Symbolic Execution
Formally Explained

* The goal of the lecture is
provide a formal explanation
of symbolic execution in

0 . terms of a symbolic
verview transition system and
outlines its correctness

The language: expressions

Var = x,y,z, Asetof program variable
Ops a set of operation symbols op with their arity.

Values (ranged over by v are nullary operators. We also assume to have

symbolic values.

The set f programming expressions e is defined by the following grammar.
Exp = x]|op(eq,..,e,)

Expressions e consist of program variables x and operators op applied to

expressions.

The language: statements

Si=zx:=e assignment
S; S sequential composition
if b {51}{5>} choice

while b {5} 1teration

Substitution

A substitution o is a mapping from variables to expressions

o:Var - Exp

o={x;1=¢€q .., X = €}

Applying a substitution

Given an expression e, the application of a substitution o, written ego,
means replacing every occurrence of each variable x; in e by the
corresponding expression e;.

e = f(x,y) oc={x=ay=g(b)}

ed = f(a,g(b))

Applylng d Su bStItUtlon The formal definition

ro = o(x)

op(er, ..., e,)o =op(eo,...,e,0)

Composing substitutions

Substitutions can be composed:
(o1 007)(x) = (01(95))02

In logic programming , substitutions are used to instantiate
variables so that expressions (or formulas) can match or
become identical.

Composition update

o|x = e] is a substitution.

Itis the update of the substitution o defined as follows

olx=elly) =e ify=x

olx=el(y)=0(y) ifx+y

The operational semantics

* A symbolic configuration is a triple
(5,0,9)

* where S denotes the statement to be executed, o denotes the
current substitution, and the logical condition ¢ denotes the path
condition.

Assignment

(x :=e,0,¢) > (o[x = e], p)

Sequential composition

<S1; g, d)) - (S,' O-,' (:b,)

($1;52,0,¢) = (558,07, ¢')

(Sl' g, ¢> - (O-,' (:b,)
(Sl; 521 g, ¢> - (SZI Gl¢,>

Choice (conditional)

(lf(b}{sl}{SZ}w g, ¢> - <51; g, ¢ A bo)

(if (b}S1:1S2},0,9) = (Sz, 0, A= bo)

While

(while(b) {S},0,¢) — (S; while (b){5},0,¢ A ba)

(while(b) {S},0,¢) = (0, A =bo)

Correctness proof

* The formalization and the proof of correctness with respectto a
concrete semantics is based on the notion of memory M

* The memory Mis a function M:Var — Values
 where Values is a set of values (including the Boolean values).

A basic lemma

* In the proof the basic substitution lemma is crucial

* The lemma states that evaluating an expression e in the
composition M o g, gives the same result as evaluating in M the
expression edg which results from first applying the substitution.

Array

* Expressions

e Statements

Special Notation

The expression ale] := e’ denotes the array update defined by

(ale] ==e€")(e") =if e = e"thene’else ale'’]

Special predicate

5(x) = tru
S(ale]) =0<e <\ a | Aé(e)
S(op(er, ..., ep)) = 8(61) A - Nb(ep)

Special statements

We indicate the occurrence of an array-out-of-bound
error by a statement array-out-of-bound.

This statement then
can be further evaluated in the context of error-handling
constructs.

Assignment

(x:=e,0,¢) > (aglx=c¢e],p NS(eo))

(x:=-¢e,0,¢) = (ArrayOutOfBound, ¢ A —-6(eq))

Array Assignment

(ale] = ¢€',0,¢) — (ola = (aled] :=e'a)],¢ AS(alea]) Ab(e’, o))

(ale] = ¢€',0,¢) - (ArrayOutOfBound,¢ A —(6(alea]) Ad(e’,0)))

Recursion: requires the
symbolic handling of closure

Classes and Objects: the
symbolic execution is based on

Other

constructs : :
e symbolic execution traces

e a weakest preconditon calculus.

Thread and concurrency

(my personal) Concluding Remarks

* Despite the popularity and success of symbolic execution techniques, the
foundations of symbolic execution are still missing.

* The foundations must cover in an uniform manner mainstream programming
features

* Most existing tools for symbolic execution lack an explicit formal specification and
justification.

