Symbolic Execution:
Challenges



Path explosion and state space blow-up

* Programs have lots of branches, loops, inputs:

* the number of distinct execution paths grows exponentially in the size of

the program.
Each conditional (if/else) doubles potential paths; nested loops multiply

things further.

* Symbolic execution tries to explore all paths, this quickly
becomes intractable.

* The issue: Path explosion makes the analysis slow or impossible;
* one cannot symbolically explore all paths for moderate or large programs.



function f (a) {
var X = a;

while (x > 0) { x--; } Assume a, that is the initial symbolic value

How symbolic execution forks
While loop: (x > 0) is the guard, if x is symbolic, the engine forks:

Entry loop: add constraint x > 0, then execute x ;= x - 1.
Exit loop: add constraint x < 0, then leave the loop.

Start: x = a,.

1st check: forks on a; >0 vs a5 <0.

If we took the loop once, now x =a, - 1.

2nd check: forkson ag -1>0vs a5 -1<0.
If we took it twice, x = ay - 2, and so on.



function f(a) {
var X = aj;
while (x > 0) { x--; } Assume a, that is the initial symbolic value




function f(a) {
var X = aj;
while (x > 0) { x--; } Assume a, that is the initial symbolic value

Exiting after exactly k iterations yields the path condition:
True for the firstk checks: ag > 0,ap —1>0,..ap —(k—1) >0
Then exitonthe k-th:ag —k < 0akaag=k

There’s one feasible path per non-negative integer k.

Since kis unbounded, there are countably infinitely many distinct paths (each
with a different path condition).



Path The same

reasoning applies

explosion to recursive calls




void example (int a, int b) {
if (a < 0) {

if (b > 0) { The symbolic execution explores 4 possible paths,
// Path 1 corresponding to all truth combinations of

} else {
/) Path 2 (a < 0) and (b > 0)

}

} else {

if (b > 0) {
// Path 3

} else {
// Path 4

) For two symbolic variables a and b, there are four

distinct paths.
Adding a third symbolic variable ¢ would create eight
paths.

Because symbolic execution must analyze the true
and false branch every time a conditional expression

IS encountered.



Path

Data Structures

explosion




int foo(int *A, int n, int k) {
inti=0, sum =0;
while (i < n){
if (Alil==k){ //branch1

sum +=1;
}else { // branch 2
sum -=1;
} - -
if (sum<-5){ //alarm Symbolic execution:
return -1; at each iteration one forks on
} Ali]==k vs A[i]'=k
i++;
}
return sum; We have 2" paths.

}



Path Challenge:

Handling Large
Execution Trees

explosion




Handling Large Execution Trees

#1: Over-approx to prune big subtrees (sound but maybe imprecise)

int foo(int *A, int n, int k) {
inti=0, sum =0;
while (i < n){
if (A[i]==k){ //branch1
sum +=1;
}else { // branch 2
sum -=1;
}
if sum<-5){ //alarm
return -1;

}

i++;

}

return sum;

}

(Hoare-like reasoning) Loop invariant:
(0<i <n) A(sum € [—i,i])



Handling Large Execution Trees

#1: Over-approx to prune big subtrees (sound but maybe imprecise)

int foo(int *A, int n, int k) { . .
o A, Loop invariant:
inti=0,sum =0; 0<i < ..
while (i< n){ (0<i <n) A(sum € [—i,i])
if (A[i]==k){ //branch1
sum +=1;
}else {

Immediate pruning whenn < 5:
the alarm sum < -5isunreachable whenn < 5.
// branch 2

sum -= 1 We can skip exploring all 2"branches for every path with n

}
if (sum<-5){ //alarm
return -1;

}

i++;
return sum;

}

<

5.



Handling Large Execution Trees

#1: Over-approx to prune big subtrees (sound but maybe imprecise)

int foo(int *A, int n, int k) {
inti=0, sum =0;
while (i < n){
if (A[il==k){ //branch1

Loop invariant:
(0<i <n) A(sum € [—i,i])

Immediate pruning whenn < 5:

sum +=1; .
Yelse { // branch 2 the alarm sum < -5isunreachable whenn < 5.
sum -= 1 We can skip exploring all 2"branches for every path withn < 5.
i}f (sum<-5){ //alarm Memory-safety assumption (precondition):
return -1 Ifwerequire 0 < n < len(A),theaccessA[i] isin-bounds.
} ’ No need to track Out Of Bound checks; those subtrees are cut.
i++;
}
return sum;

}



Handling Large Execution Trees

#1: Over-approx to prune big subtrees (sound but maybe imprecise)

int foo(int *A, int n, int k) {
inti=0, sum =0;
while (i < n){
if (A[i]==k){ //branch1
sum +=1;
}else { // branch 2
sum -=1;
}
if sum<-5){ //alarm
return -1;

}

i++:

H

}

return sum;

}

Loop invariant:
(0<i <n) A(sum € [—i,i])

Immediate pruning whenn < 5:
the alarm sum < -5isunreachable whenn < 5.
We can skip exploring all 2"branches for every path withn < 5.

Memory-safety assumption (precondition):
Ifwerequire0 < n < len(A),theaccessA[i] isin-bounds.
No need to track Out Of Bound checks; those subtrees are cut.

Effect: For the whole slice of states where n < 5, the execution
tree collapses to one summarized node (no alarm).

For n = 6, we continue (since the over-approx can’t rule the
alarm out)



Handling Large Execution Trees

#2: Under-approx to get a bug withess fast (no false positives)

int foo(int *A, int n, int k) { . . .
inti=0,sum = 0 We assert a concrete under-approx case for the first 6 iterations:
while (i < n){ .

if (A[i]==k){ //branch 1 i =0, n= 6, and A[0..5] != k
sum +=1;
}else { // branch 2
sum -=1;
}
if (sum<-5){ //alarm less k
return -1; // than exptected
}
i++;
}
return sum;

}



Handling Large Execution Trees

#2: Under-approx to get a bug withess fast (no false positives)

int foo(int *A, int n, int k) {
inti=0, sum = 0;
while (i < n){

We assert a concrete under-approx case for the first 6 iterations:

if (A[i]==k){ //branch 1 i =0, n= 6, and A[0..5] != k
sum +=1; ) ) ) .
Yelse { // branch 2 The path.ls straight-line (no forking):
sum -=1: After 1stiter: sum = -1
i}f (sum<-5){ //alarm less k After 6th iter: sum = -6 <-5 = return -1.
return -1; // than exptected
} This provides a witness input of a (real) bug
44 n =6, A[0..5] = {k+1, k+1, k+1, k+1, k+1, k+1} (or any # k)
}
return sum;

}



Handling Large Execution Trees

#2: Under-approx to get a bug withess fast (no false positives)

int foo(int *A, int n, int k) {
inti=0, sum = 0;
while (i < n){

We assert a concrete under-approx case for the first 6 iterations:

if (A[i]==K){ //branch 1 i =0, n26, and A[0..5] '= k
sum +=1; . . . .
Yelse { // branch 2 The path.ls straight-line (no forking):
sum -=1: After 1stiter: sum = -1
i}f (sum<-5){ //alarm less k After 6th iter: sum =-6 < -5 = return -1.
return -1; // than exptected _ _
} This provides a witness input of a (real) bug
44 n =6, A[0..5] = {k+1, k+1, k+1, k+1, k+1, k+1} (or any # k)
}
return sum;

Effect: For n =2 6, instead of exploring an exponential
tree, we pick 1 guded path to the alarm and stop (or
keep a few patterns if we want diversity)

}



Handling Large Execution Trees

#3: Putting them together (execution strategy)

int foo(int *A, int n, int k) {

inti=0, sum = 0; Step 1
while (i < n){ Pre-pass (Over-approx):
if (A[i]==Kk){ //branch 1 Compute invariants and global pruning rules:
sum +=1; .
Yelse { // branch 2 If n<5then alarm unreachable. Result: prune entire subtree.
sum-=1; . "
} If n>len(A) then memory unsafe. Result: filter by precondition

if (sum<-5){ //alarm less k
return -1; // than exptected

}

i++;
return sum;

}

These rules are cached at the loop head and function entry.



Handling Large Execution Trees

#3: Putting them together (execution strategy)

int foo(int *A, int n, int k) {

inti=0, sum = 0; Step 2 . . . .
while (i < n){ Symbolic execution with pruning:
if (A[i]==Kk){ //branch 1 When the executor sees a state withn< 5, it does not fork inside the
sum += 1 loop. (alarm absent.)
}else { // branch 2 . .
sum -= 1 When it sees n = 6, it does not fork 2™ paths.

} Strategy: asks the under-approx oracle for a bug pattern; it injects

i I= i }
if sum<-5){ //alarm less k the conjunct A[0..5] != k and executes a single path to return -1.

return -1; // than exptected

}

i++:

H

}

return sum;

}



Handling Large Execution Trees

#3: Putting them together (execution strategy)

int foo(int *A, int n, int k) {

inti= - 0- Step 3
inti=0, sum =0; . o l did . . [
while (i < n){ or any remaining alarm candidates (e.g., if the under-approx. oracle

if (Ali]==k){ //branch 1 didn’t find one), try to prove absence with a suitable abstraction.
sum +=1;

}else { // branch 2
sum -=1;

}

if (sum<-5){ //alarm less k
return -1; // than exptected

}

i++;
return sum;

}



Handling large execution trees

Heuristically select which

y
PaX
branch to explore next / \
Q

m Select at random tof t /\f
m Select based on coverage p/ \10 y/ \1

m Prioritize based on distance t / \f

to "interesting” program

locations to f
m Interleaving symbolic \1

execution with random testing



* Environment modeling:
Challenges of Dealing with native code

Symbolic Execution or library calls




Symbolic model for library y = sqrt(x);

If sgrt is a native library call (implemented in assembly or math library), the
symbolic executor doesn’t know its internal behavior.

Challenge:
It canmoot derive the relation between x and y symbolically.
It may either concretize x (pick one value) or drop the path (loss of coverage).

Impact:
Path explosion is reduced (by dropping paths), but soundness is lost.

Typical fix:
Provide models forcommon math functions:e.g., vy 2 0 A y2 = x.



n = read(fd, buf, len):;

SyStem CallS if (n < 0) error();

Symbolic execution doesn’t know what the OS will return.

Challenges:
Whatisin buf?Is n symbolic or concrete?
Each possible return value creates a new path.

Fixes:
Abstract models:n € [0, len] andbuf =symbolic array of length n.



Pointer aliasing and memory layout in native
libraries

memcpy (dst, src, n);

Native functions like memcpy, strcpy, ormalloc are highly optimized and
platform-specific.

Challenges:
If src or dst are symbolic, modeling byte-by-byte copying symbolically is costly.

Alias relationships (if src and dst overlap) can make the SMT constraints explode.

Fix:
Use logical summary instead of actually iterating byte-by-byte (nly the final effect)

Vi € [0,n): dest[i] = src]i]



Uninterpreted external functions

token = SHA256 (data) ;

Challenge:
Cryptographic functions are intentionally opaque; symbolic reasoningis
impossible.

Fix:
Treat them as uninterpreted functions: only reason about equality
(e.g., SHA256 (x) == SHA256(y) =2 x == y).



Cross Language Calls

extern "C" { fn fast hash(input: *const u8, len: usize) -> u32; }

Challenge:

Different calling conventions, heap models, and memory
ownership rules.

The symbolic engine must switch between language runtimes.

Fix:

Use hybrid symbolic interpreters or translate native
components into logical summaries (contracts on input—output
relations).



* Solver limitations: Dealing
with complex path

Symbolic Execution conditions

Challenges of




Path conditions grow exponentially

int foo(int x, int vy) {
if (x * vy > 10) {
if (x -y == 3) {
assert(x < 100);
}
} Symbolic state:

At the assertion, the path condition is:
(xxy>10)A(x—y=3)A-(x <100)
The solver must check:

(xxy>10)A(x—y=3)A(x=100)



Intermezzo: SAT Sat Solver Again

A formulais linear if each variable appears at most to the first
power and variables are not multiplied or divided by each other.

Allowed operations:
Addition and subtraction of variables.
Multiplication or division by known constants.
Comparisons using =, #, <, <, >, 2,
Example:

3x —2y <7

x+4y =10

x =0



Intermezzo: Sat Solver again

If any term multiplies or divides two variables, or uses non-linear
functions (e.g., powers, sin, exp, etc.), it becomes non-linear.

Example:
xx*xy>10
x*+y<5
sin(x) =0



Intermezzo: Sat Solver Again

* Linear arithmetic is well-understood, efficient solving algorithms
(based on linear programming, Gaussian elimination, or simplex
methods).

* Solvers can handle thousands of linear constraints quickly.
* Non-linear arithmetic requires far more expensive reasoning

* That’s why symbolic execution engines and SMT solvers like Z3
have specialized “theories”:
* LIA = Linear Integer Arithmetic

* LRA = Linear Real Arithmetic
* NIA/ NRA = Non-linear Integer/Real Arithmetic (much slower)



Back to our example




Path conditions grow exponentially

int foo(int x, int vy) {
if (x * vy > 10) {
if (x -y == 3) {
assert(x < 100);
}
} Symbolic state:

At the assertion, the path condition is:
(xxy>10)A(x—y=3)A-(x <100)
The solver must check:

(xxy>10)A(x—y=3)A(x=100)



Path conditions grow exponentially

int foo(int x, int vy) {
if (x * vy > 10) {
if (x -y == 3) {
assert(x < 100);

}
} Symbolic state:

At the assertion, the path condition is:

This constraint includes non-linear arithmetic (xxy>10)A(x—y=3)A-(x <100)
(x * y)
which most SMT solvers handle poorly

The solver must check:

The result:

Solver may time out. (x*y>10)A(x—y=3)A(x =100)



Path Conditions with data structures

if (arrl[a] == arr[b]) {
if (maplkey] == wval) { ... }

Symbolic execution must exploit theories of arrays and maps: and these are embedded in SMT
formulas.

Challenge:
Each array access or update adds quantifiers and nested select/store terms.
Solving these leads to heavy quantifier instantiation and exponential blow-up.

Strategy: apply array abstraction
(summarize properties instead of enumerating cells).



Path Conditions with Chains

for (1 = 0; i < n; i++) {
if (hash[i] == 42) break;
}

Unrolling the loop, the path condition will look like:

(hash[0] !=42)A(hash[1] !=42)A...A(hash[k]=42)



Path Conditions with Chains

for (1 = 0; i < n; 1i++) {
if (hash[i] == 42) break;
}

Unrolling the loop, the path condition will look like:

(hash[0] !=42)A(hash[1] !=42)A...A(hash[k]=42)

Challenge:
k iterations implies k disjunctive constraints; real programs have
thousands of loops!!!.

Strategy:
Use loop invariants to avoid enumerating all iterations.



A smart approach

* Mix symbolic with concrete execution



Concolic testing

Mix concrete and symbolic execution =
’concolic” CONcoLIC = CONCrete + symbOLIC

m Perform concrete and symbolic execution
side-by-side

m Gather path constraints while program executes

m After one execution, negate one decision, and
re-execute with new input that triggers another
path



The core idea

* Symbolic execution explores all paths symbolically, but that
quickly leads to path explosion and solver bottlenecks.

* Concolic execution mitigates by:
* Executing the program concretely on specific inputs.

* Simultaneously tracking symbolic constraints along that single concrete
path.

* Using those constraints to generate new inputs that explore new paths.
* Concolic execution = iterative approach:

Concrete run; record symbolic constraints;
solve to get new inputs; next run; .....



Concolic step by step

int foo(int x, 1nt y) {
if (x > 5) {

if (y == x + 2)
bug () ;



Concolic step by step

Step 1
Start with a concrete test
x =0, y = 0.

int foo(int x, 1nt y) {
1if (x > 5) {
if (y == x + 2)

bug () Concrete run follows the false branch of

X > b.
No bug triggered.

Symbolic execution records:
Path condition: (x £ 5)



Concolic step by step

int foo(int x, int y) {  SteP2 .
if (x> 5) { Negate one branch condition

To explore a new path, flips one condition in
the path constraint:
(x > 5)

if (v == x + 2)
bug () ;

The solver gives a new input,
x =6, y = 0.



Concolic step by step steps

int foo(int x, 1nt y) {

1f

(x > 5) |
if (v == x + 2)
bug () ;

Run again with new input

Concrete execution

takes the true branch of x > 5,
checksy==x+2 (0 ==8)which evaluates
false.

Path condition:
(X>3)A(y#x+2)

Negatey #x + 2
new constraint (y == x + 2).

Solver produces x =6,y = 8.



Concolic step by step steps

Run again

int foo(int x, int y) { Concrete execution triggers bug();

if (x > 5) {
1f (y == x + 2)

bug () ; Found a real bug with no false positives.



Concolic step by step

int foo(int x, 1nt y) {
if (x > 5) |

if (y == x + 2)
bug () ;

The strategy: the concolic engine explored all paths sequentially, guided by
concrete runs, instead of exploring all 4 combinations symbolically.



Discussion

Symbolic execution How concolic testing helps

Exponential path explosion One path per iteration (systematic
exploration)

Constraint solving overload Smaller, incremental path
constraints per run

Missing real inputs Concrete execution gives actual
input values

LT Lo 1Yo RU I 137 E VR L [XB Concrete execution uses the real
runtime behavior



Concolic execution: the algorithm

Repeat until all paths are covered

m Execute program with concrete input ¢ and collect
symbolic constraints at branch points: C

m Negate one constraint to force taking an
alternative branch b': Constraints C’

m Call constraint solver to find solution for C’: New
concrete input ¢’

m Execute with 7’ to take branch ¥’

m Check at runtime that ¢’ is indeed taken
Otherwise: "divergent execution”



Example

function f (a) {
if (Math.random() < 0.5) {
if (a > 1) {
console.log ("YES") ;
}



function f (a) {
if (Math.random() < 0.5) {
if (a > 1) {
console.log ("YES");

}
}
}
Type Values Notes
Concrete a=0 The real input
Symbolic o Symbolic values
Path Cond. True




function f (a) {

if (Math.random() < 0.5) { L
if (a > 1) {
console.log ("YES");
}

} Step1-if (Math.random() < 0.5)

Concrete

Suppose the runtime call returns Math.random() = 0.3.
0.3 < 0.5 ————- true branch taken.

Symbolic

Since Math.random () is external we record its result, but not a
symbolic variable.

New path condition:
PC = (random < 0.5)



function f (a) {
if (Math.random() < 0.5) {
if (a > 1) { ——
console.log ("YES");

}

} Step2-if(a>1)
Concrete
a = 0thenthe gaurda 0 > 1 is false, the inner conditional is not
executed.
Nothing printed.

Symbolic
Add condition for the branch actually taken:
PC = (random < 0.5) A (ag < 1)



function f (a) {
if (Math.random() < 0.5) {
if (a > 1) {
console.log ("YES");

RUN #1
SUMMARY

Run Concrete input(s) Branch outcome

Path Condition

Output

1 a=0,
random = 0.3

Outer = true,
Inner = false

(random < 0.5) A
(a0 <1)

(none)




function f (a) {
H RUN #2

(Math.random() < 0.5) {
if (a > 1) {
console.log ("YES");

}
) Step 4 - Generate new paths

Option A - Flip inner condition

Negate (ag < 1) thisbecomes (ag > 1)
Solver solution: a = 2.

New run (#2):a = 2,keep random = 0.3
Path condition (random < 0.5) A (ag > 1)

Concrete run prints "YES".



function f(a) { RUN #3

if (Math.random() < 0.5) {
if (a > 1) {
console.log ("YES");

}
) Step 4 - Generate new paths

Option B - Flip outer condition

Negate (random < 0.5) thatis (random = 0.5)
forcing the value (e.g., 0.8).

New run (#3): random =0.8,a=2

Path condition (random = 0.5)

No "YES" printed.
This is called divergent execution



SUMMARY

Condition Example concrete
(symbolic) values

- random<0.5Aas1 random=0.3,a=0 (no output)
- random<0.5Aa>1 random=0.3,a=2 "YES"
- random = 0.5 random =0.8, (anya) (no output)



Discussion (#2)

* Concrete engine: runs the program on actual data.

Symbolic engines: tracks tﬁe execution ro build formulas for the path conditions.

* Concolic executor feeds new inputs from the solver to the concrete runner.
* Symbolic constraints are used to systematically cover unexplored branches.

* Actual toolkits

* DART (Directed Automated Random Testing, Godefroid et al., PLDI 2005),
e CUTE (Sen et al., FSE 2005),

* SAGE (Microsoft fuzzing platform),

* KLEE (for LLVM),



Doscussion (#3)

* Still needs heuristics to decide which branch to flip
* Loops with symbolic bounds can still cause huge state spaces.

* Constraint solving can still be expensive (e.g. with non-linear
terms).

* Handling concurrency and I/O is hard because the concrete
environment affects symbolic tracking.



Solver-supported, whitebox testing

m Reason symbolically about (parts of) inputs
m Create new inputs that cover not yet explored

Final

m More systematic but also more expensive than

Freima rkS random and fuzz testing

m Open challenges
0 Effective exploration of huge search space
0 Other applications of constraint-based program
analysis, e.g., debugging and automated program
repair



