SMT:
satisfiability

modulo
theories




Recap and overview

* In the previous lecture, we introduced symbolic execution.

* To be effective, symbolic execution requires an efficient
mechanism to prove path conditions.

* This lecture: we explore how to handle Boolean structures when
deciding satisfiability modulo theories (SMT).

* |n practice, we introduce the foundations of SMT solvers, which
use clever techniques to reason efficiently about Boolean and

theory constraints.



Recap: What is the SAT

problem?
SAT stands for Boolean Satisfiability.

Itis the problem of determining
whether there exists a truth
assignment to a set of Boolean
variables that makes a given logical
formula true.

Example: the formula
(pVag) A(=p Vr)
Is there an assignment of truth values

to p, g, and r that makes this formula
true?




Recap: What s
the SAT problem? ‘7

SAT stands for Boolean
Satisfiability.

Example: the formula
(pVva) A(mp Vr)

Is there an assignment of truth
values to p, q, and r that makes
this formula true?

Yes: Under the assignment
p = false,q = true,r = true

The formula evaluates to true, so
it is satisfiable.



SAT: Boolean Satisfiability Problem

What is the SAT Problem?
Input: A Boolean formula

Question: /s there an assignment of true/false values to variables
that makes the formula true?

The problem proven NP-complete (Cook, 1971)



SAT is hard to solve!!

* The search space is exponential: 2" possible assignments
for n variables

* SAT is NP-complete
* No known polynomial-time algorithm for all inputs

* Many real-world problems reduce to SAT:
* Circuit verification
* Program analysis
* Scheduling, planning

* Even small changes to input can change the solution space drastically



OUTCOME

* SAT (satisfiable)

» at least one assignment makes the formula
true

* UNSAT (unsatisfiable)
* no assignment satisfies the formula

* UNKNOWN
e can’t determine (e.g., due timeout)

SAT Solver




SMT SOLVERS

Key idea: SMT manages the Boolean structure of formulas, with
one or more theory solvers, which handle the theory-specific
constraints (e.g., arithmetic, arrays, bit-vectors).

SMT = SAT + Theories:

SAT solver manages Boolean Theory solver checks consistency
structure, within the chosen theory.




Operationally

* To use SAT solver, we construct a propositional formula, called
boolean abstraction, that overapproximates satisfiability
 |f boolean abstraction is UNSAT,
* we are done

* |f boolean abstraction is SAT

» Use theory solver to check if assignment returned by SAT
solver is satisfiable modulo theory

* If not, add additional boolean constraints (called theory conflict
clauses) to guide the search for an assignment that is satisfiable
modulo theory




Techniques to address SAT

How Modern SAT Solvers Behave
* DPLL algorithm and its modern variants
* Heuristics for variable selection
* Preprocessing and simplification

* Solvers like MiniSAT, Z3, and CryptoMiniSat make SAT feasible in
many cases



The DPLL algorithm (Davis—Putnam-Logemann-Loveland) is the
foundation of most modern SAT solvers.

DPLL is a complete backtracking-based search algorithm for
solving the SAT problem. It determines whether a Boolean formula in
CNF (conjunctive normal form) is satisfiable.

DLLP improves brute-force search by introducing smart pruning and
inference techniques.




Boolean Constraint Propagation

Toward DPLL

If a clause has only one literal unassigned (a unit
clause), assign it in a way that satisfies the clause.

Clause: (x) the set x=true




Boolean Constraint Propagation: example

CNF Formula (p1V =3V =ps) A(=p1 Vp2) A(=p1V =p3 Vpa) A (=p1 V =pa Vps) A (—pa V —pa)

N 7 N 7 N 7 N 7 N

C'l CQ 03 05 CG

SAT begins with the assignment p; = true

(p1V —p3V =ps) A (—p1 V p2) A(—p1V —p3 Vps) A (=p1 V —p2 Vp3) A (—ps V —p2)
< (TV=p3V=ps) A(LVpa) ALV =p3Vpg) A(LV=p2Vps)A(=psV —p2)
< T Ap2 A(=p3Vpa) A(=p2 Vp3) A(—paV —p2)
< p2 A (—p3 V pa) A (—p2 V p3) A (—pa V —p2)



Boolean Constraint Propagation: example

(p1V =p3 V p5) A (=p1 Vp2) A (=1 V —ps V pa) A (7p1 V —p2 V ps) A (—pa V —p2)

>4 \ >4 \ - 4 \ >4 \ . 4

01 CQ 03 05 CG

The assignment p; = true allows one to reduce the original problem
to the satisfaction of the formula

p2 A (—p3 V pa) A (mp2 V p3) A (—psa V —p2)



Boolean Constraint Propagation: example

(p1V =3V =ps) A (=p1 V p2) A (mp1 V —p3 V pa) A (—p1 V —p2 V ps) A (—ps V —p2)

\ S \ J A 7 \ J A

TV TV TV vV

Cl CQ Cg 05 C'6

p2 A (—p3 V pa) A (—p2 V p3) A (—ps V —p2)

any satisfying interpretation must contain the assignment p, = true
No choice to satisfy this formula.

The literal p, is called the unit literal



Boolean Constraint Propagation: example

A 7 \ 7 A 7 \ 7 A
TV TV TV TV

Cl CQ Cg 05 C'6

(p1V =3V =ps) A (=p1 V p2) A (mp1 V —p3 V pa) A (—p1 V —p2 V ps) A (—ps V —p2)

p2 A (—p3 V pa) A (—p2 V p3) A (—ps V —p2)

Set p, = true

TA(=p3Vpa) AN(=T Vp3)A(—pgV-T)
< (=p3Vps) AN(LVps)A(-paV L)
< (—p3 V pa) A ps A —py



Boolean Constraint Propagation: example

(p1V =p3 V =ps) A(—p1 Vp2) A(—p1 V =p3 V pa) A(—p1 V —p2 V p3) A (—ps V —p2)

\ S \ J A 7 \ J A 7

-~ o~ _— _—

Cl CQ C3 C5 06

p2 A (—p3 V pa) A (—p2 V p3) A (—ps V —p2)
(mp3 V ps) A p3 A —pg Set p; = true

(—lT \/p4) AT A —py
e (J_ \/p4) N\ TPy
< P4 N\ Py



Overall

\ S \ S A 7 \ J A
-~ o~ _— — -~

Cl C2 03 C5 C@

(p1V =p3 V =ps) A (=1 V p2) A (71 V =ps V pa) A (<1 V —p2 V ps) A (<pa V —pa)

p2 A (—p3 V pa) A (—p2 V p3) A (—ps V —p2)

(mp3 V ps) A p3 A —pg Wih the assignment p, = true

(=T Vps) AT A —py the formula is not satisfiable
< (L Vpa) A —py
< Ppa N4



Unit propagation | w

.

._%kiz

The process we described is
called Boolean constraint Q’
propagation (BCP), or
sometimes unit propagation
for short.



How DLLP Works

Boolean Constrait Propagation (or Unit Propagation)

. Ifha cIIause has only one literal unassigned (a unit clause), assign it in a way that satisfies
the clause.

* Clause: (x) the set x=true
Pure Literal Elimination (optional)

* |f a literal appears with only one ﬁolarity (always positive or always negative) in all
clauses, assign it to satisfy all such clauses.

* If x appears only as x (never as -x), set x = true.
Variable Assighnment (Decision Step)
* Pick an unassigned variable and try assigning true or false.
Backtracking

* If the current assignment leads to a conflict (unsatisfiable clause), backtrack and try the
other assignment.

* If both fail, backtrack further.



The code

1 let rec dpll (f: formula) : bool =

= W N

€] ]

let fp = bcp f in
match fp with

| Some True -> true

| Some False -> false

| None ->
begin
let p = choose_var f in
let ft = (subst_var f p true) in
let ff = (subst_var f p false) in
dpll ft || dpll f£ff
end

end



Discussion

»[ Decide J(noconﬂicj[ BCP ]

backtrack conflict
ifd>0

Analyze
Conflict

lUNSAT

SAT

-




What about theory?

no conflict, theory propagation lemmaf(s)

‘]/ ] C(A) )( Theor
| y
—»‘ Decide BCP

J >[ J‘Conﬂict cIauseL Solve

backtrack conflict
ifd>0
SAT
Analyze
Y Conflict
UNSAT

» Combination of DPLL-based SAT solver and decision
procedure for conjunctive 7 formula called DPLL(7)
framework



Theory propagation

Assume that the original formula contains literals
X=V,vVv=2Z,x<2Z

with corresponding boolean variables by, b,and b,



Theory propagation

Assume that the original formula contains literals
X=V,vVv=2Z,x<2Z

with corresponding boolean variables by, b,and b,

Assume SAT make the (partial) assignment
b, = true, b, = true

Next computationalk step may decide to assign
b; = true or by = false



Theory propagation

Assume that the original formula contains literals
X=V,vVv=2Z,x<2Z

with corresponding boolean variables by, b,and b,

Assume SAT make the (partial) assignment
b, = true, b, = true

Next computational step may decide to assign
b; = true or by = false

?? by = true??

not the right choice: conflict in the equational theory



Theory propagation

* Theory solver tracks which literals are implied by the current
assignment.

* Our example: literal —=(x < y) is implied by the partial assighment
b, = true, b, = true

* The implication b; A b, = bzcan be safely added to the
knowledge of clauses (the clause database)



DPLL(T) framework

no conflict, theory propagation lemma(s)

/\

‘ ] ‘ —cw ﬂ' Theor

) Yy
Decide BCP ’(

J conflict cIauseL Solve

backtrack conflict
ifd>0
SAT
Analyze
\ Conflict
UNSAT

» Adding theory propagation lemmas prevents bad assignments
to boolean abstraction



/3 SAT SOLVER

e Z3 is an SMT solver developed by Microsoft Research
* https://github.com/Z3Prover/z3
* Z3 Input: A set of declarative constraints, often expressed in logic
over various domains:
* Integers, reals, booleans, bitvectors, arrays, strings, etc.

* Converts the problem into a combination of Boolean SAT
solving + theory solvers (for strings, integers, arrays, etc.)

» Uses efficient heuristics and decision procedures to prune infeasible
choices



/3 In Action

(x>0 && x < 10) (x * 2 == 15) {x:int}

Z3>

(declare-const x Int)

(assert (>

(assert (<

(assert (=
(check-sat)

x 0))
x 10))
(* x 2)

15))

Z3 >

unsat



from z3 import *

# declare multiple variables
X, y = Bools('x y’)

create a solver 1instance
= Solver()

add conjuncts

-add( Implies(x, y) ) The first two conjuncts are satisfiable,
.add( Implies(y, x) ) we get a model

# check satisfiability
print( s.check() ) sat
print( s.model() ) [y = False, X

s.add( x ) unsat
s.add( Not(y) )

# check satisfiability
print( s.check() )

w un HE n H

All four conjuncts together are unsatifiable



Linear integer/real arithmetic
19%xx+2xy =42

Non-linear integer/real arithmetic
Txy+2xrxy+1=(r+y)*(z+y)

Equality logic with uninterpreted functions
(z=yAu=v)= f(z,u) = f(y,v)

Fixed-size bitvector arithmetic
z&y < zly

Array theory
read(write(a,i,v),i) = v

/3 Theories

» (Unbounded) arithmetic is often used to approximate int and float
= Multiplication by constants is supported

» Useful for programs that perform multiplication and division, e.g.,
crypto libraries

= Universal mechanism to encode operations not natively
supported by a theory

» To encode bit-level operations
» To perform bit-precise reasoning, e.g., floats

» To encode data types such as arrays



from z3 import *

b o e

# 2. Define constants and functions over the Pair sort

o e

null = Const('null!, Pair) # A constant representinghe empty pair

cons = Function('cons/, IntSort(), IntSort(), Pair) # Constructor: builds a Pair from two Ints
first = Function('first, Pair, IntSort()) # Selector: extracts the first Int from a Pair

# Axiom 1: the constant 'null' is equivalent to cons(0, 0)
ax1 = (null==cons(0, 0))

# Axiom 2: for all integers x, y — the first element of cons(x, y) is x
X,y =Ints('xy')
ax2 = ForAll([x, y], first(cons(x, y)) == X)



s = Solver()
s.add(ax1)
s.add(ax2)

# 6. Check validity of F
# To prove Fisvalid, we check whether 7F is unsatisfiable

s.add(Not(F))
print("Checking validity of F = first(null) == 0...")
print("Result:", s.check())



When you run this, Z3 prints:
Checking validity of F = first(null) == 0
Result: unsat

unsat means that the negation of the formula (first (null) != 0)isunsatisfiable —
so the original formula first (null) == 0 islogically valid, given the axioms.



Using an SMT solver to verify a program

{a=1AaA0<b*b - 4%c }
// Check that this entailment is valid (its negation is unsatisfiable)
{ b*b - 4*a*c < @ A false v

—(b*b - 4*a*c < @) A a*((-b + Vbxb - 4xaxc) / 2)2 + b*((-b + Vbxb - 4xaxc) / 2) + c = 0 }

from z3 import *

a, b, c = Reals('a b c")

d = b*b - 4*a*c

PO = Implies(
And(a == 1, @ <= b*b - 4*c),
Or( And(d < @, False),

And(Not(d < @),
a*((-b + Sqrt(d))/2)*((-b + Sgrt(d))/2) + b*((-b + Sgrt(d))/2) + c ==

)))

# check validity

s = Solver()

s.add(Not(P0O)); print( s.check() )



» Z3 selects theories based on the features appearing in formulas
- Most verification problems require a combination of many theories

Quantifier-free linear integer arithmetic with uninterpreted functions

17Txx+23% f(y) >z +y+42

» Some theories are decidable, e.g., quantifier-free linear arithmetic
- SMT solver will terminate and report either “sat” or “unsat”

= Some theories are undecidable, e.g., nonlinear integer arithmetic
- Especially in combination with quantifiers
- SMT solver uses heuristics and may not terminate or return “unknown”
- Results can be flaky, e.g., depend on order of declarations or random seeds



Our first example

function f(a, b, c) {

var x =y = z = 0y
if (a) |

X = =23
}
if (b > 5) {

if (la && c) {

y = 1;

}
z = 2
}
assert(x + y + z != 3);

}



from z3 import *

Our fi rSt exampl_e # Symbolic inputs

a0, b0, c0 =Ints('a0 b0 c0')

function f(a, b, c) {
var x =y =z = 0; # Helpful predicates for "truthiness"
it (a) | A=(a0!=0)
X = -2; B =(b0>5)
) C =(c0!=0)

def model_or_none(constraints):

) Y b s = Solver()
z = 2; s.add(constraints)
} return s.model() if s.check() == sat else None
assert(x + y + z != 3);
} # Enumerate the relevant paths with their path conditions

(PC) and compute x,y,z symbolically
paths =]



# 1f (a)
# then: x=-2
# else: x=0
for condA, x val in [(A, -2), (Not(A), 0)]:
# 1f (b > 5H)
function f(a, b, c) { 4 then:
y = Z

)

var x = # if (la && c¢) y=1 else y=0
if (a) | # z=2
X = -2; # else: y=0; z=0
} # THEN branch of b>5
y thenB = If(And(Not(a), C), 1, 0) # inner if only affects y

z thenB 2
y = 1; s thenB = x val + y thenB + z thenB

} paths.append(("A?, B then", pc thenB, x val, y thenB, z thenB, s thenB))
z = 2;
} # ELSE branch of b>5
assert(x + y + z != 3); pc_elseB = And(condA, Not (B))
} y elseB = 0
z elseB = 0

s elseB = x val + y elseB + z elseB
paths.append(("A?, B else", pc elseB, x val, y elseB, z elseB, s elseB))



# Check each path: (1) feasibility; (2) assertion violation x+y+z != 3
for name, pc, x sym, y sym, z sym, sum sym in paths:

# 1) Path feasibility

m = model or none (pc)

{ if m 1s None:

function f(a, b, c) ) . .
var x =y = z = 0; continue # infeasible path
if (a) |
X = -2; # 2) Try to violate the assertion: sum == (since assert(sum != 3))
} m bad = model or none (And(pc, sum sym == 3))
iEd >3 o if m bad:
it (ialf& e print (£" [ASSERTION FAIL] Path: {name}")
) Y ' print (" Example input:", {d.name(): m bad[d] for d in [a0,b0,c0]})
z = 2; print (" Computed (x,vy,z,sum) =",
} (x_sym if isinstance(x sym, int) else m bad.eval(x sym),
assert(x + y + z = 3); y sym if isinstance(y sym, int) else m bad.eval(y sym),

} z sym 1f isinstance(z_ sym, int) else m bad.eval(z sym),
m bad.eval (sum sym)) )
else:
# Also produce a concrete input that simply exercises the path (even if no bug)
m path = model or none (pc)
print (f" [OK PATH] Path: {name}")
print (" Example input:", {d.name(): m path[d] for d in [a0,b0,c0]})
print (" sum =", m path.eval (sum sym))



