sometimes they make your code a lot easier to read!

34

Pattern Matching with list

The cons operator :: is not actually an operator, it is a type
constructor!

1 # (@) ; ;
2 − : ’ a l i s t −> ’ a l i s t −> ’ a l i s t = <fun>
3
4 # (: :) ; ;
5 E r r o r : The c o n s t r u c t o r : : e x p e c t s 2 argument (s) ,
6 but i s a p p l i e d he r e to 0 argument (s)

Hence, we can use it for pattern matching!

35

Pattern Matching with list

Weird length of a list
1 l e t rec w e i r d l e n g t h l s =
2 match l s with
3 | [] −> ” z e r o ”
4 | [;] −> ” two”
5 | : : l s ’ −> ” one p l u s ” ˆ (w e i r d l e n g t h l s ’)
6
7 # w e i r d l e n g t h [0 ; 0 ; 0 ; 0 ; 0 ; 0] ; ;
8 − : s t r i n g = ” one p l u s one p l u s one p l u s one p l u s two”
9

10 # w e i r d l e n g t h [0] ; ;
11 − : s t r i n g = ” one p l u s z e r o

36

Exercises

Exercise 1. Write a pair of functions for evaluating arithmetical
and boolean expressions without the Of bool case

Exercise 2. Same but with the Of bool case

Exercise 3. Write a type for general polymorphic trees (i.e. with
any number of children)

Exercise 4. Write a function that packs consecutive duplicates of
the input list elements into sublists.

For example, the function over [0;0;2;3;3;3;0;2] must return
[[0;0];[2];[3;3;3];[0];[2]]

37

More on Functions

Curried Functions

• Addition usually takes two parameters:
1 l e t sum (x , y) = x + y
2 v a l sum : i n t ∗ i n t −> i n t

• In OCaml, one usually writes the curried version (also the kind
of functions that you will find in the libraries!)

1 l e t sum x y = x + y
2 v a l sum : i n t −> i n t −> i n t = <fun>

• the latter is the same as writing
1 l e t sum x = fun y −> x + y
2 v a l sum : i n t −> i n t −> i n t = <fun>

38

Curried Functions

• Why curried functions? For allowing partial application!
1 l e t addtwo =
2 l e t sum x y = x + y
3 i n sum 2
4 v a l sum : i n t −> i n t = <fun>
5
6 # addtwo 3
7 − : i n t = 5

• Functions are first class citizens in OCaml, hence they can be
the returned value of a function

• A function over functions is called an higher order function!

39

Higher Order Functions

Functions as inputs and/or outputs
1 l e t t w i c e f x =
2 f (f x)
3 v a l t w i c e : (’ a −> ’ a) −> ’ a −> ’ a = <fun>
4
5 # t w i c e not ; ;
6 − : boo l −> boo l = <fun>
7
8 l e t f u n p a i r f g =
9 fun (x , y) −> (f x , g y)

10 v a l f u n p a i r : (’ a −> ’ b) −> (’ c −> ’ d)
11 −> ’ a ∗ ’ c −> ’ b ∗ ’ d = <fun>
12
13 # f u n p a i r not addtwo ; ;
14 − : boo l ∗ i n t −> boo l ∗ i n t = <fun>

40

Useful Functions in the List module

map : (’a -> ’b) -> ’a list -> ’b list

map f ls applies the function f to each element of a list to
produce another list.

1 # L i s t . map (fun x −> x + 2) [0 ; 2 ; 4 ; 6 ; 8] ; ;
2 − : i n t l i s t = [2 ; 4 ; 6 ; 8 ; 10]

Note: if you need the index too, use List.mapi

1 # L i s t . mapi (fun i x −> i + x) [0 ; 2 ; 4 ; 6 ; 8] ; ;
2 (∗ same as L i s t . mapi (+) [0 ; 2 ; 4 ; 6 ; 8] ; ; ∗)
3
4 − : i n t l i s t = [0 ; 3 ; 6 ; 9 ; 12]

41

Useful Functions in the List module

filter : (’a -> bool) -> ’a list -> ’a list

filter f ls returns a list containing the elements of ls that
satisfies the function f (preserving the order).

1 # L i s t . f i l t e r (fun x −> x mod 2 = 0) [0 ; 3 ; 4 ; 6 ; 9] ; ;
2 − : i n t l i s t = [0 ; 4 ; 6]

42

Useful Functions in the List module

fold left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

fold left f initial ls uses each element of the list to update
a value initially instantiated as initial; the value is updated using
the given function f; the result is the one obtained when all the list
has been used.

It is the same as f (...(f (f initial b1) b2)...) bn when
ls = [b1; b2 ; ...; bn].

1 # L i s t . f o l d l e f t (fun acc x −> acc + x) 0 [0 ; 1 ; 2 ; 3 ; 4] ; ;
2 − : i n t = 10

43

Different Styles of Combining Functions

With explicit parameters
1 l e t sum even l s =
2 L i s t . f o l d l e f t
3 (fun acc x −> acc + x)
4 0
5 (L i s t . f i l t e r
6 (fun x −> x mod 2 = 0)
7 l s)

44

Different Styles of Combining Functions

With intermediate results
1 l e t sum even l s =
2 l e t even =
3 L i s t . f i l t e r
4 (fun x −> x mod 2 = 0)
5 l s
6 i n L i s t . f o l d l e f t
7 (fun acc x −> acc + x)
8 0
9 even

45

Different Styles of Combining Functions

The (almost) mathematician composition: with the @@
operator

1 l e t sum even l s =
2 L i s t . f o l d l e f t
3 (fun acc x −> acc + x)
4 0
5 @@
6 L i s t . f i l t e r
7 (fun x −> x mod 2 = 0)
8 @@
9 l s

Note: @@ stands for function application, because of associativity
behaves almost as a function composition (f ◦ g)x = f (g x), but
the input ls must be given

46

Different Styles of Combining Functions

The (almost) computer scientist composition: with the |>
operator

1 l e t sum even l s =
2 l s
3 |>
4 L i s t . f i l t e r
5 (fun x −> x mod 2 = 0)
6 |>
7 L i s t . f o l d l e f t
8 (fun acc x −> acc + x)
9 0

Note: |> stands for function pipelining, because of associativity
behaves almost as a function composition (f ; g)x = g(f x), but the
input ls must be given

47

Exercises

Exercise 5. Write a function that given two functions f and g
returns a function over pairs defined as f on the first element and g
on the second element.

Exercise 6. Write a function that given a list of integers l1 returns
a list l2 of the same length such that each element of l2 in position i
is the sum of all the elements in l1 with position less or equal to i.

E.g. The function over [3,6,10,2] returns [3,9,19,21]

Exercise 7. Define a type for Finite State Automata and a function
for checking if a given string is inside the recognized language.

48

Advanced Features

Ref

OCaml’s imperative features (but you should use pure functions)
1 l e t count = r e f 0 (∗ o f type i n t r e f ∗)
2
3 l e t g e t i n c () = (∗ o f type u n i t −> i n t ∗)
4 count := ! count + 1 ;
5 ! count
6
7 # g e t i n c () ; ;
8 − : i n t = 1
9 # g e t i n c () ; ;

10 − : i n t = 2
11 # count ; ;
12 − : i n t r e f = { c o n t e n t s = 2}
13 # ! count ; ;
14 − : i n t = 2

Note: also mutable record fields, arrays, for and while loops.
49

Nested Modules

You can define a nested module inside a file (modulename.ml), i.e.
inside the module Modulename itself.

1 module Username : s i g (∗ i n t e r f a c e o f the module ∗)
2 type t
3 v a l o f s t r i n g : s t r i n g −> t
4 v a l t o s t r i n g : t −> s t r i n g
5 end = s t r u c t (∗ imp l ementa t i on o f the module ∗)
6 type t = s t r i n g
7 l e t o f s t r i n g x = x
8 l e t t o s t r i n g x = x
9 end

50

Module Type and Modules

You can split the signature (interface) and its implementation

• Code hiding
• E.g. you can put the signature of Username in the interface of

the outmost module modulename.mli

1 module type ID = s i g
2 type t
3 v a l o f s t r i n g : s t r i n g −> t
4 v a l t o s t r i n g : t −> s t r i n g
5 end
6
7 module S t r i n g i d : ID = s t r u c t
8 type t = s t r i n g
9 l e t o f s t r i n g x = x

10 l e t t o s t r i n g x = x
11 end

51

Repetita: Accessing Module Values and Types

We can either qualify the names
1 module type ID = s i g
2 type t
3 v a l o f s t r i n g : s t r i n g −> t
4 v a l t o s t r i n g : t −> s t r i n g
5 end
6
7 module S t r i n g i d : ID = s t r u c t
8 type t = s t r i n g
9 l e t o f s t r i n g x = x

10 l e t t o s t r i n g x = x
11 end
12
13 # S t r i n g i d . o f s t r i n g ” c i a o ”
14 − : S t r i n g i d . t = <abs t r>

52

Repetita: Accessing Module Values and Types

Or we can open the module (everything is automatically qualified)
1 module type ID = s i g
2 type t
3 v a l o f s t r i n g : s t r i n g −> t
4 v a l t o s t r i n g : t −> s t r i n g
5 end
6
7 module S t r i n g i d : ID = s t r u c t
8 type t = s t r i n g
9 l e t o f s t r i n g x = x

10 l e t t o s t r i n g x = x
11 end
12
13 open S t r i n g i d
14
15 # o f s t r i n g ” c i a o ”
16 − : S t r i n g i d . t = <abs t r>

53

Including a Module

include: copies the content of a module into the current one

1 module ID : s i g
2 type t
3 v a l o f s t r : s t r i n g −> t
4 v a l t o s t r : t −> s t r i n g
5 end = s t r u c t
6 type t = s t r i n g
7 l e t o f s t r x = x
8 l e t t o s t r x = x
9 end

1 module ExtID : s i g
2 type t
3 v a l o f s t r : s t r i n g −> t
4 v a l t o s t r : t −> s t r i n g
5 v a l o f i n t : i n t −> t
6 end = s t r u c t
7 i n c l u d e ID
8 l e t o f i n t x = x
9 |> s t r i n g o f i n t

10 |> o f s t r
11 end

54

Including a Type Module

include: also copies the content of an interface into the current
one

1 module type ID =
2 s i g
3 type t
4 v a l o f s t r : s t r i n g −> t
5 v a l t o s t r : t −> s t r i n g
6 end
7
8 module St r ID : ID =
9 s t r u c t

10 type t = s t r i n g
11 l e t o f s t r x = x
12 l e t t o s t r x = x
13 end

1 module type ExtID =
2 s i g
3 i n c l u d e ID
4 v a l o f i n t : i n t −> t
5 end
6
7 module ExtSt r ID : ExtID =
8 s t r u c t
9 i n c l u d e St r ID

10 l e t o f i n t x = x
11 |> s t r i n g o f i n t
12 |> o f s t r
13 end

55

A module for ordered lists.

1 module type OrdL i s t = s i g
2 type elem
3 type t
4 v a l empty : t
5 v a l t o l i s t : t −> elem l i s t
6 v a l add : elem −> t −> t
7 end
8
9 module I n t L i s t O r d L i s t : O rdL i s t = s t r u c t

10 type elem = i n t
11 type t = elem l i s t
12 l e t empty = []
13 l e t t o l i s t l s = l s
14 l e t rec add l l s = match l s with
15 | [] −> [l]
16 | l ’ : : l s ’ −> i f (l <= l ’) then l : : l ’ : : l s ’
17 e l s e l ’ : : (add l l s ’)
18 end 56

Functors: map between modules

Build a module from one that satisfies a given interface!
1 module type TotOrd = s i g
2 type t
3 v a l l e s s e q : t −> t −> boo l
4 end
5
6 module MakeOrdList (Elem : TotOrd) :
7 (OrdL i s t with type elem = Elem . t) = s t r u c t
8 type elem = Elem . t
9 type t = elem l i s t

10 l e t empty = []
11 l e t t o l i s t l s = l s
12 l e t rec add l l s = match l s with
13 | [] −> [l]
14 | l ’ : : l s ’ −> i f (Elem . l e s s e q l l ’)
15 then l : : l ’ : : l s ’ e l s e l ’ : : (add l l s ’)
16 end

57

Using Functors

1 module Ord Int : TotOrd = s t r u c t
2 type t = i n t
3 l e t l e s s e q n1 n2 = n1 <= n2
4 end
5
6 module I n t O r d L i s t : (O rdL i s t with type elem = i n t) =

MakeOrdList (Ord Int)
7
8 # I n t O r d L i s t . empty
9 |> I n t O r d L i s t . add 5

10 |> I n t O r d L i s t . add 3
11 |> I n t O r d L i s t . add 10
12 |> I n t O r d L i s t . t o l i s t
13 − : I n t O r d L i s t . e lem l i s t = [3 ; 5 ; 10]

58

Useful Library Types, Modules and Functors

• Option types: type ’a option = None | Some of ’a
• Set modules: obtained through the functor Set.Make (requires

a module OrderedType)
1 module I S e t = Set . Make(I n t)
2
3 I S e t . un ion (I S e t . s i n g l e t o n 0) (I S e t . s i n g l e t o n 2)

• Map modules: obtained through the functor Map.Make
(requires a module OrderedType)

1 module SMap = Map . Make(S t r i n g)
2 l e t m = SMap . add ” c i a o ” 0 (SMap . s i n g l e t o n ”boh” 0)
3
4 # SMap . f i n d o p t ” c i a o ” m; ;
5 − : i n t o p t i o n = Some 0
6
7 # SMap . f i n d o p t ” bao ” m; ;
8 − : i n t o p t i o n = None 59

Exceptions

1 5 / 0 ; ;
2 Excep t i on : D i v i s i o n b y z e r o .
3
4 # t r y 5 / 0 with D i v i s i o n b y z e r o −> 4 2 ; ;
5 − : i n t = 42
6
7 # except ion My except ion of s t r i n g ; ;
8 except ion My except ion of s t r i n g
9

10 # t r y i f t r u e then r a i s e (My except ion ” h e l l o ”) e l s e 0
11 with My except ion s −> p r i n t e n d l i n e s ; 4 2 ; ;
12 h e l l o
13 − : i n t = 42

60

Tail Recursion

How to manage function call in the compiler?

• Names and associated values are local to the function
• It starts with the global environment and create an activation

record for each call
• Activation records are stacked: names are resolved as locally as

possible
• Using recursion instead of while loops can cause problem when

activation records are
• The famous stack overflow error!

61

Tail Recursion

1 l e t rec l e n l s = match l s with
2 | [] −> 0
3 | : : l s −> 1 + (l e n l s)
4 i n l r e v [0 ; 1 ; 2]

global
len [0;1;2]

global

len [1;2]
len [0;1;2]

global

len [2]
len [1;2]

len [0;1;2]
global

len []
len [2]

len [1;2]
len [0;1;2]

global

In the end: 1 + (1 + (1 + 0)) = 3

62

Tail Recursion : the recursive value is just returned!

1 l e t rec f i n d x l s = match l s with
2 | [] −> f a l s e
3 | l : : when l = x −> t r u e
4 | : : l s ’ −> f i n d x l s ’
5 i n f i n d 2 [0 ; 1 ; 2]

global
find 2 [0;1;2]

global

find 2 [1;2]
find 2 [0;1;2]

global

find 2 [2]
find 2 [1;2]

find 2 [0;1;2]
global

For each frame: a value for ls, for l, and return value

In the end: just true! No need to keep the records!

63

Tail Recursion : the recursive value is just returned!

1 l e t rec f i n d x l s = match l s with
2 | [] −> f a l s e
3 | l : : when l = x −> t r u e
4 | : : l s ’ −> f i n d x l s ’
5 i n f i n d 2 [0 ; 1 ; 2]

The compiler is smart enough to compile it into the following:

global
find 2 [0;1;2]

global
find 2 [1;2]

global
find 2 [2]

global

A lot more efficient (both in space and time)!

Note: library functions are tail recursive (see the documentation)

E.g. fold left is tail recursive, fold right is not!

64

Tail Recursion though accumulators

A tail recursive len:
1 l e t l e n l s =
2 l e t rec h e l p e r l s ’ n =
3 match l s ’ with
4 | [] −> n
5 | : : l s ’ ’ −> h e l p e r l s ’ ’ (n + 1)
6 i n h e l p e r l s 0

Note: we are operating on the parameter, not on the value returned
by the function

65

Tail Recursion in Continuation-Passing-Style

Another tail recursive len:
1 l e t l e n l s =
2 l e t rec h e l p e r l s ’ k =
3 match l s ’ with
4 | [] −> k 0
5 | : : l s ’ ’ −> h e l p e r l s ’ ’ (fun x −> k x + 1)
6 i n h e l p e r l s (fun x −> x)

• The function k represent how to continue the computation
after the recursive call

• A lot less clear then the previous one
• Sometimes it is needed with recursive data structures that are

not linear (e.g. trees)

66

Exercises

Exercise 8. Define a type for Finite State Automata and a function
for checking if a given string is inside the generated language. But
this time use Maps and Sets!

Exercise 9. Write a tail recursive function for computing the sum
of the elements in the leaves of a binary tree of integers.

67

	OCaml Basics
	Types
	More on Functions
	Advanced Features

