
Parsing Programming Languages
Errata Corrige

Lorenzo Ceragioli
November 19, 2024

IMT Lucca

1



Lexing Integers (with ocamllex)

1 (∗ code to be c o p i e d i n the s c a n n e r module ∗)
2 {
3 open Myparser (∗ <−− where we d e f i n e the tokens ∗)
4 except i on L e x i n g E r r o r of s t r i n g
5 }
6
7 (∗ some named RExp ∗)
8 l e t i n t e g e r = ’ − ’? [ ’0 ’ − ’9 ’ ] [ ’ 0 ’ − ’9 ’ ]∗
9 l e t wh i t e = [ ’ ’ ’\ t ’ ]+ | ’\ r ’ | ’\n ’ | ”\ r \n”

10
11 (∗ l e x i n g r u l e s ∗)
12 r u l e r ead = p a r s e
13 | wh i t e { r ead l e x b u f }
14 | i n t e g e r {INT ( i n t o f s t r i n g ( Lex ing . lexeme l e x b u f ) ) }
15 | ”+” {PLUS}
16 | ”−” {MINUS}
17 | ”∗” {TIMES}
18 | e o f {EOF}
19 | { r a i s e ( L e x i n g E r r o r ( Lex ing . lexeme l e x b u f ) ) }

2



The Problem

From the string 6 − 5
We want: (INT, 6), MINUS, (INT, 5)

But we get: (INT, 6), (INT,−5)

• After that, the parsing cannot be successful!
• We must solve this problem of the lexing phase
• Lexing is unique, while minus has two meanings
• Solution:

• lexing just recognizes naturals and minus
• parsing solves ambiguities!

3



Idea of the Solution

From the string 6 − 5
We get: (INT, 6), MINUS, (INT, 5)

From the string 6 + −5
We get: (INT, 6), PLUS, MINUS, (INT, 5)

• In the first case, minus is a binary operator
• In the second case, minus is the sign of the second integer

4



New Lexer (with ocamllex)

1 (∗ code to be c o p i e d i n the s c a n n e r module ∗)
2 {
3 open Myparser (∗ <−− where we d e f i n e the tokens ∗)
4 except i on L e x i n g E r r o r of s t r i n g
5 }
6
7 (∗ some named RExp ∗)
8 l e t i n t e g e r = [ ’ 0 ’ − ’9 ’ ] [ ’ 0 ’ − ’9 ’ ] ∗
9 l e t wh i t e = [ ’ ’ ’\ t ’ ]+ | ’\ r ’ | ’\n ’ | ”\ r \n”

10
11 (∗ l e x i n g r u l e s ∗)
12 r u l e r ead = p a r s e
13 | wh i t e { r ead l e x b u f }
14 | i n t e g e r {INT ( i n t o f s t r i n g ( Lex ing . lexeme l e x b u f ) ) }
15 | ”+” {PLUS}
16 | ”−” {MINUS}
17 | ”∗” {TIMES}
18 | e o f {EOF}
19 | { r a i s e ( L e x i n g E r r o r ( Lex ing . lexeme l e x b u f ) ) }

5



New Grammar

Exp ∶∶= Int ∣ Exp + Exp ∣ Exp − Exp ∣ Exp × Exp
Int ∶∶= n ∣ −Int

• It is ambiguous because of associativity of operators
• But there is no problem with the new minus

• If the minus comes after a number then it is the binary operator
• Otherwise it is the sign of an integer

6



New Parser (with menhir)

1 %{
2 open Aexp
3 %}
4 %token < i n t > INT
5 %token PLUS MINUS TIMES EOF
6 %s t a r t <aexp> prg
7 %l e f t PLUS MINUS /∗ l o w e s t p r e cedence ∗/
8 %l e f t TIMES /∗ h i g h e s t p r e cedence ∗/
9

10 %%
11
12 prg :
13 | t = trm ; EOF { t }
14 trm :
15 | i = i n t { I n t l i t e r a l i }
16 | t1 = trm ; PLUS ; t2 = trm {Plus ( t1 , t2 ) }
17 | t1 = trm ; MINUS ; t2 = trm {Minus ( t1 , t2 ) }
18 | t1 = trm ; TIMES ; t2 = trm {Times ( t1 , t2 ) }
19 i n t :
20 | i = INT { i }
21 | MINUS ; i = i n t {− i } 7



Project Fragment

Same as before, but

• for miniImp and MiniFun this lexing problem is not your fault
• either use this updated version or the previous faulty one
• in any case, this one (and only this one) will not count as an

error for your project!

8


