SYMBOLIC EXECUTION

"Il Keyidea

Reason about

behavior of program

by”’executing” it with
symbolic values

Originally proposed
by James King (1976,
CACM) and Lori
Clarke (1976, IEEE
TSE)

Practical around 2005

because of advances

in constraint solving
(SMT solvers)

An example

{

function f(a, b, c)
varX:y:Z:O;
if (a) {

X = -2;
}
if (b > 5) {
if (la && c) |
y = 1;

}
7z = 23
}

assert(x + v + z != 3);

}

Concrete execution
Hﬂﬂﬂlﬂ

function f(a, b, c) {
I A P — INITIAL STATE
if (a) { O 0 O
X = =2
}
if (b > 5) {
if (la && c) {
y = 1;
}
z = 2

assert(x + y + z != 3);

}

Concrete execution
{ Hﬂﬂﬂlﬂ

function f(a, b, c

)

var x =y = z = 0; INITIAL STATE T
el == Condition: if (a) is true
} since a = 1 (truthy in JavaScript)
if (b > 5) {

if ('a && c) {

y = 1;
)
z = 2;

}
assert(x + y + z != 3);

}

Concrete execution

)
- 0; INITIAL STATE

<

Q

o]

b

Il
o~

Il

% = -2 | Condition: if (a) is true

assert(x + y + z != 3);

O 0 O

-2 0 0

}

Concrete execution

(a, b, ¢

S INITIAL STATE
@ Condition: if (a) is true

X = =27
}
if (b >5) { <4mmmm Condition: b >5is false

if (la && c) {

y =1
}
z = 2

assert(x + y + z != 3);

O 0 O

-2 0 0

Concrete execution

(a, b, c)

var % = v 2 = 0; INITIAL STATE
@ Condition: if (a) is true

X = =2;
}
if (b > 5) { Condition: b > 5is false

if (la && c) {

y = 1;
}
z = 2

assert(x + y + z != 3); _

}

The assertion check
X+y+z=-2+0+0=-2

-2 1=3is true

O 0 O

-2 0 0

-2 0 0

Symbolic execution MTAESTATE
function f(a, by o) | alblo|x|y|z

var X =y = z = Ao bO Co 0O 0 O

if @) { ¢
o /\
}

if (b > 5) : . :
§ if (la &&{C) { A=ayg=*0if (a) istrue A=ay, = 0 (a) isfalse
y = 17
} Simbolic Values ag, by, Co
z = 2;
}

assert(x + y + z != 3);

}

INITIAL STATE

Symbolic execution
{ ablcix]y|z]

function f(a, b, c¢)
var x =y =z = 0; a, bO Co 0O 0 O
if (a) {
X = =23
} <=
if (b > 5) { . _ .
if (la && c) { A=ay=*0if (a) istrue - A=ay= 0 (a) isfalse
y = 17

}
o o b o x|y I o c(xy|:.

assert(x + y + z != 3);

) ap bo Co -2 0 0 Ao bo Co 0 0 0

Symbolic execution ARSI
{ alblc|x|y|z

function f(a, b, c
Z

var x =y = ay b co 0 0 O
if (a) |
X = =23
}
lfif(b(TaSi&&{c) {_ A=ay=*0if (a) istrue - A=ay= 0 (a) isfalse
y =1
}
z = 2

} lalblolxly z] alblolxlylz
assert(x + y + z != 3);

ap bo Co -2 0 0 Ao bo Co 0 0 0

N

INITIAL STATE

Symbolic execution
{ ablcix]y|z]

function f(a, b, c¢)
\Ifarx=y=z=0; aObOCOOOO
if (a) {
X = =23
}
lfif(b(TaSi&&{c) {_ A=ay=*0if (a) istrue - A=ay= 0 (a) isfalse
y = 17
}
z = 2;
} lalblc|x[y|z lalblcix|y|z
assert(x + y + z != 3); b
} ag bgp ¢ -2 0 0 ag bg c¢ 0 0 O
B=by>5 " B=by <5
A AN #0)= A ANC AV = C

nnnnlul | nosn

ag by cg -2 1 ap bp ¢ -2 0 2

INITIAL STATE FOCUS ON THE

Symbolic execution RED PATH
function f(a, b, c) { Huunﬂ
var x =y =z = 0; aObOCOOOO
if (a) |
X = -2; /\
}
ifiéb(TaSL&{c) {_ A=ay=*0if (a) istrue - A=ay= 0 (a) isfalse
y = 17
}
o ADOOnE $ pDEnnn
} assert(x + y + z != 3); aq bo Co 2 0 0 - bo CO 0 0 0
AANB AN -ANC B=by,>5 - B=by <5
A AN #0)= aANAC AV =C

nnnn.ul | nosn

a, by cg -2 1 ap bg c¢ -2 0 2

INITIAL STATE FOCUS ON THE

Symbolic execution RED PATH
function f(a, b, c) { Huunﬂ
var x =y =z = 0; aObOCOOOO
if (a) A
X = -2; /\
}
ifiéb(TaSL&{c) {_ A=ay=*0if (a) istrue - A=ay= 0 (a) isfalse
y = 1;
}
o ADOOnE $ pDEnnn
}assert(x+y+z.= 3); aq bo Co 2 0 0 - bo CO 0 0 0
UNFEASIBLE /\
AANB AN-ANC B=by,>5 - B=by <5
A AN #0)= aANAC AV =C

nnnn.ul | nosn

a, by cg -2 1 ap bg c¢ -2 0 2

INITIAL STATE

Symbolic execution
{ ablcix]y|z]

function f(a, b, c¢)
var x =y =z = 0; aObOCOOOO
if (a) {
X = =2;
}
if (b >5) { < . _ .
lif (la &8 c) { A=ay=*0if (a) istrue - A=ay= 0 (a) isfalse
y = 1;
}
z = 2;
) lalblc|x|y|z] alblcix|y|z
assert(x + y + z != 3); b
} ag bgp ¢ -2 0 0 ag bg c¢ 0 0 O

N

B:b0>5

O\

A AN(c 20)= =A4ANC AV =C

BoBon |

ay by ¢ O

Symbolic execution

function f(a, b, c) {
var x =y =z = 0;
it (a) A
X = =2
}
if (b >5) { <4
if (la && c) {
y = 1;
}
z = 2
}
assert(x + y + z != 3);

INITIAL STATE

alblolxlylz

ay b co 0 0 O

T

A=ay=»01if (a) istrue - A=ay= 0 (a) isfalse

alblclxly 2z alblclxlylz

ap bo Co -2 0 0 Ao bo Co O 0 O
A/B:<>A > ~B=by <5
AN #0)= aA4ANC AV =C

unnu.n l 0+1+2=3 ASSERTION VIOLATED

ay, bg ¢ 0 1

INITIAL STATE

Symbolic execution
{ ablcix]y|z]

function f(a, b, c¢)
var x =y =z = 0; aObOCOOOO
if (a) |
} X = -2 A=ay=0if (a) istrue /\"A:aozo(a) is false
if (b > 5) {
if ('a && c) {
- alblolx ylz alblolxylz
}2 ag bg ¢cg 2 0 O ag by co¢, 0 0 O
7 =

}
assert(x + y + z != 3); B=b0>5/\IB=bO <5
} A AN 20)= A AC AV =l

Hﬂﬂﬂ.ﬂ -~

ay, by ¢ O

SIMPLER TREE LIKE REPRESENTATION

Execution Trees

All possible execution paths

Binary tree
Nodes: Conditional statements

N

t/ \f
Edges: Execution of sequence / \

on non-conditional statements

Each path in the tree represents
an equivalence class of inputs

t

O

t

f
O

\

t

O

\

Exercize

Draw the execution tree for this function. How many
nodes and edges does it have?

function f£(x,y) {

var s = "foo";
if (x <y) {
s += "bar";

console.log(s) ;
}
if (y === 23) {
console.log(s) ;
}
}

Symbolic Values and Symbolic States

m Unknown values, e.g., user inputs, are kept
symbolically

m Symbolic state maps variables to symbolic values

function f£(x, y) {
var z = X + y;
if (z > 0) {

}
}

Symbolic Values and Symbolic States

Symbolic Values and Symbolic State

m Unknown values, e.g., user inputs, are kept
symbolically

m Symbolic state maps variables to symbolic values

&~ T
function £(x, y) {

var z = X + y; values: g, yo
£ (z>0 { | T—0
- Symbolic state:

} zZ=x0+ Yo
}

Symbolic input

SATISFIABILITY OF PATH CONDITIONS

Determine whether a path is feasible:
Check if its path condition is satisfiable

m Done by powerful SMT/SAT solvers
0 SAT = satisfiability,
SMT = satisfiability modulo theory
o E.g., Z3, Yices, STP
m For a satisfiable formula, solvers also provide a
concrete solution

SATISFIABILITY OF PATH CONDITIONS

Determine whether a path is feasible:
Check if its path condition is satisfiable

m Examples:
0 ao + bg > 1: Satisfiable, one solution: ag = 1,bp = 1
0 (ao+bo <0)A(ap—1>5)A(bp > 0): Unsatisfiable

APPLICATIONS OF SYMBOLIC EXECUTION

m General goal: Reason about behavior of program

m Basic applications
0 Detect infeasible paths

0 Generate test inputs

O]

Find bugs and vulnerabilies

m Advanced applications

O]

O

O]

Generating program invariants

Prove that two pieces of code are equivalent
Debugging

Automated program repair

EXAMPLE: Generate Test Inputs

function test(x, y) {
varz=0;
if (x>0){
z=z+1;
}else{
z=2z-1;

}

if (y ==2){
assert(false);

}
}

Goal: symbolically execute this program to find
inputs (x, y) that violate the assertion.

EXAMPLE: Generate Test Inputs

function test(x, y) { Goal: symbolically execute this program to find
varz=0; inputs (x, y) that violate the assertion.
if (x > 0) {
z=z+1;
}else{ Step 1 — Symbolic initialization
z=z-1; At the start:
} Variable | Symbolic value
if (y ==2){ y Yo
assert(false); z .
}

}

EXAMPLE: Generate Test Inputs

function test(x, y) { Goal: symbolically execute this program to find

varz=0; inputs (X, y) that violate the assertion.
if (x>0){
z=z+1;
}else { Step 2 — First branch: is « > o)
z=z-1; Two possible paths:
) Path1: x, > 0
if (y==2){ Thenz:=1
assert(false); Path 2: x, < 0
} Else z:= —1

}

EXAMPLE: Generate Test Inputs

function test(x, y) {
varz=0;
if (x>0){
z=z+1;
}else{
z=2z-1;

}

if (y ==2){
assert(false);

}
}

Goal: symbolically execute this program to find
inputs (x, y) that violate the assertion.

Step 3-Second branch: if (y == z)
Each prior path splits again based on this condition.

Path 1A
Condition: xg > 0 A yg ==
Assertion fails (assert (false) triggered).

This is a bug path.

Path 1B

Condition: xqg >0 A yo # 1
Safe path (no failure).

EXAMPLE: Generate Test Inputs

function test(x, y) { Goal: symbolically execute this program to find

varz =0; inputs (x, y) that violate the assertion.
if (x > 0) {

z=z+1;
}else{

z7=7-1; Path Condition Test Input Assertion
) 1A xp>0 A y=1 2, 1) Fails

1B Xo>0 A yo#£l (3,0) Passes

if (y == 2){ 2A X0<0 A y,=-1 0, -1) Fails

assert(false); 2B Xo=0 A yo#-1 (-5, 2) Passes

}
}

* Foundation of (modern)
NEXT LECTURE symbolic execution

