
Symbolic Execution
Formally Explained

Overview

• The goal of the lecture is
provide a formal explanation
of symbolic execution in
terms of a symbolic
transition system and
outlines its correctness

The language: expressions
𝑉𝑎𝑟	 ≔ 𝑥, 𝑦, 𝑧, … .	 A set of program variable
𝑂𝑝𝑠	a set of operation symbols 𝑜𝑝	with their arity.
𝑉𝑎𝑙𝑢𝑒𝑠	(ranged over by 𝑣 are nullary operators. We also assume to have
symbolic values.
The set f programming expressions e is defined by the following grammar.

𝐸𝑥𝑝	 ∷= 𝑥	|	𝑜𝑝 𝑒!, … , 𝑒"
Expressions 𝑒 consist of program variables 𝑥 and operators 𝑜𝑝 applied to
expressions.

The language: statements

Symbolic execution formally explained 619

In the final Section 5 we conclude with a brief discussion how multi-threading, and concurrent objects can
be treated, showing the generality of our theory of symbolic execution.

2. Basic symbolic execution

We assume a set of Var of program variables x , y, u, . . ., and a set Ops of operations op, We abstract from
typing information, but we assume Ops includes standard Boolean operators. The set Expr of programming
expressions e is defined by the following grammar.

e ::! x | op(e1, . . . , en)

where x ∈ Var and op ∈ Ops. Expressions e consist of program variables x and operators op applied to
expressions (as a special case, we include values v as nullary operators).

Statements S of the basic programming language are then defined by the grammar:

S ::! x :! e assignment
| S ; S sequential composition
| if b {S1}{S2} choice
| while b {S } iteration

This basic language thus consists of (side-effect free) assignments x :! e, and the usual control structures of
sequential composition, choice, and iteration. In the latter two constructs b denotes a Boolean expression. We
assume associativity of the sequential composition operator, and use the “empty” statement ε, e.g., x :! x , which
acts as the neutral element with respect to sequential composition. It will be used to denote termination. As a
consequence, every statement is equivalent to a statement of the form A; S , where A is either an assignment,
a choice or an iteration construct. Finally, we work only with programs that are well-typed, so operators are
recursively applied to the correct number of correctly typed sub-expressions.

A substitution σ is a function Var → Expr which assigns to each variable an expression. By eσ we denote the
application of the substitution σ to the expression e, defined inductively by

xσ ! σ (x)
op(e1, . . . , en)σ ! op(e1σ, . . . , enσ)

A symbolic configuration is a triple 〈S , σ,φ〉 where S denotes the statement to be executed, σ denotes the
current substitution, and the Boolean condition φ denotes the path condition. Next we describe a transition
system for the symbolic execution of our basic programming language defined above.
Symbolic assignment

• 〈x :! e; S , σ,φ〉 → 〈S , σ [x :! eσ],φ〉

where σ [x :! e] is the update of a substitution defined by σ [x :! e](y) ! σ (y) if x and y are syntactically distinct
variables, and σ [x :! e](x) ! e otherwise.
Symbolic choice

• 〈if b {S1}{S2}; S , σ,φ〉 → 〈S1; S , σ,φ ∧ bσ 〉
• 〈if b {S1}{S2}; S , σ,φ〉 → 〈S2; S , σ,φ ∧ ¬bσ 〉

Symbolic iteration

• 〈while b {S }; S ′, σ,φ〉 → 〈S ; while b {S }; S ′, σ,φ ∧ bσ 〉
• 〈while b {S }; S ′, σ,φ〉 → 〈S ′, σ,φ ∧ ¬bσ 〉

We illustrate the symbolic semantics by the following simple example of the symbolic execution of a while
statement.

Substitution
A substitution 𝜎	is a mapping from variables to expressions

𝜎: 𝑉𝑎𝑟 → 	𝐸𝑥𝑝	

𝜎 = {	𝑥! = 𝑒!, … , 𝑥# = 𝑒#}

Applying a substitution
Given an expression 𝑒, the application of a substitution 𝜎, written 𝑒𝜎,
means replacing every occurrence of each variable 𝑥$ in e	 by the
corresponding expression 𝑒$.

𝑒 = 𝑓 𝑥, 𝑦 	 𝜎 = {𝑥 = 𝑎, 𝑦 = 𝑔 𝑏 }

𝑒𝜎 = 𝑓(𝑎, 𝑔 𝑏)

Applying a substitution The formal definition

Symbolic execution formally explained 619

In the final Section 5 we conclude with a brief discussion how multi-threading, and concurrent objects can
be treated, showing the generality of our theory of symbolic execution.

2. Basic symbolic execution

We assume a set of Var of program variables x , y, u, . . ., and a set Ops of operations op, We abstract from
typing information, but we assume Ops includes standard Boolean operators. The set Expr of programming
expressions e is defined by the following grammar.

e ::! x | op(e1, . . . , en)

where x ∈ Var and op ∈ Ops. Expressions e consist of program variables x and operators op applied to
expressions (as a special case, we include values v as nullary operators).

Statements S of the basic programming language are then defined by the grammar:

S ::! x :! e assignment
| S ; S sequential composition
| if b {S1}{S2} choice
| while b {S } iteration

This basic language thus consists of (side-effect free) assignments x :! e, and the usual control structures of
sequential composition, choice, and iteration. In the latter two constructs b denotes a Boolean expression. We
assume associativity of the sequential composition operator, and use the “empty” statement ε, e.g., x :! x , which
acts as the neutral element with respect to sequential composition. It will be used to denote termination. As a
consequence, every statement is equivalent to a statement of the form A; S , where A is either an assignment,
a choice or an iteration construct. Finally, we work only with programs that are well-typed, so operators are
recursively applied to the correct number of correctly typed sub-expressions.

A substitution σ is a function Var → Expr which assigns to each variable an expression. By eσ we denote the
application of the substitution σ to the expression e, defined inductively by

xσ ! σ (x)
op(e1, . . . , en)σ ! op(e1σ, . . . , enσ)

A symbolic configuration is a triple 〈S , σ,φ〉 where S denotes the statement to be executed, σ denotes the
current substitution, and the Boolean condition φ denotes the path condition. Next we describe a transition
system for the symbolic execution of our basic programming language defined above.
Symbolic assignment

• 〈x :! e; S , σ,φ〉 → 〈S , σ [x :! eσ],φ〉

where σ [x :! e] is the update of a substitution defined by σ [x :! e](y) ! σ (y) if x and y are syntactically distinct
variables, and σ [x :! e](x) ! e otherwise.
Symbolic choice

• 〈if b {S1}{S2}; S , σ,φ〉 → 〈S1; S , σ,φ ∧ bσ 〉
• 〈if b {S1}{S2}; S , σ,φ〉 → 〈S2; S , σ,φ ∧ ¬bσ 〉

Symbolic iteration

• 〈while b {S }; S ′, σ,φ〉 → 〈S ; while b {S }; S ′, σ,φ ∧ bσ 〉
• 〈while b {S }; S ′, σ,φ〉 → 〈S ′, σ,φ ∧ ¬bσ 〉

We illustrate the symbolic semantics by the following simple example of the symbolic execution of a while
statement.

Composing substitutions

Substitutions can be composed:

𝜎! ∘ 𝜎% 𝑥 = 𝜎! 𝑥 𝜎%

In logic programming , substitutions are used to instantiate
variables so that expressions (or formulas) can match or
become identical.

Composition update

𝜎 𝑥 = 𝑒 	is a substitution.

It is the update of the substitution 𝜎 defined as follows

𝜎 𝑥 = 𝑒 𝑦 = 𝑒	 𝑖𝑓	𝑦 = 𝑥

𝜎 𝑥 = 𝑒 𝑦 = 𝜎 𝑦 	 𝑖𝑓	𝑥 ≠ 𝑦	

The operational semantics

• A symbolic configuration is a triple
⟨𝑆, 𝜎, 𝜙⟩

• where 𝑆 denotes the statement to be executed, 𝜎 denotes the
current substitution, and the logical condition 𝜙 denotes the path
condition.

Assignment

𝑥 ≔ 𝑒, 𝜎, 𝜙 → ⟨𝜎[𝑥 = 𝑒], 𝜙⟩	

Sequential composition

𝑆!, 𝜎, 𝜙 → ⟨𝑆", 𝜎", 𝜙"⟩
𝑆!; 𝑆#, 𝜎, 𝜙 	 → ⟨𝑆"; 𝑆#, 𝜎", 𝜙"⟩	

𝑆!, 𝜎, 𝜙 → ⟨𝜎", 𝜙"⟩
𝑆!; 𝑆#, 𝜎, 𝜙 → ⟨𝑆#, 𝜎"𝜙"⟩

Choice (conditional)

𝑖𝑓 𝑏 𝑆! 𝑆# , 𝜎, 𝜙 → ⟨𝑆!, 𝜎, 𝜙 ∧ 𝑏𝜎	⟩

𝑖𝑓 𝑏 𝑆! 𝑆# , 𝜎, 𝜙 → ⟨𝑆#, 𝜎, 𝜙 ∧ ¬ 𝑏𝜎	⟩

While

𝑤ℎ𝑖𝑙𝑒 𝑏 	{𝑆}, 𝜎, 𝜙 → ⟨𝑆;𝑤ℎ𝑖𝑙𝑒 𝑏 𝑆 , 𝜎, 𝜙 ∧ 𝑏𝜎⟩

𝑤ℎ𝑖𝑙𝑒 𝑏 	{𝑆}, 𝜎, 𝜙 → ⟨𝜎, 𝜙 ∧ ¬𝑏𝜎⟩

Correctness proof

• The formalization and the proof of correctness with respect to a
concrete semantics is based on the notion of memory M
• The memory M is a function 𝑀:𝑉𝑎𝑟 → 𝑉𝑎𝑙𝑢𝑒𝑠
• where 𝑉𝑎𝑙𝑢𝑒𝑠 is a set of values (including the Boolean values).

A basic lemma

• In the proof the basic substitution lemma is crucial
• The lemma states that evaluating an expression e in the

composition 𝑀	 ∘ 	𝜎, gives the same result as evaluating in 𝑀	the
expression 𝑒𝜎 which results from first applying the substitution.

Array

• Expressions
𝑎[𝑒]

• Statements

𝑎 𝑒 ≔ 𝑒′

Special Notation
𝑎 𝑒 ≔ 𝑒′

𝑎 ≔ (𝑎 𝑒 ≔ 𝑒!)

The expression 𝑎 𝑒 ≔ 𝑒! denotes the array update defined by

𝑎 𝑒 ∷= 𝑒! 𝑒!! = 𝑖𝑓	𝑒 = 𝑒!!𝑡ℎ𝑒𝑛	𝑒!𝑒𝑙𝑠𝑒	𝑎 𝑒!!

Special predicate

622 F S de Boer and M Bonsangue

Next we consider the case when the Boolean guard of a choice construct evaluates to true:

〈S ,V0〉 →∗ 〈if b {S1}{S2}; S ,V 〉 → 〈S1; S ,V 〉
where V (b) % true. By the induction hypothesis there exists a symbolic computation

〈S , id, true〉 →∗ 〈if b {S1}{S2}; S , σ,φ〉
for some path condition φ and a substitution σ such thatV0(φ) % true andV % V0◦σ . By the symbolic semantics
we have that

〈S , id, true〉 →∗ 〈if b {S1}{S2}; S , σ,φ〉 → 〈S1; S , σ,φ ∧ bσ 〉
We then can conclude this case by again an application of the above substitution lemma from which we derive
that V0(bσ) % V0 ◦ σ (b) % V (b) % true.

All other cases are treated similarly. ✷

The above correctness and completeness theorems establish a correspondence between reachable symbolic
and concrete states. It is straightforward to generalize these theorems to computations represented by sequences
of (symbolic or concrete) states.

2.1. Extension to arrays

In this subsection we briefly discuss the symbolic execution of our basic programming language extended with
arrays. For notational convenience we restrict to one-dimensional arrays. Following [AdBO09] and [Gri81] we
view such arrays semantically as (mathematical) functions, i.e., an array variable has a type T → T ′, where the
basic types T and T ′ denote the type of its domain and co-domain, respectively. Thus the domain of an array
can be unbounded (below we discuss the extension of our theory to bounded arrays). Given an array variable
a of type T → T ′, the expression a[e] of type T ′ denotes the result of applying the function associated with a
to the value of e, where the expression e is of type T . We extend the basic language with expressions a[e] and
assignments a[e] :% e ′, following the approach initially proposed in [Gri81] to the Hoare logic of assignments to
sub-scripted variables: symbolically an assignment a[e] :% e ′ is viewed as an assignment a :% (a[e] :% e ′), where
the expression (a[e] :% e ′) denotes an update of the array a defined by

(a[e] :% e ′)[e ′′] % if e % e ′′ then e ′ else a[e ′′] fi

(assuming ternary operators for the description of conditional expressions). Formally, array expressions are
defined inductively as follows: every array variable is an array expression, if a is an array expression of type
T → T ′ so is (a[e] :% e ′), where e and e ′ are of type T and T ′, respectively.

A substitution σ representing a concrete state then assigns to all the program variables a corresponding
expression. For any array variable a, σ (a) thus denotes an array expression. Given this symbolic interpretation of
arrays asmathematical functions it is straightforward to extend the symbolic execution of our basic programming
language to arrays, and generalize the above correctness and completeness theorems.

There are various ways to symbolically execute bounded arrays (see for example [FLP17]). One possible way
to extend our approach to bounded arrays (of type N → T , for some T , where N denotes the type of the natural
numbers) consists of adding the expression | a |which denotes the length of the array a. The symbolic execution of
(initially) setting the bound of an array, described by the statement | a |% e, then updates the path condition with
the information | a |% eσ , where σ is the current substitution. We describe the absence of an array-out-of-bound
error by a predicate δ(e) defined inductively by

δ(x) % true
δ(a[e]) % 0 ≤ e ≤| a | ∧δ(e)
δ(op(e1, . . . , en)) % δ(e1) ∧ · · · ∧ δ(en)

We indicate the occurrence of an array-out-of-bound error by a statement array-out-of-bound. This statement then
can be further evaluated in the context of error-handling constructs. The symbolic execution of such constructs
is out of scope of this paper though.

It is then straightforward to update the above symbolic transition system to account for array-out-of-bound
errors. For example, for the symbolic execiution of an assignment x :% e we have the following two transitions:

Special statements

We indicate the occurrence of an array-out-of-bound
error by a statement array-out-of-bound.

This statement then
can be further evaluated in the context of error-handling
constructs.

Assignment

𝑥:= 𝑒, 𝜎, 𝜙 	 → ⟨𝜎 𝑥 = 𝑒 , 𝜙	 ∧ 𝛿(𝑒𝜎)⟩

𝑥:= 𝑒, 𝜎, 𝜙 	 → ⟨𝐴𝑟𝑟𝑎𝑦𝑂𝑢𝑡𝑂𝑓𝐵𝑜𝑢𝑛𝑑, 𝜙	 ∧ ¬𝛿(𝑒𝜎)⟩

Array Assignment

𝑎 𝑒 ≔ 𝑒′, 𝜎, 𝜙 	 → ⟨𝜎 𝑎 ≔ 𝑎 𝑒𝜎 ≔ 𝑒6𝜎 , 𝜙	 ∧ 𝛿 𝑎 𝑒𝜎 ∧ 𝛿(𝑒6, 𝜎)⟩

𝑎 𝑒 ≔ 𝑒′, 𝜎, 𝜙 	 → ⟨𝐴𝑟𝑟𝑎𝑦𝑂𝑢𝑡𝑂𝑓𝐵𝑜𝑢𝑛𝑑, 𝜙	 ∧ ¬(𝛿 𝑎 𝑒𝜎 ∧ 𝛿 𝑒6, 𝜎)⟩

Other
constructs

Recursion: requires the
symbolic handling of closure

Classes and Objects: the
symbolic execution is based on
• symbolic execution traces
• a weakest preconditon calculus.

Thread and concurrency ….

(my personal) Concluding Remarks

• Despite the popularity and success of symbolic execution techniques, the
foundations of symbolic execution are still missing.
• The foundations must cover in an uniform manner mainstream programming

features
• Most existing tools for symbolic execution lack an explicit formal specification and

justification.

