A Quick Introduction to OCaml

Lorenzo Ceragioli
October 1, 2024

IMT Lucca

Functional Languages

= Programs are constructed by applying and composing functions

= Functional Languages are declarative: function definitions are
expressions (mapping values to values)

= Heavily based on expressions

= Roughly abstracting away from the memory

= Functions are as every other value: first-class citizens

= |n contrast to imperative languages where

= Expressions are only a small part of the constructs
= The programmer defines and uses commands for updating the
memory

Pure Functions

= In a pure functional language, functions are mathematical
functions (i.e. same input implies same output)

= Functional languages are often enriched with imperative
features, i.e. not all functions are mathematical functions.

= For example for generating random numbers

= We will mostly deal with the pure fragment of OCaml, please
avoid imperative features unless they are really needed!

How to Program in a Pure Functional Languages

= Use recursion instead of loops

= Recall that functions are first class citizens: you can have them

as input and outputs of your functions

= Lots of library functions are like this: use them!

= No assignments implies no value can be updated: you usually
create a new value each time

= The compiler is smart enough to avoid copying the data

structure and just updates it if it is legal

OCaml Basics

REPL - utop

OCaml Read Evaluate Print Loop

1 user@machine:”$ utop

2 # 5+ 4;; (* expression %)

3 —: int =9 (* its type and value x)

4

5 # let s = "hello world”;; (* expression definition *)
6 val s : string = "hello world”

7 (* its name, type and value %)

8

9 # print_endline s;; (* command x)

10 hello world (* executing it x)

11 — @ unit = () (* returned type and value x)

Hello World and Comments

The program helloworld.ml:

1 let () = print_endline "Hello, World!”
2 (* this is a multiline
8 comment x)

Compiling it:

$ ocamlc —o main main.ml

Executing it:

$./ main
Hello, World!

... but it is simpler to use dune!

Some basic types ...

Type Name Values
Integer numbers int 1,2 3, ...
Boolean bool true, false
String string "a", "b", "aa", ...
Unit type unit O

Note: There is no implicit conversion, e.g. from int to string

And operators

Integer arithmetic +, -, *, /, mod

Boolean operators not, &&, ||

Structural Equivalence =, <>

Physical Equivalence ==, I= « avoid this
Comparison 3, Dy B, B=

String append

If-then-else

if expr; then expr, else exprs

Note:

= Choose between expressions, not commands or blocks
= The else case is mandatory!
= expr; must evaluate to a boolean (strongly inferred types!)

= expr, and expr; must have the same (inferred) type

1 # if "a” = "a” then 42 else 17;;
2 — : int = 42

let and let ... in

Defining names globally : let name = expr
Defining names locally : let name = expr; in expn
let a =
let b = "ciao"” in
if b <> "ciao” then 42 else 17;;
val a : int = 17

print_int a;;
17
— ¢ unit = ()

© 0 ~N O G B W N -

10 # print_string b;;
11 Error: Unbound value x

10

let is not an assignment

© 0 ~N O O B W N =

Note: you can redefine the value of a name based on the previous
name, but it is not an assignment as in imperative languages

let a = 4;;
let get_a x = a;;

let a =4 + a;;
val a : int = 8

get_a 3;;
— : int = 4

The name a is really just a name for a value!
Subsequent definitions update the names, not the values!

11

Simple Functions (finally having some fun!)

Functions are values in OCaml, i.e. fully evaluated expressions

1 # fun x — x + 1;;

2 — : int = int = <fun> (% inferred type (no code) x)
3

4 # (fun x —> x + 1) 5;; (* fun application x)

5 —: int =6

6

7 # let inc = fun x —> x + 1;; (* naming a function x)
8 wval inc : int — int = <fun>

9

10 # let inc x = x + 1;; (% same as before x)

11 wval inc : int — int = <fun>

12

Mind the definition order!

Functions are defined in order

let inc x = (dec x) + 2
let dec x = x — 1:;
Error: Unbound value dec

let dec x = x — 1

let inc x = (dec x) + 2;;
val dec : int — int = <fun>
val inc : int — int = <fun>

0 N O O W N

13

Polymorphic Functions

In OCaml types are inferred, what if multiple types are possible?

1 # let id x = x
2 wval id : "a —> 'a = <fun>

= The identity function works with every possible type
= ’a s a type variable, it stands for any type

= Note that the return type is also any type, but it coincides with
the input type

= We will see polymorphic types that are not "any type”

14

Recursive Functions

Really just use the rec keyword and you can use the function name

inside the function code

1 # let rec bang x = (* naming the function *)
2 if x =0 then 1 (* base case x)

3 else x * (bang (x—1));; (* recursion x)

4 wval bang : int — int = <fun>

Mind that recursive functions may diverge, e.g. bang -1

5

Mutually Recursive Functions

0 ~N O O W N

Recall: functions must be defined before they are used in the body
of other functions

If you want £ to be defined in terms of g and vice-versa, use rec
and the and keywords

let rec f x = (» defines f x)
if x <1 then true
else g (x—1) (* uses g *)

and g x = (* defines g x)
if x <1 then false
else f (x—1);; (* uses f x)

val f : int — bool = <fun>

val g : int — bool = <fun>

What do £ and g compute?

16

Simple modules: .ml and .mli files

1

Idea: Split the code into modules and to hide the implementation.

The interface define the visible values promised by the module

modulename.mli « the interface

val inc : int — int

The implementation must satisfy the promises

modulename.ml « the implementation
let dec x = x — 1 (* not visible x)
let inc x = (dec x) + 2 (* visible x)

Accessing the module’s function from outside

let two = Modulename.inc 1

17

Compiling Modules (better to use dune)

modulename.mli « the interface

val inc : int — int

modulename.ml « the implementation

let dec x = x — 1 (¥ not visible x)
let inc x = (dec x) + 2 (% visible x)

main.ml « the program

let () = print_int Modulename.inc 1

$ ocamlc —c modulename.ml <— (creates modulename.cmi)
$ ocamlc —c modulename.ml <— (creates modulename.cmo)
$ ocamlc —c main.ml <— (creates main.cmo)

$ ocamlc —o ex modulename.cmo main.cmo <— (creates ex)
$./ex

2

18

Types

© 00 N O G W N -

e
A W NN = O

Ordered pairs of elements of possibly different types

let a = (4,"ciao”);;

val a : int % string = (4, "ciao")
fst a;;

— : int =4

snd a;;

— : string = "ciao”

fst;;

— = 'a *x 'b—> "a = <fun>

let sum (x,y) = x + vy;;
val sum : int % int — int = <fun>

19

Ordered collections of elements of possibly different types (pairs are

a special case)

let b= (1,5,(6,true));;
val b : int % int % (int % bool) = (1, 5, (6, true))
fst b;;

Error: This expression has type int x int x (int % bool)
but an expression was expected of type 'a x 'b

© 0 ~N O O W N =

fst;; (* fst and snd only defined on pairs *)
= 'a * 'b —> 'a = <fun>

Note: the type depends on the length of the tuple!

20

1 # [1:; (* Empty list ... x)

2 — : a list =[] (* ... is polymorphic! x)
3

4 # [1]5;

5 — int list = [1]

6

7 # [1;2;3;4;5;6];;

8 — : int list = [1; 2; 3; 4; 5; 6]

9

10 # ["a";4];;

11 Error: This expression has type int but an expression
12 was expected of type string

Note: all elements must be of the same type

Note: the type do NOT depend on the length

21

Lists/ Tuple confusion

— =
= O ©W 00 N O O b W N =

=
WD

[(4.5):(6.,7):(8,9)]

— : (int % int) list = [(4, 5); (6, 7); (8, 9)]
[(4.5)]

— : (int % int) list = [(4, 5)]

[4.5]5;

— : (int % int) list = [(4, 5)]

4.,5;,; (% because parenthesis are optional! %)
— & int % int = (4, 5)

[4.,5.,6.,7];;

— : (int % int % int % int) list = [(4, 5, 6, 7)]

Note: use semicolon for lists!

22

Operations on Lists

Operation Example Note
Cons 4::[1;2;3] = [4;1;2;3] fast
Concat [4;5;6]0[1;2;3] = [4;5;6;1;2;3] O(n)
Head List.hd [4;5;6] = 4 fast
Tail List.tl [4;5;6] = [5;6] fast
Reverse List.rev [4;5;6] = [6;5;4] O(n)

Note: List is the module of lists, several useful functions other
than hd, t1, and rev.

23

User Defined Types

= Users can define their own types with the type construct
= Types can be recursive (no need for rec keyword)

Polymorphic types defined through type parameters

= Some examples follow

24

Records

Idea: like tuples but with names

1 # type point = { x : int; y : int; z : int };;
2 type point = { x int; y : int; z : int; }
3

4 # let origin = { x=0; y=0; z=0 };;

5 wval origin : point = {x =0; y =20; z = 0}
6

7 (¥ a new point with some changed values x)
8 # let p={ origin with x = 10; y =5 };;

9 wval p : point = {x =10; y =5; z = 0}

10

11 # p.x;;

12 — : int = 10

Note: must be explicitly defined as types!

25

Elements can ne of either of the given (named) shapes.

type qual_-temp = Hot | Cold | Fine

type temp =
Precise of int

g B~ W N =

| Approx of qual_temp

= qual_temp is an enumeration of atomic values

= temp is either a qual _temp (tagged as Approx) or a precise int
for the degrees (tagged as Precise)

= Tags must be globally unique and start with a capital letter

26

Recursive Variants

Arithmetic expressions

type a_exp =
Aval of int
| Plus of a_exp % a_exp
| Minus of a_exp * a_exp
| Times of a_exp % a_exp

g b~ W N =

= You can define exp in terms of exp itself

= This is useful for defining the abstract syntax trees of

programming languages

27

Mutually Recursive Variants

Arithmetic and boolean expressions

© 00 N O G b W N

== =
N = O

type a_exp =
Aval of int

Plus of a_exp * a_exp
Minus of a_exp x a_exp
Times of a_exp * a_exp

type b_exp =
Bval of bool

And of b_exp * b_exp
Or of b_exp * b_exp
Not of b_exp

Minor of a_exp x a_exp

Boolean expressions defined in terms of arithmetic expressions
What if we want a boolean to be considered also an integer
(e.g. false = 0 and true = 1 asin C)? 28

Mutually Recursive Variants

Arithmetic and boolean expressions

1 type a_exp =

2 Aval of int

3 | Plus of a_exp * a_exp
4 | Minus of a_exp * a_exp
5 | Times of a_exp * a_exp
6 | Of_bool of bexp

7 and b_exp =

8 Bval of bool

9 | And of b_exp % b_exp
10 | Or of b_exp % b_exp

11 | Not of b_exp

12 | Minor of a_exp * a_exp

Note: we use and as in mutually recursive functions

29

Polymorphic Variants

© 00 N O G & W N -

e el
w N = O

Like for lists, we can define polymorphic types through type
parameters

type 'a btree =
Leaf of 'a
| Node of 'a btree % 'a btree

let treel =
Node (Leaf 1,
Node (Leaf 2, Leaf 3))
(* is of type int treex)

let tree2 =
Node (Leaf "a",
Node (Leaf "b”, Leaf "c”))
(* is of type string treex)

30

Pattern Matching

Pattern matching is a form of branching similar to switch case

1 let f x =

2 match x with

3 |0

4 | 1 — "one or less”
5 | 2

6 | 3 — "two or three”
7 | - — "four or more”

Note: the wildcard _ match everything

31

Pattern Matching Variants

Pattern matching can

= branch based on the syntactic structure (i.e. how the value is
build according to the type definition)

= bind the values of subterms to local names

let rec count_leaves x =
match x with
| Leaf - — 1
(¥ | don’'t care the value inside the leaf %)
| Node (x, y) —>
(* x and y are local names for the subterms x)

~N O gk W N =

(count_leaves x) + (count_leaves y)

Note: the compiler will complain if some case is missing

32

Function Syntax

Pattern matching can be used implicitly with the keyword function

1 let rec count_leaves x =

2 match x with

3 | Leaf - — 1

4 | Node (x, y) —>

5 (count_leaves x) + (count_leaves y)
Is the same as

1 let rec count_leaves = function

2 | Leaf - — 1

3 | Node (x, y) —

4 (count_leaves x) + (count_leaves y)

33

Pattern Matching Variants: as and when

Computing a list of /eaves containing a value smaller then 10 (the
type of the tree is automatically inferred)

let rec less_ten_leaves x =
match x with
| Leaf n as leaf when n < 10 —> [leaf]
(* n is the name of the subterm x)
(x leaf is the name of the whole term x)
(* therms are matched only when n < 10 %)
| Leaf _ — []
(* all the other kind of leaves, i.e. n>= 10 %)
| Node (x, y) —>
(less_ten_leaves x) @ (less_ten_leaves vy)

© 0 N O G B W N -

—
o

Note: sometimes they make your code a lot easier to read!

34

Pattern Matching with list

The cons operator :: is not actually an operator, it is a type
constructor!

1 # (Q):;

2 — : 'a list = 'a list — 'a list = <fun>

3

4 # (::) s

5 Error: The constructor :: expects 2 argument(s),

6

but is applied here to 0 argument(s)

Hence, we can use it for pattern matching!

85

Pattern Matching with list

Weird length of a list

1 let rec weird_length I|s =

2 match Is with

8 | [] = "zero”

4 | [-; -] = "two”

5 | - :: Is’ — "one plus " " (weird_length Is ")
6

7 # weird_length [0;0;0;0;0;0];;

8 — : string = "one plus one plus one plus one plus two”
9

10 # weird_length [0];;

11 — : string = "one plus zero

36

Exercises

Exercise 1. Write a pair of functions for evaluating arithmetical
and boolean expressions without the 0f _bool case

Exercise 2. Same but with the 0f _bool case

Exercise 3. Write a type for general polymorphic trees (i.e. with
any number of children)

Exercise 4. Write a function that packs consecutive duplicates of
the input list elements into sublists.

For example, the function over [0;0;2;3;3;3;0;2] must return
[[0:01:[2];[3:3:3]: [0F:[2]]

37

More on Functions

Curried Functions

= Addition usually takes two parameters:
1 let sum (x,y) = x + vy

val sum: int % int —> int

= In OCaml, one usually writes the curried version (also the kind
of functions that you will find in the libraries!)

1 let sum x y = x + vy
val sum: int — int —> int = <fun>

= the latter is the same as writing

1 let sum x = fun y —> x + vy
val sum: int — int — int = <fun>

38

Curried Functions

= Why curried functions? For allowing partial application!

let addtwo =
let sum x y = x + vy
in sum 2

addtwo 3

1
2
3]
4 val sum: int — int = <fun>
5y
6
7 — : int =5

= Functions are first class citizens in OCaml, hence they can be
the returned value of a function

= A function over functions is called an higher order function!

39

Higher Order Functions

Functions as inputs and/or outputs

1 let twice f x =

2 f (f x)

3 val twice: ('a —> 'a) = 'a —> 'a = <fun>
4

5 # twice not;;

6 — : bool — bool = <fun>

7

8 let fun_pair f g =

9 fun (x, y) = (f x, g vy)

10 val fun_pair : ('a —> 'b) — ('c — 'd)
11 —> 'a x 'c —> 'b ¥ 'd = <fun>

12

13 # fun_pair not addtwo;;

14 — : bool % int —> bool % int = <fun>

40

Useful Functions in the List module

map : (’a -> ’b) -> ’a list -> ’b list
map f 1s applies the function f to each element of a list to
produce another list.

1 # List.map (fun x — x + 2) [0;2;4;6;8];;
2 — @ int list = [2; 4; 6; 8; 10]

Note: if you need the index too, use List.mapi

List.mapi (fun i x — i + x) [0;2;4;6;8];;
(* same as List.mapi (+) [0;2;4;6;8];; *)

A W N =

— : int list = [0; 3; 6; 9; 12]

41

Useful Functions in the List module

filter : (’a -> bool) -> ’a list -> ’a list

filter f 1s returns a list containing the elements of 1s that

satisfies the function £ (preserving the order).

1 # List.filter (fun x —> x mod 2 = 0) [0:;3;4;6;9];;
2 — : int list = [0; 4; 6]

42

Useful Functions in the List module

fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

fold_ left f initial 1s uses each element of the list to update
a value initially instantiated as initial; the value is updated using
the given function f; the result is the one obtained when all the list
has been used.

It is the same as £ (...(f (f initial bl) b2)...) bn when
1s = [bl; b2 ; ...; bnl].

1 # List.fold_left (fun acc x —> acc + x) 0 [0;1;2;3;4];;
2 — : int = 10

43

Different Styles of Combining Functions

With explicit parameters

let sum_even Is =
List.fold_left
(fun acc x —> acc + x)
0
(List.filter
(fun x — x mod 2 = 0)

Is)

~N O bk W N

a4

Different Styles of Combining Functions

With intermediate results

let sum_even Is =
let even =
List. filter
(fun x —> x mod 2 = 0)
I's
in List.fold_left
(fun acc x —> acc + x)
0
even

© 0 ~N O O W N

45

Different Styles of Combining Functions

The (almost) mathematician composition: with the @@
operator

let sum_even Is =
List.fold_left
(fun acc x —> acc + x)
0
(¢l
List. filter
(fun x — x mod 2 = 0)
(ClG]
I's

© 0 ~N O O W N =

Note: @@ stands for function application, because of associativity
behaves almost as a function composition (f o g)x = f(g x), but
the input 1s must be given

46

Different Styles of Combining Functions

The (almost) computer scientist composition: with the |>
operator

let sum_even Is =

I's

| >

List. filter
(fun x — x mod 2 = 0)

[>

List.fold_left
(fun acc x —> acc + x)
0

© 0 ~N O O W N =

Note: |> stands for function pipelining, because of associativity
behaves almost as a function composition (f; g)x = g(f x), but the
input 1s must be given

a7

Exercises

Exercise 5. Write a function that given two functions f and g
returns a function over pairs defined as f on the first element and g

on the second element.

Exercise 6. Write a function that given a list of integers I1 returns
a list 12 of the same length such that each element of 12 in position i
is the sum of all the elements in 11 with position less or equal to i.

E.g. The function over [3,6,10,2] returns [3,9,19,21]

Exercise 7. Define a type for Finite State Automata and a function
for checking if a given string is inside the recognized language.

48

Advanced Features

Ref

OCaml’s imperative features (but you should use pure functions)

1 let count = ref 0 (% of type int ref x)
2

3 let get_inc () = (* of type wnit — int %)
4 count := l!count + 1;

5 Icount

6

7 # get_inc();;

8 — : int =1

9 # get_inc();;

10 — @ int =2

11 # count;;

12 — : int ref = {contents = 2}

13 # !count;;

14 — @ int =2

Note: also mutable record fields, arrays, for and while loops.
49

Nested Modules

© 00 N O G & W N -

You can define a nested module inside a file (modulename.ml), i.e.
inside the module Modulename itself.

module Username : sig (* interface of the module x)
type t
val of_string : string —> t
val to_string : t —> string

end = struct (* implementation of the module %)
type t = string

let of_string x
let to_string x = x
end

50

Module Type and Modules

© 0 ~N O O W N -

==
= O

You can split the signature (interface) and its implementation

= Code hiding
= E.g. you can put the signature of Username in the interface of
the outmost module modulename .mli
module type ID = sig
type t
val of_string : string — t

val to_string : t —> string
end

module String_id : ID = struct
type t = string

let of_string x
let to_string x
end

Bl

Repetita: Accessing Module Values and Types

We can either qualify the names

1 module type ID = sig

2 type t

3 val of_string : string —> t
4 val to_string : t —> string
5 end

6

7 module String_id : ID = struct
8 type t = string

9 let of_string x = x

10 let to_string x = x

11 end

12

13 # String_id.of_string "ciao”
14 — : String_id.t = <abstr>

52

Repetita: Accessing Module Values and Types

Or we can open the module (everything is automatically qualified)

1 module type ID = sig

2 type t

3 val of_string : string —> t
4 val to_string : t —> string
5 end

6

7 module String_id : ID = struct
8 type t = string

9 let of_string x = x

10 let to_string x =

11 end

12

13 open String_id

14

15 # of_string "ciao”

16 — : String_id.t = <abstr>

53

Including a Module

include: copies the content of a module into the current one

O© 0 N o a0 b W N -

module ID : sig
type t
val of_str : string —> t
val to_str : t —> string
end = struct
type t = string
let of_str x = x
let to_str x = x
end

© 00 ~N O G & W N -

==
= O

module ExtID : sig
type t
val of_str : string — t
val to_str : t —> string
val of_int : int —> t
end = struct
include ID
let of_int x = x
|> string_of_int
|> of_str
end

54

Including a Type Module

include: also copies the content of an interface into the current
one

1 module type ID = 1 module type ExtlD =

2 sig 2 sig

3 type t 3 include ID

4 val of_str : string —> t 4 val of_int : int — t
5 val to_str : t —> string 5 end

6 end 6

7 7 module ExtStrID : ExtlD =
8 module StrID : ID = 8 struct

9 struct 9 include StrID

10 type t = string 10 let of_int x = x

11 let of_str x = x 11 |> string_of_int

12 let to_str x = x 12 |> of_str

13 end 13 end

55

A module for ordered lists.

1 module type OrdList = sig

2 type elem

3 type t

4 val empty : t

5 val to_list : t —> elem list

6 val add : elem —> t —> t

7 end

8

9 module IntListOrdList : OrdList = struct
10 type elem int

11 type t = elem list

12 let empty = []

13 let to_list Is = Is

14 let rec add | |s = match Is with

15 B

16 | 17:00s” — if (I <= 1") then I::1"::1ls"
17 else | ':: (add | Is")

18 end 56

Functors: map between modules

Build a module from one that satisfies a given interface!

1 module type TotOrd = sig

2 type t

3 val lesseq : t — t —> bool

4 end

5

6 module MakeOrdList (Elem : TotOrd)

7 (OrdList with type elem = Elem.t) = struct
8 type elem = Elem.t

9 type t = elem list

10 let empty = []

11 let to_list Is = Is

12 let rec add | |Is = match Is with

13 |1 = (1]

14 | I"::1s’ — if (Elem.lesseq | |’)

15 then [::1"'::1s’' else |':: (add | Is")
16 end

51

Using Functors

S OB W N

© 00 ~

10
11
12
13

module OrdInt : TotOrd = struct

type t = int
let lesseq nl n2 = nl <= n2
end
module IntOrdList : (OrdList with type elem = int) =

MakeOrdList (OrdlInt)

IntOrdList.empty
|> IntOrdList.add 5
|> IntOrdList.add 3
|> IntOrdList.add 10
|[> IntOrdList.to_list
— : IntOrdList.elem list = [3; 5; 10]

58

Useful Library Types, Modules and Functors

= Option types: type ’a option = None | Some of ’a

= Set modules: obtained through the functor Set.Make (requires
a module OrderedType)

1 module ISet = Set.Make(Int)

3 ISet.union (ISet.singleton 0) (ISet.singleton 2)

= Map modules: obtained through the functor Map .Make
(requires a module OrderedType)

module SMap = Map.Make(String)
let m = SMap.add "ciao” 0 (SMap.singleton "boh” 0)

SMap. find_opt "ciao” m;;
— : int option = Some 0

SMap. find_opt "bao” m;;
— : int option = None 59

0 ~N o O W N

1 5/ 0;;

2 Exception: Division_by_zero.

3

4 # try 5 / 0 with Division_by_zero —> 42;;

5 — : int = 42

6

7 # exception My _exception of string;;

8 exception My _exception of string

9

10 # try if true then raise (My_exception "hello”) else 0
11 with My_exception s —> print_endline s; 42;;
12 hello

13 — : int = 42

60

Tail Recursion

How to manage function call in the compiler?

= Names and associated values are local to the function

= |t starts with the global environment and create an activation

record for each call

= Activation records are stacked: names are resolved as locally as
possible

= Using recursion instead of while loops can cause problem when

activation records are

= The famous stack overflow error!

61

Tail Recursion

1 let rec len Is = match |s with
2 | [] — 0
3 | -::ls — 1 + (len Is)
4 in lrev [0;1;2]
len []
len [2] len [2]
len [1;2] len [1;2] len [1;2]
len [0;1;2] len [0;1;2] len [0;1;2] len [0;1;2]
’global‘ global global global global

In the end: 1+ @1+ @+0) =3

62

Tail Recursion :

s w N

let rec find x |s = match Is with

| [— false

| I::- when | = x —> true

| -::ls’ — find x Is’

in find 2 [0;1;2]

the recursive value is just returned!

find 2 [2]
find 2 [1;2] find 2 [1;2]
find 2 [0;1;2] find 2 [0;1;2] find 2 [0;1;2]
’global ‘ global global global

For each frame: a value for 1s, for 1, and return value

In the end: just true! No need to keep the records!

63

Tail Recursion : the recursive value is just returned!

1
2
3
4
B

let rec find x Is = match |s with
| [] — false
| I::- when | = x —> true

| _::tls’ — find x Is’
in find 2 [0;1;2]

The compiler is smart enough to compile it into the following:

find 2 [0;1;2] find 2 [1;2] find 2 [2]
] global \ global global global

A lot more efficient (both in space and time)!
Note: library functions are tail recursive (see the documentation)

E.g. fold left is tail recursive, fold right is not!

64

Tail Recursion though accumulators

A tail recursive len:

let len Is =
let rec helper Is' n =
match Is’' with
| [1 —n

1

| -::ls’'" — helper Is'" (n + 1)

in helper Is 0

S Ok W N

Note: we are operating on the parameter, not on the value returned
by the function

65

Tail Recursion in Continuation-Passing-Style

Another tail recursive len:

let len Is =
let rec helper Is' k =
match Is ' with
| [l = k0
| -::ls’" — helper Is'" (fun x — k x + 1)
in helper Is (fun x — x)

S OB W N

= The function k represent how to continue the computation
after the recursive call

= A lot less clear then the previous one

= Sometimes it is needed with recursive data structures that are
not linear (e.g. trees)

66

Exercises

Exercise 8. Define a type for Finite State Automata and a function
for checking if a given string is inside the generated language. But

this time use Maps and Sets!

Exercise 9. Write a tail recursive function for computing the sum

of the elements in the leaves of a binary tree of integers.

67

	OCaml Basics
	Types
	More on Functions
	Advanced Features

