
Announcement:
The lesson scheduled for
Friday, the 24th, will not
be held

Course Focus and Next Steps

In this course, we have
explored how to model
systems and then verify

them using model
checking techniques.

This represents
the main line of

the course.

Now, we will take a side
path and examine some

program analysis
techniques.

We will focus on
dynamic analysis

techniques.

What is program
analysis?

Testing and Analysis

• Manual testing or semi-automated
testing

• JUnit, Pytest, Selenium, etc.

What you know
from previous

courses

• Code inspection, debugging, etc.
Manual

”analysis” of
programs:

import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.*;

class GeneralTestSuite {

 private ExampleService service;

 @BeforeAll
 static void initAll() {
 System.out.println("Starting test suite...");
 }

 @BeforeEach
 void init() {
 service = new ExampleService();
 }

 @Test
 void testAddition() {
 assertEquals(4, service.add(2, 2), "Addition should return correct result");
 }

 @Test
 void testDivisionByZeroThrows() {
 assertThrows(ArithmeticException.class, () -> service.divide(10, 0));
 }

 @Test
 void testStringNotNull() {
 String result = service.getMessage();
 assertNotNull(result, "Message should not be null");
 assertTrue(result.startsWith("Hello"), "Message should start with 'Hello'");
 }

 @AfterEach
 void tearDown() {
 service = null;
 }

 @AfterAll
 static void tearDownAll() {
 System.out.println("All tests completed.");
 }
}

// Dummy implementation under test
class ExampleService {
 int add(int a, int b) { return a + b; }
 int divide(int a, int b) { return a / b; }
 String getMessage() { return "Hello, World!"; }
}

The Key Concepts

@BeforeAll / @AfterAll for global setup and cleanup

@BeforeEach /@AfterEach for per-test setup and teardown

Assertions: assertEquals, assertNotNull, assertThrows …

Good naming and descriptive messages

Code inspection

use std::env;

fn read_port() -> u16 {
 let port_str = env::var("APP_PORT").unwrap();
 let port: i32 = port_str.parse().unwrap();
 port as u16
}

The function read_port() reads the environment variable APP_PORT,
parses it as a number, and returns it as a port.

Rust Code

use std::env;

fn read_port() -> u16 {
 let port_str = env::var("APP_PORT").unwrap();
 let port: i32 = port_str.parse().unwrap();
 port as u16
}

The function read_port() reads the environment variable APP_PORT,
parses it as a number, and returns it as a port.

Rust Code

unwrap() is a method used on Option<T> and Result<T, E> types.
It retrieves the inner value but will panic if the value is None or Err.

use std::env;

fn read_port() -> u16 {
 let port_str = env::var("APP_PORT").unwrap(); // panics if missing
 let port: i32 = port_str.parse().unwrap(); // panics if invalid
 port as u16
}

use std::{env, num::ParseIntError};

#[derive(Debug)]
enum PortError {
 MissingVar,
 Parse(ParseIntError),
}

fn read_port() -> Result<u16, PortError> {
 let raw = env::var("APP_PORT").map_err(|_| PortError::MissingVar)?;
 let port = raw.parse::<u16>().map_err(PortError::Parse)?;
 Ok(port)
}

Focus of this side path of the course:
Automated testing and
program analysis

Why do we talk about
program analysis and
automated testing?

• All software has bugs
• Bugs are hard to find
• Bugs cause serious

harm

Why do we talk about
program analsysis and
automated testing?

• All software has bugs
• Bugs are hard to find
• Bugs cause serious harm
• … Because no software is

bug-free, an AI-based
copilot can help us to spot
and resolve bugs more
efficiently.

My personal
statement

• While AI-based copilots
offer valuable support in
software development,
human understanding of
the generated code
remains essential, as
software (even AI-
generated software)
may still contain bugs.

What is program analysis

Automated analysis of program behavior capable to

find programming errors

optimize performance

find security vulnerabilities

…

From Program Execution to Program Analysis

8 - 1

What is Program Analysis?

↭ Automated analysis of program
behavior, e.g., to
↫ find programming errors
↫ optimize performance
↫ find security vulnerabilities

ProgramInput Output

8 - 2

What is Program Analysis?

↭ Automated analysis of program
behavior, e.g., to
↫ find programming errors
↫ optimize performance
↫ find security vulnerabilities

Program

Additional information

Input Output

Program Analysis

8 - 1

What is Program Analysis?

↭ Automated analysis of program
behavior, e.g., to
↫ find programming errors
↫ optimize performance
↫ find security vulnerabilities

ProgramInput Output

8 - 3

What is Program Analysis?

↭ Automated analysis of program
behavior, e.g., to
↫ find programming errors
↫ optimize performance
↫ find security vulnerabilities

Program

Additional information

Input
Input

Input
Output
Output

Output

Program analysis

Static
• Analyze source code, byte

code, or binary
• Typically:

• Consider all inputs
• Overapproximate

possible behavior

Dynamic
• Analyze program execution
• Typically:

• Consider current input
• Underapproximate

possible behavior

Program analysis example
//Jvascript
var r = Math.random();
var out = "yes";

if (r < 0.5)
 out = "no";

if (r === 1)
 out = "maybe";

console.log(out);

Program analysis example
//Jvascript
var r = Math.random();
var out = "yes";

if (r < 0.5)
 out = "no";

if (r === 1)
 out = "maybe";

console.log(out);

Overapproximation:
”yes”, ”no”, ”maybe”

Consider all paths

Program analysis example
//Jvascript
var r = Math.random();
var out = "yes";

if (r < 0.5)
 out = "no";

if (r === 1)
 out = "maybe";

console.log(out);

Underapproximation:
”yes”

Execute the program once

Program analysis example
//Jvascript
var r = Math.random();
var out = "yes";

if (r < 0.5)
 out = "no";

if (r === 1)
 out = "maybe";

console.log(out);

Sound and complete analysis::
”yes”, ”no”

The analysis explores both feasible paths

Program analysis example

//Jvascript
var r = Math.random();
var out = "yes";

if (r < 0.5)
 out = "no";

if (r === 1)
 out = "maybe";

console.log(out);

Math.random()
Returns a floating-point number r such that 0 ≤ r < 1
It never returns exactly 1.

Initialization
out starts as "yes".

First if condition (r < 0.5)
If the random number is less than 0.5, out becomes "no".
This happens roughly 50% of the time.

Second if condition (r === 1)
This would only run if r is exactly 1.
But since Math.random() never produces 1, this branch
is impossible

Output
So out is either "no" or "yes" depending on r.

Another example
//Jvascript
var r = Math.random();

var out = r*2

console.log(out);

Another example
//Jvascript
var r = Math.random();

var out = r*2

console.log(out);

Method Output Discussion

Over-approximation

Under-approximation

Sound and Complete

Another example
//Jvascript
var r = Math.random();

var out = r*2

console.log(out);

Method Output Discussion

Over-approximation Any value All paths

Under-approximation

Sound and Complete

Another example
//Jvascript
var r = Math.random();

var out = r*2

console.log(out);

Method Result Discussion

Over-approximation Any value All paths

Under-approximation Some number in [0,2),
e.g., 1.234

One execution

Sound and Complete

Another example
//Jvascript
var r = Math.random();

var out = r*2

console.log(out);

Method Result Discussion

Over-approximation Any value All paths

Under-approximation Some number in [0,2),
e.g., 1.234

One execution

Sound and Complete ?? Exploring all possible
outputs:
Practically impossible

How does program
analysis help me?

• Use program analysis
tools

• Improve the quality of
your code

• Understand program
analysis

• Better understanding of
program code and
program behaviours

• Create your own tools

Dynamic Analysis

Dynamic Analysis

Execute an instrumented program to gather information
that can be analyzed to learn about a property of interest

Precise: All observed behavior actually happens

Incomplete: Very difficult to cover all possible behaviors

Dynamic Analysis Examples

Coverage: Track which lines or branches get
executed

Call graph: Track which functions call which
other functions

Slicing: Track dependencies to produce a
reduced program

Some references

• Valgrind: A Framework for Heavyweight Dynamic Binary
Instrumentation, Nethercote et al., PLDI 2007

• Jalangi: A Selective Record-Replay and Dynamic Analysis
Framework for JavaScript, Sen et al., FSE 2013

• DynaPyt: A Dynamic Analysis Framework for Python, Eghbali et al.,
FSE 2022

Call graph analysis
function main() {
 let n = readInput();

 function a() {
 b();
 }

 function b() {
 if (n == 5) {
 c();
 }
 }

 function c() {
 if (n == 5) {
 c();
 n--;
 }
 }

 a();
}

Call graph analysis
function main() {
 let n = readInput();

 function a() {
 b();
 }

 function b() {
 if (n == 5) {
 c();
 }
 }

 function c() {
 if (n == 5){
 n--;
 c();
 }
 }

 a();
}

Nodes
main, readInput, a, b, c

Edges
main → readInput
main → a
a → b
b → c (if n == 5)
c → c (if n == 5). // recursive call

The instrumented code
function main() {
 const calls = new Set();

 let n = readInput();
 calls.add("main->readInput");

 function a() {
 calls.add("a->b");
 b();
 }

 function b() {
 if (n == 5) {
 calls.add("b->c");
 c();
 }
 }

function c() {
 if (n == 5) {
 calls.add("c->c");
 n=--;
 c();
 }
 }

 calls.add("main->a");
 a();

 console.log(calls);
}

Different dynamic analyses, but with
several commonalities

Specific runtime
events to track

Analysis updates
some state in
response to

events

The ingredients

Identify the set (of kinds) of
runtime events

The analysis can register for
specific events

At runtime, instrumented
program invokes event handlers

The idea (cont.)

16

Dynamic Analysis Frameworks

↭ Set of kinds of runtime events

↭ Analysis can register for specific
events

↭ At runtime, instrumented program
invokes event handlers

Program P Program P’

Analysis A

instrument

invoke event
handlers

Run time
events

17

Typical Runtime Events

Event Example

Arithmetic operation 2+3
Boolean operation a > 0
Branch if (c) ...
Function call g()
Return from function call x = g()
Write into variable or field x.f = z
Read of variable or field x.f = z

(and many others)

Example
function main() {
 let a = readInput();
 let b = a + 3;

 if (b === -23) {
 foo();
 } else {
 b = 5;
 }
}

Example
function main() {
 let a = readInput();
 let b = a + 3;

 if (b === -23) {
 foo();
 } else {
 b = 5;
 }
}

Runtime events:

• Arithmetic operations
• Boolean operations
• Reads of variables
• Writes into variables
• Function calls

Input: -26

Example
function main() {
 let a = readInput();
 let b = a + 3;

 if (b === -23) {
 foo();
 } else {
 b = 5;
 }
}

Runtime events:

• Arithmetic operations
• Boolean operations
• Reads of variables
• Writes into variables
• Function calls

Input: -26

What sequence of events get triggered?

Example
function main() {
 let a = readInput();
 let b = a + 3;

 if (b === -23) {
 foo();
 } else {
 b = 5;
 }
}

Runtime events:

• Call of readInput
• Write of -26 to a
• Read of a (-26)
• Arithmetic op (-26+3 = -23)
• Write of -23 to b
• Read of b (-23)
• Boolean op (-23 == -23 aka true)
• Call foo

Input: -26

This is the sequence of events triggered!!

Remark and questions

Easy enough for small
examples.
• But what happens with large

codebases?
• How can we formally

guide the instrumentation
of code and the analysis?

Formally: Estended Operational
Semantics

Tracking runtime
events: Additional

behavior performed
during program

execution

Formally describe by
extending the

operational
semantics

Some Notation

Runtime events:

• Write of -26 to a ===> 𝒂	 ← −𝟐𝟔
• The if branch is taken ===> if true

Some Notation

CONFIGURATION

 ⟨𝑃, 𝑠, 𝑒⟩

P: program
s: store (mapping from program variables to values)
e: sequence of run-time events

Example

𝑠 𝑥 = 𝑛
! 𝑥, 𝑠 → ⟨𝑛, 𝑠	⟩ VAR

Example

𝑠 𝑥 = 𝑛
! 𝑥, 𝑠 → ⟨𝑛, 𝑠	⟩

𝑠 𝑥 = 𝑛
! 𝑥, 𝑠, 𝑒 → ⟨𝑛, 𝑠, 𝑒	⟩

Run-time events are left unchanged

VAR

VAR

Example

𝑥 ∷= 𝑛, 𝑠 → ⟨𝑠𝑘𝑖𝑝, 𝑠[𝑥 == 𝑛]	⟩
ASS

Example

𝑥 ∷= 𝑛, 𝑠 → ⟨𝑠𝑘𝑖𝑝, 𝑠[𝑥 == 𝑛]	⟩
ASS

𝑥 ∷= 𝑛, 𝑠, 𝑒 → ⟨𝑠𝑘𝑖𝑝, 𝑠 𝑥 == 𝑛 , 𝑒	; (𝑥 ← 𝑛)	⟩
ASS

𝑖𝑓	𝑡𝑟𝑢𝑒	𝑡ℎ𝑒𝑛	𝐶1	𝑒𝑙𝑠𝑒	𝐶2, 𝑠, 𝑒	 → ⟨	𝐶1, 𝑠, 𝑒; (𝑖𝑓	𝑡𝑟𝑢𝑒)⟩

QUIZ: Extend the operational rules for conditional – all cases

The Valgrind
Framework

Valgrind is a dynamic binary
instrumentation framework.

Valgrind runs programs inside a
virtual machine and monitors
its behavior at runtime
instrumenting the source code.

The Instrumentation code

if (x === 3) {
 y = 3;
 foo();
 LogCall(foo);
}

The instrumented AST Program
└─ IfStatement
 ├─ test: BinaryExpression (==)
 │ ├─ left: Identifier("x")
 │ └─ right: NumericLiteral(3)
 ├─ consequent: BlockStatement
 │ ├─ ExpressionStatement
 │ │ └─ AssignmentExpression (=)
 │ │ ├─ left: Identifier("y")
 │ │ └─ right: NumericLiteral(3)
 │ ├─ ExpressionStatement
 │ │ └─ CallExpression
 │ │ ├─ callee: Identifier("foo")
 │ │ └─ arguments: []
 │ └─ ExpressionStatement
 │ └─ CallExpression
 │ ├─ callee: Identifier("LogCall")
 │ └─ arguments:
 │ └─ Identifier("foo")
 └─ alternate: null

if (x === 3) {
 y = 3;
 foo();
 LogCall(foo);
}

Implementation
steps

1. The instrumented AST is compiled into an
intermediate form (IR).

2. The Valgrind IR allows handling of run-time events
around memory operations, system calls, and
thread interactions.

3. This IR runs on on the Valgrind virtual machine
4. Valgrind intercepts and logs all the run-time events

of interest.
5. When the program finishes (or fails), Valgrind

produces a detailed report describing:
• Where run-time events occurred (with call stacks)
• What kind of run-time events they were
• Which allocations caused memory leaks

Best Practice

A robust workflow for
C/C++ (and analogous for

other languages) often
looks like this:

Static phase — run:

• clang-tidy: enforces
code style, detects
suspicious logic.

• cppcheck or Coverity:
deeper semantic and
data-flow analysis.

Dynamic phase — run:

• valgrind --leak-
check=full ./program:
check runtime memory
safety.

• valgrind --tool=helgrind
./program: check for
race conditions.

What is the significance of all
this within the framework of this

course?

What
have we

learned?

Two key aspects:

Instrumenting the language and its
operational semantics (understood as a
guide to implementation) to capture and
manage run-time events.

Analyzing run-time events to gain a
better understanding of what dynamic
program analysis means for the program
under examination.

A Running Example
History dependent Access Control

History Dependent Access Control: Key Ideas

History-dependent access control: access permissions depend not
only on who the principal is, but also on what actions have occurred
previously in the program’s execution.

Security policies as predicates over execution histories
access is granted only if a specific authentication step was executed
earlier.

Provides a formal model connecting program semantics with security
enforcement.

History
dependent
access control:
discussion

Ensures fine-grained control: execution
traces areused to reason about dynamic,

context-sensitive access control.

History dependent access control allows
one express access policies of the form:

Allow access only if this
request has been

authenticated by a trusted login
program,

Allow a module to access
resource only when invoked

through certain routines

References

• M. Abadi and C. Fournet. Access Control Based on Execution
History.
In Proceedings of the 10th Annual Network and Distributed
System Security Symposium (NDSS 2003), San Diego, CA, 2003.

References

M. Abadi and C. Fournet. Access
Control Based on Execution History.
In Proceedings of the 10th Annual
Network and Distributed System
Security Symposium (NDSS 2003), 2003.

Massimo Bartoletti, Pierpaolo
Degano, Gian-Luigi Ferrari:
History-Based Access Control with
Local Policies. In Proc, FoSSaCS 2005.

Motivating example

• Consider a simple web
browser that displays HTML pages
and executes suitable code.

• Code may be trusted (for instance,
because they are signed or
downloaded from a trusted third
party) or untrusted.

• The browser enforces a security
policy which is always applied to
untrusted code:

• The security policy states that code
cannot connect to the network after
it has read from the local disk.

(* u : url *)
(* execute : (unit -> unit)-> unit *)
(* enforce : policy -> (unit -> unit)-> unit *)

let browser (u : url) : unit =
 if html u then
 display u
 else if trusted u then
 excute u
 else
 enforce p u //p is the browser security policy

We define the browser as a function that processes a URL u.
If the URL refers to an HTML page, the page is displayed.
If the URL refers to code, it is executed when trusted; otherwise, it is executed
under the control of a security policy.

Trusted
progranna

We consider three trusted programs:
• Read to read files,
• Write to write files,
• Connect to open network

connections.
These programs are overly simplified,
because we are only interested in the
events they execute.

(* An action type *)
type action = Read | Write | Connect

(* Dispatcher: maps an action to a thunk (unit -> unit) *)
let action : action -> unit -> unit = function
 | Read -> (fun () -> print_endline "Performing READ")
 | Write -> (fun () -> print_endline "Performing WRITE")
 | Connect -> (fun () -> print_endline "Performing CONNECT")

(* The function: ignores its argument and executes Read *)
let TrustedRead : 'a -> unit =
 fun _ -> action Read ()

Trusted Read

Runtime enforcement: key idea

• Execution monitors enforce history-based security policies at
run time

• They observe computations and abort when a violation is imminent.
• Events = observations of security-relevant actions

• Examples: opening a socket, reading/writing a file.
• Histories = (possibly infinite) sequences of events.
• Policy as a global invariant: must hold at every point during

execution.
• Expressive power: execution monitors enforce exactly the class

of safety properties (not liveness).

Trusted code

The behavior of trusted
code, when executed

within the browser,
does not violate

security policies;

for trusted code, the
security monitor is

vacuous (i.e.,
disabled).

Untrusted code

(* An action type *)
type action = Read | Write | Connect

(* Dispatcher: maps an action to a thunk (unit -> unit) *)
let action : action -> unit -> unit = function
 | Read -> (fun () -> print_endline "Performing READ")
 | Write -> (fun () -> print_endline "Performing WRITE")
 | Connect -> (fun () -> print_endline "Performing CONNECT")

(* The function: idoes not gnore its argument *)
let Untrusted : url ->'a -> unit =
 fun (z:url) _ -> Browser z

Execution
What is the behaviour of an untrusted code (Untrusted Write) executed
under the security policy Pw stating that untrusted code cannot write the
local file system?

Execution
The behaviour of an untrusted code (Untrusted Write) executed under the
security policy Pw stating that untrusted code cannot write the local file
system, is illustrated by the following trace:

𝜖. 𝐵𝑟𝑜𝑤𝑠𝑒𝑟(𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝑒𝑑	𝑊𝑟𝑖𝑡𝑒)

𝜖, 𝑒𝑛𝑓𝑜𝑟𝑐𝑒	𝑃𝑤	 𝑊𝑟𝑖𝑡𝑒

𝑤, 𝑟𝑎𝑖𝑠𝑒	𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦	𝐹𝑎𝑖𝑙𝑢𝑟𝑒

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒	𝑜𝑓	𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 𝑐𝑜𝑑𝑒

CONFIGURATION

Execution
The behaviour of an untrusted code (Untrusted Read&Connect) executed
under the security policy Pnc stating that untrusted code cannot connect to
the network after reading the local file system, is illustrated by the following
trace:

𝜖. 𝐵𝑟𝑜𝑤𝑠𝑒𝑟(𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝑒𝑅𝑒𝑎𝑑&𝐶𝑜𝑛𝑛𝑒𝑐𝑡)

𝜖, 𝑒𝑛𝑓𝑜𝑟𝑐𝑒	𝑃𝑛𝑐	 𝑅𝑒𝑎𝑑	; 𝐶𝑜𝑛𝑛𝑒𝑐𝑡

r;c, 𝑟𝑎𝑖𝑠𝑒	𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦	𝐹𝑎𝑖𝑙𝑢𝑟𝑒

𝑟, 𝑒𝑛𝑓𝑜𝑟𝑐𝑒	𝑃𝑛𝑐	 𝐶𝑜𝑛𝑛𝑒𝑐𝑡

we have a security exception,
because the r;c does not
satisfy the security policy Pnc

The Formal Representation

Syntax

EXPRESSIONS: Functional programming language

318 M. Bartoletti, P. Degano, and G.L. Ferrari

the computation above can be viewed as dynamically placing a program into a
sandbox enforcing the policy ϕ. This programming paradigm seems difficult to
express in a language with local checks or global policies, only.

Even though policies are regular properties, the nesting of policy framings
may give rise to non-regular properties: indeed, every history η must obey the
conjunction of all the policies within the scope of which the last event of η
occurs. Run-time mechanisms enforcing this kind of properties need to be at least
powerful as pushdown automata. Consequently, λ[] is strictly more expressive
than the sub-language that only admits policy framings with single events, i.e.
local checks (of course, the above holds under the assumption that the access
control mechanism is not encoded in λ-expressions themselves).

We define a type and effect system for λ[] . The types are standard, while the
effects are history expressions, a finite approximation of the infinitary language of
histories, together with explicit representation of the scope of policy framings. We
say that a history expression is valid if all its histories are such, i.e. they represent
safe executions. Considering finite histories only is sufficient, because the validity
of histories is a safety property. Recall that computations not enjoying a safety
property are rejected in a finite number of steps [17]. If the effect of a program
is valid, then the program will never throw any security exceptions.

Even though validity of histories is a non-regular property, we show that his-
tory expressions can be model checked with standard techniques. We define a
transformation that, given an history expression H, obtains an expression H ′

such that (i) the histories represented by H ′ are regular, and (ii) they respect ex-
actly the same policies (within their scopes) obeyed by the histories represented
by H. From the history expression H ′ we then extract a Basic Process Algebra
process p and a regular formula ϕ such that H ′ is valid if and only if p satisfies
ϕ. This satisfiability problem is known to be decidable by model checking [9].

2 The Language λ[]

To study access control in a pure framework, we consider λ[] , a call-by-value
λ-calculus enriched with access events and security policies. An access event
α ∈ Σ abstracts from a security-relevant operation; sequences η of access events
are called histories. Security policies ϕ ∈ Π are regular properties of histories. A
policy framing ϕ[e] localizes the scope of the policy ϕ to the expression e; fram-
ings can be nested. To enhance readability, our calculus comprises conditional
expressions and named abstractions (the variable z in e′ = λzx.e stands for e′ it-
self within e). The syntax of λ[] follows. We omit the definition of policies ϕ and
of guards b, as they are not relevant for the subsequent technical development.

Syntax of λ[] Expressions

e, e′ ::= x | α | if b then e else e′ | λzx. e | e e′ | ϕ[e]

PROGRAMS: Sandbox monitoring execution under the policy

𝑃 ∷	= 𝜑 𝑒

Execution
Monitors

Runtime Monitoring: Checking policy
adherence during execution (e.g.,
sandboxing)

Enforcement Mechanisms in VM: Virtual
machines (e.g., WebAssembly, JVM)
enforce security through restricted
execution environments.

Execution Monitors: Intercepts security-
sensitive operations and ensures they
comply with policies.

Some challenging questions

Can we prove that
mechanism M enforces

the security policy P?

• What is the
mathematical
definition of a policy?

• What is the
programming
abstractions for
declaring security
policies?

• What does it mean to
enforce a policy within
a programming
language?

Are there limits to what
is enforceable?

• Which enforcement
approaches are best
suited to which

Policies?

• Are there some
policies that are
completely beyond
any known
enforcement strategy?

• Are some enforcement
approaches strictly
more powerful than
others?

OVERALL

• what is the landscape
of policies, policy
classes, and
enforcement
mechanisms?

Enforceable
Security
Policies

Enforceable Security Policies
F. Schneider, ACM Transactions on Information
and System Security, February 2000

Abstract
A precise characterization is given for the class
of security policies enforceable with
mechanisms that work by monitoring system
execution, and automata are introduced for
specifying exactly that class of security policies.
Techniques to enforce security policies specified
by such automata are also discussed.

https://dl.acm.org/journal/tissec
https://dl.acm.org/journal/tissec

83

The Ideal Execution Monitor
1. Sees everything a program is about to do

before it does it
2. Can instantly and completely stop program

execution (or prevent action)
3. Has no other effect on the program or system

84

The Ideal Execution Monitor
1. Sees everything a program is about to do

before it does it
2. Can instantly and completely stop program

execution (or prevent action)
3. Has no other effect on the program or system

Can we implement this?
Probably not …....

85

Ideal Execution Monitor
1. Sees everything a program is about to do

before it does it
2. Can instantly and completely stop program

execution (or prevent action)
3. Has no other e3ect on the program or system

Real
most things

limited

Execution
Monitor

Execution Monitors
(EMs)

• EMs watch un-
trusted programs
at runtime

• Events (raised by
the run time
executions) are
mediated by the
EM

• Violations solicit
EM interventions
(e.g. termination)

Example: File
system access

control

• EM is inside the OS
• decides policy

violations using
access control lists
(ACLs)

Execution Monitor

• EMs are run-time modules that runs in
parallel with an application

• Tracks execution flow at runtime
to detect and prevent security
violations dynamically.

• monitor decisions may be based on
execution history

EM: Good Operations
Application Monitor

f.open ()

EM: Bad Operation

Application Monitor

f.open () halt!

Execution
and Security
Policies

90

What’s a program (at run-time)?
• A set of possible executions

What’s an execution?
• A sequence of states

What’s a security policy?
• A predicate on a set of executions

Definitions and Notations

• An execution (or trace) s is a sequence of security-relevant
program events e (also called actions)

• Sequence may be finite or (countably) infinite
• s = e1; e2; ….; ek ; ehalt
• s = e1; e2; ….; ek; …..
• The empty sequence 𝜀 is an execution
• If s is the execution e1; e2; ….; ei; …. el; ….

then s[i] is the execution e1; e2; ….; ei;
• We simplify the formalism.

• We model program termination as an infinite repetition of ehalt event.
• Result: now all executions are infinite length sequences

Definitions and Notations (cont.)

• A program S is a set of sequences (possible executions)
• A program is modelled as the set S = {s1, s2, ……}

• A security policy P is a property of programs
• A policy partitions the program space into two groups:

• Permissible
• Impermissible

• Impermissible programs are censored somehow (e.g.,terminated
on violating runs)

93

Execution Monitors cannot enforce
all Security Policies
• Some policies depend on:

• Knowing about the future
• If the program charges the credit card, it must eventually

ship the goods
• Knowing about all possible executions

• Information flow – can’t tell if a program reveals secret
information without knowing about other possible
executions

• Execution Monitors can only know about past of
this particular execution

EM-enforceable policies

1. EM policies are universally quantified predicates over
executions
• ∀𝒔. 𝑷(𝒔)
• Policy P is called the detector.

EM-enforceable policies

1. EM policies are universally quantified predicates over
executions
• ∀𝒔. 𝑷(𝒔)
• Policy P is called the detector.

2. The detector must must be prefix-closed
• P(𝜺) holds
• P(s;e) holds then P(s) holds

EM-enforceable policies

1. EM policies are universally quantified predicates over
executions
• ∀𝒔. 𝑷(𝒔)
• Policy P is called the detector.

2. The detector must must be prefix-closed
• P(𝜺) holds
• P(s;e) holds then P(s) holds

3. If the detector is not satisfied by a sequence (the detector
rejects the sequence) then it must do so in finite time
• ¬𝑷 𝒔 ⟹ ∃𝒊 ¬𝑷𝒔[𝒊]

EM-enforceable policies

1. EM policies are universally quantified predicates over
executions

2. The detector must must be prefix-closed
3. If the detector is not satisfied by a sequence (the detector

recjects the sequence) then it must do so in finite time
4. Fact

• A policy satisfies (1), (2), and (3) if and only if it is a safety policy
• Lamport 1977: Safety policies say that some “bad thing” never

happens
• EMs enforce safety policies!

Safety
properties:
Nothing bad
ever
happens

Safety property can be enforced using only
traces of program
• If P(t) does not hold, then all extensions of t are also

bad

Amenable to run-time enforcement: don’t
need to know future

Examples:

• access control (e.g. checking file permissions on file
open)

• memory safety (process does not read/write outside
its own memory space)

• type safety (data accessed in accordance with type)

99

Formally...
• Y : set of all possible executions (can be infinite)
• SS: set of executions possible by target program S
• P: security policy

 set of executions ® Boolean

Program S is secure wrt the security
policy P iff P (SS) is true.

Security
Automata

• Security Automata (Erlingsson & Schneider 1999)
• Formalization of security policies

• finite state automaton
• accepts language of permissible executions
• alphabet = set of events
• edge labels = event predicates
• all states accepting (language is prefix-closed)

Security Automata (Example)

NO SENDS AFTER READS

Execution
Monitor

type event = Read of string | Write of string | Connect of string
type history = event list
type policy = history -> event -> bool (* true = allowed *)

type caps = {
 read : string -> string;
 write : string -> unit;
 connect : string -> unit;
}

let sandbox (phi : policy) (base : caps) (prog : caps -> 'a) : 'a =
 let hist = ref [] in
 let check e =
 if phi !hist e then hist := e :: !hist
 else failwith "Policy violation"
 in
 :
}

Remark

• What “global security policy” means here
• The policy phi is an invariant over all prefixes of the event trace (a

safety property).
• Every attempted effect is checked before it happens; violations

abort execution.

Syntax

EXPRESSIONS

318 M. Bartoletti, P. Degano, and G.L. Ferrari

the computation above can be viewed as dynamically placing a program into a
sandbox enforcing the policy ϕ. This programming paradigm seems difficult to
express in a language with local checks or global policies, only.

Even though policies are regular properties, the nesting of policy framings
may give rise to non-regular properties: indeed, every history η must obey the
conjunction of all the policies within the scope of which the last event of η
occurs. Run-time mechanisms enforcing this kind of properties need to be at least
powerful as pushdown automata. Consequently, λ[] is strictly more expressive
than the sub-language that only admits policy framings with single events, i.e.
local checks (of course, the above holds under the assumption that the access
control mechanism is not encoded in λ-expressions themselves).

We define a type and effect system for λ[] . The types are standard, while the
effects are history expressions, a finite approximation of the infinitary language of
histories, together with explicit representation of the scope of policy framings. We
say that a history expression is valid if all its histories are such, i.e. they represent
safe executions. Considering finite histories only is sufficient, because the validity
of histories is a safety property. Recall that computations not enjoying a safety
property are rejected in a finite number of steps [17]. If the effect of a program
is valid, then the program will never throw any security exceptions.

Even though validity of histories is a non-regular property, we show that his-
tory expressions can be model checked with standard techniques. We define a
transformation that, given an history expression H, obtains an expression H ′

such that (i) the histories represented by H ′ are regular, and (ii) they respect ex-
actly the same policies (within their scopes) obeyed by the histories represented
by H. From the history expression H ′ we then extract a Basic Process Algebra
process p and a regular formula ϕ such that H ′ is valid if and only if p satisfies
ϕ. This satisfiability problem is known to be decidable by model checking [9].

2 The Language λ[]

To study access control in a pure framework, we consider λ[] , a call-by-value
λ-calculus enriched with access events and security policies. An access event
α ∈ Σ abstracts from a security-relevant operation; sequences η of access events
are called histories. Security policies ϕ ∈ Π are regular properties of histories. A
policy framing ϕ[e] localizes the scope of the policy ϕ to the expression e; fram-
ings can be nested. To enhance readability, our calculus comprises conditional
expressions and named abstractions (the variable z in e′ = λzx.e stands for e′ it-
self within e). The syntax of λ[] follows. We omit the definition of policies ϕ and
of guards b, as they are not relevant for the subsequent technical development.

Syntax of λ[] Expressions

e, e′ ::= x | α | if b then e else e′ | λzx. e | e e′ | ϕ[e]

PROGRAMS

𝑃 ∷	= 𝜑 𝑒

Operational
semantics

• The configurations are pairs
 𝜂, 𝑒
• A transition 𝜂, 𝑒 → 𝜂!, 𝑒! indicates that,

starting from a history 𝜂, the expression
𝑒 may evolve to 𝑒′, possibly extending
the history 𝜂.

• We write 𝜂 ⊨ 𝜑	when the history 𝜂
satisfies the policy 𝜑.

Operational semantics

History-Based Access Control with Local Policies 319

The values of λ[] are the variables and the abstractions. We write ∗ for a
fixed, closed, event-free value, and λ . e for λx. e, for x "∈ fv(e). The following
abbreviation is standard: e; e′ = (λ . e′)e.

We define the behaviour of λ[] expressions through the following SOS op-
erational semantics. The configurations are pairs η, e. A transition η, e → η′, e′

means that, starting from a history η, the expression e may evolve to e′, possibly
extending the history η. We write η |= ϕ when the history η obeys the policy ϕ.
We assume as given a total function B that evaluates the guards in conditionals.

Operational Semantics of λ[]

η, e1 → η′, e′1

η, e1e2 → η′, e′1e2

η, e2 → η′, e′2

η, ve2 → η′, ve′2 η, (λzx.e)v → η, e{v/x,λzx.e/z}

η,α → ηα, ∗

η, e → η′, e′ η, η′ |= ϕ

η,ϕ[e] → η′,ϕ[e′]

η |= ϕ

η,ϕ[v] → η, v

B(b) = true

η, if b then e0 else e1 → η, e0

B(b) = false

η, if b then e0 else e1 → η, e1

It is immediate to define a semantics of λ[] , equivalent to that given above,
that explicitly records entering and exiting a framing ϕ[· · ·], by enriching his-
tories with special events [ϕ and]ϕ. Each transition requires to verify that the
current history is valid, roughly it satisfies all the policies ϕ whose scope has
been entered but not exited yet, i.e. the number of [ϕ is greater then that of]ϕ.
Counting is not regular: therefore, validity is not a regular property.

To illustrate our approach, consider a simple web browser that displays
HTML pages and runs applets. Applets can be trusted (e.g. because signed,
or downloaded from a trusted site), or untrusted. The browser has a site policy
ϕ always applied to untrusted applets. The site policy says that an applet can-
not connect to the web after it has read from the local disk. After executing an
untrusted applet, the browser writes some logging information to the local disk.
Additionally, all applets must obey a user policy that is supplied to the browser.
We define the browser as a function that processes the URL u, be it an applet
or an HTML page, and the user policy ϕ′, rendered as a framing p = λx.ϕ′[x∗].

Browser = λu.λp. if html(u) then display(u) else
if trusted(u) then p u else ϕ[p u;Write ∗]

We consider three trusted applets: Read = λ .αr to read files, Write = λ .αw
to write files, and Connect = λ .αc to open web connections. Note that our
applets are overly simplified, because we are only interested in the events they

Operational Semantics

History-Based Access Control with Local Policies 319

The values of λ[] are the variables and the abstractions. We write ∗ for a
fixed, closed, event-free value, and λ . e for λx. e, for x "∈ fv(e). The following
abbreviation is standard: e; e′ = (λ . e′)e.

We define the behaviour of λ[] expressions through the following SOS op-
erational semantics. The configurations are pairs η, e. A transition η, e → η′, e′

means that, starting from a history η, the expression e may evolve to e′, possibly
extending the history η. We write η |= ϕ when the history η obeys the policy ϕ.
We assume as given a total function B that evaluates the guards in conditionals.

Operational Semantics of λ[]

η, e1 → η′, e′1

η, e1e2 → η′, e′1e2

η, e2 → η′, e′2

η, ve2 → η′, ve′2 η, (λzx.e)v → η, e{v/x,λzx.e/z}

η,α → ηα, ∗

η, e → η′, e′ η, η′ |= ϕ

η,ϕ[e] → η′,ϕ[e′]

η |= ϕ

η,ϕ[v] → η, v

B(b) = true

η, if b then e0 else e1 → η, e0

B(b) = false

η, if b then e0 else e1 → η, e1

It is immediate to define a semantics of λ[] , equivalent to that given above,
that explicitly records entering and exiting a framing ϕ[· · ·], by enriching his-
tories with special events [ϕ and]ϕ. Each transition requires to verify that the
current history is valid, roughly it satisfies all the policies ϕ whose scope has
been entered but not exited yet, i.e. the number of [ϕ is greater then that of]ϕ.
Counting is not regular: therefore, validity is not a regular property.

To illustrate our approach, consider a simple web browser that displays
HTML pages and runs applets. Applets can be trusted (e.g. because signed,
or downloaded from a trusted site), or untrusted. The browser has a site policy
ϕ always applied to untrusted applets. The site policy says that an applet can-
not connect to the web after it has read from the local disk. After executing an
untrusted applet, the browser writes some logging information to the local disk.
Additionally, all applets must obey a user policy that is supplied to the browser.
We define the browser as a function that processes the URL u, be it an applet
or an HTML page, and the user policy ϕ′, rendered as a framing p = λx.ϕ′[x∗].

Browser = λu.λp. if html(u) then display(u) else
if trusted(u) then p u else ϕ[p u;Write ∗]

We consider three trusted applets: Read = λ .αr to read files, Write = λ .αw
to write files, and Connect = λ .αc to open web connections. Note that our
applets are overly simplified, because we are only interested in the events they

Operational Semantics

History-Based Access Control with Local Policies 319

The values of λ[] are the variables and the abstractions. We write ∗ for a
fixed, closed, event-free value, and λ . e for λx. e, for x "∈ fv(e). The following
abbreviation is standard: e; e′ = (λ . e′)e.

We define the behaviour of λ[] expressions through the following SOS op-
erational semantics. The configurations are pairs η, e. A transition η, e → η′, e′

means that, starting from a history η, the expression e may evolve to e′, possibly
extending the history η. We write η |= ϕ when the history η obeys the policy ϕ.
We assume as given a total function B that evaluates the guards in conditionals.

Operational Semantics of λ[]

η, e1 → η′, e′1

η, e1e2 → η′, e′1e2

η, e2 → η′, e′2

η, ve2 → η′, ve′2 η, (λzx.e)v → η, e{v/x,λzx.e/z}

η,α → ηα, ∗

η, e → η′, e′ η, η′ |= ϕ

η,ϕ[e] → η′,ϕ[e′]

η |= ϕ

η,ϕ[v] → η, v

B(b) = true

η, if b then e0 else e1 → η, e0

B(b) = false

η, if b then e0 else e1 → η, e1

It is immediate to define a semantics of λ[] , equivalent to that given above,
that explicitly records entering and exiting a framing ϕ[· · ·], by enriching his-
tories with special events [ϕ and]ϕ. Each transition requires to verify that the
current history is valid, roughly it satisfies all the policies ϕ whose scope has
been entered but not exited yet, i.e. the number of [ϕ is greater then that of]ϕ.
Counting is not regular: therefore, validity is not a regular property.

To illustrate our approach, consider a simple web browser that displays
HTML pages and runs applets. Applets can be trusted (e.g. because signed,
or downloaded from a trusted site), or untrusted. The browser has a site policy
ϕ always applied to untrusted applets. The site policy says that an applet can-
not connect to the web after it has read from the local disk. After executing an
untrusted applet, the browser writes some logging information to the local disk.
Additionally, all applets must obey a user policy that is supplied to the browser.
We define the browser as a function that processes the URL u, be it an applet
or an HTML page, and the user policy ϕ′, rendered as a framing p = λx.ϕ′[x∗].

Browser = λu.λp. if html(u) then display(u) else
if trusted(u) then p u else ϕ[p u;Write ∗]

We consider three trusted applets: Read = λ .αr to read files, Write = λ .αw
to write files, and Connect = λ .αc to open web connections. Note that our
applets are overly simplified, because we are only interested in the events they

Operational Semantics

History-Based Access Control with Local Policies 319

The values of λ[] are the variables and the abstractions. We write ∗ for a
fixed, closed, event-free value, and λ . e for λx. e, for x "∈ fv(e). The following
abbreviation is standard: e; e′ = (λ . e′)e.

We define the behaviour of λ[] expressions through the following SOS op-
erational semantics. The configurations are pairs η, e. A transition η, e → η′, e′

means that, starting from a history η, the expression e may evolve to e′, possibly
extending the history η. We write η |= ϕ when the history η obeys the policy ϕ.
We assume as given a total function B that evaluates the guards in conditionals.

Operational Semantics of λ[]

η, e1 → η′, e′1

η, e1e2 → η′, e′1e2

η, e2 → η′, e′2

η, ve2 → η′, ve′2 η, (λzx.e)v → η, e{v/x,λzx.e/z}

η,α → ηα, ∗

η, e → η′, e′ η, η′ |= ϕ

η,ϕ[e] → η′,ϕ[e′]

η |= ϕ

η,ϕ[v] → η, v

B(b) = true

η, if b then e0 else e1 → η, e0

B(b) = false

η, if b then e0 else e1 → η, e1

It is immediate to define a semantics of λ[] , equivalent to that given above,
that explicitly records entering and exiting a framing ϕ[· · ·], by enriching his-
tories with special events [ϕ and]ϕ. Each transition requires to verify that the
current history is valid, roughly it satisfies all the policies ϕ whose scope has
been entered but not exited yet, i.e. the number of [ϕ is greater then that of]ϕ.
Counting is not regular: therefore, validity is not a regular property.

To illustrate our approach, consider a simple web browser that displays
HTML pages and runs applets. Applets can be trusted (e.g. because signed,
or downloaded from a trusted site), or untrusted. The browser has a site policy
ϕ always applied to untrusted applets. The site policy says that an applet can-
not connect to the web after it has read from the local disk. After executing an
untrusted applet, the browser writes some logging information to the local disk.
Additionally, all applets must obey a user policy that is supplied to the browser.
We define the browser as a function that processes the URL u, be it an applet
or an HTML page, and the user policy ϕ′, rendered as a framing p = λx.ϕ′[x∗].

Browser = λu.λp. if html(u) then display(u) else
if trusted(u) then p u else ϕ[p u;Write ∗]

We consider three trusted applets: Read = λ .αr to read files, Write = λ .αw
to write files, and Connect = λ .αc to open web connections. Note that our
applets are overly simplified, because we are only interested in the events they

Summary

• Dynamic Analysis of History-
Dependent Access Control

• We have shown how
to characterize the dynamic
analysis of history-dependent
access control,
defining its formal structure and
its limitations (safety security
policies).

Next step

Can we do better?
Can we integrate static
and dynamic analysis?

➡Next lecture

