
SYMBOLIC EXECUTION

Key idea

Reason about
behavior of program
by”executing” it with

symbolic values

Originally proposed
by James King (1976,

CACM) and Lori
Clarke (1976, IEEE

TSE)

Practical around 2005
because of advances
in constraint solving

(SMT solvers)

An example
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

Concrete execution
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

a b c x y z

1 1 1 0 0 0
INITIAL STATE

Concrete execution
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

a b c x y z

1 1 1 0 0 0
INITIAL STATE

Condition: if (a) is true
since a = 1 (truthy in JavaScript)

Concrete execution
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

a b c x y z

1 1 1 0 0 0
INITIAL STATE

Condition: if (a) is true
a b c x y z

1 1 1 -2 0 0

Concrete execution
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

a b c x y z

1 1 1 0 0 0
INITIAL STATE

Condition: if (a) is true
a b c x y z

1 1 1 -2 0 0
Condition: b > 5 is false

Concrete execution
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

a b c x y z

1 1 1 0 0 0
INITIAL STATE

Condition: if (a) is true
a b c x y z

1 1 1 -2 0 0
Condition: b > 5 is false

a b c x y z

1 1 1 -2 0 0

The assertion check

x + y + z = -2 + 0 + 0 = -2

-2 != 3 is true

Symbolic execution
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

INITIAL STATE

A = 𝑎! ≄ 0	if (a) is true A = 𝑎! = 	0	(a) is false

𝑎!, 𝑏" , 𝑐"Simbolic Values

Symbolic execution
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

INITIAL STATE

A = 𝑎! ≄ 0	if (a) is true ¬	A = 𝑎! = 	0	(a) is false

a b c x y z

𝑎! 𝑏! 𝑐! -2 0 0
a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

Symbolic execution
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

INITIAL STATE

A = 𝑎! ≄ 0	if (a) is true ¬	A = 𝑎! = 	0	(a) is false

a b c x y z

𝑎! 𝑏! 𝑐! -2 0 0
a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

𝐵 = 𝑏! > 5 ¬	𝐵 = 𝑏! 	 ≤ 5

Symbolic execution
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

INITIAL STATE

A = 𝑎! ≄ 0	if (a) is true ¬	A = 𝑎! = 	0	(a) is false

a b c x y z

𝑎! 𝑏! 𝑐! -2 0 0
a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

𝐵 = 𝑏! > 5 ¬	𝐵 = 𝑏! 	 ≤ 5

¬𝐴	 ∧ 𝑐	 ≄ 0 = 	¬	𝐴	 ∧ 𝐶	 𝐴	 ∨ 	¬	𝐶

a b c x y z

𝑎! 𝑏! 𝑐! -2 0 2
a b c x y z

𝑎! 𝑏! 𝑐! -2 1 2

Symbolic execution
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

INITIAL STATE

A = 𝑎! ≄ 0	if (a) is true ¬	A = 𝑎! = 	0	(a) is false

a b c x y z

𝑎! 𝑏! 𝑐! -2 0 0
a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

𝐵 = 𝑏! > 5 ¬	𝐵 = 𝑏! 	 ≤ 5

¬𝐴	 ∧ 𝑐	 ≄ 0 = 	¬	𝐴	 ∧ 𝐶	 𝐴	 ∨ 	¬	𝐶

a b c x y z

𝑎! 𝑏! 𝑐! -2 0 2
a b c x y z

𝑎! 𝑏! 𝑐! -2 1 2

FOCUS ON THE
RED PATH

𝑨	 ∧ 𝑩	 ∧ 	¬𝑨	 ∧ 𝑪

Symbolic execution
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

INITIAL STATE

A = 𝑎! ≄ 0	if (a) is true ¬	A = 𝑎! = 	0	(a) is false

a b c x y z

𝑎! 𝑏! 𝑐! -2 0 0
a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

𝐵 = 𝑏! > 5 ¬	𝐵 = 𝑏! 	 ≤ 5

¬𝐴	 ∧ 𝑐	 ≄ 0 = 	¬	𝐴	 ∧ 𝐶	 𝐴	 ∨ 	¬	𝐶

a b c x y z

𝑎! 𝑏! 𝑐! -2 0 2
a b c x y z

𝑎! 𝑏! 𝑐! -2 1 2

FOCUS ON THE
RED PATH

𝑨	 ∧ 𝑩	 ∧ 	¬𝑨	 ∧ 𝑪
UNFEASIBLE

Symbolic execution
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

INITIAL STATE

A = 𝑎! ≄ 0	if (a) is true ¬	A = 𝑎! = 	0	(a) is false

a b c x y z

𝑎! 𝑏! 𝑐! -2 0 0
a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

𝐵 = 𝑏! > 5 ¬	𝐵 = 𝑏! 	 ≤ 5

¬𝐴	 ∧ 𝑐	 ≄ 0 = 	¬	𝐴	 ∧ 𝐶	 𝐴	 ∨ 	¬	𝐶

a b c x y z

𝑎! 𝑏! 𝑐! 0 1 2

Symbolic execution
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

INITIAL STATE

A = 𝑎! ≄ 0	if (a) is true ¬	A = 𝑎! = 	0	(a) is false

a b c x y z

𝑎! 𝑏! 𝑐! -2 0 0
a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

𝐵 = 𝑏! > 5 ¬	𝐵 = 𝑏! 	 ≤ 5

¬𝐴	 ∧ 𝑐	 ≄ 0 = 	¬	𝐴	 ∧ 𝐶	 𝐴	 ∨ 	¬	𝐶

a b c x y z

𝑎! 𝑏! 𝑐! 0 1 2
𝟎 + 𝟏 + 𝟐 = 𝟑	 ASSERTION VIOLATED

Symbolic execution
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

INITIAL STATE

A = 𝑎! ≄ 0	if (a) is true ¬	A = 𝑎! = 	0	(a) is false

a b c x y z

𝑎! 𝑏! 𝑐! -2 0 0

a b c x y z

𝑎! 𝑏! 𝑐! 0 0 0

𝐵 = 𝑏! > 5 ¬	𝐵 = 𝑏! 	 ≤ 5
¬𝐴	 ∧ 𝑐	 ≄ 0 = 	¬	𝐴	 ∧ 𝐶	 𝐴	 ∨ 	¬	𝐶

a b c x y z

𝑎! 𝑏! 𝑐! 0 1 2

SIMPLER TREE LIKE REPRESENTATION

Execution Trees

7

Execution Tree

All possible execution paths

↭ Binary tree

↭ Nodes: Conditional statements

↭ Edges: Execution of sequence
on non-conditional statements

↭ Each path in the tree represents
an equivalence class of inputs

t f

t f t f

t f

t f

Exercize

8

Quiz

Draw the execution tree for this function. How many
nodes and edges does it have?

function f(x,y) {
var s = "foo";
if (x < y) {
s += "bar";
console.log(s);

}
if (y === 23) {
console.log(s);

}
}

Symbolic Values and Symbolic States

9 - 1

Symbolic Values and Symbolic State

↭ Unknown values, e.g., user inputs, are kept
symbolically

↭ Symbolic state maps variables to symbolic values

function f(x, y) {
var z = x + y;
if (z > 0) {
...

}
}

Symbolic Values and Symbolic States

9 - 2

Symbolic Values and Symbolic State

↭ Unknown values, e.g., user inputs, are kept
symbolically

↭ Symbolic state maps variables to symbolic values

function f(x, y) {
var z = x + y;
if (z > 0) {
...

}
}

Symbolic input
values: x0, y0

Symbolic state:
z = x0 + y0

SATISFIABILITY OF PATH CONDITIONS

11

Satisfiability of Formulas

Determine whether a path is feasible:
Check if its path condition is satisfiable
↭ Done by powerful SMT/SAT solvers

↫ SAT = satisfiability,
SMT = satisfiability modulo theory

↫ E.g., Z3, Yices, STP

↭ For a satisfiable formula, solvers also provide a
concrete solution

↭ Examples:
↫ a0 + b0 > 1: Satisfiable, one solution: a0 = 1, b0 = 1

↫ (a0 + b0 < 0)→ (a0 ↑ 1 > 5)→ (b0 > 0): Unsatisfiable
11

Satisfiability of Formulas

Determine whether a path is feasible:
Check if its path condition is satisfiable
↭ Done by powerful SMT/SAT solvers

↫ SAT = satisfiability,
SMT = satisfiability modulo theory

↫ E.g., Z3, Yices, STP

↭ For a satisfiable formula, solvers also provide a
concrete solution

↭ Examples:
↫ a0 + b0 > 1: Satisfiable, one solution: a0 = 1, b0 = 1

↫ (a0 + b0 < 0)→ (a0 ↑ 1 > 5)→ (b0 > 0): Unsatisfiable

SATISFIABILITY OF PATH CONDITIONS

11

Satisfiability of Formulas

Determine whether a path is feasible:
Check if its path condition is satisfiable
↭ Done by powerful SMT/SAT solvers

↫ SAT = satisfiability,
SMT = satisfiability modulo theory

↫ E.g., Z3, Yices, STP

↭ For a satisfiable formula, solvers also provide a
concrete solution

↭ Examples:
↫ a0 + b0 > 1: Satisfiable, one solution: a0 = 1, b0 = 1

↫ (a0 + b0 < 0)→ (a0 ↑ 1 > 5)→ (b0 > 0): Unsatisfiable

11

Satisfiability of Formulas

Determine whether a path is feasible:
Check if its path condition is satisfiable
↭ Done by powerful SMT/SAT solvers

↫ SAT = satisfiability,
SMT = satisfiability modulo theory

↫ E.g., Z3, Yices, STP

↭ For a satisfiable formula, solvers also provide a
concrete solution

↭ Examples:
↫ a0 + b0 > 1: Satisfiable, one solution: a0 = 1, b0 = 1

↫ (a0 + b0 < 0)→ (a0 ↑ 1 > 5)→ (b0 > 0): Unsatisfiable

APPLICATIONS OF SYMBOLIC EXECUTION

12

Applications of Symbolic Execution

↭ General goal: Reason about behavior of program

↭ Basic applications
↫ Detect infeasible paths

↫ Generate test inputs

↫ Find bugs and vulnerabilies

↭ Advanced applications
↫ Generating program invariants

↫ Prove that two pieces of code are equivalent

↫ Debugging

↫ Automated program repair

EXAMPLE: Generate Test Inputs
function test(x, y) {
 var z = 0;
 if (x > 0) {
 z = z + 1;
 } else {
 z = z - 1;
 }

 if (y == z) {
 assert(false);
 }
}

Goal: symbolically execute this program to find
inputs (x, y) that violate the assertion.

EXAMPLE: Generate Test Inputs
function test(x, y) {
 var z = 0;
 if (x > 0) {
 z = z + 1;
 } else {
 z = z - 1;
 }

 if (y == z) {
 assert(false);
 }
}

Goal: symbolically execute this program to find
inputs (x, y) that violate the assertion.

Step 1 – Symbolic initialization
At the start:

Variable Symbolic value
x !!
y "!
z 0

EXAMPLE: Generate Test Inputs
function test(x, y) {
 var z = 0;
 if (x > 0) {
 z = z + 1;
 } else {
 z = z - 1;
 }

 if (y == z) {
 assert(false);
 }
}

Goal: symbolically execute this program to find
inputs (x, y) that violate the assertion.

Step 2 – First branch: if (x > 0)
Two possible paths:

Path 1: !! > 0

Then !:= 1

Path 2: !! ≤ 0

Else !:= −1

EXAMPLE: Generate Test Inputs
function test(x, y) {
 var z = 0;
 if (x > 0) {
 z = z + 1;
 } else {
 z = z - 1;
 }

 if (y == z) {
 assert(false);
 }
}

Goal: symbolically execute this program to find
inputs (x, y) that violate the assertion.

Step 3 – Second branch: if (y == z)
Each prior path splits again based on this condition.

Path 1A
Condition: 𝑥! > 0 ∧ 𝑦! == 1
Assertion fails (assert(false) triggered).

This is a bug path.

Path 1B
Condition: 𝑥! > 0 ∧ 𝑦! ≠ 1
Safe path (no failure).
:

EXAMPLE: Generate Test Inputs
function test(x, y) {
 var z = 0;
 if (x > 0) {
 z = z + 1;
 } else {
 z = z - 1;
 }

 if (y == z) {
 assert(false);
 }
}

Goal: symbolically execute this program to find
inputs (x, y) that violate the assertion.

Path Condition Test Input Assertion
1A x0>0 ∧ y0=1 (2, 1) Fails
1B x0>0 ∧ y0≠1 (3, 0) Passes
2A x0≤0 ∧ y0=-1 (0, -1) Fails
2B x0≤0 ∧ y0≠-1 (-5, 2) Passes

NEXT LECTURE
• Foundation of (modern)

symbolic execution

