Parsing Programming Languages
Errata Corrige

Lorenzo Ceragioli
November 19, 2024

IMT Lucca

Lexing Integers (with ocamllex)

1
2
3
4
5
6
7
8
9

P e o T e S e S S S
© 00 ~NO OB WN FH O

(* code to be copied in the scanner module x)

{

open Myparser (*x <— where we define the tokens %)
exception LexingError of string

}

(* some named RExp x)
let integer = "—'?['0"—="9"']['0"—"9"]*
let white = [" " "\t']+ | '\r’ | "\n’ | "\r\n”

(* lexing rules x)

rule read = parse

| white {read lexbuf}
integer {INT(int_of_string (Lexing.lexeme lexbuf))}
"+ {PLUS}

"7 [MINUS}
eof {EOF}

|
|
|
| "+ {TIMES}
|
|

_ { raise (LexingError (Lexing.lexeme lexbuf)) }

The Problem

From the string 6 —5
We want: (INT,6),MINUS, (INT,5)
But we get: (INT,6),(INT,—-5)

After that, the parsing cannot be successful!
= We must solve this problem of the lexing phase
= Lexing is unique, while minus has two meanings

= Solution:

= lexing just recognizes naturals and minus
= parsing solves ambiguities!

Idea of the Solution

From the string 6 —5
We get: (INT,6),MINUS, (INT,5)
From the string 6 + =5
We get: (INT,6),PLUS, MINUS, (INT,5)

= In the first case, minus is a binary operator

= In the second case, minus is the sign of the second integer

New Lexer (with ocamllex)

1
2
3
4
5
6
7
8
9

P e o T e S e S S S
© 0 ~NO O~ WN H O

(* code to be copied in the scanner module x)

{

open Myparser (*x <— where we define the tokens %)
exception LexingError of string

}

(* some named RExp x)
let integer = ['0'—"9']['0"—"9"]x
let white = [" " "\t']+ | '\r’ | "\n’ | "\r\n”

(* lexing rules x)

rule read = parse

| white {read lexbuf}
integer {INT(int_of_string (Lexing.lexeme lexbuf))}
"+ {PLUS}

"7 [MINUS}
eof {EOF}

|
|
|
| "+ {TIMES}
|
|

_ { raise (LexingError (Lexing.lexeme lexbuf)) }

New Grammar

Exp ::= Int | Exp + Exp | Exp — Exp | Exp X Exp

Int ::= n| —Int
= It is ambiguous because of associativity of operators

= But there is no problem with the new minus

= |f the minus comes after a number then it is the binary operator
= Otherwise it is the sign of an integer

New Parser (with menhir)

1 %{

2 open Aexp

3 %}

4 %token <int> INT

5 %token PLUS MINUS TIMES EOF

6 %start <aexp> prg

7 %left PLUS MINUS /x lowest precedence x/

8 %left TIMES /* highest precedence */

9

10 %%

11

12 prg:

13 | t = trm; EOF {t}

14 trm:

15 | i = int {Intliteral i}
16 | t1 = trm; PLUS; t2 = trm {Plus (t1, t2)}
17 | t1 = trm; MINUS; t2 = trm {Minus (tl, t2)}
18 | t1 = trm; TIMES; t2 = trm {Times (tl, t2)}
19 int

20 | i = INT {i}

21 | MINUS; i = int {—i} 7

Project Fragment

Same as before, but

= for minilmp and MiniFun this lexing problem is not your fault
= either use this updated version or the previous faulty one

= in any case, this one (and only this one) will not count as an
error for your project!

