
Announcement: 
The lesson scheduled for 
Friday, the 24th, will not 
be held



Course Focus and Next Steps

In this course, we have 
explored how to model 
systems and then verify 

them using model 
checking techniques.

This represents 
the main line of 

the course.

Now, we will take a side 
path and examine some 

program analysis 
techniques.

We will focus on 
dynamic analysis 

techniques.



What is program 
analysis?



Testing and Analysis

• Manual testing or semi-automated 
testing 

• JUnit, Pytest, Selenium, etc.

What you know 
from previous 

courses

• Code inspection, debugging, etc.
Manual 

”analysis” of 
programs:



import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.*;

class GeneralTestSuite {

    private ExampleService service;

    @BeforeAll
    static void initAll() {
        System.out.println("Starting test suite...");
    }

    @BeforeEach
    void init() {
        service = new ExampleService();
    }

    @Test
    void testAddition() {
        assertEquals(4, service.add(2, 2), "Addition should return correct result");
    }



    @Test
    void testDivisionByZeroThrows() {
        assertThrows(ArithmeticException.class, () -> service.divide(10, 0));
    }

    @Test
    void testStringNotNull() {
        String result = service.getMessage();
        assertNotNull(result, "Message should not be null");
        assertTrue(result.startsWith("Hello"), "Message should start with 'Hello'");
    }

    @AfterEach
    void tearDown() {
        service = null;
    }

    @AfterAll
    static void tearDownAll() {
        System.out.println("All tests completed.");
    }
}

// Dummy implementation under test
class ExampleService {
    int add(int a, int b) { return a + b; }
    int divide(int a, int b) { return a / b; }
    String getMessage() { return "Hello, World!"; }
}



The Key Concepts

@BeforeAll / @AfterAll for global setup and cleanup

@BeforeEach /@AfterEach for per-test setup and teardown

Assertions:  assertEquals, assertNotNull, assertThrows …

Good naming and descriptive messages



Code inspection



use std::env;

fn read_port() -> u16 {
    let port_str = env::var("APP_PORT").unwrap();
    let port: i32 = port_str.parse().unwrap();    
    port as u16                                  
}

The function read_port() reads the environment variable APP_PORT, 
parses it as a number, and returns it as a port. 

Rust Code



use std::env;

fn read_port() -> u16 {
    let port_str = env::var("APP_PORT").unwrap();
    let port: i32 = port_str.parse().unwrap();    
    port as u16                                  
}

The function read_port() reads the environment variable APP_PORT, 
parses it as a number, and returns it as a port. 

Rust Code

unwrap() is a method used on Option<T> and Result<T, E> types. 
It retrieves the inner value but will panic if the value is None or Err.



use std::env;

fn read_port() -> u16 {
    let port_str = env::var("APP_PORT").unwrap(); // panics if missing
    let port: i32 = port_str.parse().unwrap();    // panics if invalid
    port as u16                                   
}



use std::{env, num::ParseIntError};

#[derive(Debug)]
enum PortError {
    MissingVar,
    Parse(ParseIntError),
}

fn read_port() -> Result<u16, PortError> {
    let raw = env::var("APP_PORT").map_err(|_| PortError::MissingVar)?;
    let port = raw.parse::<u16>().map_err(PortError::Parse)?;
    Ok(port)
}



Focus of this side path of the course:
Automated testing and 
program analysis



Why do we talk about 
program analysis and 
automated testing?

• All software has bugs
• Bugs are hard to find
• Bugs cause serious 

harm



Why do we talk about 
program analsysis and 
automated testing?

• All software has bugs
• Bugs are hard to find
• Bugs cause serious harm
• … Because no software is 

bug-free, an AI-based 
copilot can help us to spot 
and resolve bugs more 
efficiently.



My personal 
statement

• While AI-based copilots 
offer valuable support in 
software development, 
human understanding of 
the generated code 
remains essential, as 
software (even AI-
generated software) 
may still contain bugs.



What is program analysis

Automated analysis of program behavior capable to

find programming errors

optimize performance

find security vulnerabilities

… 



From Program Execution to Program Analysis

8 - 1

What is Program Analysis?

↭ Automated analysis of program
behavior, e.g., to
↫ find programming errors
↫ optimize performance
↫ find security vulnerabilities

ProgramInput Output
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Program Analysis

8 - 1

What is Program Analysis?

↭ Automated analysis of program
behavior, e.g., to
↫ find programming errors
↫ optimize performance
↫ find security vulnerabilities

ProgramInput Output
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↭ Automated analysis of program
behavior, e.g., to
↫ find programming errors
↫ optimize performance
↫ find security vulnerabilities
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Program analysis

Static
• Analyze source code, byte 

code, or binary
• Typically:

• Consider all inputs
• Overapproximate 

possible behavior

Dynamic
• Analyze program execution
• Typically:

• Consider current input
• Underapproximate 

possible behavior



Program analysis example
//Jvascript
var r = Math.random(); 
var out = "yes";

if (r < 0.5)
    out = "no";

if (r === 1)
    out = "maybe"; 

console.log(out);



Program analysis example
//Jvascript
var r = Math.random(); 
var out = "yes";

if (r < 0.5)
    out = "no";

if (r === 1)
    out = "maybe"; 

console.log(out);

Overapproximation: 
”yes”, ”no”, ”maybe”

Consider all paths 



Program analysis example
//Jvascript
var r = Math.random(); 
var out = "yes";

if (r < 0.5)
    out = "no";

if (r === 1)
    out = "maybe"; 

console.log(out);

Underapproximation: 
”yes”

Execute the program once



Program analysis example
//Jvascript
var r = Math.random(); 
var out = "yes";

if (r < 0.5)
    out = "no";

if (r === 1)
    out = "maybe"; 

console.log(out);

Sound and complete analysis:: 
”yes”, ”no”

The analysis explores both feasible paths



Program analysis example

//Jvascript
var r = Math.random(); 
var out = "yes";

if (r < 0.5)
    out = "no";

if (r === 1)
    out = "maybe"; 

console.log(out);

Math.random()
Returns a floating-point number r such that 0 ≤ r < 1
It never returns exactly 1.

Initialization
out starts as "yes".

First if condition (r < 0.5)
If the random number is less than 0.5, out becomes "no".
This happens roughly 50% of the time.

Second if condition (r === 1)
This would only run if r is exactly 1.
But since Math.random() never produces 1, this branch 
is impossible 

Output
So out is either "no" or "yes" depending on r.



Another example
//Jvascript
var r = Math.random(); 

var out = r*2

console.log(out);



Another example
//Jvascript
var r = Math.random(); 

var out = r*2

console.log(out);

Method Output Discussion

Over-approximation

Under-approximation

Sound and Complete



Another example
//Jvascript
var r = Math.random(); 

var out = r*2

console.log(out);

Method Output Discussion

Over-approximation Any value All paths

Under-approximation

Sound and Complete



Another example
//Jvascript
var r = Math.random(); 

var out = r*2

console.log(out);

Method Result Discussion

Over-approximation Any value All paths

Under-approximation Some number in [0,2), 
e.g., 1.234

One execution

Sound and Complete



Another example
//Jvascript
var r = Math.random(); 

var out = r*2

console.log(out);

Method Result Discussion

Over-approximation Any value All paths

Under-approximation Some number in [0,2), 
e.g., 1.234

One execution

Sound and Complete ?? Exploring all possible 
outputs:
Practically impossible



How does program 
analysis help me?

• Use program analysis 
tools

•  Improve the quality of 
your code

• Understand program 
analysis

• Better understanding of 
program code and 
program behaviours

• Create your own tools



Dynamic Analysis



Dynamic Analysis

Execute an instrumented program to gather information 
that can be analyzed to learn about a property of interest

Precise: All observed behavior actually happens

Incomplete: Very difficult to cover all possible behaviors



Dynamic Analysis Examples

Coverage: Track which lines or branches get 
executed

Call graph: Track which functions call which 
other functions

Slicing: Track dependencies to produce a 
reduced program



Some references

• Valgrind: A Framework for Heavyweight Dynamic Binary 
Instrumentation, Nethercote et al., PLDI 2007

• Jalangi: A Selective Record-Replay and Dynamic Analysis 
Framework for JavaScript, Sen et al., FSE 2013

• DynaPyt: A Dynamic Analysis Framework for Python, Eghbali et al., 
FSE 2022



Call graph  analysis
function main() {
    let n = readInput();

    function a() {
        b();
    }

    function b() {
        if (n == 5) {
            c();
        }
    }

    function c() {
        if (n == 5) {
            c();
            n--;
        }
    }

    a();
}



Call graph  analysis
function main() {
    let n = readInput();

    function a() {
        b();
    }

    function b() {
        if (n == 5) {
            c();
        }
    }

    function c() {
        if (n == 5){
      n--; 
           c();
        }
    }

    a();
}

Nodes
main, readInput, a, b, c

Edges
main → readInput
main → a
a → b
b → c (if n == 5)
c → c (if n == 5). // recursive call



The instrumented code
function main() {
    const calls = new Set();

    let n = readInput();
    calls.add("main->readInput");

    function a() {
        calls.add("a->b");
        b();
    }

    function b() {
        if (n == 5) {
            calls.add("b->c");
            c();
        }
    }

    

function c() {
        if (n == 5) {
            calls.add("c->c");
            n=--;
            c();
        }
    }

    calls.add("main->a");
    a();

    console.log(calls);
}



Different dynamic analyses, but with 
several commonalities

Specific runtime 
events to track

Analysis updates 
some state in 
response to 

events



The ingredients

Identify the set (of kinds) of 
runtime events

The analysis can register for 
specific events

At runtime, instrumented 
program invokes event handlers



The idea (cont.)

16

Dynamic Analysis Frameworks

↭ Set of kinds of runtime events

↭ Analysis can register for specific
events

↭ At runtime, instrumented program
invokes event handlers

Program P Program P’

Analysis A

instrument

invoke event
handlers



Run time 
events

17

Typical Runtime Events

Event Example

Arithmetic operation 2+3
Boolean operation a > 0
Branch if (c) ...
Function call g()
Return from function call x = g()
Write into variable or field x.f = z
Read of variable or field x.f = z

(and many others)



Example
function main() {
    let a = readInput();
    let b = a + 3;

    if (b === -23) {
        foo();
    } else {
        b = 5;
    }
}



Example
function main() {
    let a = readInput();
    let b = a + 3;

    if (b === -23) {
        foo();
    } else {
        b = 5;
    }
}

Runtime events:

• Arithmetic operations
• Boolean operations
• Reads of variables
• Writes into variables
• Function calls

Input: -26



Example
function main() {
    let a = readInput();
    let b = a + 3;

    if (b === -23) {
        foo();
    } else {
        b = 5;
    }
}

Runtime events:

• Arithmetic operations
• Boolean operations
• Reads of variables
• Writes into variables
• Function calls

Input: -26

What sequence of events get triggered?



Example
function main() {
    let a = readInput();
    let b = a + 3;

    if (b === -23) {
        foo();
    } else {
        b = 5;
    }
}

Runtime events:

• Call of readInput
• Write of -26 to a
• Read of a (-26)
• Arithmetic op (-26+3 = -23)
• Write of -23 to b
• Read of b (-23)
• Boolean op (-23 == -23 aka true)
• Call foo

Input: -26

This is the sequence of events triggered!!



Remark and questions

Easy enough for small 
examples.
• But what happens with large 

codebases?
• How can we formally 

guide the instrumentation 
of code and the analysis?



Formally: Estended Operational 
Semantics

Tracking runtime 
events: Additional 

behavior performed 
during program 

execution

Formally describe by 
extending the 

operational 
semantics



Some Notation

Runtime events:

• Write of -26 to a ===> 𝒂	 ← −𝟐𝟔
• The if branch is taken ===> if true



Some Notation

CONFIGURATION

 ⟨𝑃, 𝑠, 𝑒⟩

P: program
s: store (mapping from program variables to values)
e: sequence of run-time events



Example

𝑠 𝑥 = 𝑛
! 𝑥, 𝑠 → ⟨𝑛, 𝑠	⟩ VAR



Example

𝑠 𝑥 = 𝑛
! 𝑥, 𝑠 → ⟨𝑛, 𝑠	⟩

𝑠 𝑥 = 𝑛
! 𝑥, 𝑠, 𝑒 → ⟨𝑛, 𝑠, 𝑒	⟩

Run-time events are left unchanged

VAR

VAR



Example

𝑥 ∷= 𝑛, 𝑠 → ⟨𝑠𝑘𝑖𝑝, 𝑠[𝑥 == 𝑛]	⟩
ASS



Example

𝑥 ∷= 𝑛, 𝑠 → ⟨𝑠𝑘𝑖𝑝, 𝑠[𝑥 == 𝑛]	⟩
ASS

𝑥 ∷= 𝑛, 𝑠, 𝑒 → ⟨𝑠𝑘𝑖𝑝, 𝑠 𝑥 == 𝑛 , 𝑒	; (𝑥 ← 𝑛)	⟩
ASS



𝑖𝑓	𝑡𝑟𝑢𝑒	𝑡ℎ𝑒𝑛	𝐶1	𝑒𝑙𝑠𝑒	𝐶2, 𝑠, 𝑒	 → ⟨	𝐶1, 𝑠, 𝑒; (𝑖𝑓	𝑡𝑟𝑢𝑒)⟩

QUIZ: Extend the operational rules for conditional – all cases



The Valgrind 
Framework

Valgrind is a dynamic binary 
instrumentation framework.

Valgrind runs programs inside a 
virtual machine and monitors 
its behavior at runtime 
instrumenting the source code.



The Instrumentation code

if (x === 3) {
    y = 3;
    foo();
    LogCall(foo);
}



The instrumented AST Program
└─ IfStatement
   ├─ test: BinaryExpression (==)
   │  ├─ left: Identifier("x")
   │  └─ right: NumericLiteral(3)
   ├─ consequent: BlockStatement
   │  ├─ ExpressionStatement
   │  │  └─ AssignmentExpression (=)
   │  │     ├─ left: Identifier("y")
   │  │     └─ right: NumericLiteral(3)
   │  ├─ ExpressionStatement
   │  │  └─ CallExpression
   │  │     ├─ callee: Identifier("foo")
   │  │     └─ arguments: []
   │  └─ ExpressionStatement
   │     └─ CallExpression
   │        ├─ callee: Identifier("LogCall")
   │        └─ arguments:
   │           └─ Identifier("foo")
   └─ alternate: null

if (x === 3) {
    y = 3;
    foo();
    LogCall(foo);
}



Implementation 
steps

1. The instrumented AST is compiled into  an 
intermediate form (IR).

2. The Valgrind IR allows handling of run-time events 
around memory operations, system calls, and 
thread interactions.

3. This IR runs on on the Valgrind virtual machine
4. Valgrind intercepts and logs all the run-time events 

of interest.
5. When the program finishes (or fails), Valgrind 

produces a detailed report describing:
• Where run-time events occurred (with call stacks)
• What kind of run-time events they were
• Which allocations caused memory leaks



Best Practice

A robust workflow for 
C/C++ (and analogous for 

other languages) often 
looks like this:

Static phase — run:

• clang-tidy: enforces 
code style, detects 
suspicious logic.

• cppcheck or Coverity: 
deeper semantic and 
data-flow analysis.

Dynamic phase — run:

• valgrind --leak-
check=full ./program: 
check runtime memory 
safety.

• valgrind --tool=helgrind 
./program: check for 
race conditions.



What is the significance of all 
this within the framework of this 

course?



What 
have we 

learned?

Two key aspects:

Instrumenting the language and its 
operational semantics (understood as a 
guide to implementation) to capture and 
manage run-time events.

Analyzing run-time events to gain a 
better understanding of what dynamic 
program analysis means for the program 
under examination.



A Running Example
History dependent Access Control



History Dependent Access Control: Key Ideas

History-dependent access control: access permissions depend not 
only on who the principal is, but also on what actions have occurred 
previously in the program’s execution.

Security policies as predicates over execution histories
access is granted only if a specific authentication step was executed 
earlier.

Provides a formal model connecting program semantics with security 
enforcement.



History 
dependent 
access control: 
discussion

Ensures fine-grained control: execution 
traces areused to reason about dynamic, 

context-sensitive access control.

History dependent access control allows 
one express access policies of the form:

Allow access only if this 
request has been 

authenticated by a trusted login 
program, 

Allow a module to access 
resource only when invoked 

through certain routines



References

• M. Abadi and C. Fournet. Access Control Based on Execution 
History.
In Proceedings of the 10th Annual Network and Distributed 
System Security Symposium (NDSS 2003), San Diego, CA, 2003.
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Motivating example

• Consider a simple web 
browser that displays HTML pages 
and executes suitable code.

• Code may be trusted (for instance, 
because they are signed or 
downloaded from a trusted third 
party) or untrusted.

• The browser enforces a security 
policy which is always applied to 
untrusted code: 

• The security policy states that code 
cannot connect to the network after 
it has read from the local disk.



(* u : url  *)
(* execute : (unit -> unit)-> unit *)
(* enforce : policy -> (unit -> unit)-> unit *)

let browser (u : url) : unit =
  if html u then
    display u
  else if trusted u then
    excute  u
  else
    enforce p u  //p is the browser security policy

We define the browser as a function that processes a URL u. 
If the URL refers to an HTML page, the page is displayed. 
If the URL refers to code, it is executed when trusted; otherwise, it is executed 
under the control of a security policy.



Trusted 
progranna

We consider three trusted programs: 
• Read  to read files, 
• Write to write files, 
• Connect to open network 

connections. 
These programs are overly simplified, 
because we are only interested in the 
events they execute.



(* An action type *)
type action = Read | Write | Connect

(* Dispatcher: maps an action to a thunk (unit -> unit) *)
let action : action -> unit -> unit = function
  | Read  -> (fun () -> print_endline "Performing READ")
  | Write -> (fun () -> print_endline "Performing WRITE")
  | Connect -> (fun () -> print_endline "Performing CONNECT")

(* The function: ignores its argument and executes Read *)
let TrustedRead : 'a -> unit =
  fun _ -> action Read ()

Trusted Read



Runtime enforcement: key idea

• Execution monitors enforce history-based security policies at 
run time

• They observe computations and abort when a violation is imminent.
• Events = observations of security-relevant actions

• Examples: opening a socket, reading/writing a file.
• Histories = (possibly infinite) sequences of events.
• Policy as a global invariant: must hold at every point during 

execution.
• Expressive power: execution monitors enforce exactly the class 

of safety properties (not liveness).



Trusted code

The behavior of trusted 
code, when executed 

within the browser, 
does not violate 

security policies; 

for trusted code, the 
security monitor is 

vacuous (i.e., 
disabled).



Untrusted code

(* An action type *)
type action = Read | Write | Connect

(* Dispatcher: maps an action to a thunk (unit -> unit) *)
let action : action -> unit -> unit = function
  | Read  -> (fun () -> print_endline "Performing READ")
  | Write -> (fun () -> print_endline "Performing WRITE")
  | Connect -> (fun () -> print_endline "Performing CONNECT")

(* The function: idoes not gnore its argument *)
let Untrusted : url ->'a -> unit =
  fun (z:url) _ -> Browser z



Execution
What is the behaviour of an untrusted code (Untrusted Write) executed 
under the security policy Pw stating that untrusted code cannot write the 
local file system?



Execution
The behaviour of an untrusted code (Untrusted Write) executed under the 
security policy Pw stating that untrusted code cannot write the local file 
system, is illustrated by the following trace:

𝜖. 𝐵𝑟𝑜𝑤𝑠𝑒𝑟(𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝑒𝑑	𝑊𝑟𝑖𝑡𝑒)

𝜖, 𝑒𝑛𝑓𝑜𝑟𝑐𝑒	𝑃𝑤	 𝑊𝑟𝑖𝑡𝑒

𝑤, 𝑟𝑎𝑖𝑠𝑒	𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦	𝐹𝑎𝑖𝑙𝑢𝑟𝑒

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒	𝑜𝑓	𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 𝑐𝑜𝑑𝑒

CONFIGURATION



Execution
The behaviour of an untrusted code (Untrusted Read&Connect) executed 
under the security policy Pnc stating that untrusted code cannot connect to 
the network after reading the local file system, is illustrated by the following 
trace:

𝜖. 𝐵𝑟𝑜𝑤𝑠𝑒𝑟(𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝑒𝑅𝑒𝑎𝑑&𝐶𝑜𝑛𝑛𝑒𝑐𝑡)

𝜖, 𝑒𝑛𝑓𝑜𝑟𝑐𝑒	𝑃𝑛𝑐	 𝑅𝑒𝑎𝑑	; 𝐶𝑜𝑛𝑛𝑒𝑐𝑡

r;c, 𝑟𝑎𝑖𝑠𝑒	𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦	𝐹𝑎𝑖𝑙𝑢𝑟𝑒

𝑟, 𝑒𝑛𝑓𝑜𝑟𝑐𝑒	𝑃𝑛𝑐	 𝐶𝑜𝑛𝑛𝑒𝑐𝑡

we have a security exception, 
because the r;c does not 
satisfy the security policy Pnc



The Formal Representation



Syntax

EXPRESSIONS: Functional programming language

318 M. Bartoletti, P. Degano, and G.L. Ferrari

the computation above can be viewed as dynamically placing a program into a
sandbox enforcing the policy ϕ. This programming paradigm seems difficult to
express in a language with local checks or global policies, only.

Even though policies are regular properties, the nesting of policy framings
may give rise to non-regular properties: indeed, every history η must obey the
conjunction of all the policies within the scope of which the last event of η
occurs. Run-time mechanisms enforcing this kind of properties need to be at least
powerful as pushdown automata. Consequently, λ[ ] is strictly more expressive
than the sub-language that only admits policy framings with single events, i.e.
local checks (of course, the above holds under the assumption that the access
control mechanism is not encoded in λ-expressions themselves).

We define a type and effect system for λ[ ] . The types are standard, while the
effects are history expressions, a finite approximation of the infinitary language of
histories, together with explicit representation of the scope of policy framings. We
say that a history expression is valid if all its histories are such, i.e. they represent
safe executions. Considering finite histories only is sufficient, because the validity
of histories is a safety property. Recall that computations not enjoying a safety
property are rejected in a finite number of steps [17]. If the effect of a program
is valid, then the program will never throw any security exceptions.

Even though validity of histories is a non-regular property, we show that his-
tory expressions can be model checked with standard techniques. We define a
transformation that, given an history expression H, obtains an expression H ′

such that (i) the histories represented by H ′ are regular, and (ii) they respect ex-
actly the same policies (within their scopes) obeyed by the histories represented
by H. From the history expression H ′ we then extract a Basic Process Algebra
process p and a regular formula ϕ such that H ′ is valid if and only if p satisfies
ϕ. This satisfiability problem is known to be decidable by model checking [9].

2 The Language λ[ ]

To study access control in a pure framework, we consider λ[ ] , a call-by-value
λ-calculus enriched with access events and security policies. An access event
α ∈ Σ abstracts from a security-relevant operation; sequences η of access events
are called histories. Security policies ϕ ∈ Π are regular properties of histories. A
policy framing ϕ[e] localizes the scope of the policy ϕ to the expression e; fram-
ings can be nested. To enhance readability, our calculus comprises conditional
expressions and named abstractions (the variable z in e′ = λzx.e stands for e′ it-
self within e). The syntax of λ[ ] follows. We omit the definition of policies ϕ and
of guards b, as they are not relevant for the subsequent technical development.

Syntax of λ[ ] Expressions

e, e′ ::= x | α | if b then e else e′ | λzx. e | e e′ | ϕ[e]

PROGRAMS: Sandbox monitoring execution under the policy

𝑃 ∷	= 𝜑 𝑒



Abstract Machine and 
Run-time data 
structures



Execution
Monitors

Runtime Monitoring: Checking policy 
adherence during execution (e.g., 
sandboxing) 

Enforcement Mechanisms in VM: Virtual 
machines (e.g., WebAssembly, JVM) 
enforce security through restricted 
execution environments.

Execution Monitors: Intercepts security-
sensitive operations and ensures they 
comply with policies.



Some challenging questions

Can we prove that 
mechanism M enforces 

the security policy P?

• What is the 
mathematical 
definition of a policy?

• What is the 
programming 
abstractions for 
declaring security 
policies?

• What does it mean to 
enforce a policy within 
a programming 
language?

Are there limits to what 
is enforceable?

• Which enforcement 
approaches are best 
suited to which 

Policies? 

• Are there some 
policies that are 
completely beyond 
any known 
enforcement strategy? 

• Are some enforcement 
approaches strictly 
more powerful than 
others? 

OVERALL

• what is the landscape 
of policies, policy 
classes, and 
enforcement 
mechanisms? 



Enforceable
Security
Policies

Enforceable Security Policies 
F. Schneider, ACM Transactions on Information 
and System Security, February 2000 

Abstract
A precise characterization is given for the class 
of security policies enforceable with 
mechanisms that work by monitoring system 
execution, and automata are introduced for 
specifying exactly that class of security policies. 
Techniques to enforce security policies specified 
by such automata are also discussed.

https://dl.acm.org/journal/tissec
https://dl.acm.org/journal/tissec
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The Ideal Execution Monitor
1. Sees everything a program is about to do 

before it does it
2. Can instantly and completely stop program 

execution (or prevent action)
3. Has no other effect on the program or system
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The Ideal Execution Monitor
1. Sees everything a program is about to do 

before it does it
2. Can instantly and completely stop program 

execution (or prevent action)
3. Has no other effect on the program or system

Can we implement this? 
Probably not  …....
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Ideal Execution Monitor
1. Sees everything a program is about to do 

before it does it
2. Can instantly and completely stop program 

execution (or prevent action)
3. Has no other effect on the program or system

Real
most things

limited



Execution 
Monitor

Execution Monitors 
(EMs)

• EMs watch un-
trusted programs 
at runtime

• Events (raised by 
the run time 
executions) are 
mediated by the 
EM

• Violations solicit 
EM interventions 
(e.g. termination) 

Example: File 
system access 

control

• EM is inside the OS
• decides policy 

violations using 
access control 
lists (ACLs) 



Execution Monitor
in programming 

language design

• EMs are run-time structures that runs in 
parallel with the program

• Tracks execution flow at runtime 
to detect and prevent security 
violations dynamically.

• monitor decisions may be based on 
execution history 



EM: Good Operations
Program Monitor

f.open ()



EM: Bad Operation

Program Monitor

f.open () halt!



Execution 
and Security 
Policies

91

What’s a program (at run-time)?
• A set of possible executions

What’s an execution?
• A sequence of states

What’s a security policy?
• A predicate on a set of executions



Definitions and Notations

• An execution (or trace) s is a sequence of security-relevant 
program events e (also called actions)

• Sequence may be finite or (countably) infinite 
• s = e1; e2; ….; ek ; ehalt
• s = e1; e2; ….; ek; …..
• The empty sequence 𝜀 is an execution
• If s is the execution e1; e2; ….; ei; …. el; …. 

then s[i] is the execution e1; e2; ….; ei; 
• We simplify the formalism.

• We model program termination as an infinite repetition of ehalt event.
• Result: now all executions are infinite length sequences 



Definitions and Notations (cont.)

• A program S is a set of sequences (possible executions)
• A program is modelled as the set S = {s1, s2, ……}

• A security policy P is a property of programs
• A policy partitions the program space into two groups:

• Permissible 
• Impermissible

• Impermissible programs are censored somehow (e.g.,terminated 
on violating runs) 
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Execution Monitors cannot enforce 
all Security Policies
• Some policies depend on:

• Knowing about the future
• If the program charges the credit card, it must eventually 

ship the goods
• Knowing about all possible executions

• Information flow – can’t tell if a program reveals secret 
information without knowing about other possible 
executions

• Execution Monitors can only know about past of 
the particular execution at hand



EM-enforceable policies

1. EM policies are universally quantified predicates over 
executions
• ∀𝒔. 𝑷(𝒔)
• Policy P is called the detector.



EM-enforceable policies

1. EM policies are universally quantified predicates over 
executions
• ∀𝒔. 𝑷(𝒔)
• Policy P is called the detector.

2. The detector must must be prefix-closed 
• P(𝜺) holds
• P(s;e) holds then P(s) holds



EM-enforceable policies

1. EM policies are universally quantified predicates over 
executions
• ∀𝒔. 𝑷(𝒔)
• Policy P is called the detector.

2. The detector must must be prefix-closed 
• P(𝜺) holds
• P(s;e) holds then P(s) holds

3. If the detector is not satisfied by a sequence (the detector 
rejects the sequence) then it must do so in finite time
• ¬𝑷 𝒔 ⟹ ∃𝒊 ¬𝑷𝒔[𝒊]



EM-enforceable policies

1. EM policies are universally quantified predicates over 
executions

2. The detector must must be prefix-closed 
3. If the detector is not satisfied by a sequence (the detector 

recjects the sequence) then it must do so in finite time
4. Fact

• A policy satisfies (1), (2), and (3) if and only if it is a safety policy 
• Lamport 1977: Safety policies say that some “bad thing” never 

happens 
• EMs enforce safety policies! 



Safety
properties: 
Nothing bad
ever
happens

Safety property can be enforced using only 
traces of program 
• If P(t) does not hold, then all extensions of t are also 

bad

Amenable to run-time enforcement: don’t 
need to know future

Examples: 

• access control (e.g. checking file permissions on file 
open) 

• memory safety (process does not read/write outside
its own memory space) 

• type safety (data accessed in accordance with type) 
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Formally...
• Y : set of all possible executions (can be infinite)
• SS: set of executions possible by target program S
• P: security policy 

  set of executions ® Boolean

Program S is secure wrt the security 
policy P iff P (SS ) is true.



Security 
Automata

• Security Automata (Erlingsson & Schneider 1999)
• Formalization of security policies

• finite state automaton
• accepts language of permissible executions
• alphabet = set of events
• edge labels = event predicates
• all states accepting (language is prefix-closed) 



Security Automata (Example)

NO SENDS AFTER READS



CHINESE WALL POLICY

q0 q1 q2
ar aw

q2 non-final sink

araw

Aj

aw ar aw |≠ j

j Chinese Wall: cannot write (aw) after read (ar)

*



Execution
Monitor

type event = Read of string | Write of string | Connect of string
type history = event list
type policy = history -> event -> bool  (* true = allowed *)

type caps = {
  read    : string -> string;
  write   : string -> unit;
  connect : string -> unit;
}

let sandbox (phi : policy) (base : caps) (prog : caps -> 'a) : 'a =
  let hist = ref [] in
  let check e =
    if phi !hist e then hist := e :: !hist
    else failwith "Policy violation"
  in
  :
}
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the computation above can be viewed as dynamically placing a program into a
sandbox enforcing the policy ϕ. This programming paradigm seems difficult to
express in a language with local checks or global policies, only.

Even though policies are regular properties, the nesting of policy framings
may give rise to non-regular properties: indeed, every history η must obey the
conjunction of all the policies within the scope of which the last event of η
occurs. Run-time mechanisms enforcing this kind of properties need to be at least
powerful as pushdown automata. Consequently, λ[ ] is strictly more expressive
than the sub-language that only admits policy framings with single events, i.e.
local checks (of course, the above holds under the assumption that the access
control mechanism is not encoded in λ-expressions themselves).

We define a type and effect system for λ[ ] . The types are standard, while the
effects are history expressions, a finite approximation of the infinitary language of
histories, together with explicit representation of the scope of policy framings. We
say that a history expression is valid if all its histories are such, i.e. they represent
safe executions. Considering finite histories only is sufficient, because the validity
of histories is a safety property. Recall that computations not enjoying a safety
property are rejected in a finite number of steps [17]. If the effect of a program
is valid, then the program will never throw any security exceptions.

Even though validity of histories is a non-regular property, we show that his-
tory expressions can be model checked with standard techniques. We define a
transformation that, given an history expression H, obtains an expression H ′

such that (i) the histories represented by H ′ are regular, and (ii) they respect ex-
actly the same policies (within their scopes) obeyed by the histories represented
by H. From the history expression H ′ we then extract a Basic Process Algebra
process p and a regular formula ϕ such that H ′ is valid if and only if p satisfies
ϕ. This satisfiability problem is known to be decidable by model checking [9].

2 The Language λ[ ]

To study access control in a pure framework, we consider λ[ ] , a call-by-value
λ-calculus enriched with access events and security policies. An access event
α ∈ Σ abstracts from a security-relevant operation; sequences η of access events
are called histories. Security policies ϕ ∈ Π are regular properties of histories. A
policy framing ϕ[e] localizes the scope of the policy ϕ to the expression e; fram-
ings can be nested. To enhance readability, our calculus comprises conditional
expressions and named abstractions (the variable z in e′ = λzx.e stands for e′ it-
self within e). The syntax of λ[ ] follows. We omit the definition of policies ϕ and
of guards b, as they are not relevant for the subsequent technical development.

Syntax of λ[ ] Expressions

e, e′ ::= x | α | if b then e else e′ | λzx. e | e e′ | ϕ[e]

PROGRAMS

𝑃 ∷	= 𝜑 𝑒



NOTE: LAMBDA

l x.e  ANONYMOUS FUNCTIONS

l x. x+1

OCAML NOTATION

fun x = e
fun x = x + 1



NOTE: LAMBDA

RECURSIVE FUNCTIONS lz x.e

lfact x. if x <= 1  then 1 else x * fact(x-1)

OCAML NOTATION

let rec fact x = 
               if x <= 1 then 1 else x * fact (x - 1);;



NOTE: SEQUENTIAL COMPOSITION
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The values of λ[ ] are the variables and the abstractions. We write ∗ for a
fixed, closed, event-free value, and λ . e for λx. e, for x "∈ fv(e). The following
abbreviation is standard: e; e′ = (λ . e′)e.

We define the behaviour of λ[ ] expressions through the following SOS op-
erational semantics. The configurations are pairs η, e. A transition η, e → η′, e′

means that, starting from a history η, the expression e may evolve to e′, possibly
extending the history η. We write η |= ϕ when the history η obeys the policy ϕ.
We assume as given a total function B that evaluates the guards in conditionals.

Operational Semantics of λ[ ]

η, e1 → η′, e′1

η, e1e2 → η′, e′1e2

η, e2 → η′, e′2

η, ve2 → η′, ve′2 η, (λzx.e)v → η, e{v/x,λzx.e/z}

η,α → ηα, ∗

η, e → η′, e′ η, η′ |= ϕ

η,ϕ[e] → η′,ϕ[e′]

η |= ϕ

η,ϕ[v] → η, v

B(b) = true

η, if b then e0 else e1 → η, e0

B(b) = false

η, if b then e0 else e1 → η, e1

It is immediate to define a semantics of λ[ ] , equivalent to that given above,
that explicitly records entering and exiting a framing ϕ[· · · ], by enriching his-
tories with special events [ϕ and ]ϕ. Each transition requires to verify that the
current history is valid, roughly it satisfies all the policies ϕ whose scope has
been entered but not exited yet, i.e. the number of [ϕ is greater then that of ]ϕ.
Counting is not regular: therefore, validity is not a regular property.

To illustrate our approach, consider a simple web browser that displays
HTML pages and runs applets. Applets can be trusted (e.g. because signed,
or downloaded from a trusted site), or untrusted. The browser has a site policy
ϕ always applied to untrusted applets. The site policy says that an applet can-
not connect to the web after it has read from the local disk. After executing an
untrusted applet, the browser writes some logging information to the local disk.
Additionally, all applets must obey a user policy that is supplied to the browser.
We define the browser as a function that processes the URL u, be it an applet
or an HTML page, and the user policy ϕ′, rendered as a framing p = λx.ϕ′[x∗].

Browser = λu.λp. if html(u) then display(u) else
if trusted(u) then p u else ϕ[p u;Write ∗]

We consider three trusted applets: Read = λ .αr to read files, Write = λ .αw
to write files, and Connect = λ .αc to open web connections. Note that our
applets are overly simplified, because we are only interested in the events they
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The values of λ[ ] are the variables and the abstractions. We write ∗ for a
fixed, closed, event-free value, and λ . e for λx. e, for x "∈ fv(e). The following
abbreviation is standard: e; e′ = (λ . e′)e.

We define the behaviour of λ[ ] expressions through the following SOS op-
erational semantics. The configurations are pairs η, e. A transition η, e → η′, e′

means that, starting from a history η, the expression e may evolve to e′, possibly
extending the history η. We write η |= ϕ when the history η obeys the policy ϕ.
We assume as given a total function B that evaluates the guards in conditionals.

Operational Semantics of λ[ ]

η, e1 → η′, e′1

η, e1e2 → η′, e′1e2

η, e2 → η′, e′2

η, ve2 → η′, ve′2 η, (λzx.e)v → η, e{v/x,λzx.e/z}

η,α → ηα, ∗

η, e → η′, e′ η, η′ |= ϕ

η,ϕ[e] → η′,ϕ[e′]

η |= ϕ

η,ϕ[v] → η, v

B(b) = true

η, if b then e0 else e1 → η, e0

B(b) = false

η, if b then e0 else e1 → η, e1

It is immediate to define a semantics of λ[ ] , equivalent to that given above,
that explicitly records entering and exiting a framing ϕ[· · · ], by enriching his-
tories with special events [ϕ and ]ϕ. Each transition requires to verify that the
current history is valid, roughly it satisfies all the policies ϕ whose scope has
been entered but not exited yet, i.e. the number of [ϕ is greater then that of ]ϕ.
Counting is not regular: therefore, validity is not a regular property.

To illustrate our approach, consider a simple web browser that displays
HTML pages and runs applets. Applets can be trusted (e.g. because signed,
or downloaded from a trusted site), or untrusted. The browser has a site policy
ϕ always applied to untrusted applets. The site policy says that an applet can-
not connect to the web after it has read from the local disk. After executing an
untrusted applet, the browser writes some logging information to the local disk.
Additionally, all applets must obey a user policy that is supplied to the browser.
We define the browser as a function that processes the URL u, be it an applet
or an HTML page, and the user policy ϕ′, rendered as a framing p = λx.ϕ′[x∗].

Browser = λu.λp. if html(u) then display(u) else
if trusted(u) then p u else ϕ[p u;Write ∗]

We consider three trusted applets: Read = λ .αr to read files, Write = λ .αw
to write files, and Connect = λ .αc to open web connections. Note that our
applets are overly simplified, because we are only interested in the events they



Operational 
semantics

• The configurations are pairs
    𝜂, 𝑒
• A transition 𝜂, 𝑒 → 𝜂!, 𝑒! indicates that, 

starting from a history 𝜂, the expression 
𝑒 may evolve to 𝑒′, possibly extending 
the history 𝜂. 

• We write 𝜂 ⊨ 𝜑	when the history 𝜂
satisfies the policy 𝜑.



ABSTRACT MACHINE: DEFINITION

Configuration of the abstract machine

𝜂, 𝑒

Execution history Program to be executed

record the events generated by program 
execution  on its operational environment 



ABSTRACT MACHINE: DEFINITION

Configuration of the abstract machine

𝜼, 𝒆
Operational rules

𝜼 𝒆 → 𝜼 𝒆′



NOTE: IN WHAT WE TRUST?

Configurations:    

The abstract mechine: only trusts its own history
 

𝜼, 𝒆



Operational semantics
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The values of λ[ ] are the variables and the abstractions. We write ∗ for a
fixed, closed, event-free value, and λ . e for λx. e, for x "∈ fv(e). The following
abbreviation is standard: e; e′ = (λ . e′)e.

We define the behaviour of λ[ ] expressions through the following SOS op-
erational semantics. The configurations are pairs η, e. A transition η, e → η′, e′

means that, starting from a history η, the expression e may evolve to e′, possibly
extending the history η. We write η |= ϕ when the history η obeys the policy ϕ.
We assume as given a total function B that evaluates the guards in conditionals.

Operational Semantics of λ[ ]

η, e1 → η′, e′1

η, e1e2 → η′, e′1e2

η, e2 → η′, e′2

η, ve2 → η′, ve′2 η, (λzx.e)v → η, e{v/x,λzx.e/z}

η,α → ηα, ∗

η, e → η′, e′ η, η′ |= ϕ

η,ϕ[e] → η′,ϕ[e′]

η |= ϕ

η,ϕ[v] → η, v

B(b) = true

η, if b then e0 else e1 → η, e0

B(b) = false

η, if b then e0 else e1 → η, e1

It is immediate to define a semantics of λ[ ] , equivalent to that given above,
that explicitly records entering and exiting a framing ϕ[· · · ], by enriching his-
tories with special events [ϕ and ]ϕ. Each transition requires to verify that the
current history is valid, roughly it satisfies all the policies ϕ whose scope has
been entered but not exited yet, i.e. the number of [ϕ is greater then that of ]ϕ.
Counting is not regular: therefore, validity is not a regular property.

To illustrate our approach, consider a simple web browser that displays
HTML pages and runs applets. Applets can be trusted (e.g. because signed,
or downloaded from a trusted site), or untrusted. The browser has a site policy
ϕ always applied to untrusted applets. The site policy says that an applet can-
not connect to the web after it has read from the local disk. After executing an
untrusted applet, the browser writes some logging information to the local disk.
Additionally, all applets must obey a user policy that is supplied to the browser.
We define the browser as a function that processes the URL u, be it an applet
or an HTML page, and the user policy ϕ′, rendered as a framing p = λx.ϕ′[x∗].

Browser = λu.λp. if html(u) then display(u) else
if trusted(u) then p u else ϕ[p u;Write ∗]

We consider three trusted applets: Read = λ .αr to read files, Write = λ .αw
to write files, and Connect = λ .αc to open web connections. Note that our
applets are overly simplified, because we are only interested in the events they
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The values of λ[ ] are the variables and the abstractions. We write ∗ for a
fixed, closed, event-free value, and λ . e for λx. e, for x "∈ fv(e). The following
abbreviation is standard: e; e′ = (λ . e′)e.

We define the behaviour of λ[ ] expressions through the following SOS op-
erational semantics. The configurations are pairs η, e. A transition η, e → η′, e′

means that, starting from a history η, the expression e may evolve to e′, possibly
extending the history η. We write η |= ϕ when the history η obeys the policy ϕ.
We assume as given a total function B that evaluates the guards in conditionals.

Operational Semantics of λ[ ]

η, e1 → η′, e′1

η, e1e2 → η′, e′1e2

η, e2 → η′, e′2

η, ve2 → η′, ve′2 η, (λzx.e)v → η, e{v/x,λzx.e/z}

η,α → ηα, ∗

η, e → η′, e′ η, η′ |= ϕ

η,ϕ[e] → η′,ϕ[e′]

η |= ϕ

η,ϕ[v] → η, v

B(b) = true

η, if b then e0 else e1 → η, e0

B(b) = false

η, if b then e0 else e1 → η, e1

It is immediate to define a semantics of λ[ ] , equivalent to that given above,
that explicitly records entering and exiting a framing ϕ[· · · ], by enriching his-
tories with special events [ϕ and ]ϕ. Each transition requires to verify that the
current history is valid, roughly it satisfies all the policies ϕ whose scope has
been entered but not exited yet, i.e. the number of [ϕ is greater then that of ]ϕ.
Counting is not regular: therefore, validity is not a regular property.

To illustrate our approach, consider a simple web browser that displays
HTML pages and runs applets. Applets can be trusted (e.g. because signed,
or downloaded from a trusted site), or untrusted. The browser has a site policy
ϕ always applied to untrusted applets. The site policy says that an applet can-
not connect to the web after it has read from the local disk. After executing an
untrusted applet, the browser writes some logging information to the local disk.
Additionally, all applets must obey a user policy that is supplied to the browser.
We define the browser as a function that processes the URL u, be it an applet
or an HTML page, and the user policy ϕ′, rendered as a framing p = λx.ϕ′[x∗].

Browser = λu.λp. if html(u) then display(u) else
if trusted(u) then p u else ϕ[p u;Write ∗]

We consider three trusted applets: Read = λ .αr to read files, Write = λ .αw
to write files, and Connect = λ .αc to open web connections. Note that our
applets are overly simplified, because we are only interested in the events they
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The values of λ[ ] are the variables and the abstractions. We write ∗ for a
fixed, closed, event-free value, and λ . e for λx. e, for x "∈ fv(e). The following
abbreviation is standard: e; e′ = (λ . e′)e.

We define the behaviour of λ[ ] expressions through the following SOS op-
erational semantics. The configurations are pairs η, e. A transition η, e → η′, e′

means that, starting from a history η, the expression e may evolve to e′, possibly
extending the history η. We write η |= ϕ when the history η obeys the policy ϕ.
We assume as given a total function B that evaluates the guards in conditionals.

Operational Semantics of λ[ ]

η, e1 → η′, e′1

η, e1e2 → η′, e′1e2

η, e2 → η′, e′2

η, ve2 → η′, ve′2 η, (λzx.e)v → η, e{v/x,λzx.e/z}

η,α → ηα, ∗

η, e → η′, e′ η, η′ |= ϕ

η,ϕ[e] → η′,ϕ[e′]

η |= ϕ

η,ϕ[v] → η, v

B(b) = true

η, if b then e0 else e1 → η, e0

B(b) = false

η, if b then e0 else e1 → η, e1

It is immediate to define a semantics of λ[ ] , equivalent to that given above,
that explicitly records entering and exiting a framing ϕ[· · · ], by enriching his-
tories with special events [ϕ and ]ϕ. Each transition requires to verify that the
current history is valid, roughly it satisfies all the policies ϕ whose scope has
been entered but not exited yet, i.e. the number of [ϕ is greater then that of ]ϕ.
Counting is not regular: therefore, validity is not a regular property.

To illustrate our approach, consider a simple web browser that displays
HTML pages and runs applets. Applets can be trusted (e.g. because signed,
or downloaded from a trusted site), or untrusted. The browser has a site policy
ϕ always applied to untrusted applets. The site policy says that an applet can-
not connect to the web after it has read from the local disk. After executing an
untrusted applet, the browser writes some logging information to the local disk.
Additionally, all applets must obey a user policy that is supplied to the browser.
We define the browser as a function that processes the URL u, be it an applet
or an HTML page, and the user policy ϕ′, rendered as a framing p = λx.ϕ′[x∗].

Browser = λu.λp. if html(u) then display(u) else
if trusted(u) then p u else ϕ[p u;Write ∗]

We consider three trusted applets: Read = λ .αr to read files, Write = λ .αw
to write files, and Connect = λ .αc to open web connections. Note that our
applets are overly simplified, because we are only interested in the events they
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The values of λ[ ] are the variables and the abstractions. We write ∗ for a
fixed, closed, event-free value, and λ . e for λx. e, for x "∈ fv(e). The following
abbreviation is standard: e; e′ = (λ . e′)e.

We define the behaviour of λ[ ] expressions through the following SOS op-
erational semantics. The configurations are pairs η, e. A transition η, e → η′, e′

means that, starting from a history η, the expression e may evolve to e′, possibly
extending the history η. We write η |= ϕ when the history η obeys the policy ϕ.
We assume as given a total function B that evaluates the guards in conditionals.

Operational Semantics of λ[ ]

η, e1 → η′, e′1

η, e1e2 → η′, e′1e2

η, e2 → η′, e′2

η, ve2 → η′, ve′2 η, (λzx.e)v → η, e{v/x,λzx.e/z}

η,α → ηα, ∗

η, e → η′, e′ η, η′ |= ϕ

η,ϕ[e] → η′,ϕ[e′]

η |= ϕ

η,ϕ[v] → η, v

B(b) = true

η, if b then e0 else e1 → η, e0

B(b) = false

η, if b then e0 else e1 → η, e1

It is immediate to define a semantics of λ[ ] , equivalent to that given above,
that explicitly records entering and exiting a framing ϕ[· · · ], by enriching his-
tories with special events [ϕ and ]ϕ. Each transition requires to verify that the
current history is valid, roughly it satisfies all the policies ϕ whose scope has
been entered but not exited yet, i.e. the number of [ϕ is greater then that of ]ϕ.
Counting is not regular: therefore, validity is not a regular property.

To illustrate our approach, consider a simple web browser that displays
HTML pages and runs applets. Applets can be trusted (e.g. because signed,
or downloaded from a trusted site), or untrusted. The browser has a site policy
ϕ always applied to untrusted applets. The site policy says that an applet can-
not connect to the web after it has read from the local disk. After executing an
untrusted applet, the browser writes some logging information to the local disk.
Additionally, all applets must obey a user policy that is supplied to the browser.
We define the browser as a function that processes the URL u, be it an applet
or an HTML page, and the user policy ϕ′, rendered as a framing p = λx.ϕ′[x∗].

Browser = λu.λp. if html(u) then display(u) else
if trusted(u) then p u else ϕ[p u;Write ∗]

We consider three trusted applets: Read = λ .αr to read files, Write = λ .αw
to write files, and Connect = λ .αc to open web connections. Note that our
applets are overly simplified, because we are only interested in the events they



EXAMPLE

𝑒𝑣𝑎𝑙(j[(fun x = x) read])write

j[write; (fun x = x) read]

Policy j = no read after write



EXAMPLE

𝑒𝑣𝑎𝑙(j[read])write

j[write; (fun x = x) read]

Policy j = no read after write



EXAMPLE

readwrite

write ; read ! ⊢ j

j[write; (fun x = x) read]

Policy j = no read after write



Summary

• Dynamic Analysis of History-
Dependent Access Control

• We have shown how 
to characterize the dynamic 
analysis of history-dependent 
access control,
defining its formal structure and 
its limitations (safety security 
policies).



Next step

Can we do better?
Can we integrate static 
and dynamic analysis?

➡ Type & E3ect 
system



Amalgating static and 
dynamic enforcement of 

security properties



Static 
Observable 
Behaviours

• access events are the actions 
relevant for security (e.g. 
read/write local files, invoke/be 
invoked by a given service, etc)

• mechanically inferred, or 
inserted by programmer.

• their meaning is fixed 
globally.

• access events cannot be 
hidden



CHECKING STATICALLY

1. We extract the abstract behaviour of the program via a suitable type 
system that over-approximates the possible run-time behavior of the 
program

2. This abstract behaviour is compiled into a suitable form to be model-
checked in order to verify whether or not the security constraints are 
satisfied

3. As a result of the model checking  we ensure that the program satisfies the 
security property. 



THE TYPE SYSTEM

Type & effect system

¡ types carry effects annotations H about abstract behaviour

¡ effects H, are called history expressions, and over-approximate the actual execution histories



TYPES

t  ::=  int  |  bool  | unit | ××× | 

t¢t H

(basic types are pretty standard)

Functional types



FUNCTIONAL TYPES

t¢t H

Functional types

The history expression H describes the latent effect
 associated with the functional  abstraction 
(the set of possible execution histories)

When the abstraction is applied to a value, its execution 
will generate a run time behaviours belonging to the 
execution histories represented by H



INTERMEZZO

• Plain (traditiona) type systems have
judgments of the form

𝚪 ⊢ 𝒆: 𝝉
• to mean: 
• e won’t get stuck
• if e produces a value, that value has

type τ



INTERMEZZO

• Adding effects to typing rules mean to 
compute sta<cally something about
“how program executes” .
• There are many things we may want to 

conserva<vely approximate



EFFECTS (HISTORY EXPRESSIONS)

empty

variable

access event

sequence

choice

recursion

H ::= 

      e

  h

  a

  H × H¢

  H + H¢

  µh.H



WHAT IS THE MEANING OF HISTORY EXPRESSIONS?

t¢t H

When the program is sent into execution, 
it will generate one of the histories 
abstract represented  by H. 

History expressions are a sort of context-free grammars 

The language generated by this grammars are
 abstract program behaviours



WHAT IS THE MEANING OF HISTORY EXPRESSIONS?

What is the set of run-time executions 
abstractly represented by H? 

𝐻 = 𝜇ℎ. 𝛼 + 𝛽. 𝐻



WHAT IS THE MEANING OF HISTORY EXPRESSIONS?

What is the set of run-time executions 
abstractly represented by H? 𝐻 = 𝜇ℎ. 𝛼 + 𝛽. 𝐻

Denotation of H = µh.(ω + ε · h)
3. Expand the fixpoint

Let
F (h) = ω+ ε · h

Then the least fixpoint satisfies

H = F (H) = {ω} → {ε} ·H.

Unfolding iteratively:

H = {ω} → {ε} ·H
= {ω} → {ε} · ({ω} → {ε} ·H)

= {ω, εω} → {ε2} ·H
= {ω, εω, ε2

ω, ε
3
ω, . . .}

4. Intuitive meaning

The denotation is the set of all finite traces consisting of zero or more ε events
followed by one ω event:

H = {εn
ω | n ↑ 0 }.

Equivalently, using regular-expression notation:

H = L(ε→
ω)

In words: the system may perform any number of ε events (possibly none)
and then one ω event— exactly capturing the behavior of the recursive e!ect
equation H = ω+ ε ·H.

1

We need to solve this fix point equation

Denotation of H = µh.(ω + ε · h)
3. Expand the fixpoint

Let
F (h) = ω+ ε · h

Then the least fixpoint satisfies

H = F (H) = {ω} → {ε} ·H.

Unfolding iteratively:

H = {ω} → {ε} ·H
= {ω} → {ε} · ({ω} → {ε} ·H)

= {ω, εω} → {ε2} ·H
= {ω, εω, ε2

ω, ε
3
ω, . . .}

4. Intuitive meaning

The denotation is the set of all finite traces consisting of zero or more ε events
followed by one ω event:

H = {εn
ω | n ↑ 0 }.

Equivalently, using regular-expression notation:

H = L(ε→
ω)

In words: the system may perform any number of ε events (possibly none)
and then one ω event— exactly capturing the behavior of the recursive e!ect
equation H = ω+ ε ·H.

1

The least fixpoint
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3
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The denotation is the set of all finite traces consisting of zero or more ε events
followed by one ω event:

H = {εn
ω | n ↑ 0 }.

Equivalently, using regular-expression notation:

H = L(ε→
ω)

In words: the system may perform any number of ε events (possibly none)
and then one ω event— exactly capturing the behavior of the recursive e!ect
equation H = ω+ ε ·H.

1

We need to solve this fix point equation

Denotation of H = µh.(ω + ε · h)
3. Expand the fixpoint

Let
F (h) = ω+ ε · h

Then the least fixpoint satisfies

H = F (H) = {ω} → {ε} ·H.
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= {ω} → {ε} · ({ω} → {ε} ·H)
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3
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The denotation is the set of all finite traces consisting of zero or more ε events
followed by one ω event:

H = {εn
ω | n ↑ 0 }.

Equivalently, using regular-expression notation:

H = L(ε→
ω)

In words: the system may perform any number of ε events (possibly none)
and then one ω event— exactly capturing the behavior of the recursive e!ect
equation H = ω+ ε ·H.

1

The least fixpoint

Denotation of H = µh.(ω + ε · h)
3. Expand the fixpoint

Let
F (h) = ω+ ε · h

Then the least fixpoint satisfies

H = F (H) = {ω} → {ε} ·H.

Unfolding iteratively:

H = {ω} → {ε} ·H
= {ω} → {ε} · ({ω} → {ε} ·H)

= {ω, εω} → {ε2} ·H
= {ω, εω, ε2

ω, ε
3
ω, . . .}

4. Intuitive meaning

The denotation is the set of all finite traces consisting of zero or more ε events
followed by one ω event:

H = {εn
ω | n ↑ 0 }.

Equivalently, using regular-expression notation:

H = L(ε→
ω)

In words: the system may perform any number of ε events (possibly none)
and then one ω event— exactly capturing the behavior of the recursive e!ect
equation H = ω+ ε ·H.

1

Unfolding the equation



WHAT IS THE MEANING OF HISTORY EXPRESSIONS?

What is the set of run-time executions 
abstractly represented by H? 𝐻 = 𝜇ℎ. 𝛼 + 𝛽. 𝐻

Denotation of H = µh.(ω + ε · h)
3. Expand the fixpoint

Let
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3
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4. Intuitive meaning

The denotation is the set of all finite traces consisting of zero or more ε events
followed by one ω event:

H = {εn
ω | n ↑ 0 }.

Equivalently, using regular-expression notation:

H = L(ε→
ω)

In words: the system may perform any number of ε events (possibly none)
and then one ω event— exactly capturing the behavior of the recursive e!ect
equation H = ω+ ε ·H.
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3
ω, . . .}

4. Intuitive meaning

The denotation is the set of all finite traces consisting of zero or more ε events
followed by one ω event:

H = {εn
ω | n ↑ 0 }.

Equivalently, using regular-expression notation:

H = L(ε→
ω)

In words: the system may perform any number of ε events (possibly none)
and then one ω event— exactly capturing the behavior of the recursive e!ect
equation H = ω+ ε ·H.

1



WHAT IS THE MEANING OF HISTORY EXPRESSIONS?

What is the set of run-time executions 
abstractly represented by H? 𝐻 = 𝜇ℎ. 𝛼 + 𝛽. 𝐻

Denotation of H = µh.(ω + ε · h)
3. Expand the fixpoint

Let
F (h) = ω+ ε · h

Then the least fixpoint satisfies

H = F (H) = {ω} → {ε} ·H.

Unfolding iteratively:

H = {ω} → {ε} ·H
= {ω} → {ε} · ({ω} → {ε} ·H)

= {ω, εω} → {ε2} ·H
= {ω, εω, ε2

ω, ε
3
ω, . . .}

4. Intuitive meaning

The denotation is the set of all finite traces consisting of zero or more ε events
followed by one ω event:

H = {εn
ω | n ↑ 0 }.

Equivalently, using regular-expression notation:

H = L(ε→
ω)

In words: the system may perform any number of ε events (possibly none)
and then one ω event— exactly capturing the behavior of the recursive e!ect
equation H = ω+ ε ·H.

1

the run-time executions perform any 
number of 𝜷	events (possibly none)
and then one 𝜶 event— exactly 
capturing the behavior of the recursive 
equation 

Denotation of H = µh.(ω + ε · h)
3. Expand the fixpoint

Let
F (h) = ω+ ε · h

Then the least fixpoint satisfies

H = F (H) = {ω} → {ε} ·H.

Unfolding iteratively:

H = {ω} → {ε} ·H
= {ω} → {ε} · ({ω} → {ε} ·H)

= {ω, εω} → {ε2} ·H
= {ω, εω, ε2
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3
ω, . . .}

4. Intuitive meaning

The denotation is the set of all finite traces consisting of zero or more ε events
followed by one ω event:

H = {εn
ω | n ↑ 0 }.

Equivalently, using regular-expression notation:

H = L(ε→
ω)

In words: the system may perform any number of ε events (possibly none)
and then one ω event— exactly capturing the behavior of the recursive e!ect
equation H = ω+ ε ·H.

1



THE DENOTATIONAL SEMANTICS OF HISTORY EXPRESSIONS

(𝓅(Σ) 	⊆)

The denotational semantics is defined over the complete lattice

Σ	𝑖𝑠	𝑡ℎ𝑒	𝑠𝑒𝑡	𝑜𝑓	𝑎𝑐𝑐𝑒𝑠𝑠	𝑒𝑣𝑒𝑛𝑡𝑠

The environment 𝜌	is used to map variables to sets of (finite) 
histories



THE DENOTATIONAL SEMANTICS OF HISTORY EXPRESSIONS
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History expressions include the empty history ε, events α, sequencing H ·H ′,
non-deterministic choice H + H ′, policy framing ϕ[H], and recursion µh.H (µ
binds the occurrences of the variable h in H). Free variables and closed expres-
sions are defined as expected. We assume that the operator · has precedence over
+, that in turn has precedence over µ.

Hereafter, we extend histories with an explicit representation of policy fram-
ings. We use special symbols [ϕ and ]ϕ to denote the opening and closing of the
scope of the policy ϕ. Formally, an enriched history η, or simply history when
unambiguous, is a (possibly infinite) sequence (β1,β2, . . .) where βi ∈ Σ ∪ ΣΠ ,
ΣΠ = { [ϕ, ]ϕ | ϕ ∈ Π }, and Σ ∩ ΣΠ = ∅.

Let H range over sets of histories. Then, HH′ denotes the set of histories
{ ηη′ | η ∈ H, η′ ∈ H′ }, and ϕ[H] is the set { [ϕ η ]ϕ | η ∈ H }. Note that, if η is
infinite, then ηη′ = η, for each η′ (in particular, ϕ[η] = [ϕη ]ϕ = [ϕη).

The denotational semantics of history expressions is defined over the complete
lattice (2(Σ∪ΣΠ)∗

,⊆). The environment ρ used below maps variables to sets of
(finite) histories. We stipulate that concatenation and union of sets of histories
are defined only if both their operands are defined. Hereafter, we feel free to
omit curly braces, when unambiguous.

Denotational Semantics of History Expressions

!ε"ρ = ε !α"ρ = α !h"ρ = ρ(h) !ϕ[H]"ρ = ϕ[!H"ρ]

!H · H ′"ρ = !H"ρ !H ′"ρ !H + H ′"ρ = !H"ρ ∪ !H ′"ρ

!µh.H"ρ =
⋃

n∈ω fn(∅) where f(X) = !H"ρ{X/h}

As an example, consider H = µh.α+h ·h+ϕ[h]. The semantics of H consists
of all the histories having an arbitrary number of occurrences of α, and arbitrarily
nested framings of ϕ. For instance, αϕ[α],ϕ[α]ϕ[αϕ[α]] ∈ !H"∅.

We now introduce a type and effect system [19] for λ[ ] , extending [18]. Types
and type environments, ranged over by τ and Γ , are defined as follows.

Types and Type Environments

τ ::= unit | τ
H−→ τ Γ ::= ∅ | Γ ;x : τ (x (∈ dom(Γ ))

A typing judgment Γ,H ) e : τ means that the expression e evaluates to a
value of type τ , and produces a history belonging to the effect H. The history
expression H in the functional type τ

H−→ τ ′ describes the latent effect associated
with an abstraction, i.e. one of the histories in !H" is generated when a value is
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are defined only if both their operands are defined. Hereafter, we feel free to
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!H · H ′"ρ = !H"ρ !H ′"ρ !H + H ′"ρ = !H"ρ ∪ !H ′"ρ

!µh.H"ρ =
⋃

n∈ω fn(∅) where f(X) = !H"ρ{X/h}

As an example, consider H = µh.α+h ·h+ϕ[h]. The semantics of H consists
of all the histories having an arbitrary number of occurrences of α, and arbitrarily
nested framings of ϕ. For instance, αϕ[α],ϕ[α]ϕ[αϕ[α]] ∈ !H"∅.

We now introduce a type and effect system [19] for λ[ ] , extending [18]. Types
and type environments, ranged over by τ and Γ , are defined as follows.

Types and Type Environments

τ ::= unit | τ
H−→ τ Γ ::= ∅ | Γ ;x : τ (x (∈ dom(Γ ))

A typing judgment Γ,H ) e : τ means that the expression e evaluates to a
value of type τ , and produces a history belonging to the effect H. The history
expression H in the functional type τ

H−→ τ ′ describes the latent effect associated
with an abstraction, i.e. one of the histories in !H" is generated when a value is
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History expressions include the empty history ε, events α, sequencing H ·H ′,
non-deterministic choice H + H ′, policy framing ϕ[H], and recursion µh.H (µ
binds the occurrences of the variable h in H). Free variables and closed expres-
sions are defined as expected. We assume that the operator · has precedence over
+, that in turn has precedence over µ.

Hereafter, we extend histories with an explicit representation of policy fram-
ings. We use special symbols [ϕ and ]ϕ to denote the opening and closing of the
scope of the policy ϕ. Formally, an enriched history η, or simply history when
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expression H in the functional type τ
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We now introduce a type and effect system [19] for λ[ ] , extending [18]. Types
and type environments, ranged over by τ and Γ , are defined as follows.
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(finite) histories. We stipulate that concatenation and union of sets of histories
are defined only if both their operands are defined. Hereafter, we feel free to
omit curly braces, when unambiguous.

Denotational Semantics of History Expressions

!ε"ρ = ε !α"ρ = α !h"ρ = ρ(h) !ϕ[H]"ρ = ϕ[!H"ρ]

!H · H ′"ρ = !H"ρ !H ′"ρ !H + H ′"ρ = !H"ρ ∪ !H ′"ρ

!µh.H"ρ =
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n∈ω fn(∅) where f(X) = !H"ρ{X/h}

As an example, consider H = µh.α+h ·h+ϕ[h]. The semantics of H consists
of all the histories having an arbitrary number of occurrences of α, and arbitrarily
nested framings of ϕ. For instance, αϕ[α],ϕ[α]ϕ[αϕ[α]] ∈ !H"∅.

We now introduce a type and effect system [19] for λ[ ] , extending [18]. Types
and type environments, ranged over by τ and Γ , are defined as follows.

Types and Type Environments

τ ::= unit | τ
H−→ τ Γ ::= ∅ | Γ ;x : τ (x (∈ dom(Γ ))

A typing judgment Γ,H ) e : τ means that the expression e evaluates to a
value of type τ , and produces a history belonging to the effect H. The history
expression H in the functional type τ

H−→ τ ′ describes the latent effect associated
with an abstraction, i.e. one of the histories in !H" is generated when a value is
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History expressions include the empty history ε, events α, sequencing H ·H ′,
non-deterministic choice H + H ′, policy framing ϕ[H], and recursion µh.H (µ
binds the occurrences of the variable h in H). Free variables and closed expres-
sions are defined as expected. We assume that the operator · has precedence over
+, that in turn has precedence over µ.

Hereafter, we extend histories with an explicit representation of policy fram-
ings. We use special symbols [ϕ and ]ϕ to denote the opening and closing of the
scope of the policy ϕ. Formally, an enriched history η, or simply history when
unambiguous, is a (possibly infinite) sequence (β1,β2, . . .) where βi ∈ Σ ∪ ΣΠ ,
ΣΠ = { [ϕ, ]ϕ | ϕ ∈ Π }, and Σ ∩ ΣΠ = ∅.

Let H range over sets of histories. Then, HH′ denotes the set of histories
{ ηη′ | η ∈ H, η′ ∈ H′ }, and ϕ[H] is the set { [ϕ η ]ϕ | η ∈ H }. Note that, if η is
infinite, then ηη′ = η, for each η′ (in particular, ϕ[η] = [ϕη ]ϕ = [ϕη).

The denotational semantics of history expressions is defined over the complete
lattice (2(Σ∪ΣΠ)∗

,⊆). The environment ρ used below maps variables to sets of
(finite) histories. We stipulate that concatenation and union of sets of histories
are defined only if both their operands are defined. Hereafter, we feel free to
omit curly braces, when unambiguous.
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!ε"ρ = ε !α"ρ = α !h"ρ = ρ(h) !ϕ[H]"ρ = ϕ[!H"ρ]
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!µh.H"ρ =
⋃

n∈ω fn(∅) where f(X) = !H"ρ{X/h}

As an example, consider H = µh.α+h ·h+ϕ[h]. The semantics of H consists
of all the histories having an arbitrary number of occurrences of α, and arbitrarily
nested framings of ϕ. For instance, αϕ[α],ϕ[α]ϕ[αϕ[α]] ∈ !H"∅.

We now introduce a type and effect system [19] for λ[ ] , extending [18]. Types
and type environments, ranged over by τ and Γ , are defined as follows.

Types and Type Environments

τ ::= unit | τ
H−→ τ Γ ::= ∅ | Γ ;x : τ (x (∈ dom(Γ ))

A typing judgment Γ,H ) e : τ means that the expression e evaluates to a
value of type τ , and produces a history belonging to the effect H. The history
expression H in the functional type τ

H−→ τ ′ describes the latent effect associated
with an abstraction, i.e. one of the histories in !H" is generated when a value is

The least fixpoint over the CPO (𝓅(Σ) 	⊆)
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+, that in turn has precedence over µ.
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(finite) histories. We stipulate that concatenation and union of sets of histories
are defined only if both their operands are defined. Hereafter, we feel free to
omit curly braces, when unambiguous.
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!ε"ρ = ε !α"ρ = α !h"ρ = ρ(h) !ϕ[H]"ρ = ϕ[!H"ρ]

!H · H ′"ρ = !H"ρ !H ′"ρ !H + H ′"ρ = !H"ρ ∪ !H ′"ρ

!µh.H"ρ =
⋃

n∈ω fn(∅) where f(X) = !H"ρ{X/h}

As an example, consider H = µh.α+h ·h+ϕ[h]. The semantics of H consists
of all the histories having an arbitrary number of occurrences of α, and arbitrarily
nested framings of ϕ. For instance, αϕ[α],ϕ[α]ϕ[αϕ[α]] ∈ !H"∅.

We now introduce a type and effect system [19] for λ[ ] , extending [18]. Types
and type environments, ranged over by τ and Γ , are defined as follows.

Types and Type Environments

τ ::= unit | τ
H−→ τ Γ ::= ∅ | Γ ;x : τ (x (∈ dom(Γ ))

A typing judgment Γ,H ) e : τ means that the expression e evaluates to a
value of type τ , and produces a history belonging to the effect H. The history
expression H in the functional type τ

H−→ τ ′ describes the latent effect associated
with an abstraction, i.e. one of the histories in !H" is generated when a value is
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History expressions include the empty history ε, events α, sequencing H ·H ′,
non-deterministic choice H + H ′, policy framing ϕ[H], and recursion µh.H (µ
binds the occurrences of the variable h in H). Free variables and closed expres-
sions are defined as expected. We assume that the operator · has precedence over
+, that in turn has precedence over µ.

Hereafter, we extend histories with an explicit representation of policy fram-
ings. We use special symbols [ϕ and ]ϕ to denote the opening and closing of the
scope of the policy ϕ. Formally, an enriched history η, or simply history when
unambiguous, is a (possibly infinite) sequence (β1,β2, . . .) where βi ∈ Σ ∪ ΣΠ ,
ΣΠ = { [ϕ, ]ϕ | ϕ ∈ Π }, and Σ ∩ ΣΠ = ∅.

Let H range over sets of histories. Then, HH′ denotes the set of histories
{ ηη′ | η ∈ H, η′ ∈ H′ }, and ϕ[H] is the set { [ϕ η ]ϕ | η ∈ H }. Note that, if η is
infinite, then ηη′ = η, for each η′ (in particular, ϕ[η] = [ϕη ]ϕ = [ϕη).

The denotational semantics of history expressions is defined over the complete
lattice (2(Σ∪ΣΠ)∗

,⊆). The environment ρ used below maps variables to sets of
(finite) histories. We stipulate that concatenation and union of sets of histories
are defined only if both their operands are defined. Hereafter, we feel free to
omit curly braces, when unambiguous.

Denotational Semantics of History Expressions

!ε"ρ = ε !α"ρ = α !h"ρ = ρ(h) !ϕ[H]"ρ = ϕ[!H"ρ]

!H · H ′"ρ = !H"ρ !H ′"ρ !H + H ′"ρ = !H"ρ ∪ !H ′"ρ

!µh.H"ρ =
⋃

n∈ω fn(∅) where f(X) = !H"ρ{X/h}

As an example, consider H = µh.α+h ·h+ϕ[h]. The semantics of H consists
of all the histories having an arbitrary number of occurrences of α, and arbitrarily
nested framings of ϕ. For instance, αϕ[α],ϕ[α]ϕ[αϕ[α]] ∈ !H"∅.

We now introduce a type and effect system [19] for λ[ ] , extending [18]. Types
and type environments, ranged over by τ and Γ , are defined as follows.

Types and Type Environments

τ ::= unit | τ
H−→ τ Γ ::= ∅ | Γ ;x : τ (x (∈ dom(Γ ))

A typing judgment Γ,H ) e : τ means that the expression e evaluates to a
value of type τ , and produces a history belonging to the effect H. The history
expression H in the functional type τ

H−→ τ ′ describes the latent effect associated
with an abstraction, i.e. one of the histories in !H" is generated when a value is

Typing Judgment

Intuition: the expression 𝒆 evaluates to a
value of type 𝝉, and produces a history belonging to 
the effect 𝑯 .
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applied to an abstraction with that type. The relation Γ,H ! e : τ is defined as
the least relation closed under the following rules.

Type and Effect System for λ[ ]

Γ, ε ! x : Γ (x) Γ,α ! α : unit Γ, ε ! ∗ : unit

Γ ;x : τ ; z : τ
H−→ τ ′,H ! e : τ ′

Γ, ε ! λzx.e : τ
H−→ τ ′

Γ,H ! e : τ
H′′
−−→ τ ′ Γ,H ′ ! e′ : τ

Γ,H · H ′ · H ′′ ! ee′ : τ ′

Γ,H ! e : τ Γ,H ! e′ : τ

Γ,H ! if b then e else e′ : τ

Γ,H ! e : τ

Γ,ϕ[H] ! ϕ[e] : τ

Γ,H ! e : τ

Γ,H + H ′ ! e : τ

Typing judgments are standard. The last rule allows for weakening of effects.
The effects in the rule for application are concatenated according to the evalu-
ation order of the call-by-value semantics. The rule for abstraction constraints
the premise to equate the effect and the latent effect of functional type. Let η
be a history; let η! be the subsequence of η containing only events in Σ; and
let ηπ be the set of all the prefixes of η. For example, if η = αϕ[α′ϕ′[α′′]], then
(η!)π = {α,αα′,αα′α′′}. The next theorem ensures that our type and effect sys-
tem does approximate the actual run-time histories (its proof, as well as others,
and further technical details can be found in [3]).

Theorem 1. If Γ,H ! e : τ and ε, e →∗ η, e′, then η ∈ (!H"!)π.

We now define when an access control history is valid. Intuitively, valid histories
represent viable computations, while invalid ones represent computations that
would have been stopped by the access control mechanism of λ[ ] . Let η =
β1 · · · βn be a history. Let Φ(η) be the set of the policies ϕ such that the number of
[ϕ is greater than the number of ]ϕ in η. We say that η is valid when (β1 · · · βk)! |=∧

Φ(β1 · · · βk), for all k ∈ 1..n. A history expression H is valid when all the
histories in !H" are such.

For example, consider the history η0 = αrϕ[αc], where ϕ is the property
saying that no αc occurs after αr. Then, η0 is not valid, because (αr[ϕαc)! = αrαc

does not satisfy
∧

Φ(αr[ϕαc) = ϕ. The history η1 = ϕ[αr]αc is valid, because
([ϕαr)! = αr satisfies

∧
Φ([ϕαr) = ϕ, and

∧
Φ(η1) =

∧
∅ = true.

We now state the type safety property. We say that e goes wrong when
ε, e →∗ η′, e′, and e′ is not a value, and there is no η′′, e′′ such that η′, e′ → η′′, e′′.
For example, a computation goes wrong when attempting to execute an event
forbidden by a currently active policy framing.
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applied to an abstraction with that type. The relation Γ,H ! e : τ is defined as
the least relation closed under the following rules.

Type and Effect System for λ[ ]

Γ, ε ! x : Γ (x) Γ,α ! α : unit Γ, ε ! ∗ : unit

Γ ;x : τ ; z : τ
H−→ τ ′,H ! e : τ ′

Γ, ε ! λzx.e : τ
H−→ τ ′

Γ,H ! e : τ
H′′
−−→ τ ′ Γ,H ′ ! e′ : τ

Γ,H · H ′ · H ′′ ! ee′ : τ ′

Γ,H ! e : τ Γ,H ! e′ : τ

Γ,H ! if b then e else e′ : τ

Γ,H ! e : τ

Γ,ϕ[H] ! ϕ[e] : τ

Γ,H ! e : τ

Γ,H + H ′ ! e : τ

Typing judgments are standard. The last rule allows for weakening of effects.
The effects in the rule for application are concatenated according to the evalu-
ation order of the call-by-value semantics. The rule for abstraction constraints
the premise to equate the effect and the latent effect of functional type. Let η
be a history; let η! be the subsequence of η containing only events in Σ; and
let ηπ be the set of all the prefixes of η. For example, if η = αϕ[α′ϕ′[α′′]], then
(η!)π = {α,αα′,αα′α′′}. The next theorem ensures that our type and effect sys-
tem does approximate the actual run-time histories (its proof, as well as others,
and further technical details can be found in [3]).

Theorem 1. If Γ,H ! e : τ and ε, e →∗ η, e′, then η ∈ (!H"!)π.

We now define when an access control history is valid. Intuitively, valid histories
represent viable computations, while invalid ones represent computations that
would have been stopped by the access control mechanism of λ[ ] . Let η =
β1 · · · βn be a history. Let Φ(η) be the set of the policies ϕ such that the number of
[ϕ is greater than the number of ]ϕ in η. We say that η is valid when (β1 · · · βk)! |=∧

Φ(β1 · · · βk), for all k ∈ 1..n. A history expression H is valid when all the
histories in !H" are such.

For example, consider the history η0 = αrϕ[αc], where ϕ is the property
saying that no αc occurs after αr. Then, η0 is not valid, because (αr[ϕαc)! = αrαc

does not satisfy
∧

Φ(αr[ϕαc) = ϕ. The history η1 = ϕ[αr]αc is valid, because
([ϕαr)! = αr satisfies

∧
Φ([ϕαr) = ϕ, and

∧
Φ(η1) =

∧
∅ = true.

We now state the type safety property. We say that e goes wrong when
ε, e →∗ η′, e′, and e′ is not a value, and there is no η′′, e′′ such that η′, e′ → η′′, e′′.
For example, a computation goes wrong when attempting to execute an event
forbidden by a currently active policy framing.
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applied to an abstraction with that type. The relation Γ,H ! e : τ is defined as
the least relation closed under the following rules.

Type and Effect System for λ[ ]

Γ, ε ! x : Γ (x) Γ,α ! α : unit Γ, ε ! ∗ : unit

Γ ;x : τ ; z : τ
H−→ τ ′,H ! e : τ ′

Γ, ε ! λzx.e : τ
H−→ τ ′

Γ,H ! e : τ
H′′
−−→ τ ′ Γ,H ′ ! e′ : τ

Γ,H · H ′ · H ′′ ! ee′ : τ ′

Γ,H ! e : τ Γ,H ! e′ : τ

Γ,H ! if b then e else e′ : τ

Γ,H ! e : τ

Γ,ϕ[H] ! ϕ[e] : τ

Γ,H ! e : τ

Γ,H + H ′ ! e : τ

Typing judgments are standard. The last rule allows for weakening of effects.
The effects in the rule for application are concatenated according to the evalu-
ation order of the call-by-value semantics. The rule for abstraction constraints
the premise to equate the effect and the latent effect of functional type. Let η
be a history; let η! be the subsequence of η containing only events in Σ; and
let ηπ be the set of all the prefixes of η. For example, if η = αϕ[α′ϕ′[α′′]], then
(η!)π = {α,αα′,αα′α′′}. The next theorem ensures that our type and effect sys-
tem does approximate the actual run-time histories (its proof, as well as others,
and further technical details can be found in [3]).

Theorem 1. If Γ,H ! e : τ and ε, e →∗ η, e′, then η ∈ (!H"!)π.

We now define when an access control history is valid. Intuitively, valid histories
represent viable computations, while invalid ones represent computations that
would have been stopped by the access control mechanism of λ[ ] . Let η =
β1 · · · βn be a history. Let Φ(η) be the set of the policies ϕ such that the number of
[ϕ is greater than the number of ]ϕ in η. We say that η is valid when (β1 · · · βk)! |=∧

Φ(β1 · · · βk), for all k ∈ 1..n. A history expression H is valid when all the
histories in !H" are such.

For example, consider the history η0 = αrϕ[αc], where ϕ is the property
saying that no αc occurs after αr. Then, η0 is not valid, because (αr[ϕαc)! = αrαc

does not satisfy
∧

Φ(αr[ϕαc) = ϕ. The history η1 = ϕ[αr]αc is valid, because
([ϕαr)! = αr satisfies

∧
Φ([ϕαr) = ϕ, and

∧
Φ(η1) =

∧
∅ = true.

We now state the type safety property. We say that e goes wrong when
ε, e →∗ η′, e′, and e′ is not a value, and there is no η′′, e′′ such that η′, e′ → η′′, e′′.
For example, a computation goes wrong when attempting to execute an event
forbidden by a currently active policy framing.



THE TYPING RULES

322 M. Bartoletti, P. Degano, and G.L. Ferrari

applied to an abstraction with that type. The relation Γ,H ! e : τ is defined as
the least relation closed under the following rules.

Type and Effect System for λ[ ]

Γ, ε ! x : Γ (x) Γ,α ! α : unit Γ, ε ! ∗ : unit

Γ ;x : τ ; z : τ
H−→ τ ′,H ! e : τ ′

Γ, ε ! λzx.e : τ
H−→ τ ′

Γ,H ! e : τ
H′′
−−→ τ ′ Γ,H ′ ! e′ : τ

Γ,H · H ′ · H ′′ ! ee′ : τ ′

Γ,H ! e : τ Γ,H ! e′ : τ

Γ,H ! if b then e else e′ : τ

Γ,H ! e : τ

Γ,ϕ[H] ! ϕ[e] : τ

Γ,H ! e : τ

Γ,H + H ′ ! e : τ

Typing judgments are standard. The last rule allows for weakening of effects.
The effects in the rule for application are concatenated according to the evalu-
ation order of the call-by-value semantics. The rule for abstraction constraints
the premise to equate the effect and the latent effect of functional type. Let η
be a history; let η! be the subsequence of η containing only events in Σ; and
let ηπ be the set of all the prefixes of η. For example, if η = αϕ[α′ϕ′[α′′]], then
(η!)π = {α,αα′,αα′α′′}. The next theorem ensures that our type and effect sys-
tem does approximate the actual run-time histories (its proof, as well as others,
and further technical details can be found in [3]).

Theorem 1. If Γ,H ! e : τ and ε, e →∗ η, e′, then η ∈ (!H"!)π.

We now define when an access control history is valid. Intuitively, valid histories
represent viable computations, while invalid ones represent computations that
would have been stopped by the access control mechanism of λ[ ] . Let η =
β1 · · · βn be a history. Let Φ(η) be the set of the policies ϕ such that the number of
[ϕ is greater than the number of ]ϕ in η. We say that η is valid when (β1 · · · βk)! |=∧

Φ(β1 · · · βk), for all k ∈ 1..n. A history expression H is valid when all the
histories in !H" are such.

For example, consider the history η0 = αrϕ[αc], where ϕ is the property
saying that no αc occurs after αr. Then, η0 is not valid, because (αr[ϕαc)! = αrαc

does not satisfy
∧

Φ(αr[ϕαc) = ϕ. The history η1 = ϕ[αr]αc is valid, because
([ϕαr)! = αr satisfies

∧
Φ([ϕαr) = ϕ, and

∧
Φ(η1) =

∧
∅ = true.

We now state the type safety property. We say that e goes wrong when
ε, e →∗ η′, e′, and e′ is not a value, and there is no η′′, e′′ such that η′, e′ → η′′, e′′.
For example, a computation goes wrong when attempting to execute an event
forbidden by a currently active policy framing.
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applied to an abstraction with that type. The relation Γ,H ! e : τ is defined as
the least relation closed under the following rules.

Type and Effect System for λ[ ]

Γ, ε ! x : Γ (x) Γ,α ! α : unit Γ, ε ! ∗ : unit

Γ ;x : τ ; z : τ
H−→ τ ′,H ! e : τ ′

Γ, ε ! λzx.e : τ
H−→ τ ′

Γ,H ! e : τ
H′′
−−→ τ ′ Γ,H ′ ! e′ : τ

Γ,H · H ′ · H ′′ ! ee′ : τ ′

Γ,H ! e : τ Γ,H ! e′ : τ

Γ,H ! if b then e else e′ : τ

Γ,H ! e : τ

Γ,ϕ[H] ! ϕ[e] : τ

Γ,H ! e : τ

Γ,H + H ′ ! e : τ

Typing judgments are standard. The last rule allows for weakening of effects.
The effects in the rule for application are concatenated according to the evalu-
ation order of the call-by-value semantics. The rule for abstraction constraints
the premise to equate the effect and the latent effect of functional type. Let η
be a history; let η! be the subsequence of η containing only events in Σ; and
let ηπ be the set of all the prefixes of η. For example, if η = αϕ[α′ϕ′[α′′]], then
(η!)π = {α,αα′,αα′α′′}. The next theorem ensures that our type and effect sys-
tem does approximate the actual run-time histories (its proof, as well as others,
and further technical details can be found in [3]).

Theorem 1. If Γ,H ! e : τ and ε, e →∗ η, e′, then η ∈ (!H"!)π.

We now define when an access control history is valid. Intuitively, valid histories
represent viable computations, while invalid ones represent computations that
would have been stopped by the access control mechanism of λ[ ] . Let η =
β1 · · · βn be a history. Let Φ(η) be the set of the policies ϕ such that the number of
[ϕ is greater than the number of ]ϕ in η. We say that η is valid when (β1 · · · βk)! |=∧

Φ(β1 · · · βk), for all k ∈ 1..n. A history expression H is valid when all the
histories in !H" are such.

For example, consider the history η0 = αrϕ[αc], where ϕ is the property
saying that no αc occurs after αr. Then, η0 is not valid, because (αr[ϕαc)! = αrαc

does not satisfy
∧

Φ(αr[ϕαc) = ϕ. The history η1 = ϕ[αr]αc is valid, because
([ϕαr)! = αr satisfies

∧
Φ([ϕαr) = ϕ, and

∧
Φ(η1) =

∧
∅ = true.

We now state the type safety property. We say that e goes wrong when
ε, e →∗ η′, e′, and e′ is not a value, and there is no η′′, e′′ such that η′, e′ → η′′, e′′.
For example, a computation goes wrong when attempting to execute an event
forbidden by a currently active policy framing.
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applied to an abstraction with that type. The relation Γ,H ! e : τ is defined as
the least relation closed under the following rules.

Type and Effect System for λ[ ]

Γ, ε ! x : Γ (x) Γ,α ! α : unit Γ, ε ! ∗ : unit

Γ ;x : τ ; z : τ
H−→ τ ′,H ! e : τ ′

Γ, ε ! λzx.e : τ
H−→ τ ′

Γ,H ! e : τ
H′′
−−→ τ ′ Γ,H ′ ! e′ : τ

Γ,H · H ′ · H ′′ ! ee′ : τ ′

Γ,H ! e : τ Γ,H ! e′ : τ

Γ,H ! if b then e else e′ : τ

Γ,H ! e : τ

Γ,ϕ[H] ! ϕ[e] : τ

Γ,H ! e : τ

Γ,H + H ′ ! e : τ

Typing judgments are standard. The last rule allows for weakening of effects.
The effects in the rule for application are concatenated according to the evalu-
ation order of the call-by-value semantics. The rule for abstraction constraints
the premise to equate the effect and the latent effect of functional type. Let η
be a history; let η! be the subsequence of η containing only events in Σ; and
let ηπ be the set of all the prefixes of η. For example, if η = αϕ[α′ϕ′[α′′]], then
(η!)π = {α,αα′,αα′α′′}. The next theorem ensures that our type and effect sys-
tem does approximate the actual run-time histories (its proof, as well as others,
and further technical details can be found in [3]).

Theorem 1. If Γ,H ! e : τ and ε, e →∗ η, e′, then η ∈ (!H"!)π.

We now define when an access control history is valid. Intuitively, valid histories
represent viable computations, while invalid ones represent computations that
would have been stopped by the access control mechanism of λ[ ] . Let η =
β1 · · · βn be a history. Let Φ(η) be the set of the policies ϕ such that the number of
[ϕ is greater than the number of ]ϕ in η. We say that η is valid when (β1 · · · βk)! |=∧

Φ(β1 · · · βk), for all k ∈ 1..n. A history expression H is valid when all the
histories in !H" are such.

For example, consider the history η0 = αrϕ[αc], where ϕ is the property
saying that no αc occurs after αr. Then, η0 is not valid, because (αr[ϕαc)! = αrαc

does not satisfy
∧

Φ(αr[ϕαc) = ϕ. The history η1 = ϕ[αr]αc is valid, because
([ϕαr)! = αr satisfies

∧
Φ([ϕαr) = ϕ, and

∧
Φ(η1) =

∧
∅ = true.

We now state the type safety property. We say that e goes wrong when
ε, e →∗ η′, e′, and e′ is not a value, and there is no η′′, e′′ such that η′, e′ → η′′, e′′.
For example, a computation goes wrong when attempting to execute an event
forbidden by a currently active policy framing.



EXAMPLE
Type Derivation for ωzx. if b then ε else ϑ; z x

We want to derive the type judgment

→, ω ↑ εzx. if b then ϑ else ϖ; z x : unit
H

ω

↓↓↔ unit,

with

H
ω
= µh.(ϑ+ ϖ · h).

Step 1. Typing the body

Let ! = {z : unit
H↓↔ unit, x : unit}.

We derive a type for the body if b then ϑ else ϖ; z x.

(a) By the event rule: !,ϑ ↑ ϑ : unit !,ϖ ↑ ϖ : unit.

(b) For the application z x:

!, ω ↑ z : unit
H↓↔ unit !, ω ↑ x : unit

then by the app rule:
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H↓↔ unit provided that H = ϑ+ ϖ ·H.

Step 3. Solving the recursive e!ect

The least fixpoint solution is H
ω
= µh.(ϑ+ ϖ · h).

Hence the final typing judgment is:

→, ω ↑ εzx. if b then ϑ else ϖ; z x : unit
µh.(ε+ϑ·h)↓↓↓↓↓↓↓↔ unit.
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STEP4: PUTTING EVEYTHING TOGETHER
Step 4. Compact proof tree

!,ω → ω : unit
ev

!,ω+ ε ·H → ω : unit
wk

!, ϑ → ϖ. zx : unit
H↑↓ unit !,ε → ε : unit

!,ε ·H → ε; zx : unit
app

!,ω+ ε ·H → ε; zx : unit
wk

!,ω+ ε ·H → if b then ω else ε; zx : unit
if

↔, ϑ → ϖzx. if b then ω else ε; zx : unit
H↑↓ unit

ϖ

2



SOUNDNESS
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History expressions include the empty history ε, events α, sequencing H ·H ′,
non-deterministic choice H + H ′, policy framing ϕ[H], and recursion µh.H (µ
binds the occurrences of the variable h in H). Free variables and closed expres-
sions are defined as expected. We assume that the operator · has precedence over
+, that in turn has precedence over µ.

Hereafter, we extend histories with an explicit representation of policy fram-
ings. We use special symbols [ϕ and ]ϕ to denote the opening and closing of the
scope of the policy ϕ. Formally, an enriched history η, or simply history when
unambiguous, is a (possibly infinite) sequence (β1,β2, . . .) where βi ∈ Σ ∪ ΣΠ ,
ΣΠ = { [ϕ, ]ϕ | ϕ ∈ Π }, and Σ ∩ ΣΠ = ∅.

Let H range over sets of histories. Then, HH′ denotes the set of histories
{ ηη′ | η ∈ H, η′ ∈ H′ }, and ϕ[H] is the set { [ϕ η ]ϕ | η ∈ H }. Note that, if η is
infinite, then ηη′ = η, for each η′ (in particular, ϕ[η] = [ϕη ]ϕ = [ϕη).

The denotational semantics of history expressions is defined over the complete
lattice (2(Σ∪ΣΠ)∗

,⊆). The environment ρ used below maps variables to sets of
(finite) histories. We stipulate that concatenation and union of sets of histories
are defined only if both their operands are defined. Hereafter, we feel free to
omit curly braces, when unambiguous.

Denotational Semantics of History Expressions

!ε"ρ = ε !α"ρ = α !h"ρ = ρ(h) !ϕ[H]"ρ = ϕ[!H"ρ]

!H · H ′"ρ = !H"ρ !H ′"ρ !H + H ′"ρ = !H"ρ ∪ !H ′"ρ

!µh.H"ρ =
⋃

n∈ω fn(∅) where f(X) = !H"ρ{X/h}

As an example, consider H = µh.α+h ·h+ϕ[h]. The semantics of H consists
of all the histories having an arbitrary number of occurrences of α, and arbitrarily
nested framings of ϕ. For instance, αϕ[α],ϕ[α]ϕ[αϕ[α]] ∈ !H"∅.

We now introduce a type and effect system [19] for λ[ ] , extending [18]. Types
and type environments, ranged over by τ and Γ , are defined as follows.

Types and Type Environments

τ ::= unit | τ
H−→ τ Γ ::= ∅ | Γ ;x : τ (x (∈ dom(Γ ))

A typing judgment Γ,H ) e : τ means that the expression e evaluates to a
value of type τ , and produces a history belonging to the effect H. The history
expression H in the functional type τ

H−→ τ ′ describes the latent effect associated
with an abstraction, i.e. one of the histories in !H" is generated when a value is
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applied to an abstraction with that type. The relation Γ,H ! e : τ is defined as
the least relation closed under the following rules.

Type and Effect System for λ[ ]

Γ, ε ! x : Γ (x) Γ,α ! α : unit Γ, ε ! ∗ : unit

Γ ;x : τ ; z : τ
H−→ τ ′,H ! e : τ ′

Γ, ε ! λzx.e : τ
H−→ τ ′

Γ,H ! e : τ
H′′
−−→ τ ′ Γ,H ′ ! e′ : τ

Γ,H · H ′ · H ′′ ! ee′ : τ ′

Γ,H ! e : τ Γ,H ! e′ : τ

Γ,H ! if b then e else e′ : τ

Γ,H ! e : τ

Γ,ϕ[H] ! ϕ[e] : τ

Γ,H ! e : τ

Γ,H + H ′ ! e : τ

Typing judgments are standard. The last rule allows for weakening of effects.
The effects in the rule for application are concatenated according to the evalu-
ation order of the call-by-value semantics. The rule for abstraction constraints
the premise to equate the effect and the latent effect of functional type. Let η
be a history; let η! be the subsequence of η containing only events in Σ; and
let ηπ be the set of all the prefixes of η. For example, if η = αϕ[α′ϕ′[α′′]], then
(η!)π = {α,αα′,αα′α′′}. The next theorem ensures that our type and effect sys-
tem does approximate the actual run-time histories (its proof, as well as others,
and further technical details can be found in [3]).

Theorem 1. If Γ,H ! e : τ and ε, e →∗ η, e′, then η ∈ (!H"!)π.

We now define when an access control history is valid. Intuitively, valid histories
represent viable computations, while invalid ones represent computations that
would have been stopped by the access control mechanism of λ[ ] . Let η =
β1 · · · βn be a history. Let Φ(η) be the set of the policies ϕ such that the number of
[ϕ is greater than the number of ]ϕ in η. We say that η is valid when (β1 · · · βk)! |=∧

Φ(β1 · · · βk), for all k ∈ 1..n. A history expression H is valid when all the
histories in !H" are such.

For example, consider the history η0 = αrϕ[αc], where ϕ is the property
saying that no αc occurs after αr. Then, η0 is not valid, because (αr[ϕαc)! = αrαc

does not satisfy
∧

Φ(αr[ϕαc) = ϕ. The history η1 = ϕ[αr]αc is valid, because
([ϕαr)! = αr satisfies

∧
Φ([ϕαr) = ϕ, and

∧
Φ(η1) =

∧
∅ = true.

We now state the type safety property. We say that e goes wrong when
ε, e →∗ η′, e′, and e′ is not a value, and there is no η′′, e′′ such that η′, e′ → η′′, e′′.
For example, a computation goes wrong when attempting to execute an event
forbidden by a currently active policy framing.



SAFETY

A computation goes wrong when attempting to execute an event 
forbidden by active policy

Assume 𝑒 closed and Γ, 𝐻 ⊢ 𝑒: 𝜏	.	
Let	𝜑[𝑒]	 be a program.
If 𝐻 is valid for 𝜑	then 𝑒 does not wrong



VERIFICATION: VALIDITY OF HISTORY EXPRESSIONS

¡ Idea: model checking Basic Process Algebras (BPAs) with Buchi automata. 

¡ BPA (the model) -- Buchi automata (the policy)

¡ The decision procedure for verifying that a BPA process 𝑝	satisfies a ω-regular property 𝜑 amounts to 
constructing the pushdown automaton for 𝑝 and the Buchi automaton for the negation of 𝜑. 

¡ The property holds if the (context-free) language accepted by the conjunction of the pushdown automaton and 
the Buchi automaton (which is still a pushdown automaton), is empty. 

¡ This problem is decidable, and several algorithms and tools show this approach is feasible.



BASIC PROCESS ALGEBRA
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Example 4. Consider the history η = αϕ[α′ϕ′[α′′]]. Its normal form is:

η⇓ = α⇓ (ϕ[α′ϕ′[α′′]])⇓ = α (α′ϕ′[α′′])⇓ϕ = α (α′⇓ϕ) (ϕ′[α′′])⇓ϕ

= α ϕ[α′] (α′′⇓ϕ,ϕ′) = α ϕ[α′] (ϕ ∧ ϕ′)[α′′]

A history expression H and its regularization H ↓ have the same normal form.

Theorem 4. !H ↓"⇓ = !H"⇓.

The next theorem states that normalization preserves the validity of histories.
Summing up, a history expression H is valid iff its regularization H ↓ is valid.

Theorem 5. A history η is valid if and only if η⇓ is valid.

4.2 Basic Process Algebras

Basic Process Algebras [5] provide a natural characterization of (possibly infi-
nite) histories. A BPA process is given by the following abstract syntax:

p ::= ε | α | p · p′ | p + p′ | X

where ε denotes the terminated process, α ∈ Σ, X is a variable, · denotes
sequential composition, + represents (nondeterministic) choice.

A BPA process p is guarded if each variable occurrence in p occurs in a
subexpression α · q of p. We assume a finite set ∆ = {X

def= p} of guarded
definitions, such that, for each variable X, there exists a single, guarded p such
that {X

def= p} ∈ ∆. As usual, we consider the process ε ·p to be equivalent to p.
The operational semantics of BPAs is given by the following labelled transi-

tion system, in the SOS style.

Operational Semantics of BPA processes

α
α−→ ε

p
α−→ p′

p + q
α−→ p′

q
α−→ q′

p + q
α−→ q′

p
α−→ p′

p · q
α−→ p′ · q

p
α−→ p′ X

def= p ∈ ∆

X
α−→ p′

The set { (ai)i | p0
a1−→ · · · ai−→ pi } ∪ { (ai)i | p0 · · · ai−→ · · · } is denoted by

!p0,∆", where !p,∆"fin is the first set, containing the strings that label finite
computations. We omit the component ∆, when empty.

We now introduce a mapping from history expressions to BPAs, in the line
of [18]. Without loss of generality, we assume that all the variables in H have
distinct names. The mapping takes as input a history expression H and an
injective function Γ from history variables h to BPA variables X, and it outputs
a BPA process p and a finite set of definitions ∆. To avoid the problem of
unguarded BPA processes, we assume a standard preprocessing step, that inserts
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a dummy event before each unguarded occurrence of a variable in a history
expression. Dummy events are eventually discarded before the verification phase.

The rules that transform history expressions into BPAs are rather standard.
History events, variables, concatenation and choice are mapped into the corre-
sponding BPA counterparts. A history expression µh.H is mapped to a fresh
BPA variable X, bound to the translation of H in the set of definitions ∆. An
expression ϕ[H] is mapped to the BPA for H, surrounded by the opening and
closing of the ϕ-framing.

Mapping History Expressions to BPAs

BPA(ε,Γ ) = 〈ε, ∅〉
BPA(α,Γ ) = 〈α, ∅〉
BPA(h,Γ ) = 〈Γ (h), ∅〉

BPA(H0 · H1,Γ ) = 〈p0 · p1,∆0 ∪ ∆1〉, where BPA(Hi,Γ ) = 〈pi,∆i〉
BPA(H0 + H1,Γ ) = 〈p0 + p1,∆0 ∪ ∆1〉, where BPA(Hi,Γ ) = 〈pi,∆i〉

BPA(µh.H,Γ ) = 〈X,∆ ∪ {X def= p}〉, where BPA(H,Γ{X/h}) = 〈p,∆〉
BPA(ϕ[H],Γ ) = 〈[ϕ · p · ]ϕ,∆〉, where BPA(H,Γ ) = 〈p,∆〉

We now state the correspondence between history expressions and BPAs.
The prefixes of the histories generated by a history expression H (i.e. !H"π)
are all and only the finite prefixes of the strings that label the computations of
BPA(H). Recall that this is enough, because validity is a safety property.

Lemma 1. !H"π = !BPA(H)"fin .

4.3 Büchi Automata

Büchi automata are finite state automata whose acceptance condition roughly
says that a computation is accepted if some final state is visited infinitely often;
see [21] for details. Since we also need to establish the validity of finite histories,
we use the standard trick of padding a finite string with a special symbol $.
Then, each final state has a self-loop labelled with $. For brevity, we will omit
these transitions hereafter.

Given a policy ϕ, we are interested in defining a formula ϕ[ ] to be used
in verifying that a history η, with no redundant framings of ϕ, respects ϕ
within its scope. Let the formula ϕ be defined by the Büchi automaton Aϕ =
〈Σ, Q,Q0, ρ, F 〉, which we assume to have a non-final sink state. We define the
formula ϕ[ ] through the following Büchi automaton Aϕ[ ] .
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THE FORMAL RESULT

¡ Validity of a history expression H can be decided by showing that the BPA 
generated by H satisfies a ω-regular formula. 

¡ A closed expression 𝑒 never violates the security property of the program 
𝜑 𝑒 	if its effect is (model) checked valid.



OUR RUNNING EXAMPLE

The history expression 𝐻 = 𝛼 + 𝛽 ⋅ 𝐻

The Basic process Algebra 𝑋 = 𝛼 ⋅ 𝜖 + 𝛽 ⋅ 𝑋



OUR RUNNING EXAMPLE

UNFOLDING THE RECURSION

𝑋 = 𝛼 ⋅ 𝜖 + 𝛽 𝛼 ⋅ 	𝜖 + 𝛽 ⋅ 𝑋 = 𝛼 ⋅ 	𝜖 + 𝛽 ⋅ 𝛼 ⋅ 𝜖 + 𝛽 ⋅ 𝛽 ⋅ 𝑋 = 	…	

𝑋 = 𝛼 ⋅ 𝜖 + 𝛽 ⋅ 𝑋

THE FINITE TRACES

𝑇𝑅𝐴𝐶𝐸𝑆 𝑋 = 	𝛽$𝛼	 𝑛	 ≥ 0}

BPA PROCESS



THE LEAST FIX POINT

𝑋% = 0.

 𝑋$&' = 𝛼 ⋅ 	0 + 𝛽 ⋅ 	𝑋$
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Kleene-style shorthand (not primitive in BPA, but intuitive):
FIX(X) ≡ 𝛽∗. 𝛼. 𝟎

eany	number	of	𝛽’s,	then	𝛼,	then	terminate.



THE PROPERTY

The (Büchi) property is “no α after β”

The finite-word language enforced is
ℒsafety = 𝛼∗ 𝛽∗ (no	α occurs	after	the	tirst	β).
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THE MODEL

Finite behaviour (for any k): 𝛽?𝛼

Any finite behavior violates the property, 
since an α appears after a β.

we admit infinite runs.𝐿 𝐻 = 𝛽$	𝛼	 𝑛	 ≥ 0} 	∪ {𝛽>}

𝐿 𝐻 ∩ ¬𝐿@ABCDE	≠ ∅
H is not valid w.r.t. the 
“no α after β” property. 

A concrete counterexample is the trace 𝛽𝛼.



SUMMARY: INTEGRATE MODEL CHECKING AND STATIC ANALYSIS

¡ Combines model checking with static analysis to prove 
properties of history-dependent access control systems.

¡ Our initial approach uses a single sandbox to reason about local histories 
and access traces.

¡ In the paper, this approach is extended to hierarchical sandboxes, 
enabling verification across nested or composed security contexts.


