
Parsing Programming Languages

Lorenzo Ceragioli
November 6, 2024

IMT Lucca

1

Scanning and Parsing

Lexical Analysis: Scanning

From
if true then x ∶= y + 5 else skip

To
IF, TRUE, THEN, (ID, x), ASSIGN, (ID, y), PLUS, (INT, 5), ELSE, SKIP

• Recognize lexemes (e.g. :=) and return tokens (e.g. ASSIGN)
• Some token contains the lexeme (or a function of it) as

attribute, e.g. (ID, x) and (INT, 5)
• Also verifies that constructs are well written

2

Scanning and Parsing

Syntactic Analysis: Parsing

From
IF, TRUE, THEN, (ID, x), ASSIGN, (ID, y), PLUS, (INT, 5), ELSE, SKIP

To

if then else

TRUE assign SKIP

(ID,x) PLUS

(ID,y) (INT,5)

Also verifies that programs are well constructed
3

Scanning with ocamllex

Implementing Scanners Automatically

Scanner generators

• Input:
• a set of tokens
• a list of rules associating Regular Expressions and tokens

• Output:
• the parser code

4

ocamllex

A scanner generator for OCaml

• Input: Mylexer.mll
• a set of tokens (will be defined externally)
• some code to be used by the generated scanner
• a list of rules mapping from Regular Expressions to tokens

• Command: ocamllex Mylexer.mll
• Output: Mylexer.ml and Mylexer.mli

• the scanner module

5

ocamllex file details

1 (∗ code to be c o p i e d i n the s c a n n e r module ∗)
2 {
3 open P a r s e r (∗ <−− where we d e f i n e the tokens ∗)
4 except i on L e x i n g E r r o r of s t r i n g
5 }
6
7 (∗ some named RExp ∗)
8 l e t somename = someRExp
9

10 (∗ l e x i n g r u l e s ∗)
11 r u l e r ead = p a r s e
12 | RExp { token or command}
13 | RExp { token or command}
14 | somename { token or command}
15 . . .

6

ocamllex Example: mylexer.mll

1 (∗ code to be c o p i e d i n the s c a n n e r module ∗)
2 {
3 open Myparser (∗ <−− where we d e f i n e the tokens ∗)
4 except i on L e x i n g E r r o r of s t r i n g
5 }
6
7 (∗ some named RExp ∗)
8 l e t i n t e g e r = ’ − ’? [’0 ’ − ’9 ’] [’ 0 ’ − ’9 ’]∗
9 l e t wh i t e = [’ ’ ’\ t ’]+ | ’\ r ’ | ’\n ’ | ”\ r \n”

10
11 (∗ l e x i n g r u l e s ∗)
12 r u l e r ead = p a r s e
13 | wh i t e { r ead l e x b u f }
14 | i n t e g e r {INT (i n t o f s t r i n g (Lex ing . lexeme l e x b u f)) }
15 | ”+” {PLUS}
16 | ”−” {MINUS}
17 | ”∗” {TIMES}
18 | e o f {EOF}
19 | { r a i s e (L e x i n g E r r o r (Lex ing . lexeme l e x b u f)) }

7

ocamllex Example – details

1 (∗ l e x i n g r u l e s ∗)
2 r u l e r ead = p a r s e
3 | wh i t e { r ead l e x b u f }
4 | i n t e g e r {INT (i n t o f s t r i n g (Lex ing . lexeme l e x b u f)) }
5 | ”+” {PLUS}
6 | ”−” {MINUS}
7 | ”∗” {TIMES}
8 | e o f {EOF}
9 | { r a i s e (L e x i n g E r r o r (Lex ing . lexeme l e x b u f)) }

• read – the name of the function from a buffer to tokens
• read lexbuf – a command saying to ignore the lexeme
• Lexing.lexeme lexbuf – the lexeme

Usage
1 l e t l e x b u f = Lex ing . f r o m c h a n n e l i n f i l e i n
2 l e t m y l e x e r f u n c t i o n = Mylexer . r ead l e x b u f i n
3 . . .

8

Parsing with menhir

Implementing Parsers Automatically

Parser generators

• Input:
• associativity rules
• grammar

• Output:
• the parser code

9

menhir

An LR(1) parser generator for OCaml

• Input: Myparser.mly
• some code to be used by the parser
• a set of tokens
• associativity rules
• grammar

• Command: menhir Myparser.mly
• Output: Myparser.ml and Myparser.mli

• the parser module

10

menhir file details

1 (∗ code to be c o p i e d i n the s c a n n e r module ∗)
2 %{
3 open MyAST (∗ <−− d e f i n i t i o n o f the A b s t r a c t Syntax Tree ∗)
4 %}
5
6 (∗ tokens ∗)
7 %token TOKENNAME
8 %token <l exeme type> OTHERTOKENNAME
9

10 (∗ s t a r t n o n t e r m i n a l ∗)
11 %s t a r t <AST type> s t a r t n o n t e r m i n a l
12
13 %% (∗ <−− t h i s d e l i m i t the grammar r u l e s ∗)
14
15 (∗ grammar ∗)
16 s t a r t n o n t e r m i n a l :
17 | case1 { r e s u l t i n g va lue (a p a r t of the AST) }
18 . . .
19 | casen { r e s u l t i n g va lue (a p a r t of the AST) }
20 o t h e r n o n t e r m i n a l :
21 | . . . 11

Example: Aexp.ml

The module Aexp defining our abstract syntax tree
1 type aexp =
2 | I n t l i t e r a l of i n t
3 | Plus of aexp ∗ aexp
4 | Minus of aexp ∗ aexp
5 | Times of aexp ∗ aexp
6
7 l e t r ec e v a l = f u n c t i o n
8 | I n t l i t e r a l n −> n
9 | Plus (a1 , a2) −> (e v a l a1) + (e v a l a2)

10 | Minus (a1 , a2) −> (e v a l a1) − (e v a l a2)
11 | Times (a1 , a2) −> (e v a l a1) ∗ (e v a l a2)

The interface Aexp.mli makes both definitions visible.

12

menhir Example: Myparser.mly

1 %{
2 open Aexp (∗ <−− code c o p i e d i n the s c a n n e r module ∗)
3 %}
4
5 (∗ tokens ∗)
6 %token < i n t > INT
7 %token PLUS MINUS TIMES EOF
8
9 (∗ s t a r t n o n t e r m i n a l ∗)

10 %s t a r t <aexp> prg
11
12 %%
13
14 (∗ grammar ∗)
15 prg :
16 | t = trm ; EOF { t }
17 trm :
18 | i = INT { I n t l i t e r a l i }
19 | t1 = trm ; PLUS ; t2 = trm {Plus (t1 , t2) }
20 | t1 = trm ; MINUS ; t2 = trm {Minus (t1 , t2) }
21 | t1 = trm ; TIMES ; t2 = trm {Times (t1 , t2) } 13

menhir Example – details

• %token <int> INT – INT token holds the lexeme parsed as
integer

• %start <aexp> trm – trm is the starting non-terminal, and
the result of parsing the file will be a value of type aexp
(defined in Aexp.ml)

• t1 = trm; PLUS; t2 = trm Plus (t1, t2) – while
parsing something of the form trm PLUS trm, we take t1 and
t2, the result of parsing the two subterms, and we return an
aexp value Plus (t1, t2).

Usage: the interpreter
1 l e t i n f i l e = o p e n i n Sys . a rgv . (1) i n
2 l e t l e x b u f = Lex ing . f r o m c h a n n e l i n f i l e i n
3 l e t program = (Myparser . prg Mylexer . r ead l e x b u f) i n
4 . . . someth ing u s i n g e v a l (program)

14

Precedence and Ambiguity

Ops

The parser we generated is useless: no precedence is specified!

(indeed menhir complains about these problems)

15

Precedence

How to parse?
4 * 5 + 2

*

4 +

5 2

+

2*

4 5

In general we want * to bind more strictly than +

16

Ambiguity in the Grammar — Precedence

term ∶∶= INT ∣ term + term ∣ term − term ∣ term ∗ term

In general we want * to bind more strictly than +

We can either update the grammar

term ∶∶= sterm ∣ term + term ∣ term − term
sterm ∶∶= INT ∣ sterm ∗ sterm

Or inform menhir to give higher precedence to TIMES

(we will see how)

17

Associativity

How to parse?
4 + 5 + 2

+

4 +

5 2

+

2+

4 5

For plus it does not change the result, still menhir complains!

Notice that in other cases the associativity may alter the result

• With f g x = f (g x) we have f ∶ B ⟶ C , g ∶ A ⟶ B,
and x ∶ A

• With f g x = (f g) x we have f ∶ C ⟶ (A ⟶ B), g ∶ C ,
and x ∶ A 18

Ambiguity in the Grammar — Associativity

term ∶∶= sterm ∣ term + term ∣ term − term
sterm ∶∶= INT ∣ sterm ∗ sterm

We can either update the grammar

term ∶∶= sterm ∣ term + sterm ∣ term − sterm
sterm ∶∶= INT ∣ sterm ∗ INT

Or inform menhir to give higher precedence to TIMES and to
associate left

(now we see how to do this)

19

Specifying Precedence and Associativity to menhir

1 (∗ code to be c o p i e d i n the s c a n n e r module ∗)
2 %{
3 open MyAST (∗ <−− d e f i n i t i o n o f the A b s t r a c t Syntax Tree ∗)
4 %}
5
6 (∗ tokens ∗)
7 %token TOKENNAME
8 %token <l exeme type> OTHERTOKENNAME
9

10 (∗ s t a r t n o n t e r m i n a l ∗)
11 %s t a r t <AST type> n o n t e r m i n a l
12
13 (∗ a s s o c i a t i v i t y i n o r d e r o f p r e c edence ∗)
14 %l e f t / nonassoc / r i g h t precname or token
15 %l e f t / nonassoc / r i g h t precname or token
16
17 %%
18
19 (∗ grammar ∗)
20 n o n t e r m i n a l :
21 | case1 %prec precname { r e s u l t i n g va lue }
22 . . .

20

menhir Example: Myparser.mll

1 (∗ code to be c o p i e d i n the s c a n n e r module ∗)
2 %{
3 open Aexp
4 %}
5
6 (∗ tokens ∗)
7 %token < i n t > INT
8 %token PLUS MINUS TIMES EOF
9

10 (∗ s t a r t n o n t e r m i n a l ∗)
11 %s t a r t <aexp> prg
12
13 (∗ a s s o c i a t i v i t y i n o r d e r o f p r e c edence ∗)
14 %l e f t PLUS MINUS /∗ l o w e s t p r e cedence ∗/
15 %l e f t TIMES /∗ h i g h e s t p r e cedence ∗/
16
17 %%
18
19 (∗ grammar ∗)
20 prg :
21 . . . 21

Details on Associativity and Precedence in menhir

1 (∗ a s s o c i a t i v i t y i n o r d e r o f p r e c edence ∗)
2 %l e f t TOKEN1 TOKEN2 /∗ l o w e s t p r e cedence ∗/
3 %l e f t TOKEN3 namedprec /∗ medium precedence ∗/
4 %l e f t TOKEN4 /∗ h i g h e s t p r e cedence ∗/
5
6 %%
7
8 (∗ grammar ∗)
9 n o n t e r m i n a l :

10 | case1 %prec precname { r e s u l t i n g va lue }
11 . . .

• The order defines the precedence
• Associativity may be either left or right
• If you want to specify precedence but not associativity you can

use nonassoc
• %prec precname specifies the associativity and precedence for

a grammar production to be the ones of precname
22

Further Resources – links on my webpage (lceragioli.github.io)

• The ocamllex manual – if you have doubts
• The menhir manual – some more advanced features
• The Section ”Parsing with OCamllex and Menhir” from the

book Real World OCaml – for an overview
• The calculator OCaml example

23

Parsing MiniImp and MiniFun

Parsing MiniImp

p ≔ def main with input x output y as c
c ≔ skip ∣ x ∶= a ∣ c; c

∣ if b then c else c ∣ while b do c
b ≔ v ∣ b and b ∣ not b ∣ a < a
a ≔ x ∣ n ∣ a + a ∣ a − a ∣ a ∗ a

• We have already defined the abstract syntax of the language
• Defining the lexer is not difficult
• For parsing, the first attempt would be to directly feed menhir

with the grammar of MiniImp
• However, the grammar above is ambiguous, you will see

warning messages!
24

MiniImp Ambiguity

1 whi le t rue do sk ip ; sk i p

Two possible parsing trees

while b do c

c c;

c

true

skip skip

while b do c

c ; c

c

true skip

skip

25

MiniImp Ambiguity

This is a classical example of a shift-reduce conflict, because the
parser will get in a state like the following, where both

• shift (i.e. push the remaining portion of the input to the stack)
• reduce (i.e. recognize the current state of the stack as the

non-terminal c)

are reasonable moves and produce a correct syntax tree.
Stack Input

$while true do skip ; skip$

The common choice here (for good reasons) is to parse this
command as (while true do skip);skip.

26

Other Ambiguities

• This is just an example of an ambiguity in MiniImp
• There are more, e.g. in arithmetical expressions and in c1; c2; c3

• Find, and fix them using menhir

• The final code should not have conflicts reported by menhir
(you cannot rely on the default choices made by menhir, even
when they are correct: your code must not have warnings!)

27

Parenthesis

• Sometimes we want to use different associativity rules and
precedences than the standard ones of the language
For example forcing 5 + 2 before multiplication in 4 ∗ 5 + 2.

• For allowing this, we enrich our concrete semantics with
parenthesis to guide the parsing
For example, we can write 4 ∗ (5 + 2).

• We can do the same with commands:
1 whi le t rue do (sk i p ; sk i p)

28

Parenthesis

A more useful example:
1 def main with input i n output out as
2 x := i n ;
3 out := 0 ;
4 whi le not x < 0 do (
5 out := out + x ;
6 x := x − 1
7)

29

Parsing MiniFun

• Same problems as MiniImp
• For example fun x => x 1 can be either (fun x => x) 1

which gives 1 and fun x => (x 1) which gives a second
order function that applies the function x to 1

• This time some ambiguities may be better managed by
refactoring the grammar instead of specifying the associativity
and precedence in menhir, but it’s up to you :P

• Recall to discuss your choices in the report!

30

First Part of the Project: MiniImp
and MiniFun Interpreters

Project Fragment

(You should already have the modules for the AST and semantics)

1. Extend the concrete syntax with parenthesis for forcing the
evaluation order (no need to change the abstract syntax)

2. Define lexers and parsers for MiniImp and MiniFun (or
MiniTyFun, as you prefer) by using ocamllex and menhir

3. Get rid of ambiguities: menhir should not produce warnings!
4. Write in the report a section explaining the ambiguities you

have found and how you have solved them
5. Write a pair of interpreters (ocaml programs), one for MiniImp

and one for MiniFun/MiniTyFun that:
• Read a MiniImp/Fun program passed as a parameter
• Read an integer input for the MiniImp/Fun program, passed via

standard input
• Evaluate the program given the input and print the resulting

integer in standard output 31

Project Fragment – Example

The program sum.miniimp

1 def main with input i n output out as
2 x := i n ;
3 out := 0 ;
4 whi le not x < 0 do (
5 out := out + x ;
6 x := x − 1
7) ;
8 sk i p

Running the interpreter:
$ m i n i i m p i n t e r p r e t e r sum . min i imp
4 <−− your i n p u t
10 <−− the output o f the program

32

	Scanning with ocamllex
	Parsing with menhir
	Precedence and Ambiguity
	Parsing MiniImp and MiniFun
	First Part of the Project: MiniImp and MiniFun Interpreters

