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Programming Languages

First part of the Project: implement the semantics of two simple
programming languages (MiniImp and MiniFun).

Each language is specified by:

• its syntax (what is a program)
– given as a grammar

• its semantics (what do programs mean)
– given in terms of a deduction system

As a simplifying assumption, all valid programs will define (partial)
functions from integers to integers!
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Deduction Systems

Deduction systems come from logic: they are a way of defining how
validity (truth) propagates from a formula to the others

⊤
true A B

A ∧ B And A
A ∨ B Or1 B

A ∨ B Or2

A formula is valid if there is a proof for it

⊤
true ⊤

true

A ∨⊤
Or2

⊤ ∧ (A ∨⊤) And
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MiniImp



Syntax

A program p is defined as follows

p ≔ def main with input x output y as c
c ≔ skip ∣ x ∶= a ∣ c; c

∣ if b then c else c ∣ while b do c
b ≔ v ∣ b and b ∣ not b ∣ a < a
a ≔ x ∣ n ∣ a + a ∣ a − a ∣ a ∗ a

where

• x , x ′
, x ′′

∈ X are integer variables (any sequence of letters and
numbers starting with a letter);

• n, n′
, n′′

∈ Z are integer numbers (0, 1,−1, . . . );
• v , v ′

, v ′′
, ⋅ ⋅ ⋅ ∈ B are boolean literals (true, false).
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Intuitive Semantics

1 def main with input i n output out as
2 x := i n ;
3 out := 0 ;
4 whi le not x < 1 do (
5 out := out + x ;
6 x := x − 1
7 ) ;

Execution with input 2:

Memory: [

in ↦ 2

,

x ↦ 2

,

out ↦ 0

]
[

in ↦ 2

,

x ↦ 1

,

out ↦ 2

]
[

in ↦ 2

,

x ↦ 0

,

out ↦ 3

]

Returns the final value of out, i.e. 3
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Semantics: Memory and Reductions

An imperative language operates by reading and updating a memory
σ, in our case, it associates variables with integer numbers:

σ is a partial function from X to Z

The semantics is given by four reductions:

• for arithmetical expressions ⟨σ, a⟩ ⟶a n
• for boolean expressions ⟨σ, b⟩ ⟶b v
• for commands ⟨σ, c⟩ ⟶c σ

• for programs ⟨p, n⟩ ⟶p n′

(recall, the semantics is a function from integers to integers)
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Semantics: Arithmetic Expressions

We assume a function O( ⋅ ) that maps each syntactical operator to
its corresponding operation (e.g. the symbol + to addition)

⟨σ, n⟩ ⟶a n Num ⟨σ, x⟩ ⟶a σ(x) Var

⟨σ, a1⟩ ⟶a n1 ⟨σ, a2⟩ ⟶a n2
⟨σ, a1 + a2⟩ ⟶a n1 O(+) n2

Plus

⟨σ, a1⟩ ⟶a n1 ⟨σ, a2⟩ ⟶a n2
⟨σ, a1 − a2⟩ ⟶a n1 O(-) n2

Minus

⟨σ, a1⟩ ⟶a n1 ⟨σ, a2⟩ ⟶a n2
⟨σ, a1 ∗ a2⟩ ⟶a n1 O(*) n2

Times
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Semantics: Boolean Expressions

⟨σ, v⟩ ⟶b v Bool

⟨σ, b1⟩ ⟶b n1 ⟨σ, b2⟩ ⟶b n2
⟨σ, b1 and b2⟩ ⟶b n1 O(and) n2

And

⟨σ, b⟩ ⟶b b
⟨σ, not b⟩ ⟶b O(not) b Not

⟨σ, a1⟩ ⟶a n1 ⟨σ, a2⟩ ⟶b n2
⟨σ, a1 < a2⟩ ⟶b n1 O(<) n2

Less
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Implementing Expressions

You already know from exercises 1 and 2 how to implement a
simpler version of the abstract syntax three of arithmetical and
boolean expressions and an evaluation function for them

Note: Something is still missing: memory and variables

But the same approach also works for more complex languages:

• a type for the abstract syntax tree
• an evaluation function defined (possibly recursively) over the

abstract syntax tree
• in addition, it may be the case that you have to implement the

run-time environment, i.e. the infrastructure needed for
executing the code (in our case, the memory)
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Semantics: Commands

We write σ[x ↦ n] for the memory obtained by updating (i.e.
adding or overwriting) the binding for x , associating it to n.

⟨σ, skip⟩ ⟶c σ
Skip

⟨σ, a⟩ ⟶a n
⟨σ, x ∶= a⟩ ⟶c σ[x ↦ n] Assign

⟨σ, c1⟩ ⟶c σ1 ⟨σ1, c2⟩ ⟶c σ2
⟨σ, c1; c2⟩ ⟶c σ2

Seq
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Semantics: Commands

⟨σ, b⟩ ⟶b true ⟨σ, c1⟩ ⟶c σ1
⟨σ, if b then c1 else c2⟩ ⟶c σ1

IfTrue

⟨σ, b⟩ ⟶b false ⟨σ, c2⟩ ⟶c σ2
⟨σ, if b then c1 else c2⟩ ⟶c σ2

IfFalse
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Semantics: Commands

⟨σ, b⟩ ⟶b true ⟨σ, c; while b do c⟩ ⟶c σ1
⟨σ, while b do c⟩ ⟶c σ1

WhileTrue

⟨σ, b⟩ ⟶b false
⟨σ, while b do c⟩ ⟶c σ

WhileFalse
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Semantics: Programs

We write σ0 for the memory that is always undefined.

⟨σ0[x ↦ n], c⟩ ⟶c σ
′

⟨def main with input x output y as c, n⟩ ⟶p σ
′(y)

Prog
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Implementing the Semantics

1. Define a type for the abstract syntax tree
2. Define types and function for the run-time environment
3. Translate the deduction system into functions (not always easy)
4. Encode the functions into OCaml

Project Fragment 1. Create a module for MiniImp that exposes
the type of the abstract syntax tree and an evaluation function.
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A Remark on Deadlock and Non-termination

Notice: not every program has a defined semantics.

Programs may:

• Fail – i.e. arrives in erroneous states where we don’t know how
to proceed

• Diverge – basically loop forever

Also in a simple language like MiniImp: this is why the semantics is
a partial function!

How do we deal with these problems?
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A Remark on Deadlock

The only case in which a MiniImp program reaches a deadlock is
when a variable is undefined!

1 def main with input a output b as
2 x := 1 ;
3 b := a + x + y

If we try to build a derivation for the semantics of this program, we
reach a certain point where we cannot proceed

. . .
⟨σ, a + x⟩ ⟶a n Plus ???

⟨σ, y⟩ ⟶a σ(y) Var

⟨σ, (a + x) + y⟩ ⟶a n+? Plus

⟨σ, b ∶= a + x + y⟩ ⟶c σ[x ↦ n+?] Assign

16



Dealing with Deadlocks

Two possible approaches :

• raise an error at run-time
– that’s the right way for the moment
– use OCaml exceptions (e.g. use failwith "message")

• prove before running the code that no deadlock will ever occur
– this require approximating, i.e. some program will be rejected
even if not problematic
– we will see later in the course how to implement it
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A Remark on Non-termination

The only cause for non-termination in MiniImp is the while

1 def main with input a output b as
2 whi le t rue do
3 x := 1

There is no derivation for the semantics of this program, while
searching, the derivation tree grows infinitely

Let A be x := 1 and let W be while true do x := 1.

⟨σ, true⟩ ⟶b true
Bool

. . .

⟨σ, A⟩ ⟶c σ
′′ Assign . . .

⟨σ′′
, W ⟩ ⟶c σ

′ WhileTrue

⟨σ, A;W ⟩ ⟶c σ
′

Seq

⟨σ, W ⟩ ⟶c σ
′ WhileTrue
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Dealing with Non-termination

You can only accepts that this is how programs behave
sometimes!

This is why also OCaml programs are partial functions
1 l e t rec f x = f x i n f 0

Your evaluation function is allowed to diverge if (and only if) the
MiniImp program itself is non-terminating!
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MiniFun



Syntax

A MiniFun program is a term t

t ≔ n ∣ v ∣ x ∣ fun x => t
∣ t t ∣ t op t ∣ if t then t else t
∣ let x = t in t ∣ letfun f x = t in t

where

• f , x , x ′
, x ′′

∈ X are variables;
• n, n′

, n′′
∈ Z are integer numbers (0, 1,−1, . . . );

• v , v ′
, v ′′

, ⋅ ⋅ ⋅ ∈ B are boolean literals (true, false);
• op is an operator +, -, *, <, not, and.

A term denotes a value, i.e. an integer, a boolean or a function.
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Intuitive Semantics: The meaning of terms

• trivial for literals n and v
• a function fun x => t is value itself, we must only take care

of local names
• variables are resolved according to the bindings of

let ⋅ = ⋅ in ⋅ and letfun ⋅ ⋅ = ⋅ in ⋅

• the result of performing an operation, for t op t
• the result of applying a function t to a term t ′, for t t ′

• the result of the conditional, for if t then t ′ else t ′′

• the value denoted by t ′ when x is then name for t, when the
term is let x = t in t ′

• the value denoted by t ′ when f is then name for a recursive
function defined as t with parameter x , when the term is
letfun f x = t in t ′
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Intuitive Semantics: An example

1 l e t f =
2 fun x =>
3 fun y => x + y
4 i n
5 f 3

1 l e t f u n f x =
2 fun y => x + y
3 i n
4 f 3

• the programs return the input integer plus 3
• the let construct can be used for defining non-recursive

functions
• their semantics is a function from integers to integers
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Intuitive Semantics: Another example

1 l e t f =
2 fun z =>
3 fun y =>
4 fun x =>
5 i f x < 0 then y x e l s e z x
6 i n
7 f ( fun x => x + 1) ( fun x => x − 1)

• functions can be passed as parameters and returned by
functions

• its semantics is a function from integers to integers
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Intuitive Semantics: Deadlocks

1 l e t f u n f x =
2 t r u e + y
3 i n
4 f 3

Two problems:

• the variable y is undefined
• the sum + is not defined between booleans and integer values

Thus:

• the program has no semantics
• the OCaml implementation should fail in this case
• we will see how to detect this problems at static time
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Intuitive Semantics: A third example

1 l e t f u n f x =
2 i f x < 2 then 1 e l s e x + ( f ( x − 1) )
3 i n
4 f

• we have recursive functions (when using letfun)
• we use parenthesis for representing the order of evaluation in

the concrete syntax
• the abstract syntax tree already defines the order of evaluation,

so please ignore them (we will parse the language later)
• its semantics is a function from integers to integers
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Intuitive Semantics: A final example

Program A:
1 fun x => x + 4

Program B:
1 fun x => x and f a l s e

• both are legal MiniFun programs
• the semantics of program A is a function from integers to

integers
• the semantics of program B is a function from booleans to

booleans
• the latter will not be accepted by our interpreter (just notice

that when writing tests)
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Semantic Domains

Values are either (i.e. the union of)

• Z integers
• B booleans
• functions represented as closures, i.e. the code with the

needed information for evaluating the contained variables

An environment ρ ∶ X ⟶ (Z ∪ B ∪ Closures) is needed to
represent the association between variables and values

As for memories, we will write ρ[x ↦ val] for the environment ρ
′

such that

ρ
′(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

val if y = x
ρ(y) otherwise
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Closures: function code and variable definitions

Two kinds of closures

• (x , t, ρ) for non-recursive functions

fun x => t
let y = fun x => t in ⋅

• (f , x , t, ρ) for recursive functions

letfun f x = t in ⋅
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Closures: function code and variable definitions

Consider the first one (x , t, ρ)

• the name of the formal parameter x tells us how to bind the
actual parameter

• the code of the function t is for computing the final result
• the environment is for resolving non-local names

Example:
1 l e t a = 1
2 i n ( fun y => y + a ) 6

• the closure is (y , y + a, {(a, 1)})
• the application returns y + a where y is 6 and a is 1, it gives 7
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Recall: Staci scoping

MiniFun Example:
1 l e t f =
2 ( l e t a = 1
3 i n ( fun y => y + a ) )
4 i n
5 ( l e t a = 2
6 i n f 4)

OCaml Example:
1 l e t f =
2 ( l e t a = 1
3 i n ( fun y −> y + a ) )
4 i n
5 ( l e t a = 2
6 i n f 4)

• which is the value of a when evaluating the function?
• is the result 5 or 6?
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Closures: function code and variable definitions

Consider the second one (f , x , t, ρ)

• x , t and ρ are used as before
• f is needed to recognize recursion: the variable f must be

bounded to the closure itself!

Example:
1 l e t f u n g y = g ( y − 1)
2 i n g 5

• the closure is (g , y , g (y − 1),∅)
• the application returns the same result of g (y − 1) where y is

5 and g is (g , y , g (y − 1),∅)
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Formal Semantics

The semantics is given in terms of sequents ρ ⊢ t ⟶ val where

• ρ is an environment
• t is a MiniFun term
• val is some value (integer, boolean or closure)

Read as: ”the semantics of t in the environment ρ is val”

The simplest cases:

ρ ⊢ n ⟶ n Num

ρ ⊢ v ⟶ v Bool

ρ ⊢ x ⟶ ρ(x) Var
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Formal Semantics

We assume a function O( ⋅ ) that maps each syntactical operator to
its corresponding operation (e.g. the symbol + to addition)

ρ ⊢ t1 ⟶ t ′1 ρ ⊢ t2 ⟶ t ′2
ρ ⊢ t1 op t2 ⟶ t ′1 O(op) t ′2

Op

ρ ⊢ t1 ⟶ true ρ ⊢ t2 ⟶ t ′2
ρ ⊢ if t1 then t2 else t3 ⟶ t ′2

IfTrue

ρ ⊢ t1 ⟶ false ρ ⊢ t3 ⟶ t ′3
ρ ⊢ if t1 then t2 else t3 ⟶ t ′3

IfFalse
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Formal Semantics

ρ ⊢ fun x => t ⟶ (x , t, ρ) Fun

ρ ⊢ t1 ⟶ t ′1 ρ[x ↦ t ′1] ⊢ t2 ⟶ t ′2
ρ ⊢ let x = t1 in t2 ⟶ t ′2

Let

ρ ⊢ t1 ⟶ (x , t ′1, ρ
′) ρ ⊢ t2 ⟶ t ′2 ρ

′[x ↦ t ′2] ⊢ t ′1 ⟶ t
ρ ⊢ t1 t2 ⟶ t FunApp
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Formal Semantics

ρ[f ↦ (f , x , t1, ρ)] ⊢ t2 ⟶ t
ρ ⊢ letfun f x = t1 in t2 ⟶ t LetFun

ρ ⊢ t1 ⟶ (f , x , t ′1, ρ
′)

ρ ⊢ t2 ⟶ t ′2
ρ
′[f ↦ (f , x , t ′1, ρ

′)][x ↦ t ′2] ⊢ t ′1 ⟶ t
ρ ⊢ t1 t2 ⟶ t RecFunApp
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Implementing the Semantics

1. Define a type for the abstract syntax tree
2. Define types and function for the run-time environment
3. Translate the deduction system into functions (not always easy)
4. Encode the functions into OCaml

Project Fragment 2. Create a module for MiniFun that exposes
the type of the abstract syntax tree and an evaluation function. The
evaluation function can both fail and diverge, in agreement with the
semantics of MiniFun.
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