
SMT:
satisfiability
modulo
theories

Recap and overview

• In the previous lecture, we introduced symbolic execution.
• To be effective, symbolic execution requires an efficient

mechanism to prove path conditions.
• This lecture: we explore how to handle Boolean structures when

deciding satisfiability modulo theories (SMT).
• In practice, we introduce the foundations of SMT solvers, which

use clever techniques to reason efficiently about Boolean and
theory constraints.

Recap: What is the SAT
problem?
SAT stands for Boolean Satisfiability.
It is the problem of determining
whether there exists a truth
assignment to a set of Boolean
variables that makes a given logical
formula true.
Example: the formula
 (𝑝	 ∨ 𝑞) 	∧ (¬𝑝	 ∨ 𝑟)
Is there an assignment of truth values
to p, q, and r that makes this formula
true?

Recap: What is
the SAT problem?

SAT stands for Boolean
Satisfiability.
Example: the formula
 (𝑝	 ∨ 𝑞) 	∧ (¬𝑝	 ∨ 𝑟)
Is there an assignment of truth
values to p, q, and r that makes
this formula true?
Yes: Under the assignment
𝑝 = false, 𝑞 = true, 𝑟 = true

The formula evaluates to true, so
it is satisfiable.

SAT: Boolean Satisfiability Problem

What is the SAT Problem?
Input: A Boolean formula
Question: Is there an assignment of true/false values to variables
that makes the formula true?
The problem proven NP-complete (Cook, 1971)

SAT is hard to solve!!

• The search space is exponential: 2n possible assignments
for n variables
• SAT is NP-complete
• No known polynomial-time algorithm for all inputs

• Many real-world problems reduce to SAT:
• Circuit verification
• Program analysis
• Scheduling, planning

• Even small changes to input can change the solution space drastically

SAT Solver

OUTCOME
• SAT (satisfiable)

• at least one assignment makes the formula
true

• UNSAT (unsatisfiable)
• no assignment satisfies the formula

• UNKNOWN
• can’t determine (e.g., due timeout)

SMT SOLVERS

SMT = SAT + Theories:

SAT solver manages Boolean
structure,

Theory solver checks consistency
within the chosen theory.

Key idea: SMT manages the Boolean structure of formulas, with
one or more theory solvers, which handle the theory-specific

constraints (e.g., arithmetic, arrays, bit-vectors).

Operationally

• To use SAT solver, we construct a propositional formula, called
boolean abstraction, that overapproximates satisfiability

• If boolean abstraction is UNSAT,
• we are done

• If boolean abstraction is SAT
• Use theory solver to check if assignment returned by SAT

solver is satisfiable modulo theory
• If not, add additional boolean constraints (called theory conflict

clauses) to guide the search for an assignment that is satisfiable
modulo theory

Techniques to address SAT

How Modern SAT Solvers Behave
• DPLL algorithm and its modern variants
• Heuristics for variable selection
• Preprocessing and simplification

• Solvers like MiniSAT, Z3, and CryptoMiniSat make SAT feasible in
many cases

DPLL

The DPLL algorithm (Davis–Putnam–Logemann–Loveland) is the
foundation of most modern SAT solvers.

DPLL is a complete backtracking-based search algorithm for
solving the SAT problem. It determines whether a Boolean formula in
CNF (conjunctive normal form) is satisfiable.

DLLP improves brute-force search by introducing smart pruning and
inference techniques.

Toward DPLL
If a clause has only one literal unassigned (a unit
clause), assign it in a way that satisfies the clause.

Clause: (x) the set x=true

Boolean Constraint Propagation

Boolean Constraint Propagation: example

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

CNF Formula

SAT begins with the assignment 𝒑𝟏 = 𝒕𝒓𝒖𝒆

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

Boolean Constraint Propagation: example

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

The assignment 𝑝" = 𝑡𝑟𝑢𝑒	𝑎𝑙𝑙𝑜𝑤𝑠	𝑜𝑛𝑒	𝑡𝑜	reduce the original problem
to the satisfaction of the formula

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

Boolean Constraint Propagation: example

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

any satisfying interpretation must contain the assignment 𝑝# = 𝑡𝑟𝑢𝑒

No choice to satisfy this formula.

The literal 𝑝#	is called the unit literal

Boolean Constraint Propagation: example

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

Se𝑡	𝑝# = 𝑡𝑟𝑢𝑒

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

Boolean Constraint Propagation: example

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ ↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

Set 𝑝$ = 𝑡𝑟𝑢𝑒

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

Overall

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ ↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

Wih the assignment 𝑝" = 𝑡𝑟𝑢𝑒

Solving SAT with DPLL L14.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 → ¬p3 → ¬p5)︸ ︷︷ ︸
C1

↑ (¬p1 → p2)︸ ︷︷ ︸
C2

↑ (¬p1 → ¬p3 → p4)︸ ︷︷ ︸
C3

↑ (¬p1 → ¬p2 → p3)︸ ︷︷ ︸
C5

↑ (¬p4 → ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 → ¬p3 → ¬p5) ↑ (¬p1 → p2) ↑ (¬p1 → ¬p3 → p4) ↑ (¬p1 → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ (↔ → ¬p3 → ¬p5) ↑ (↗ → p2) ↑ (↗ → ¬p3 → p4) ↑ (↗ → ¬p2 → p3) ↑ (¬p4 → ¬p2)
↓↔↑ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)
↓ p2 ↑ (¬p3 → p4) ↑ (¬p2 → p3) ↑ (¬p4 → ¬p2)

Notice the clause C2, which was originally ¬p1 → p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

↔ ↑ (¬p3 → p4) ↑ (¬↔ → p3) ↑ (¬p4 → ¬↔)

↓ (¬p3 → p4) ↑ (↗ → p3) ↑ (¬p4 → ↗)

↓ (¬p3 → p4) ↑ p3 ↑ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬↔ → p4) ↑ ↔ ↑ ¬p4
↓ (↗ → p4) ↑ ¬p4
↓ p4 ↑ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES MATT FREDRIKSON

the formula is not satisfiable

Unit propagation

The process we described is
called Boolean constraint
propagation (BCP), or
sometimes unit propagation
for short.

How DLLP Works
Boolean Constrait Propagation (or Unit Propagation)
• If a clause has only one literal unassigned (a unit clause), assign it in a way that satisfies

the clause.
• Clause: (x) the set x=true

Pure Literal Elimination (optional)
• If a literal appears with only one polarity (always positive or always negative) in all

clauses, assign it to satisfy all such clauses.
• If x appears only as x (never as ¬x), set x = true.

Variable Assignment (Decision Step)
• Pick an unassigned variable and try assigning true or false.
Backtracking
• If the current assignment leads to a conflict (unsatisfiable clause), backtrack and try the

other assignment.
• If both fail, backtrack further.

The code

L14.8 Solving SAT with DPLL

that the resulting formula was unsatisfiable without making any further decisions. All
of the resulting simplifications were a logical consequence of this original choice. The
process of carrying this to its conclusion is called Boolean constraint propagation (BCP),
or sometimes unit propagation for short.

7 DPLL

BCP allowed us to conclude that the remaining formula, which originally had five vari-
ables, was unsatisfiable with just one recursive call instead of the 25 that would have
been necessary in our original naive implementation. This is a big improvement! Let’s
add it to our decision procedure and have a look at the consequences.

The natural place to insert this optimization is at the beginning of the procedure, be-
fore F is further inspected and any choices are made. This will ensure that if we are
given a formula that is already reducible to a constant through BCP, then we won’t do
any unnecessary work by deciding values that don’t matter. The resulting procedure
is called the David-Putnam-Loveland-Logemann or DPLL procedure, as it was intro-
duced by Martin Davis, Hilary Putnam, George Logemann, and Donald Loveland in
the 1960s [?, ?].

1 let rec dpll (f: formula) : bool =
2 let fp = bcp f in
3 match fp with
4 | Some True -> true
5 | Some False -> false
6 | None ->
7 begin
8 let p = choose_var f in
9 let ft = (subst_var f p true) in

10 let ff = (subst_var f p false) in
11 dpll ft || dpll ff
12 end
13 end

Remarkably, although DPLL was introduced over 50 years ago, it still forms the basis
of most modern SAT solvers. Much has changed since the 1960’s, however, and the
scale of SAT problems that are used in practice has increased dramatically. It is not
uncommon to encounter instances with millions of atomic propositions and hundreds
of thousands of clauses, and in practice it is often feasible to solve such instances.

Using an implementation that resembles the one above for such problems would not
yield good results in practice. One immediate problem is that the formula is copied
multiple times and mutated in-place with each recursive call. While this makes it easy
to keep track of which variables have already been assigned or implied via propagation,
even through backtracking, it is extremely slow and cumbersome.

Modern solvers address this by using imperative loops rather than recursive calls,
and mutating an interpretation rather than the formula itself. The interpretation re-
mains partial throughout most of the execution, which means that parts of the formula
cannot be evaluated fully to a constant, but are instead unresolved.

15-414 LECTURE NOTES MATT FREDRIKSON

Discussion

Computing Minimal Unsat Core

I How can we compute minimal unsat core of conjunctive T
formula without modifying theory solver?

I Let � be original unsatisfiable conjunct

I Drop one atom from �, call this �0

I If �0 is still unsat, � := �0

I Repeat this for every atom in �

I Clearly, resulting � is minimal unsat core of original formula

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 13/28

Example

I Let’s compute minimal unsat core of

� : x = y ^ f (x) + z = 5 ^ f (x) 6= f (y) ^ y  3

I Drop x = y from �. Is result unsat?

I Drop f (x) + z = 5. Is result unsat?

I New formula: � : x = y ^ f (x) 6= f (y) ^ y  3

I Drop f (x) 6= f (y). Is result unsat?

I Finally, drop y  3. Is result unsat?

I So, minimal unsat core is x = y ^ f (x) 6= f (y)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 14/28

SMT Improved O↵-line Version

O✏ineSMT(�){
 := B(�)
while(true){

A := CDCL(�)
if(A = ?) return UNSAT;
res := TheorySolve(B�1(A));
if(res) return SAT;
� := UnsatCore(B�1(A))
 := ^ ¬B(�)

}
}

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 15/28

Motivation for On-line SMT

I This strategy is much better than simple strategy where we
add ¬A as theory conflict clause.

I But still need to wait for full assignment from the SAT solver,
which can be problematic

I Consider very large formula F containing x = y and x < y
with corresponding boolean variables b1 and b2

I As soon as sat solver makes assignment b1 = >, b2 = >, we
are doomed because this is unsatisfiable in theory

I Thus, no need to continue with SAT solving after this bad
partial assignment

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 16/28

On-line SMT

I Idea: Don’t use SAT solver as“blackbox”

I Integrate theory solver right into the CDCL

I In other words, theory conflict clauses become another kind of
conflict clause that SAT solvers already learn...

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 17/28

DPLL-Based SAT Solver Architecture

Decide

SAT

BCP
no conflict

conflict

Analyze
Conflict

UNSAT

backtrack
if d > 0

I Idea: Integrate theory solver right into this SAT solving loop!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 18/28

3

What about theory?
DPLL(T) Framework

Decide

SAT

BCP

no conflict, theory propagation lemma(s)

conflict

Analyze
Conflict

UNSAT

backtrack
if d > 0

Theory
Solveconflict clause

C(A)

I Combination of DPLL-based SAT solver and decision
procedure for conjunctive T formula called DPLL(T)
framework

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 19/28

DPLL(T) Framework

I Suppose SAT solver has made assignment in Decide step and
performed BCP

I If no conflict detected, immediately invoke theory solver

I Specifically, suppose A is current partial assignment to
boolean abstraction

I Use theory solver to decide if B�1(A) is unsat

I If B�1(A) unsat, add theory conflict clause ¬A to clause
database

I Or better, add negation of unsat core of A to clause database

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 20/28

Theory Propagation

I What we described so far is su�cient to solve SMT formula,
but we can be even more clever!

I Suppose original formula contains literals x = y , y = z , x < z
with corresponding boolean variables b1, b2, b3

I Suppose SAT solver makes partial assignment b1 : >, b2 : >

I In next Decide step, free to assign b3 : > or b3 : ?

I But assignment b3 : > is stupid b/c will lead to conflict in T

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 22/28

Theory Propagation Lemma, cont

I Idea: Theory solver can communicate which literals are
implied by current partial assignment

I In our example, ¬x < z implied by current partial assignment
x = y ^ y = z

I Thus, can safely add b1 ^ b2 ! b3 to clause database

I These kinds of clauses implied by theory are called theory
propagation lemmas

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 23/28

4

Theory propagation

Assume that the original formula contains literals
𝑥 = 𝑦, 𝑦 = 𝑧, 𝑥 < 𝑧

with corresponding boolean variables 𝑏,, 𝑏-𝑎𝑛𝑑	𝑏.

Theory propagation

Assume that the original formula contains literals
𝑥 = 𝑦, 𝑦 = 𝑧, 𝑥 < 𝑧

with corresponding boolean variables 𝑏,, 𝑏-𝑎𝑛𝑑	𝑏.
Assume SAT make the (partial) assignment

𝑏, = 𝑡𝑟𝑢𝑒, 𝑏- = 𝑡𝑟𝑢𝑒
Next computationalk step may decide to assign

𝑏. = 𝑡𝑟𝑢𝑒	𝑜𝑟	𝑏. = 𝑓𝑎𝑙𝑠𝑒

Theory propagation

Assume that the original formula contains literals
𝑥 = 𝑦, 𝑦 = 𝑧, 𝑥 < 𝑧

with corresponding boolean variables 𝑏,, 𝑏-𝑎𝑛𝑑	𝑏.
Assume SAT make the (partial) assignment

𝑏, = 𝑡𝑟𝑢𝑒, 𝑏- = 𝑡𝑟𝑢𝑒
Next computational step may decide to assign

𝑏. = 𝑡𝑟𝑢𝑒	𝑜𝑟	𝑏. = 𝑓𝑎𝑙𝑠𝑒
?? 𝑏. = 𝑡𝑟𝑢𝑒	? ?
not the right choice: conflict in the equational theory

Theory propagation

• Theory solver tracks which literals are implied by the current
assignment.
• Our example: literal ¬(𝒙 < 𝒚) is implied by the partial assignment
𝒃𝟏 = 𝒕𝒓𝒖𝒆, 𝒃𝟐 = 𝒕𝒓𝒖𝒆
• The implication 𝒃𝟏 ∧ 𝒃𝟐 → 𝒃𝟑can be safely added to the

knowledge of clauses (the clause database)

DPLL(T) framework

DPLL(T) Framework

I Suppose SAT solver has made assignment in Decide step and
performed BCP

I If no conflict detected, immediately invoke theory solver

I Specifically, suppose A is current partial assignment to
boolean abstraction

I Use theory solver to decide if B�1(A) is unsat

I If B�1(A) unsat, add theory conflict clause ¬A to clause
database

I Or better, add negation of unsat core of A to clause database

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 20/28

Theory Propagation

I What we described so far is su�cient to solve SMT formula,
but we can be even more clever!

I Suppose original formula contains literals x = y , y = z , x < z
with corresponding boolean variables b1, b2, b3

I Suppose SAT solver makes partial assignment b1 : >, b2 : >

I In next Decide step, free to assign b3 : > or b3 : ?

I But assignment b3 : > is stupid b/c will lead to conflict in T

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 22/28

Theory Propagation Lemma, cont

I Idea: Theory solver can communicate which literals are
implied by current partial assignment

I In our example, ¬x < z implied by current partial assignment
x = y ^ y = z

I Thus, can safely add b1 ^ b2 ! b3 to clause database

I These kinds of clauses implied by theory are called theory
propagation lemmas

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 23/28

DPLL(T) Framework

Decide

SAT

BCP

no conflict, theory propagation lemma(s)

conflict

Analyze
Conflict

UNSAT

backtrack
if d > 0

Theory
Solveconflict clause

C(A)

I Adding theory propagation lemmas prevents bad assignments
to boolean abstraction

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 24/28

4

Z3 SAT SOLVER
• Z3 is an SMT solver developed by Microsoft Research
• https://github.com/Z3Prover/z3

• Z3 Input: A set of declarative constraints, often expressed in logic
over various domains:
• Integers, reals, booleans, bitvectors, arrays, strings, etc.

• Converts the problem into a combination of Boolean SAT
solving + theory solvers (for strings, integers, arrays, etc.)
• Uses efficient heuristics and decision procedures to prune infeasible

choices

Z3 in Action

Z3>

(declare-const x Int)
 (assert (> x 0))
 (assert (< x 10))
 (assert (= (* x 2) 15))
(check-sat)

(x > 0 && x < 10) (x * 2 == 15) {x:int}

Z3 >

unsat

21

A more complex example in Z3

from z3 import *

declare multiple variables
x, y = Bools('x y’)

create a solver instance
s = Solver()

add conjuncts
s.add(Implies(x, y))
s.add(Implies(y, x))

check satisfiability
print(s.check())
print(s.model())

s.add(x)
s.add(Not(y))

check satisfiability
print(s.check())

The first two conjuncts are satisfiable,
we get a model

All four conjuncts together are unsatifiable

Peter Müller, Marco Eilers – Program Verification

Z3 Theories

24

Theory applications
Linear integer/real arithmetic ▪ (Unbounded) arithmetic is often used to approximate int and float

▪ Multiplication by constants is supported

▪ To encode data types such as arrays

Equality logic with uninterpreted functions ▪ Universal mechanism to encode operations not natively
supported by a theory

Array theory

Fixed-size bitvector arithmetic ▪ To encode bit-level operations
▪ To perform bit-precise reasoning, e.g., floats

Non-linear integer/real arithmetic ▪ Useful for programs that perform multiplication and division, e.g.,
crypto libraries

Peter Müller, Marco Eilers – Program Verification

from z3 import *

--
1. Declare a new abstract sort (type) for pairs
--
Pair = DeclareSort('Pair')

--
2. Define constants and functions over the Pair sort
--
null = Const('null', Pair) # A constant representinghe empty pair
cons = Function('cons', IntSort(), IntSort(), Pair) # Constructor: builds a Pair from two Ints
first = Function('first', Pair, IntSort()) # Selector: extracts the first Int from a Pair

--
3. Define axioms describing the behavior of our abstract model
--
Axiom 1: the constant 'null' is equivalent to cons(0, 0)
ax1 = (null == cons(0, 0))

Axiom 2: for all integers x, y — the first element of cons(x, y) is x
x, y = Ints('x y')
ax2 = ForAll([x, y], first(cons(x, y)) == x)

--
4. Create a solver and add the axioms
--
s = Solver()
s.add(ax1)
s.add(ax2)

--
5. Define the formula we want to prove: first(null) == 0
--
F = (first(null) == 0)

--
6. Check validity of F
To prove F is valid, we check whether ¬F is unsatisfiable
--
s.add(Not(F))
print("Checking validity of F = first(null) == 0 ...")
print("Result:", s.check())

When you run this, Z3 prints:
Checking validity of F = first(null) == 0 ...
Result: unsat

unsat means that the negation of the formula (first(null) != 0) is unsatisfiable —
so the original formula first(null) == 0 is logically valid, given the axioms.

23

Using an SMT solver to verify a program
{ a = 1  0  b*b – 4*c }
// Check that this entailment is valid (its negation is unsatisfiable)
{ b*b – 4*a*c < 0  false 
 (b*b – 4*a*c < 0)  a*((-b + b∗b – 4∗a∗c) / 2)2 + b*((-b + b∗b – 4∗a∗c) / 2) + c = 0 }

from z3 import *

a, b, c = Reals('a b c')
d = b*b - 4*a*c

PO = Implies(
 And(a == 1, 0 <= b*b - 4*c),
 Or(And(d < 0, False),
 And(Not(d < 0),
 a*((-b + Sqrt(d))/2)*((-b + Sqrt(d))/2) + b*((-b + Sqrt(d))/2) + c == 0
)))

check validity
s = Solver()
s.add(Not(PO)); print(s.check())

Peter Müller, Marco Eilers – Program Verification

25

Theory reasoning
▪ Z3 selects theories based on the features appearing in formulas

- Most verification problems require a combination of many theories

▪ Some theories are decidable, e.g., quantifier-free linear arithmetic
- SMT solver will terminate and report either “sat” or “unsat”

▪ Some theories are undecidable, e.g., nonlinear integer arithmetic
- Especially in combination with quantifiers
- SMT solver uses heuristics and may not terminate or return “unknown”
- Results can be flaky, e.g., depend on order of declarations or random seeds

Quantifier-free linear integer arithmetic with uninterpreted functions

Peter Müller, Marco Eilers – Program Verification

Our first example
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

Our first example
function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

from z3 import *

Symbolic inputs
a0, b0, c0 = Ints('a0 b0 c0')

Helpful predicates for "truthiness"
A = (a0 != 0)
B = (b0 > 5)
C = (c0 != 0)

def model_or_none(constraints):
 s = Solver()
 s.add(constraints)
 return s.model() if s.check() == sat else None

Enumerate the relevant paths with their path conditions
(PC) and compute x,y,z symbolically
paths = []

function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

if (a)
then: x=-2
else: x=0
for condA, x_val in [(A, -2), (Not(A), 0)]:
 # if (b > 5)
 # then:
 # if (!a && c) y=1 else y=0
 # z=2
 # else: y=0; z=0
 # THEN branch of b>5
 pc_thenB = And(condA, B)
 y_thenB = If(And(Not(A), C), 1, 0) # inner if only affects y
 z_thenB = 2
 s_thenB = x_val + y_thenB + z_thenB
 paths.append(("A?, B then", pc_thenB, x_val, y_thenB, z_thenB, s_thenB))

 # ELSE branch of b>5
 pc_elseB = And(condA, Not(B))
 y_elseB = 0
 z_elseB = 0
 s_elseB = x_val + y_elseB + z_elseB
 paths.append(("A?, B else", pc_elseB, x_val, y_elseB, z_elseB, s_elseB))

function f(a, b, c) {
 var x = y = z = 0;
 if (a) {
 x = -2;
 }
 if (b > 5) {
 if (!a && c) {
 y = 1;
 }
 z = 2;
 }
 assert(x + y + z != 3);
}

Check each path: (1) feasibility; (2) assertion violation x+y+z != 3
for name, pc, x_sym, y_sym, z_sym, sum_sym in paths:
 # 1) Path feasibility
 m = model_or_none(pc)
 if m is None:
 continue # infeasible path

 # 2) Try to violate the assertion: sum == 3 (since assert(sum != 3))
 m_bad = model_or_none(And(pc, sum_sym == 3))
 if m_bad:
 print(f"[ASSERTION FAIL] Path: {name}")
 print(" Example input:", {d.name(): m_bad[d] for d in [a0,b0,c0]})
 print(" Computed (x,y,z,sum) =",
 (x_sym if isinstance(x_sym, int) else m_bad.eval(x_sym),
 y_sym if isinstance(y_sym, int) else m_bad.eval(y_sym),
 z_sym if isinstance(z_sym, int) else m_bad.eval(z_sym),
 m_bad.eval(sum_sym)))
 else:
 # Also produce a concrete input that simply exercises the path (even if no bug)
 m_path = model_or_none(pc)
 print(f"[OK PATH] Path: {name}")
 print(" Example input:", {d.name(): m_path[d] for d in [a0,b0,c0]})
 print(" sum =", m_path.eval(sum_sym))

