Parsing Programming Languages

Lorenzo Ceragioli
November 6, 2024

IMT Lucca



Scanning and Parsing

Lexical Analysis: Scanning

From
if true then x :=y +5 else skip
To
IF, TRUE, THEN, (ID, x), ASSIGN, (ID, y), PLUS, (INT,5), ELSE, SKIP

= Recognize lexemes (e.g. :=) and return tokens (e.g. ASSIGN)

= Some token contains the lexeme (or a function of it) as
attribute, e.g. (ID, x) and (INT, 5)

= Also verifies that constructs are well written



Scanning and Parsing

Syntactic Analysis: Parsing

From
IF, TRUE, THEN, (ID, x), ASSIGN, (ID, y), PLUS, (INT,5), ELSE, SKIP
To

if_then_else
assign

N
(ID,x) PLUS
N

(ID)y) (INT,5)

TRUE SKIP

Also verifies that programs are well constructed



Scanning with ocamllex



Implementing Scanners Automatically

Scanner generators

= Input:

= a set of tokens

= a list of rules associating Regular Expressions and tokens
= QOutput:

= the parser code



ocamllex

A scanner generator for OCaml

s Input: Mylexer.mll

= a set of tokens (will be defined externally)

= some code to be used by the generated scanner

= a list of rules mapping from Regular Expressions to tokens
= Command: ocamllex Mylexer.mll
= Qutput: Mylexer.ml and Mylexer.mli

= the scanner module



ocamllex file details

1 (% code to be copied in the scanner module x)
2 {

3 open Parser (¥ <— where we define the tokens %)
4 exception LexingError of string

5}

6

7 (¥ some named RExp x)

8 let somename = someRExp

9

10 (* lexing rules x)

11 rule read = parse

12 | RExp {token or command}

13 | RExp {token or command}

14 | somename {token or command}

15



ocamllex Example: mylexer.mll

1 (* code to be copied in the scanner module x)

2 {

3 open Myparser (% <— where we define the tokens x)
4 exception LexingError of string

5 )

6

7 (% some named RExp %)

8 let integer = '"—'?['0"—="9']['0"—"9 "]«

9 let white = [" " "\t']4+ | '\r’ | '\n" | "\r\n”

10

11 (* lexing rules x)

12 rule read = parse

13 | white {read lexbuf}

14 | integer {INT(int_of_string (Lexing.lexeme lexbuf))}
15 | "4+" {PLUS}

16 | "—" {MINUS}

17 | "+" {TIMES}

18 | eof {EOF}

19 | - { raise (LexingError (Lexing.lexeme lexbuf)) }



ocamllex Example — details

1
2
3
4
5
6
7
8
9

(* lexing rules x)
rule read = parse
white {read lexbuf}
integer {INT(int_of_string (Lexing.lexeme lexbuf))}

"+" {PLUS}
"7 {MINUS}
eof {EOF}

\
\
\
\
| "x" {TIMES}
\
| - { raise (LexingError (Lexing.lexeme lexbuf)) }

= read — the name of the function from a buffer to tokens
= read lexbuf —a command saying to ignore the lexeme
= Lexing.lexeme lexbuf — the lexeme

Usage
let lexbuf = Lexing.from_channel in_file in
let mylexerfunction = Mylexer.read lexbuf in



Parsing with menhir



Implementing Parsers Automatically

Parser generators

= Input:
= associativity rules
= grammar

= QOutput:

= the parser code



An LR(1) parser generator for OCaml

= Input: Myparser.mly
= some code to be used by the parser
= a set of tokens
= associativity rules
= grammar

Command: menhir Myparser.mly

Output: Myparser.ml and Myparser.mli

= the parser module

10



menbhir file details

© 00 ~N O O WN

10
11
12
13
14
15
16
17
18
19
20
21

(* code to be copied in the scanner module x)
%{
open MyAST (% <— definition of the Abstract Syntax Tree x)
%}
(* tokens x)
%token TOKENNAME
%token <lexeme type> OTHERTOKENNAME
(* start nonterminal x)
%start <AST type> startnonterminal
%% (¥ <— this delimit the grammar rules %)
(* grammar x)
startnonterminal:
| casel {resulting value (a part of the AST)}
| casen {resulting value (a part of the AST)}
othernonterminal:
[ 11



Example: Aexp.ml

The module Aexp defining our abstract syntax tree

1 type aexp =

2 | Intliteral of int

3 | Plus of aexp * aexp

4 | Minus of aexp * aexp

5 | Times of aexp x aexp

6

7 let rec eval = function

8 | Intliteral n — n

9 | Plus (al, a2) —> (eval al) + (eval a2)
10 | Minus (al, a2) —> (eval al) — (eval a2)
11 | Times (al, a2) —> (eval al) % (eval a2)

The interface Aexp.mli makes both definitions visible.

12



menhir Example: Myparser.mly

1 %{

2 open Aexp (* <— code copied in the scanner module x)
3 %}

4

5 (% tokens x)

6 %token <int> INT

7 %token PLUS MINUS TIMES EOF

8

9 (% start nonterminal %)

10 %start <aexp> prg

11

12 %%

13

14 (% grammar x)

15 prg:

16 | t = trm; EOF {t}

17 trm:

18 | i = INT {Intliteral i}
19 | t1 = trm; PLUS; t2 = trm {Plus (t1, t2)}
20 | t1 = trm; MINUS; t2 = trm {Minus (tl, t2)}
21 | t1 = trm; TIMES; t2 = trm {Times (tl, t2)} 1)



menhir Example — details

A W N =

= %token <int> INT — INT token holds the lexeme parsed as

integer

» Ystart <aexp> trm — trm is the starting non-terminal, and

the result of parsing the file will be a value of type aexp
(defined in Aexp.ml)

= t1 = trm; PLUS; t2 = trm Plus (t1, t2) — while

parsing something of the form trm PLUS trm, we take t1 and
t2, the result of parsing the two subterms, and we return an
aexp value Plus (t1, t2).

Usage: the interpreter

let in_file = open_in Sys.argv.(1l) in

let lexbuf = Lexing.from_channel in_file in

let program = (Myparser.prg Mylexer.read lexbuf) in
something using eval(program)

14



Precedence and Ambiguity




The parser we generated is useless: no precedence is specified!
(indeed menhir complains about these problems)

5



Precedence

How to parse?
4 x 5 + 2

_|_
/\ */\2
/\ VAR
4 5

In general we want * to bind more strictly than +

16



Ambiguity in the Grammar — Precedence

term ::= INT | term + term | term — term | term % term

In general we want * to bind more strictly than +

We can either update the grammar

term ::= sterm | term + term | term — term

sterm ::= INT | sterm * sterm

Or inform menhir to give higher precedence to TIMES

(we will see how)

17



Associativity

How to parse?
4 +5 + 2

VAR /\
SN /\

For plus it does not change the result, still menhir complains!

Notice that in other cases the associativity may alter the result

» Withf gx=f (g x) wehavef:B— (C,g: A— B,
and x: A

= Withf gx = (f g xwehavef:C— (A— B), g: C,
andx: A

18



Ambiguity in the Grammar — Associativity

term ::= sterm | term + term | term — term

sterm ::= INT | sterm % sterm

We can either update the grammar

term ::= sterm | term + sterm | term — sterm

sterm ::= INT | sterm * INT

Or inform menhir to give higher precedence to TIMES and to
associate left

(now we see how to do this)

19



Specifying Precedence and Associativity to menhir

(* code to be copied in the scanner module x)

%{

open MyAST (% <— definition of the Abstract Syntax Tree x)
%}

(* tokens x)
%token TOKENNAME
%token <lexeme type> OTHERTOKENNAME

© 00 ~N O O WN

10 (% start nonterminal x)

11 %start <AST type> nonterminal

12

13 (% associativity in order of precedence %)
14 %left /nonassoc/right precname or token

15 %left /nonassoc/right precname or token

16

17 %%

18

19 (% grammar x)

20 nonterminal:

21 | casel %prec precname {resulting value} 20
22



menhir Example: Myparser.mll

©O© 00 N O O WN

10
11
12
13
14
15
16
17
18
19
20
21

(* code to be copied in the scanner module x)
%{

open Aexp
%}
(* tokens x)
%token <int> INT
%token PLUS MINUS TIMES EOF
(* start nonterminal x)
%start <aexp> prg
(* associativity in order of precedence %)
%left PLUS MINUS /% lowest precedence x/
%left TIMES /* highest precedence x/
%%
(* grammar x)
prg:

21



Details on Associativity and Precedence in menhir

1
2
3
4
5
6
7
8
9

_ e
= O

(» associativity in order of precedence x)

%left TOKEN1 TOKEN2 /* lowest precedence x/
%left TOKEN3 namedprec /* medium precedence %/
%left TOKEN4 /* highest precedence x/
%%

(* grammar x)
nonterminal:
| casel %prec precname {resulting value}

= The order defines the precedence

= Associativity may be either left or right

= |f you want to specify precedence but not associativity you can
Use nonassoc

= Jprec precname specifies the associativity and precedence for

a grammar production to be the ones of precname ’



Further Resources — links on my webpage (Iceragioli.github.io)

= The ocamllex manual — if you have doubts
= The menhir manual — some more advanced features

= The Section "Parsing with OCamllex and Menhir" from the
book Real World OCaml — for an overview

= The calculator OCaml example

23



Parsing Minilmp and MiniFun




Parsing Minilmp

p = def main with input x output y as ¢
c:=skip|x:=a|cc

| if b then ¢ else c | while b do ¢
b:=v|bandb|notb|a<a

a:=x|n|la+ala—-alaxa

= We have already defined the abstract syntax of the language
= Defining the lexer is not difficult
= For parsing, the first attempt would be to directly feed menhir
with the grammar of Minilmp
= However, the grammar above is ambiguous, you will see
warning messages!
24



Minilmp Ambiguity

1 while true do skip; skip

Two possible parsing trees

©

VRN
//\\ //\\\

while while skip
l C l \ C l kl
true ' true SKI
l | "
skip skip

25



Minilmp Ambiguity

This is a classical example of a shift-reduce conflict, because the
parser will get in a state like the following, where both
= shift (i.e. push the remaining portion of the input to the stack)
= reduce (i.e. recognize the current state of the stack as the
non-terminal ¢)
are reasonable moves and produce a correct syntax tree.

STACK INPUT

$while true do skip ; skip$

The common choice here (for good reasons) is to parse this
command as (while true do skip);skip.

26



Other Ambiguities

= This is just an example of an ambiguity in Minilmp
= There are more, e.g. in arithmetical expressions and in ¢y; ¢; c3
= Find, and fix them using menhir

= The final code should not have conflicts reported by menhir
(you cannot rely on the default choices made by menhir, even
when they are correct: your code must not have warnings!)

27



= Sometimes we want to use different associativity rules and
precedences than the standard ones of the language
For example forcing 5 + 2 before multiplication in 4 % 5 + 2.

= For allowing this, we enrich our concrete semantics with
parenthesis to guide the parsing
For example, we can write 4 * (5 + 2).

= \We can do the same with commands:

1 while true do (skip; skip)

28



A more useful example:

1 def main with input in output out as
2 X = in;

3 out := 0;

4 while not x < 0 do (

5 out := out + x;

6 x = x — 1

7 )

29



Parsing MiniFun

= Same problems as Minilmp

= For example fun x => x 1 can be either (fun x => x) 1
which gives 1 and fun x => (x 1) which gives a second
order function that applies the function x to 1

= This time some ambiguities may be better managed by
refactoring the grammar instead of specifying the associativity
and precedence in menhir, but it's up to you :P

= Recall to discuss your choices in the report!

30



First Part of the Project: Minilmp
and MiniFun Interpreters




Project Fragment

(You should already have the modules for the AST and semantics)

1. Extend the concrete syntax with parenthesis for forcing the
evaluation order (no need to change the abstract syntax)

2. Define lexers and parsers for Minilmp and MiniFun (or
MiniTyFun, as you prefer) by using ocamllex and menhir

3. Get rid of ambiguities: menhir should not produce warnings!

4. Write in the report a section explaining the ambiguities you

have found and how you have solved them
5. Write a pair of interpreters (ocaml programs), one for Minilmp
and one for MiniFun/MiniTyFun that:
= Read a Minilmp/Fun program passed as a parameter
= Read an integer input for the Minilmp/Fun program, passed via
standard input
= Evaluate the program given the input and print the resulting
integer in standard output 31



Project Fragment — Example

The program sum.miniimp

1 def main with input in output out as
2 X = in;

3 out := 0;

4 while not x < 0 do (

5 out := out + x;

6 x = x —1

7 B

8 skip

Running the interpreter:

$ miniimpinterpreter sum.miniimp
4 <— your input
10 <— the output of the program

32



	Scanning with ocamllex
	Parsing with menhir
	Precedence and Ambiguity
	Parsing MiniImp and MiniFun
	First Part of the Project: MiniImp and MiniFun Interpreters

