Announcement:
The lesson scheduled for
Friday, the 24th, will not

be held




'l Course Focus and Next Steps

In this course, we have

explored how to model Now, we will take a side

path and examine some
program analysis

systems and then verify
them using model

checking techniques. SIS
( ) 4 )
This represents We will focus on
the main line of dynamic analysis
the course. techniques.

- J . J




What Is program
analysis?



Testing and Analysis

WHEIRTIIRGIIYA « Manual testing or semi-automated

from previous testing
courses e JUnit, Pytest, Selenium, etc.

Manual
= EIVAISel R « Code inspection, debugging, etc.

programs:




import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.*;

class GeneralTestSuite {
private ExampleService service;

@BeforeAll
static void initAll() {
System.out.println("Starting test suite...");

}

@BeforeEach
void init() {
service = new ExampleService();

}

@Test
void testAddition() {
assertEquals(4, service.add(2, 2), "Addition should return correct result");

}



@Test
void testDivisionByZeroThrows() {
assertThrows(ArithmeticException.class, () -> service.divide(10, 0));

}

@Test

void testStringNotNull() {
String result = service.getMessage();
assertNotNull(result, "Message should not be null");
assertTrue(result.startsWith("Hello"), "Message should start with 'Hello');

}

@AfterEach
void tearDown() {

service = null: // Dummy implementation under test

} class ExampleService {
intadd(inta, intb){returna +b;}
@AfterAll int divide(int a, intb) { returna/b;}

static void tearDownAll() { String getMessage() { return "Hello, World!"; }

System.out.println("All tests completed."); }
}
}



The Key Concepts

lo @BeforeAll / @AfterAll for global setup and cleanup
1~ @BeforeEach / @AfterEach for per-test setup and teardown
.p Assertions: assertEquals, assertNotNull, assertThrows ...

|b Good naming and descriptive messages



Code Inspection




Rust Code

use std::env;

fn read port () -> ulo {
let port str = env::var ("APP PORT") .unwrap();
let port: 132 = port str.parse() .unwrap();

port as ulb6

The function read_port() reads the environment variable APP_PORT,
parses it as a number, and returns it as a port.



Rust Code

use std::env;

fn read port () -> ulo {
let port str = env::var ("APP PORT") .unwrap();
let port: 132 = port str.parse() .unwrap();

port as ulb6

The function read_port() reads the environment variable APP_PORT,
parses it as a number, and returns it as a port.

unwrap() is a method used on Option<T> and Result<T, E> types.
It retrieves the inner value but will panic if the value is None or Err.



use std::env;

fn read port () -> ulo {
let port str = env::var ("APP PORT") .unwrap(); // panics if missing
let port: 132 = port str.parse() .unwrap(); // panics if invalid

port as ulb6



use std::{env, num::ParselntError};

# [derive (Debug) ]

enum PortError {
MissingVar,
Parse (ParselIntError),

fn read port () -> Result<ulb6b, PortError> ({
let raw = env::var ("APP PORT") .map err (| | PortError::MissingVar) ?;
let port = raw.parse::<ul6>().map err (PortError::Parse)?;

Ok (port)
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Why do we talk about
program analysis and
automated testing?

* All software has bugs
* Bugs are hard to find

* Bugs cause serious
harm




Why do we talk about
program analsysis and
automated testing?

* All software has bugs
* Bugs are hard to find
« Bugs cause serious harm

* ... Because no software is
bug-free, an Al-based
copilot can help us to spot
and resolve bugs more
efficiently.




My personal

statement
T e * While Al-based copilots
r_ob-select-1 " " offer valuable support in

Mntext.scene.objects.actiw

T software development,

#irror_ob.select = 0
bpy - context.selected_ob

B e e - human understanding of
the generated code
remains essential, as
software (even Al-
generated software)
may still contain bugs.

_ OPERATOR CLASSE




What is program analysis

Automated analysis of program behavior capable to

optimize performance

find security vulnerabilities



From Program Execution to Program Analysis

Input > BRIl — Output

!

Input > BRIl — Output

L Additional information



Program Analysis

Input > BRIl — Output

!

L Additional information



Program analysis

Static

* Analyze source code, byte
code, or binary
* Typically:
» Consider all inputs

* Overapproximate
possible behavior

Dynamic
* Analyze program execution
* Typically:

« Consider current input

* Underapproximate
possible behavior



Program analysis example

//Jvascript
var r = Math.random() ;
var out = "yes";

if (r < 0.5)

Out — "noll;
out = "maybe";

console.log(out);



Program analysis example

//Jvascript
var r = Math.random() ;
var out = "yes"; ] .
Overapproximation:
if (r < 0.5) L LT LI T ”
ot — o yes”, ’no”’, "maybe
if (r === 1) Consider all paths
out = "maybe";

console.log(out);



Program analysis example

//Jvascript

var r = Math.random() ;

var out = "yes"; Underapproximation:

if (r < 0.5) "yes”
Out — llnoll,

LFo(r e 1) Execute the program once
out = "maybe";

console.log(out);



Program analysis example

//Jvascript
var r = Math.random() ;

var out = "yes"; Sound and complete analysis::

| ”yes”, ”no!!
if (r < 0.5)

out = "no"; ] ]
The analysis explores both feasible paths
if (r === 1)
out = "maybe";

console.log(out);



Program analysis example

//Jvascript
var r = Math.random() ;

var out = "yes";

if (r < 0.5)

out = "no";
if (r === 1)
out = "maybe";

console.log(out);

Math.random()
Returns a floating-point number r such that 0 <r <1
It never returns exactly 1.

Initialization
out starts as "yes".

First if condition (r < 0.5)
If the random number is less than 0.5, out becomes "no".
This happens roughly 50% of the time.

Second if condition (r === 1)

This would only run if r is exactly 1.

But since Math.random() never produces 1, this branch
is impossible

Output
So out is either "no" or "yes" depending on r.



Another example

//Jvascript
var r = Math.random() ;

var out = r*2

console.log(out) ;



Another example

//Jvascript
var r = Math.random() ;

var out = r*2

console.log(out) ;

Method Output Discussion

Over-approximation

Under-approximation

Sound and Complete




Another example

//Jvascript
var r = Math.random() ;

var out = r*2

console.log(out) ;

Method Output Discussion

Over-approximation Any value All paths

Under-approximation

Sound and Complete




Another example

//Jvascript
var r = Math.random() ;

var out = r*2

console.log(out) ;

Method Result Discussion

Over-approximation Any value All paths

Under-approximation Some numberin [0,2), One execution
e.g.,1.234

Sound and Complete




Another example

//Jvascript
var r = Math.random() ;

var out = r*2

console.log(out) ;

Method Result Discussion
Over-approximation Any value All paths
Under-approximation Some numberin [0,2), One execution
e.g.,1.234
Sound and Complete ?? Exploring all possible
outputs:
Practically impossible




How does program
analysis help me?

* Use program analysis
tools
* Improve the quality of
your code

* Understand program
analysis

 Better understanding of
program code and
program behaviours

» Create your own tools

Wirror_mod.use 7z - True
Melection at the end -add
_Ob.select= 1
Jer_ob.select=1
Mntext.scene.objects.actiw
Wl "Selected” + str(modifier "
#eirror_ob.select = 0
bpy .context. selected_obw
#ata.objects[one.name].sel

wrint("please select exacthy '™
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Dynamic Analysis

Execute an instrumented program to gather information
that can be analyzed to learn about a property of interest

Precise: All observed behavior actually happens

Incomplete: Very difficult to cover all possible behaviors



Dynamic Analysis Examples

Coverage: Track which lines or branches get
executed

Call graph: Track which functions call which
other functions

Slicing: Track dependencies to produce a
reduced program



Some references

* Valgrind: A Framework for Heavyweight Dynamic Binary
Instrumentation, Nethercote et al., PLDI 2007

 Jalangi: A Selective Record-Replay and Dynamic Analysis
Framework for JavaScript, Sen et al., FSE 2013

* DynaPyt: A Dynamic Analysis Framework for Python, Eghbali et al.,
FSE 2022



function main () {
let n = readInput():;

Call graph analysis

function a() {
b();
}
function b () {
if (n == 5) {
c();
}
}
function c() {
if (n == 5) {
c();
n--;



Call graph analysis

Nodes
main, readlnput, a, b, c

Edges

main — readlnput
main — a

a—b
b—c(ifn==25)

c — c (ifn==215). /] recursive call

function main () {

let n = readInput():;

function a() {
b();
}
function b () {
if (n == 5)
c();
}
}
function c () {
if (n == 5){
n--;
c();



The instrumented code

function main() { function c () {
const calls = new Set(); if (n == 5) {
calls.add("c->c");
let n = readInput():; n=--;
calls.add ("main->readInput"); c();
. }

function a () { }

calls.add ("a->b");

b(); calls.add ("main->a");
} a();
func?ion b() | console.log(calls);

1f (n == 5) { }

calls.add ("b->c") ;
c()s



“| Different dynamic analyses, but with
several commonalities

Analysis updates
some state in
response to
events

Specific runtime
events to track




The ingredients

|dentify the set (of kinds) of
runtime events

The analysis can register for
specific events

At runtime, instrumented
program invokes event handlers




instrumen :
Program P _nstrument, Program P

l iInvoke event
handlers

Analysis A

The idea (cont.)




Run time

events

Event

Example

Arithmetic operation
Boolean operation
Branch

Function call

Return from function call
Write into variable or field
Read of variable or field

2+3
a>»0
if (c)
g()

x = g()
x.f = z

x.f =z




Example

function main () {
let a = readInput():;
let b = a + 3;

if (b === -23) {
foo();
} else {



Example

function main () { Runtime events:
let a = readInput():;
let b =a + 3; - Arithmetic operations
. « Boolean operations
H (f JUNE - Reads of variables
} elsio{”’ » Writes into variables
b = 5; * Function calls

J Input: -26



Example

function main () {
let a = readInput();,
let b = a + 3;

if (b === -23) {
foo();

} else {
b = 5;

Runtime events:

» Arithmetic operations
Boolean operations
Reads of variables
Writes into variables
Function calls

Input: -26

What sequence of events get triggered?



Example

function main () {

let a = readInput();,

let Db a + 3;
if (b === -23) {
foo()
} else {
b = 5;

}

Runtime events:

Call of readinput

Write of -26 to a

Read of a (-26)

Arithmetic op (-26+3 = -23)
Write of =23 to b

Read of b (-23)

Boolean op (-23 == -23 aka true)
Call foo

Input: -26

This is the sequence of events triggered!!



Remark and questions

Easy enough for small
examples.

« But what happens with large
codebases?

* How can we formally
guide the instrumentation

of code and the analysis?




“| Formally: Estended Operational
Semantics

Tracking runtime
events: Additional
behavior performed
during program
execution

Formally describe by
extending the
operational
semantics




Some Notation

Runtime events:

e Write of -26toa ===>qa « —26
 The if branch is taken ===> if true



Some Notation

CONFIGURATION

(P,s,e)

P: program
s: store (mapping from program variables to values)
e: sequence of run-time events



Example

s(x) =n

(!x,s) > (n,s) e



Example

s(x) =n

(!x,s) > (n,s) AR

s(x) =n
VAR

(!x,s,e) > (n,s,e)

Run-time events are left unchanged



Example

(x ::=n,s) - (skip, s[x



Example

(x :=n,s) - (skip,s[x ==n])

ASS

(x i=mn,s,e) - (skip,s[x ==n],e;(x «n))



(if true then Cl else C2,s,e ) = (C1,s,e; (if true))

QUIZ: Extend the operational rules for conditional — all cases



Valgrind is a dynamic binary

instrumentation framework.

The Valgrind
Framework

Valgrind runs programs inside a
virtual machine and monitors

its behavior at runtime
Instrumenting the source code.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,



The Instrumentation code

1f (x === 3) {
y = 37
foo ()
LogCall (foo) ;



. Program

The instrumented AST  Listatement

I-— test: BinaryExpression (==)
|—— left: Identifier("x")
L right: NumericLiteral(3)

- consequent: BlockStatement
— ExpressionStatement

1f ( X === 3 ) { L AssignmentExpression (=)
— left: Identifier("y")
Y = 3 ’ L right: NumericLiteral(3)
|—— ExpressionStatement
fOO ( ) ’ I—CallExpression
1, Call (f . — callee: Identifier("foo")
Og a ( OO) 4 Larguments:[]
} — ExpressionStatement

L CallExpression
|- callee: Identifier("LogCall")
L arguments:
L Identifier("foo")

— alternate: null




1.  The instrumented AST is compiled into an
intermediate form (IR).

2. The Valgrind IR allows handling of run-time events
around memory operations, system calls, and
thread interactions.

3. This IR runs on on the Valgrind virtual machine
4. Valgrind intercepts and logs all the run-time events

Implementation of interest

5.  When the program finishes (or fails), Valgrind
produces a detailed report describing:

* Where run-time events occurred (with call stacks)
* What kind of run-time events they were
* Which allocations caused memory leaks

steps




Best Practice

A robust workflow for
C/C++ (and analogous for
other languages) often
(o]o] CRIGRUIEE

Static phase — run: Dynamic phase —run:

e clang-tidy: enforces e valgrind --leak-
code style, detects check=full ./program:
suspicious logic. check runtime memory
e cppcheck or Coverity: safety.
deeper semantic and e valgrind --tool=helgrind
data-flow analysis. ./program: check for

race conditions.



What is the significance of all
this within the framework of this
course?




What
have we
learned?

Two key aspects:

Instrumenting the language and its
operational semantics (understood as a
guide to implementation) to capture and
manage run-time events.

Analyzing run-time events to gain a
better understanding of what dynamic

program analysis means for the program
under examination.




History dependent Access Control

A Running Example




History Dependent Access Control: Key Ideas

History-dependent access control: access permissions depend not
only on who the principalis, but also on what actions have occurred

previously in the program’s execution.

Security policies as predicates over execution histories

access is granted only if a specific authentication step was executed
earlier.

Provides a formal model connecting program semantics with security
enforcement.



History
dependent
access control:
discussion

History dependent access control allows

one express access policies of the form:

Allow access only if this
request has been
authenticated by a trusted login
program,

Allow a module to access
resource only when invoked
through certain routines

Ensures fine-grained control: execution
traces areused to reason about dynamic,
context-sensitive access control.




References

* M. Abadi and C. Fournet. Access Control Based on Execution
History.
In Proceedings of the 10th Annual Network and Distributed
System Security Symposium (NDSS 2003), San Diego, CA, 2003.



References

M. Abadi and C. Fournet. Access
Control Based on Execution History.
In Proceedings of the 10th Annual
Network and Distributed System
Security Symposium (NDSS 2003), 2003.

Massimo Bartoletti, Pierpaolo
Degano, Gian-Luigi Ferrari:
History-Based Access Control with
Local Policies. In Proc, FoSSaCS 2005.




Motivating example

« Consider a simple web
browser that displays HTML pages
and executes suitable code.

R « Code may be trusted (for instance,
R because they are signed or

Mntext.scene.objects.actiw

T e ep— downloaded from a trusted third

#eirror_ob.select = 0

bpy - context.selected_obM party) Or untrusted_

gata.objects[one.name].sel

* The browser enforces a security
policy which is always applied to
untrusted code:

* The security policy states that code
cannot connect to the network after
it has read from the local disk.

wrint(“please select exacthy '™

. OPERATOR CLASSES ---
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We define the browser as a function that processes a URL u.
If the URL refers to an HTML page, the page is displayed.

If the URL refers to code, it is executed when trusted; otherwise, it is executed
under the control of a security policy.

(* u : url *)
(* execute : (unit -> unit)-> unit *)
(* enforce : policy -> (unit -> unit)-> unit *)
let browser (u : url) : unit =
if html u then
display u

else if trusted u then
excute u
else

enforce p u //p is the browser security policy



We consider three trusted programs:
* Read to read files,
* Write to write files,
Trusted » Connect to open network
connections.

These programs are overly simplified,
because we are only interested in the
events they execute.

progranna




Trusted Read

(* An action type ¥*)
type action = Read | Write | Connect

(* Dispatcher: maps an action to a thunk (unit -> unit)

let

)

action : action -> unit -> unit = function

Read -> (fun () -> print endline "Performing READ")
Write -> (fun () -> print endline "Performing WRITE")
Connect -> (fun () -> print endline "Performing CONNECT")

(* The function: ignores its argument and executes Read *)

let TrustedRead : 'a -> unit =

fun -> action Read ()



Runtime enforcement: key idea

* Execution monitors enforce history-based security policies at

run time
* They observe computations and abort when a violation is imminent.

* Events = observations of security-relevant actions
* Examples: opening a socket, reading/writing a file.

* Histories = (possibly infinite) sequences of events.

* Policy as a global invariant: must hold at every point during
execution.

* Expressive power: execution monitors enforce exactly the class
of safety properties (not liveness).



"Il Trusted code

The behavior of trusted
code, when executed
within the browser,
does not violate
security policies;

for trusted code, the
security monitor is
vacuous (i.e.,
disabled).




Untrusted code

(* An action type ¥*)
type action = Read | Write | Connect

(* Dispatcher: maps an action to a thunk (unit -> unit)

let

)

action : action -> unit -> unit = function

Read -> (fun () -> print endline "Performing READ")
Write -> (fun () -> print endline "Performing WRITE")
Connect -> (fun () -> print endline "Performing CONNECT")

(* The function: idoes not gnore its argument ¥*)

let Untrusted : url ->'a -> unit =

fun (z:url)  -> Browser z



Execution

What is the behaviour of an untrusted code (Untrusted Write) executed
under the security policy Pw stating that untrusted code cannot write the
local file system?



Execution

The behaviour of an untrusted code (Untrusted Write) executed under the
security policy Pw stating that untrusted code cannot write the local file
system, is illustrated by the following trace:

€. Browser(Untrusted Write)

sequence of actions, code \
‘ €,enforce Pw Write
CONFIGURATION \

w,raise Security Failure



Execution

The behaviour of an untrusted code (Untrusted Read&Connect) executed
under the security policy Pnc stating that untrusted code cannot connect to
the network after reading the local file system, is illustrated by the following

trace:
€. Browser(UntrusteRead&Connect)

we have a security exception, l
because the r;c does not €,enforce Pnc Read ; Connect
satisfy the security policy Pnc l

r,enforce Pnc Connect

l

r;c,raise Security Failure



Tlpe Formal Represéntati




Syntax

EXPRESSIONS: Functional programming language

e,e/ = x|a|ifbthencelsec |\, z.e]|ee

PROGRAMS: Sandbox monitoring execution under the policy

P:=gle]



Abstract Machine and
Run-time data
structures



Runtime Monitoring: Checking policy
adherence during execution (e.g.,
sandboxing)

) Enforcement Mechanisms in VM: Virtual
Execution machines (e.g., WebAssembly, JVM)

Monitors enforce security through restricted
execution environments.

Execution Monitors: Intercepts security-
sensitive operations and ensures they

comply with policies.




Some challenging questions

Can we prove that

mechanism M enforces AU M EO L Policies? OVERALL
: . is enforceable?
the security policy P?

e Whatis the ¢ Which enforcement ¢ Are there some e what is the landscape
mathematical approaches are best policies that are of policies, policy
definition of a policy? suited to which completely beyond classes, and

e \What is the any known enforcement
programming enforcement strategy? mechanisms?
abstractions for ¢ Are some enforcement
declaring security approaches strictly
policies? more powerful than

 What does it mean to others?

enforce a policy within
a programming
language?



Enforceable Security Policies

Enforceable
Security
Policies Absiract

A precise characterization is given for the class
of security policies enforceable with
mechanisms that work by monitoring system
execution, and automata are introduced for
specifying exactly that class of security policies.
Techniques to enforce security policies specified
by such automata are also discussed.

F. Schneider, ACM Transactions on Information
and System Security, February 2000



https://dl.acm.org/journal/tissec
https://dl.acm.org/journal/tissec

The Ideal Execution Monitor

1. Sees everything a program is about to do
before it does it

2. Caninstantly and completely stop program
execution (or prevent action)

3. Has no other effect on the program or system

84



The Ideal Execution Monitor

1. Sees everything a program is about to do
before it does it

2. Caninstantly and completely stop program
execution (or prevent action)

3. Has no other effect on the program or system

Can we implement this?
Probably not .......

85



Eeal . .
xecution Monitor
1. Sees e%ﬁogram is about to do

before it does it

2. Caninstantly and completely stop program
execution (or prevent action)

3. Has nuother effect on the program or system

limited

86



Example: File

Execution Monitors

(EMs) system access
control
e EMs watch un- e EMis inside the OS
trusted programs e decides policy
. atruntime violations using
ExeCUtlon e Events (raised by access control
MonitOI’ the run time lists (ACLs)

executions) are
mediated by the
EM

e Violations solicit
EM interventions
(e.g. termination)



e EMs are run-time structures that runs in

ExeCUtion MOI‘]itOI’ parallel with the program
in p rogra mm | ng * Tracks execution flow at runtime

to detect and prevent security
violations dynamically.

language design

* monitor decisions may be based on
execution history




EM: Good Operations

Program

E
f.opeﬂ ()

’ —_—

i

Monitor



EM: Bad Operation

Program Monitor

|
-
I"
I’
I’
I’
I’
-

f.open () halt!




What’s a program (at run-time)?

e A set of possible executions

Execution :
. What’s an execution?
and Security

POliCieS e A sequence of states

What’s a security policy?

e A predicate on a set of executions



Definitions and Notations

* An execution (or trace) s is a sequence of security-relevant
program events e (also called actions)

* Sequence may be finite or (countably) infinite
°* ST €4; €5 ceee; €5 Cpait
® S = €4; €9} ceee) €L cesee
* The empty sequence ¢ is an execution
* |[f sisthe execution e; €55 ....; €;; ..o €[5 «.ee
then s[i] is the execution eq; e,; ....; €;;

* We simplify the formalism.
* We model program termination as an infinite repetition of e, event.

* Result: now all executions are infinite length sequences



Definitions and Notations (cont.)

* Aprogram S is a set of sequences (possible executions)
* Aprogram is modelled as the setS={s, s, ...... }
* A security policy P is a property of programs
* A policy partitions the program space into two groups:
* Permissible
* Impermissible
* Impermissible programs are censored somehow (e.g.,terminated
on violating runs)



Execution Monitors cannot enforce
all Security Policies

* Some policies depend on:

* Knowing about the future

* If the program charges the credit card, it must eventually
ship the goods

* Knowing about all possible executions

* Information flow — can’t tell if a program reveals secret
information without knowing about other possible
executions

* Execution Monitors can only know about past of
the particular execution at hand

94



EM-enforceable policies

1. EM policies are universally quantified predicates over
executions
* Vs.P(s)
* Policy P is called the detector.



EM-enforceable policies

1. EM policies are universally quantified predicates over
executions
* Vs.P(s)
* Policy P is called the detector.
2. The detector must must be prefix-closed
* P(¢) holds
* P(s;e) holds then P(s) holds



EM-enforceable policies

1. EM policies are universally quantified predicates over
executions
* Vs.P(s)
* Policy P is called the detector.
2. The detector must must be prefix-closed
* P(¢) holds
* P(s;e) holds then P(s) holds

3. Ifthe detector is not satisfied by a sequence (the detector
rejects the sequence) then it must do so in finite time

« oP(s) = 3i-PsJi]



EM-enforceable policies

1. EM policies are universally quantified predicates over
executions

2. The detector must must be prefix-closed

3. Ifthe detector is not satisfied by a sequence (the detector
recjects the sequence) then it must do so in finite time

4. Fact
* A policy satisfies (1), (2), and (3) if and only if it is a safety policy
* Lamport 1977: Safety policies say that some “bad thing” never
happens
« EMs enforce safety policies!



Safety
properties:
Nothing bad
ever
happens

Safety property can be enforced using only

traces of program

e |f P(t) does not hold, then all extensions of t are also
bad

Amenable to run-time enforcement: don’t
need to know future

e access control (e.g. checking file permissions on file
open)

* memory safety (process does not read/write outside
its own memory space)

¢ type safety (data accessed in accordance with type)



Formally...

* ¥ : set of all possible executions (can be infinite)
* 2o set of executions possible by target program §

* P: security policy
set of executions — Boolean

Program § is secure wrt the security
policy P iff P (2¢) IS true.

100



Security

Automata

* Security Automata (Erlingsson & Schneider 1999)

* Formalization of security policies

finite state automaton

accepts language of permissible executions
alphabet = set of events

edge labels = event predicates

all states accepting (language is prefix-closed)



Security Automata (Example)

—read —' send
start >
; > read

NO SENDS AFTER READS




CHINESE WALL POLICY

¢@ Chinese Wall: cannot write (a,,) after read (a.,)




type event = Read of string | Write of string | Connect of string

EXGCUtIOn type history = event list
. type policy = history -> event -> bool (* true = allowed *)
Monitor

type caps ={
read :string-> string;
write :string -> unit;
connect : string -> unit;

}

let sandbox (phi : policy) (base : caps) (prog:caps->'a):'a=
let hist=ref[]in
let check e =
if phi lhist e then hist := e :: lhist
else failwith "Policy violation"
in



Syntax

EXPRESSIONS

e,e/ = x|a|ifbthencelsec |\, z.e]|ee

PROGRAMS

P:=gle]



NOTE: LAMBDA

ANONYMOUS FUNCTIONS A x.e

A X.x+1

OCAML NOTATION

funx=e
funx=x+1



NOTE: LAMBDA

RECURSIVE FUNCTIONS A, x.e

Z

Mace X-if x <=1 then | else x * fact(x-1)

OCAML NOTATION

let rec fact x =
if x <=1 then | else x * fact (x - 1);;



NOTE: SEQUENTIAL COMPOSITION

A_.e for Ax.e, for x € fu(e)

e;e

/

(A_.e)e.




Operational

semantics

* The configurations are pairs

ne
 Atransitionn,e — n’, e’ indicates that,
starting from a history n, the expression

e may evolve to e', possibly extending
the history n.

* We write n E ¢ when the history n
satisfies the policy ¢.



ABSTRACT MACHINE: DEFINITION

Configuration of the abstract machine

ne
Execution history Program to be executed

record the events generated by program
execution on its operational environment



ABSTRACT MACHINE: DEFINITION

Configuration of the abstract machine

ne

Operational rules

ne - ne



NOTE: IN WHAT WE TRUST?

Configurations: 1), €

The abstract mechine: only trusts its own history



Operational semantics

/ / / /
n,e1 — 1,6 n,€2 — 1 ,€y

n,eres — 1, eles n,ves — 1, ve, n, (Ax.e)v — n,e{v/z, \,x.e/z}



Operational Semantics

B(b) = true B(b) = false

n,if bthenegelsee; — n,eq n,if bthenegelsee; — 1n,eq



Operational Semantics

n, o — 1o, x



Operational Semantics

ne—mn,e nn =y N =@

n,ole]l =1, ple] 1, plv] — n,v



EXAMPLE

¢[write; (fun x = x) read]

Policy ¢ = no read after write

—
ﬁﬁ

write eval(p[(fun x = x) read])



EXAMPLE

¢[write; (fun x = x) read]

Policy ¢ = no read after write

—
ﬁﬁ

write eval(p[read])



EXAMPLE

¢[write; (fun x = x) read]

Policy ¢ = no read after write

write ;read! - @



Summary

* Dynamic Analysis of History-
Dependent Access Control

* We have shown how
to characterize the dynamic
analysis of history-dependent
access control,
defining its formal structure and
its limitations (safety security
policies).



Can we do better?
Can we integrate static
and dynamic analysis”?

Next step

= Type & Effect
system




Amalgating static and
dynamic enforcement of

security properties




: e access events are the actions
Static relevant for security (e.qg.

Observable read/write local files, invoke/be
. invoked by a given service, etc)
Behaviours « mechanically inferred, or

inserted by programmer.
e their meaning is fixed
globally.

e access events cannot be
hidden




CHECKING STATICALLY

|.  We extract the abstract behaviour of the program via a suitable type
system that over-approximates the possible run-time behavior of the
program

2. This abstract behaviour is compiled into a suitable form to be model-
checked in order to verify whether or not the security constraints are
satisfied

3. As a result of the model checking we ensure that the program satisfies the
security property.



THETYPE SYSTEM

Type & effect system

= types carry effects annotations H about abstract behaviour

= effects H, are called history expressions, and over-approximate the actual execution histories



TYPES

(basic types are pretty standard)

2= int | bool |unit] |

T H o

Functional types



FUNCTIONAL TYPES

Functional types

The history expression H describes the latent effect
associated with the functional abstraction
(the set of possible execution histories)

When the abstraction is applied to a value, its execution
will generate a run time behaviours belonging to the
execution histories represented by H



INTERMEZZO

* Plain (traditiona) type systems have
judgments of the form
I'e:t

* to mean:
* e won’t get stuck
* if e produces a value, that value has

typert



INTERMEZZO

* Adding effects to typing rules mean to
compute statically something about
“how program executes” .

* There are many things we may want to
conservatively approximate



EFFECTS (HISTORY EXPRESSIONS)

H :=
€ empty
h variable
o access event
H-H sequence
H+H choice

nh.H recursion



WHAT IS THE MEANING OF HISTORY EXPRESSIONS?

When the program is sent into execution,
it will generate one of the histories
abstract represented by H.

History expressions are a sort of context-free grammars

The language generated by this grammars are
abstract program behaviours



WHAT IS THE MEANING OF HISTORY EXPRESSIONS?

H=uyh.a+p.H

What is the set of run-time executions
abstractly represented by H?



WHAT IS THE MEANING OF HISTORY EXPRESSIONS?

What is the set of run-time executions

H=phatp.H abstractly represented by H?

F(h)=a+p8-h We need to solve this fix point equation

H=FH)={a}U{p} - H. The least fixpoint



WHAT IS THE MEANING OF HISTORY EXPRESSIONS?

What is the set of run-time executions

H=pha+p.H abstractly represented by H?

F(h)=a+ 8 -h We need to solve this fix point equation

H=FH)={a}U{p} - H. The least fixpoint

H=A{ajU{ps}-H
={aju{B}-({atu{s}- H)
={a, fa}U{p*} - H
= {a, Ba, fa, BPa, ...}

Unfolding the equation



WHAT IS THE MEANING OF HISTORY EXPRESSIONS?

What is the set of run-time executions

H=phatp.H abstractly represented by H?

H=A{a}U{p} - H
={aj U{f} - ({ajU{B} H)
= {a, Ba} U{B°} - H
= {a, pa, Ba, fa,...}

The denotation is the set of all finite traces consisting of zero or more 8 events
followed by one « event:

H={g"a|n>0}.




WHAT IS THE MEANING OF HISTORY EXPRESSIONS?

H=uyh.a+[.H

H=A{a}U{p} - H
={aj U{f} - ({ajU{B} H)
= {a, Ba} U{B°} - H
= {a, pa, Ba, fa,...}

What is the set of run-time executions
abstractly represented by H?

the run-time executions perform any
number of f# events (possibly none)
and then one a event— exactly
capturing the behavior of the recursive
equation

F(h)=a+p8-h



THE DENOTATIONAL SEMANTICS OF HISTORY EXPRESSIONS

The denotational semantics is defined over the complete lattice

(p(X) ©) Y is the set of access events

The environment p is used to map variables to sets of (finite)
histories



THE DENOTATIONAL SEMANTICS OF HISTORY EXPRESSIONS

lel, = € [a], = «a 7], = p(h)

HH'H,H/) — [[H]]p [[H,]]p [[H‘|‘H/]]p — [[H]]/)U[[Hl]]p

lwh.H], = U, c, [M(0) where f(X) = [H],tx/m



THE DENOTATIONAL SEMANTICS OF HISTORY EXPRESSIONS

lel, = € [a], = «a 7], = p(h)

[H - H,]]p [[H]]p [[H,]]p [H + H/]]p — [[H]]p U [[Hl]]p

lwh.H], = U, c, [M(0) where f(X) = [H],tx/m

The least fixpoint over the CPO (p(Z) ©)



THE TYPE AND EFFECT SYSTEM

Types and Type Environments

o= unit | 757 r == 0| ix:7 (zd&dom(I))




THE TYPE AND EFFECT SYSTEM

['HFe:T Typing Judgment

Intuition: the expression e evaluates to a
value of type 7, and produces a history belonging to

the effect H .



I'"H&Fe:T

I'H+H' Fe:T

STRUCTURAL RULE: WEAKENING




IekFx:I'(x) I'at a:unit I' e b x:unit

THE TYPING RULES




F;x:T;z:TiT’,HI—e:T’ F,H|—e;TH_”>T/ T HFe 7
F,€|_)\z23.6:7'£>7‘, I'H-H -H"Fee:7

THE TYPING RULES




F;x:T;z:TiT’,HI—e:T’ F,H|—e;TH_”>T/ T HFe 7
F,€|_)\z23.6:7'£>7‘, I'H-H -H"Fee:7

THE TYPING RULES




I'HFre:7m I'HFE T

I'’HF if btheneelsee : 7

THE TYPING RULES




I'"HrFe:T

I''olH| Fople| : T

TYPING PROGRAMS




EXAMPLE

We want to derive the type judgment

0,e = XA,z. if b then « else 8; zz : unit ELEN unit,

with
H* = ph.(a+ 5 - h).



Let I' = {2 : unit — unit, x : unit}.
We derive a type for the body if b then « else 5; zx.

(a) By the EVENT rule: I';a - a :unit I',5F ( : unit.

(b) For the application z x:
I'e F 2z : unit Ly it I''e -z : unit
then by the APP rule:
I'VH - zx : unit.

(c) Sequencing S;zz = (A. zx) B:

By ABS and ApP rules: I', - H F §; zx : unit.
(d) For the conditional:

I'NakFa:unit TI',8-HF §; zx : unit.

Using WK and IF rules, we obtain

I'ao+ (- HFif bthen « else §; zx : unit.

STEP I:
TYPING THE
BODY




STEP 2: NAME ABSTRACTION AND FIXPOINT

By the ABS rule for named abstractions:
0,e = A z.e: unit A it provided that H = a+ (3 - H.



STEP 3: SOLVING THE CONSTRAINTS

The least fixpoint solution is H* = ph.(ac+ 8- h).
Hence the final typing judgment is:

0,e = X\,z. if b then o else 8; zx : unit

ph.(a+B-h)

s unit.




STEP4: PUTTING EVEYTHING TOGETHER

o F,el—)\.zx:unitiunit I', 5+ B : unit app
v

[ - o« : unit . I'g-HF (B; zx : unit L
F,a+B-H|—oz:unitW F,oz—kﬁ-Hl—B;za::unitW

I''a+ (8- HFif bthen « else §; zx : unit if

0,e = X,z.if b then « else B; zx : unit s it



SOUNDNESS

IfHtFe: T ande,e —* n, e, thenn € [H]




SAFETY

Assume e closedand ' H + e: T.
Let @[e] be a program.
If H is valid for ¢ then e does not wrong

A computation goes wrong when attempting to execute an event
forbidden by active policy



VERIFICATION:VALIDITY OF HISTORY EXPRESSIONS

® |dea: model checking Basic Process Algebras (BPAs) with Buchi automata.
= BPA (the model) -- Buchi automata (the policy)

®  The decision procedure for verifying that a BPA process p satisfies a w-regular property ¢ amounts to
constructing the pushdown automaton for p and the Buchi automaton for the negation of ¢.

®  The property holds if the (context-free) language accepted by the conjunction of the pushdown automaton and
the Buchi automaton (which is still a pushdown automaton), is empty.

®  This problem is decidable, and several algorithms and tools show this approach is feasible.



BASIC PROCESS ALGEBRA

p i=c¢lal|lpp | p+p | X

Operational Semantics of BPA processes

p=p q=>q p=p Py XYpen

ae ptqg=p ptqg>=qd pg>p g XSp




BPA(e, I') = (e,0)
BPA(a,T) = (a, 0)
BPA(h, T

Po 'pl;AO U A1>, where BPA(HI,F) = <p7,,Az>
Do —|—p1,A0 U A1>, where BPA(H“F) = <p1,7Az>

X, AULX “ pV), where BPA(H, T{X/h}) = (p, A)

BPA(Hy+ H,,T") =

<
<
= (I'(h), )
<
<
BPA(uh.H,TI') = {

)
)
)
BPA(Hy - Hy,T)
)
)

MAPPING HISTORY EXPRESSIONS TO BPA




A MAIN PROPERTY

The prefixes of the histories generated by a history expression H (i.e. [H]")
are all and only the finite prefixes of the strings that label the computations of
BPA(H). Recall that this is enough, because validity is a safety property.



THE FORMAL RESULT

= Validity of a history expression H can be decided by showing that the BPA
generated by H satisfies a w-regular formula.

= A closed expression e never violates the security property of the program
p|e] if its effect is (model) checked valid.



OUR RUNNING EXAMPLE

The history expression H=a+pB-H

$

The Basic process Algebra X=a-e+f-X




OUR RUNNING EXAMPLE

BPA PROCESS
X=a-e+p-X
UNFOLDING THE RECURSION

X=a-e+fa-e+B-X)=a-e+f-a-e+p-B-X= ..
THE FINITE TRACES

TRACES(X) = {f"a |n = 0}



THE LEAST FIX POINT

APPROXIMATION

X0=0.

Xnyr=a- 0+ - Xy

FIX POINT

FIX(X) = U, X,



THE LEAST FIX POINT

APPROXIMATION

X0=0.

Xny1=a- 0+ Xy

FIX POINT
FIX(X) = U, Xy,
Kleene-style shorthand (not primitive in BPA, but intuitive):

FIX(X) = f*. .0
eany number of B’s, then a, then terminate.



THE PROPERTY

The (Blichi) property is “no a after "

The finite-word language enforced is

L, fety = a” B* (no a occurs after the first ).



THE MODEL

L(H)={f"a|n =0} U{L* we admit infinite runs.



THE MODEL

L(H)={f"a|n =0} U{L* we admit infinite runs.

Finite behaviour (for any k): Bra

Any finite behavior violates the property,
since an a appears after a B.



THE MODEL

L(H)={f"a|n =0} U{L* we admit infinite runs.

Finite behaviour (for any k): Bra

Any finite behavior violates the property,
since an a appears after a B.

H is not valid w.r.t. the

L(H) N _lLsafety *+ 0 “no a after B” property.

A concrete counterexample is the trace fa.



SUMMARY: INTEGRATE MODEL CHECKING AND STATIC ANALYSIS

= Combines model checking with static analysis to prove
properties of history-dependent access control systems.

= Qur initial approach uses a single sandbox to reason about local histories
and access traces.

= |n the paper, this approach is extended to hierarchical sandboxes,
enabling verification across nested or composed security contexts.



