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Type Analysis

Static analysis

• Proves properties about the behaviour of the program by
looking at the code (i.e. without executing it)

• Decidable, therefore approximated (Rice’s theorem)

Type Analysis

• The most common static analysis
• Property of a term is its type
• Enforces no type error at run-time
• For MiniFun it also implies no deadlock
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More Concretely

1. We will define a deduction system for deciding the type of
constructs and check their consistency

• property t ▷ τ , i.e. t is of type τ

• int and bool atomic types
• functional types
• inconsistency implies contradiction in the properties

t ▷ τ and t ▷ τ
′ with τ and τ

′ incompatible

2. You will implement a procedure for performing the type analysis
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An Example of Inconsistency

1 l e t f u n f x = x and t r u e
2 i n f 5

Note that

• f 5 is a legal term, per se
• x and true is a legal term, per se
• but they are not consistent (x must be both bool and int)
• idea: the deduction system computes and propagates the

constraints
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Approximation

Before seeing the formal treatment, be aware that the following

• is not problematic
• will be deemed inconsistent by the type system

1 l e t f u n f x = f ( x − 1) i n
2 fun x => ( x + ( f x ) ) and t r u e

There will always be cases like this, no matter how hard you try!
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Formally...



Syntax of MiniFun’s Types

A type τ is either int, bool , or a function

τ ∶∶= int ∣ bool ∣ τ ⟶ τ

We write T for the set of all types.

We assume different types to be incompatible: t ▷ τ and t ▷ τ
′

with τ ≠ τ
′ is always a contradiction.

The typing is contextual, the type of fun x => x + y is
int ⟶ int if y is an integer, it is not defined (an error) otherwise.

A typing context (or environment) Γ is a partial function associating
variables with types Γ ∶ X ⟶ T. 6



Typing Judgments

A typing judgment is a sequent of the form Γ ⊢ t ▷ τ

• Read as ”the term t has type τ in the context Γ”
• In the deduction system, τ is inferred by the types of the

subterms of t and of the non-local names
• The type of t is needed to infer the types of the terms of which

t is subterm and in which its name is used
• In theory we are mainly interested in wether t has a type or not

(i.e. if it is correct)
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Deduction System

Literals are trivially typed.

Γ ⊢ n ▷ int Num Γ ⊢ v ▷ bool Bool

Variables are typed according to the context

Γ[x ↦ τ] ⊢ x ▷ τ
Var

This notation is the same as requiring in the premise that Γ(x) = τ .
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Deduction System

We assume builtin operations (+, -, and, ...) to be implicitly typed

Γ ⊢ t1 ▷ int Γ ⊢ t2 ▷ int
Γ ⊢ t1 + t2 ▷ int Plus

Are we approximating something here?

Γ ⊢ t1 ▷ bool Γ ⊢ t2 ▷ τ Γ ⊢ t3 ▷ τ

Γ ⊢ if t1 then t2 else t3 ▷ τ
If
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Deduction System

Notice, very similar to computing the semantics.

Γ[x ↦ τ] ⊢ t ▷ τ
′

Γ ⊢ fun x => t ▷ τ ⟶ τ
′ Fun

Γ ⊢ t1 ▷ τ ⟶ τ
′ Γ ⊢ t2 ▷ τ

Γ ⊢ t1 t2 ▷ τ
′ FunApp
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Deduction System

Γ ⊢ t1 ▷ τ Γ[x ↦ τ] ⊢ t2 ▷ τ
′

Γ ⊢ let x = t1 in t2 ▷ τ
′ Let

Γ[f ↦ τ ⟶ τ
′′; x ↦ τ] ⊢ t1 ▷ τ

′′ Γ[f ↦ τ ⟶ τ
′′] ⊢ t2 ▷ τ

′

Γ ⊢ letfun f x = t1 in t2 ▷ τ
′ LetFun
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Typing Terms

A term t has type τ if

∅ ⊢ t ▷ τ

12



Guessing the type of parameters

• The idea of our typing system is to compute and propagate
constraints.

• What if there are not enough constraints?
1 fun x => x

Which is the type of x?

Is it int?
∅[x ↦ int] ⊢ x ▷ int Var

∅ ⊢ fun x => x ▷ int ⟶ int Fun

Or maybe bool ⟶ bool?

∅[x ↦ (bool ⟶ bool)] ⊢ x ▷ (bool ⟶ bool) Var

∅ ⊢ fun x => x ▷ (bool ⟶ bool) ⟶ (bool ⟶ bool) Fun
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Guessing the types of parameters

• This is not a problem in theory
• The term is typed if there exists a guess that works
• We could derive the most adequate type, if a guess works we

stick with it, otherwise we try a new one (but notice that they
are not finite)
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Guessing the types of parameters

Sometimes constraints are there, so you can guess the right type

∅[x ↦ int] ⊢ x ▷ int Var

∅ ⊢ fun x => x ▷ int ⟶ int Fun
∅ ⊢ 3 ▷ int Num

∅ ⊢ (fun x => x) 3 ▷ int FunApp

still the deduction system does not help you to guess
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MiniTyFun

The simplest solution is to update the syntax of the language and to
ask the programmer to specify the types of parameters

t ≔ n ∣ v ∣ x ∣ let x = t in t ∣ letfun f x:τ = t in t
∣ t t ∣ t op t ∣ if t then t else t ∣ fun x:τ => t

τ ≔ int ∣ bool ∣ τ -> τ

Notice

• the symbol : is the syntactic counterpart of ▷
• the symbol -> is the syntactic counterpart of ⟶
• for recursive functions letfun f x:τ = t in t, τ must be

the (functional) type of f , i.e. some type τ
′->τ

′′ where τ
′ is

the type of the parameter x and τ
′′ is the type of the value

returned by the function 16



Project Fragment

1. Complete the definition of the type system of MiniTyFun
extending the syntax of MiniFun with type annotations;

2. Write it down in the report (just the missing rules)
3. Produce an OCaml module for MiniTyFun, with an OCaml

type for the abstract syntax tree, and a type check function
that given a MiniTyFun term returns Some τ if τ is its type or
None if it cannot be typed.
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