
Software Validation and Verification

First Exercise Sheet

Exercise 1

In the following, whenever transition systems are compared via = or ̸=, this means (in)equality up to
renaming of states (i.e. isomorphism). You can therefore safely assume that pairs made of a pair and an
element are equal to pairs made of an element and a pair: ⟨⟨x, y⟩, z⟩ = ⟨x, ⟨y, z⟩⟩ = ⟨x, y, z⟩.

1. Show that the handshaking operator ∥ is not associative, i.e. it is not true that for any sets of actions
H , H ′, and for any transition systems T1, T2, T3, the following holds.

(T1 ∥H T2) ∥H ′ T3 = T1 ∥H (T2 ∥H ′ T3)

2. Show that the handshaking operator ∥ is associative when the synchronization set is the same for
both occurrences, i.e. that for any set of actions H , and for any transition systems T1, T2, T3, the
following holds.

(T1 ∥H T2) ∥H T3 = T1 ∥H (T2 ∥H T3)

3. Show that the handshaking operator ∥ that forces transition systems to synchronize over their common
actions is associative, i.e. that for any transition systems T1, T2, T3, the following holds.

(T1 ∥ T2) ∥ T3 = T1 ∥ (T2 ∥ T3)

(Recall that T ∥ T ′ is defined as T ∥Act∩Act ′ T ′, with Act and Act ′ the actions of T and T ′ respectively)

Exercise 2

Consider the following mutual exclusion algorithm with shared variables y1 and y2 (both initially at 0).
Process P1 Process P2

while true do

... noncritical section ...

y1 := y2 + 1;

wait until (y2 = 0) or (y1 < y2)

... critical section ...

y1 := 0;

od

while true do

... noncritical section ...

y2 := y1 + 1;

wait until (y1 = 0) or (y2 < y1)

... critical section ...

y2 := 0;

od

1. Give the program graphs P1 and P2 representing the processes. (A pictorial representation suffices,
and you can use a single node for representing each of the critical and noncritical sections.)

2. Give the reachable part of the transition system of P1 9 P2 where y1 ≤ 2 and y2 ≤ 2.

3. Does the algorithm ensures mutual exclusion?

Exercise 3

In the following, we denote with TP the transition system of the program graph P. Moreover, we will say
that a transition system is infinite if the set of states reachable from the initial ones is an infinite set.

Let P1 and P2 be two program graphs, discuss the validity of the following statements:

1. if TP1 9 TP2 is infinite then also TP19P2
is infinite;

2. if TP19P2
is infinite then also TP1 9 TP2 is infinite.

Hint: For the first point recall that the full definition of program graph has more than just states and
transitions.

Exercise 4

Consider the following leader election algorithm: For n ∈ N, n processes P1, . . . , Pn are located in a ring
topology where each process is connected by an unidirectional, asynchronous channel to its neighbour as
outlined below.

In General For Three Processes

P1

P2

P3

P4
. . .

Pn

Pn−1

Pn−2

P1

P2P3

Each process Pi is assigned a unique identifier id(Pi) ∈ N and has a private variable containing the
identifier of the process currently assumed to be the leader. We name this variable l1 for the process P1,
l2 for P2, and so on, and we assume that each process initially considers itself the leader, thus each li

is initialized to id(Pi). The aim of the algorithm is to elect the process with the highest identifier as the
(unique) leader within the ring, i.e. all the variables l1, l2, . . . , ln must converge to the maximum id(Pi).
Each process Pi executes the same algorithm and it continuously performs two operations: (i) it sends its
current leader (stored in li) on its output channel; and (ii) upon receiving messages over its input channel,
the program stores the received value into another private variable xi (initially set to 0), and updates li if
the received id is higher.

1. Model the protocol described above with three processes as a channel system [P1|P2|P3];

2. Write an initial execution of the transition system T[P1|P2|P3] where the three processes converge to a
common leader, assuming channels have capacity 1 and id(Pi) = i for each process Pi;

3. Modify the channel system so that all channels are faulty (i.e. they may nondeterministically discard a
message instead of delivering it), to do so, define a program graph Pf such that [P1|P2|P3|Pf] models
a system similar to the previous one but where the channels are not reliable.

Recall: An initial execution for a transition system T is an alternating sequence of states and actions
s0

α1−→ s1
α2−→ s2 . . .

αn−−→ sn with s0 an initial state and → the transition relation of T .

