
Typing MiniFun

Lorenzo Ceragioli
October 30, 2024

IMT Lucca

1



Type Analysis

Static analysis

• Proves properties about the behaviour of the program by
looking at the code (i.e. without executing it)

• Decidable, therefore approximated (Rice’s theorem)

Type Analysis

• The most common static analysis
• Property of a term is its type
• Enforces no type error at run-time
• For MiniFun it also implies no deadlock

2



More Concretely

1. We will define a deduction system for deciding the type of
constructs and check their consistency

• property t ▷ τ , i.e. t is of type τ

• int and bool atomic types
• functional types
• inconsistency implies contradiction in the properties

t ▷ τ and t ▷ τ
′ with τ and τ

′ incompatible

2. You will implement a procedure for performing the type analysis

3



An Example of Inconsistency

1 l e t f u n f x = x and t r u e
2 i n f 5

Note that

• f 5 is a legal term, per se
• x and true is a legal term, per se
• but they are not consistent (x must be both bool and int)
• idea: the deduction system computes and propagates the

constraints

4



Approximation

Before seeing the formal treatment, be aware that the following

• is not problematic
• will be deemed inconsistent by the type system

1 l e t f u n f x = f ( x − 1) i n
2 fun x => ( x + ( f x ) ) and t r u e

There will always be cases like this, no matter how hard you try!

5



Formally...



Syntax of MiniFun’s Types

A type τ is either int, bool , or a function

τ ∶∶= int ∣ bool ∣ τ ⟶ τ

We write T for the set of all types.

We assume different types to be incompatible: t ▷ τ and t ▷ τ
′

with τ ≠ τ
′ is always a contradiction.

The typing is contextual, the type of fun x => x + y is
int ⟶ int if y is an integer, it is not defined (an error) otherwise.

A typing context (or environment) Γ is a partial function associating
variables with types Γ ∶ X ⟶ T. 6



Typing Judgments

A typing judgment is a sequent of the form Γ ⊢ t ▷ τ

• Read as ”the term t has type τ in the context Γ”
• In the deduction system, τ is inferred by the types of the

subterms of t and of the non-local names
• The type of t is needed to infer the types of the terms of which

t is subterm and in which its name is used
• In theory we are mainly interested in wether t has a type or not

(i.e. if it is correct)

7



Deduction System

Literals are trivially typed.

Γ ⊢ n ▷ int Num Γ ⊢ v ▷ bool Bool

Variables are typed according to the context

Γ[x ↦ τ] ⊢ x ▷ τ
Var

This notation is the same as requiring in the premise that Γ(x) = τ .

8



Deduction System

We assume builtin operations (+, -, and, ...) to be implicitly typed

Γ ⊢ t1 ▷ int Γ ⊢ t2 ▷ int
Γ ⊢ t1 + t2 ▷ int Plus

Are we approximating something here?

Γ ⊢ t1 ▷ bool Γ ⊢ t2 ▷ τ Γ ⊢ t3 ▷ τ

Γ ⊢ if t1 then t2 else t3 ▷ τ
If

9



Deduction System

Notice, very similar to computing the semantics.

Γ[x ↦ τ] ⊢ t ▷ τ
′

Γ ⊢ fun x => t ▷ τ ⟶ τ
′ Fun

Γ ⊢ t1 ▷ τ ⟶ τ
′ Γ ⊢ t2 ▷ τ

Γ ⊢ t1 t2 ▷ τ
′ FunApp

10



Deduction System

Γ ⊢ t1 ▷ τ Γ[x ↦ τ] ⊢ t2 ▷ τ
′

Γ ⊢ let x = t1 in t2 ▷ τ
′ Let

Γ[f ↦ τ ⟶ τ
′′; x ↦ τ] ⊢ t1 ▷ τ

′′ Γ[f ↦ τ ⟶ τ
′′] ⊢ t2 ▷ τ

′

Γ ⊢ letfun f x = t1 in t2 ▷ τ
′ LetFun

11



Typing Terms

A term t has type τ if

∅ ⊢ t ▷ τ

12



Guessing the type of parameters

• The idea of our typing system is to compute and propagate
constraints.

• What if there are not enough constraints?
1 fun x => x

Which is the type of x?

Is it int?
∅[x ↦ int] ⊢ x ▷ int Var

∅ ⊢ fun x => x ▷ int ⟶ int Fun

Or maybe bool ⟶ bool?

∅[x ↦ (bool ⟶ bool)] ⊢ x ▷ (bool ⟶ bool) Var

∅ ⊢ fun x => x ▷ (bool ⟶ bool) ⟶ (bool ⟶ bool) Fun

13



Guessing the types of parameters

• This is not a problem in theory
• The term is typed if there exists a guess that works
• We could derive the most adequate type, if a guess works we

stick with it, otherwise we try a new one (but notice that they
are not finite)

14



Guessing the types of parameters

Sometimes constraints are there, so you can guess the right type

∅[x ↦ int] ⊢ x ▷ int Var

∅ ⊢ fun x => x ▷ int ⟶ int Fun
∅ ⊢ 3 ▷ int Num

∅ ⊢ (fun x => x) 3 ▷ int FunApp

still the deduction system does not help you to guess

15



MiniTyFun

The simplest solution is to update the syntax of the language and to
ask the programmer to specify the types of parameters

t ≔ n ∣ v ∣ x ∣ let x = t in t ∣ letfun f x:τ = t in t
∣ t t ∣ t op t ∣ if t then t else t ∣ fun x:τ => t

τ ≔ int ∣ bool ∣ τ -> τ

Notice

• the symbol : is the syntactic counterpart of ▷
• the symbol -> is the syntactic counterpart of ⟶
• for recursive functions letfun f x:τ = t in t, τ must be

the (functional) type of f , i.e. some type τ
′->τ

′′ where τ
′ is

the type of the parameter x and τ
′′ is the type of the value

returned by the function 16



Project Fragment

1. Complete the definition of the type system of MiniTyFun
extending the syntax of MiniFun with type annotations;

2. Write it down in the report (just the missing rules)
3. Produce an OCaml module for MiniTyFun, with an OCaml

type for the abstract syntax tree, and a type check function
that given a MiniTyFun term returns Some τ if τ is its type or
None if it cannot be typed.

17


	Formally...

