
Symbolic Execution:
Challenges



Path explosion and state space blow-up

• Programs have lots of branches, loops, inputs:
•  the number of distinct execution paths grows exponentially in the size of 

the program.
Each conditional (if/else) doubles potential paths; nested loops multiply 
things further. 

• Symbolic execution tries to explore all paths, this quickly 
becomes intractable.

• The issue: Path explosion makes the analysis slow or impossible; 
• one cannot symbolically explore all paths for moderate or large programs.



function f(a) {
  var x = a; 
  while (x > 0) { x--; }
}

Assume 𝑎!	that is the initial symbolic value

How symbolic execution forks
While loop:  (x > 0) is the guard, if x is symbolic, the engine forks:

Entry loop: add constraint x > 0, then execute x := x - 1.
Exit loop: add constraint x ≤ 0, then leave the loop.

Start: x = 𝑎!	.
1st check: forks on  𝑎!	 > 0 vs  𝑎!	 ≤ 0.
If we took the loop once, now x = 𝑎!	 - 1.
2nd check: forks on  𝑎!	 - 1 > 0 vs  𝑎!	 - 1 ≤ 0.
If we took it twice, x = 𝑎!	 - 2, and so on.



function f(a) {
  var x = a; 
  while (x > 0) { x--; }
}

Assume 𝑎!	that is the initial symbolic value

𝑎 = 𝑎!	
𝑥 = 𝑥!

𝑥 = 𝑎! − 1

✔

𝒂𝟎 > 𝟎	

𝒂𝟎 − 𝟏	 > 𝟎	

𝑥 = 𝑎! − 2

𝒂𝟎 − 𝟐	 > 𝟎	
✔

✔

✔

:



function f(a) {
  var x = a; 
  while (x > 0) { x--; }
}

Assume 𝑎!	that is the initial symbolic value

Exiting after exactly k iterations yields the path condition:
True for the first k checks: 𝑎! > 0, 𝑎! − 1 > 0,… 𝑎! − 𝑘 − 1 > 0	
Then exit on the k-th: 𝑎! − 𝑘	 ≤ 0 aka 𝑎! = 𝑘	

There’s one feasible path per non-negative integer k. 

Since k is unbounded, there are countably infinitely many distinct paths (each 
with a different path condition).



Path 
explosion

The same 
reasoning applies 
to recursive calls



void example(int a, int b) {
    if (a < 0) {
        if (b > 0) {
            // Path 1
        } else {
            // Path 2
        }
    } else {
        if (b > 0) {
            // Path 3
        } else {
            // Path 4
        }
    }
}

The symbolic execution explores 4 possible paths, 
corresponding to all truth combinations of
(a < 0) and (b > 0)

For two symbolic variables a and b, there are four 
distinct paths. 
Adding a third symbolic variable c would create eight 
paths. 

Because symbolic execution must analyze the true 
and false branch every time a conditional expression 
is encountered.



Path 
explosion Data Structures



int foo(int *A, int n, int k) {
    int i = 0, sum = 0;
    while (i < n) {
        if (A[i] == k) {      // branch 1
            sum += 1;
        } else {              // branch 2
            sum -= 1;
        }
        if (sum < -5) {       // alarm
            return -1;
        }
        i++;
    }
    return sum;
}

Symbolic execution:
at each iteration one  forks on
A[i]==k vs A[i]!=k

We have 2. paths.



Path 
explosion

Challenge:
Handling Large 
Execution Trees



Handling Large Execution Trees
#1: Over-approx to prune big subtrees (sound but maybe imprecise)

(Hoare-like  reasoning)  Loop invariant:
(0 ≤ 𝑖	 ≤ 𝑛) 	∧ (𝑠𝑢𝑚 ∈ −𝑖, 𝑖 )

int foo(int *A, int n, int k) {
    int i = 0, sum = 0;
    while (i < n) {
        if (A[i] == k) {      // branch 1
            sum += 1;
        } else {              // branch 2
            sum -= 1;
        }
        if (sum < -5) {       // alarm
            return -1;
        }
        i++;
    }
    return sum;
}



Handling Large Execution Trees
#1: Over-approx to prune big subtrees (sound but maybe imprecise)

Loop invariant:
(0 ≤ 𝑖	 ≤ 𝑛) 	∧ (𝑠𝑢𝑚 ∈ −𝑖, 𝑖 )

Immediate pruning when n ≤ 5:
the alarm sum < −5 is unreachable when n ≤ 5.
We can skip exploring all 𝟐𝒏branches for every path with n ≤ 5.

int foo(int *A, int n, int k) {
    int i = 0, sum = 0;
    while (i < n) {
        if (A[i] == k) {      // branch 1
            sum += 1;
        } else {              // branch 2
            sum -= 1;
        }
        if (sum < -5) {       // alarm
            return -1;
        }
        i++;
    }
    return sum;
}



Handling Large Execution Trees
#1: Over-approx to prune big subtrees (sound but maybe imprecise)

Loop invariant:
(0 ≤ 𝑖	 ≤ 𝑛) 	∧ (𝑠𝑢𝑚 ∈ −𝑖, 𝑖 )

Immediate pruning when n ≤ 5:
the alarm sum < −5 is unreachable when n ≤ 5.
We can skip exploring all 𝟐𝒏branches for every path with n ≤ 5.

Memory-safety assumption (precondition):
If we require 0 ≤ n ≤ len(A), the access A[i] is in-bounds.
No need to track Out Of Bound  checks; those subtrees are cut.

int foo(int *A, int n, int k) {
    int i = 0, sum = 0;
    while (i < n) {
        if (A[i] == k) {      // branch 1
            sum += 1;
        } else {              // branch 2
            sum -= 1;
        }
        if (sum < -5) {       // alarm
            return -1;
        }
        i++;
    }
    return sum;
}



Handling Large Execution Trees
#1: Over-approx to prune big subtrees (sound but maybe imprecise)

Loop invariant:
(0 ≤ 𝑖	 ≤ 𝑛) 	∧ (𝑠𝑢𝑚 ∈ −𝑖, 𝑖 )

Immediate pruning when n ≤ 5:
the alarm sum < −5 is unreachable when n ≤ 5.
We can skip exploring all 𝟐𝒏branches for every path with n ≤ 5.

Memory-safety assumption (precondition):
If we require 0 ≤ n ≤ len(A), the access A[i] is in-bounds.
No need to track Out Of Bound  checks; those subtrees are cut.

int foo(int *A, int n, int k) {
    int i = 0, sum = 0;
    while (i < n) {
        if (A[i] == k) {      // branch 1
            sum += 1;
        } else {              // branch 2
            sum -= 1;
        }
        if (sum < -5) {       // alarm
            return -1;
        }
        i++;
    }
    return sum;
}

Effect: For the whole slice of states where n ≤ 5, the execution 
tree collapses to one summarized node (no alarm). 
For n ≥ 6, we continue (since the over-approx can’t rule the 
alarm out)



Handling Large Execution Trees  
#2: Under-approx to get a bug witness fast (no false positives)

We assert a concrete under-approx case for the first 6 iterations:

i = 0, n = 6, and A[0..5] != k

int foo(int *A, int n, int k) {
    int i = 0, sum = 0;
    while (i < n) {
        if (A[i] == k) {      // branch 1
            sum += 1;
        } else {              // branch 2
            sum -= 1;
        }
        if (sum < -5) {       // alarm less k
            return -1;           // than exptected
        }
        i++;
    }
    return sum;
}



Handling Large Execution Trees  
#2: Under-approx to get a bug witness fast (no false positives)

We assert a concrete under-approx case for the first 6 iterations:

i = 0, n = 6, and A[0..5] != k

The path is straight-line (no forking):
After 1st iter: sum = −1
...
After 6th iter: sum = −6 < −5 ⇒ return -1.

This provides a witness input of a (real) bug
n = 6, A[0..5] = {k+1, k+1, k+1, k+1, k+1, k+1} (or any ≠ k)

int foo(int *A, int n, int k) {
    int i = 0, sum = 0;
    while (i < n) {
        if (A[i] == k) {      // branch 1
            sum += 1;
        } else {              // branch 2
            sum -= 1;
        }
        if (sum < -5) {       // alarm less k
            return -1;           // than exptected
        }
        i++;
    }
    return sum;
}



Handling Large Execution Trees  
#2: Under-approx to get a bug witness fast (no false positives)

We assert a concrete under-approx case for the first 6 iterations:

i = 0, n ≥ 6, and A[0..5] != k

The path is straight-line (no forking):
After 1st iter: sum = −1
...
After 6th iter: sum = −6 < −5 ⇒ return -1.

This provides a witness input of a (real) bug
n = 6, A[0..5] = {k+1, k+1, k+1, k+1, k+1, k+1} (or any ≠ k)

int foo(int *A, int n, int k) {
    int i = 0, sum = 0;
    while (i < n) {
        if (A[i] == k) {      // branch 1
            sum += 1;
        } else {              // branch 2
            sum -= 1;
        }
        if (sum < -5) {       // alarm less k
            return -1;           // than exptected
        }
        i++;
    }
    return sum;
}

Effect: For n ≥ 6, instead of exploring an exponential 
tree, we pick 1 guded path to the alarm and stop (or 
keep a few patterns if we want diversity)



Handling Large Execution Trees  
#3: Putting them together (execution strategy)

Step 1
Pre-pass (Over-approx):
Compute invariants and global pruning rules:

If n ≤ 5 then  alarm unreachable. Result: prune entire subtree.

If n > len(A) then  memory unsafe. Result: filter by precondition 

These rules are cached at the loop head and function entry.

int foo(int *A, int n, int k) {
    int i = 0, sum = 0;
    while (i < n) {
        if (A[i] == k) {      // branch 1
            sum += 1;
        } else {              // branch 2
            sum -= 1;
        }
        if (sum < -5) {       // alarm less k
            return -1;           // than exptected
        }
        i++;
    }
    return sum;
}



Handling Large Execution Trees  
#3: Putting them together (execution strategy)

Step 2
Symbolic execution with pruning:
When the executor sees a state with n ≤ 5, it does not fork inside the 
loop. (alarm absent.)

When it sees n ≥ 6, it does not fork 𝟐𝒏 paths.
Strategy:  asks the under-approx oracle for a bug pattern; it injects 
the conjunct A[0..5] != k and executes a single path to return -1.

int foo(int *A, int n, int k) {
    int i = 0, sum = 0;
    while (i < n) {
        if (A[i] == k) {      // branch 1
            sum += 1;
        } else {              // branch 2
            sum -= 1;
        }
        if (sum < -5) {       // alarm less k
            return -1;           // than exptected
        }
        i++;
    }
    return sum;
}



Handling Large Execution Trees  
#3: Putting them together (execution strategy)

Step 3
For any remaining alarm candidates (e.g., if the under-approx. oracle  
didn’t find one), try to prove absence with a suitable abstraction.

int foo(int *A, int n, int k) {
    int i = 0, sum = 0;
    while (i < n) {
        if (A[i] == k) {      // branch 1
            sum += 1;
        } else {              // branch 2
            sum -= 1;
        }
        if (sum < -5) {       // alarm less k
            return -1;           // than exptected
        }
        i++;
    }
    return sum;
}



Handling large execution trees

16

Dealing with Large Execution Trees

Heuristically select which
branch to explore next

↭ Select at random

↭ Select based on coverage

↭ Prioritize based on distance
to ”interesting” program
locations

↭ Interleaving symbolic
execution with random testing

t f

t f t f

t f

t f

... ... ...

...

... ...



Challenges of 
Symbolic Execution

• Environment modeling: 
Dealing with native code 
or library calls



Symbolic model for library y = sqrt(x);

If sqrt is a native library call (implemented in assembly or math library), the 
symbolic executor doesn’t know its internal behavior.

Challenge:
It canmoot derive the relation between x and y symbolically.
It may either concretize x (pick one value) or drop the path (loss of coverage).

Impact:
Path explosion is reduced (by dropping paths), but soundness is lost.

Typical fix:
Provide  models for common math functions: e.g., y ≥ 0 ∧ y² = x.



System calls n = read(fd, buf, len);
if (n < 0) error();

Symbolic execution doesn’t know what the OS will return.

Challenges:
What is in buf? Is n symbolic or concrete?
Each possible return value creates a new path.

Fixes:
Abstract models: n ∈ [0, len] and buf = symbolic array of length n.



Pointer aliasing and memory layout in native 
libraries memcpy(dst, src, n);

Native functions like memcpy, strcpy, or malloc are highly optimized and 
platform-specific.

Challenges:
If src or dst are symbolic, modeling byte-by-byte copying symbolically is costly.
Alias relationships (if src and dst overlap) can make the SMT constraints explode.

Fix:
Use logical summary instead of actually iterating byte-by-byte (nly the final effect )

∀𝑖 ∈ 0, 𝑛 : 𝑑𝑒𝑠𝑡 𝑖 = 𝑠𝑟𝑐[𝑖]



Uninterpreted external functions
token = SHA256(data);

Challenge:
Cryptographic functions are intentionally opaque; symbolic reasoning is 
impossible.

Fix:
Treat them as uninterpreted functions: only reason about equality 
(e.g., SHA256(x) == SHA256(y)⇒ x == y).



Cross Language Calls
extern "C" { fn fast_hash(input: *const u8, len: usize) -> u32; }

Challenge:
Different calling conventions, heap models, and memory 
ownership rules.
The symbolic engine must switch between language runtimes.

Fix:
Use hybrid symbolic interpreters or translate native 
components into logical summaries (contracts on input–output 
relations).



Challenges of 
Symbolic Execution

• Solver limitations: Dealing 
with complex path 
conditions



Path conditions grow exponentially
int foo(int x, int y) {
    if (x * y > 10) {
        if (x - y == 3) {
            assert(x < 100);
        }
    }
}

Symbolic state:

At the assertion, the path condition is:

𝑥 ∗ 𝑦 > 10 ∧ 𝑥 − 𝑦 = 3 ∧ ¬ 𝑥 < 100

The solver must check:

𝑥 ∗ 𝑦 > 10 ∧ 𝑥 − 𝑦 = 3 ∧ 𝑥 ≥ 100



Intermezzo: SAT Sat Solver Again
A formula is linear if each variable appears at most to the first 
power and variables are not multiplied or divided by each other.

Allowed operations:
Addition and subtraction of variables.
Multiplication or division by known constants.
Comparisons using =, ≠, <, ≤, >, ≥.
Example:

3𝑥 − 2𝑦 ≤ 7
𝑥 + 4𝑦 = 10

𝑥 ≥ 0



Intermezzo: Sat Solver again

If any term multiplies or divides two variables, or uses non-linear 
functions (e.g., powers, sin, exp, etc.), it becomes non-linear.

Example:
𝑥 ∗ 𝑦 > 10
𝑥E + 𝑦 ≤ 5
𝑠𝑖𝑛 𝑥 = 0



Intermezzo: Sat Solver Again

• Linear arithmetic is well-understood, efficient solving algorithms 
(based on linear programming, Gaussian elimination, or simplex 
methods).
• Solvers can handle thousands of linear constraints quickly.
• Non-linear arithmetic requires far more expensive reasoning 
• That’s why symbolic execution engines and SMT solvers like Z3 

have specialized “theories”:
• LIA = Linear Integer Arithmetic
• LRA = Linear Real Arithmetic
• NIA / NRA = Non-linear Integer/Real Arithmetic (much slower)



Back to our example



Path conditions grow exponentially
int foo(int x, int y) {
    if (x * y > 10) {
        if (x - y == 3) {
            assert(x < 100);
        }
    }
}

Symbolic state:

At the assertion, the path condition is:

𝑥 ∗ 𝑦 > 10 ∧ 𝑥 − 𝑦 = 3 ∧ ¬ 𝑥 < 100

The solver must check:

𝑥 ∗ 𝑦 > 10 ∧ 𝑥 − 𝑦 = 3 ∧ 𝑥 ≥ 100



Path conditions grow exponentially
int foo(int x, int y) {
    if (x * y > 10) {
        if (x - y == 3) {
            assert(x < 100);
        }
    }
}

Symbolic state:

At the assertion, the path condition is:

𝑥 ∗ 𝑦 > 10 ∧ 𝑥 − 𝑦 = 3 ∧ ¬ 𝑥 < 100

The solver must check:

𝑥 ∗ 𝑦 > 10 ∧ 𝑥 − 𝑦 = 3 ∧ 𝑥 ≥ 100

This constraint includes non-linear arithmetic
(x * y), 
which most SMT solvers handle poorly

The result:
Solver may time out.



Path Conditions with data structures
if (arr[a] == arr[b]) {
    if (map[key] == val) { ... }
}

Symbolic execution must exploit theories of arrays and maps: and these are embedded in SMT 
formulas.

Challenge:
Each array access or update adds quantifiers and nested select/store terms.
Solving these leads to heavy quantifier instantiation and exponential blow-up.

Strategy: apply array abstraction
(summarize properties instead of enumerating cells).



Path Conditions with Chains
for (i = 0; i < n; i++) {
    if (hash[i] == 42) break;
}

(hash[0] !=42)∧(hash[1] !=42)∧…∧(hash[k]=42)

Unrolling the loop, the path condition will look like:



Path Conditions with Chains
for (i = 0; i < n; i++) {
    if (hash[i] == 42) break;
}

(hash[0] !=42)∧(hash[1] !=42)∧…∧(hash[k]=42)

Unrolling the loop, the path condition will look like:

Challenge:
k iterations implies k disjunctive constraints; real programs have 
thousands of loops!!!.

Strategy:
Use loop invariants to avoid enumerating all iterations.



A smart approach

•Mix symbolic with concrete execution



Concolic testing 

22

Concolic Testing

Mix concrete and symbolic execution =
”concolic”

↭ Perform concrete and symbolic execution
side-by-side

↭ Gather path constraints while program executes

↭ After one execution, negate one decision, and
re-execute with new input that triggers another
path

CONCOLIC = CONCrete + symbOLIC



The core idea

• Symbolic execution explores all paths symbolically, but that 
quickly leads to path explosion and solver bottlenecks.
• Concolic execution mitigates by:

• Executing the program concretely on specific inputs.
• Simultaneously tracking symbolic constraints along that single concrete 

path.
• Using those constraints to generate new inputs that explore new paths.

• Concolic execution = iterative approach:
Concrete run; record symbolic constraints;
 solve to get new inputs; next run; …..



Concolic step by step
int foo(int x, int y) {
    if (x > 5) {
        if (y == x + 2)
            bug();
    }
}



Concolic step by step
int foo(int x, int y) {
    if (x > 5) {
        if (y == x + 2)
            bug();
    }
}

Step 1
Start with a concrete test
x = 0, y = 0.

Concrete run follows the false branch of
x > 5.
No bug triggered.

Symbolic execution records:
Path condition: (x ≤ 5)



Concolic step by step
int foo(int x, int y) {
    if (x > 5) {
        if (y == x + 2)
            bug();
    }
}

Step 2
Negate one branch condition
To explore a new path, flips one condition in 
the path constraint:
(x > 5)

The solver gives a new input,
x = 6, y = 0.



Concolic step by step
int foo(int x, int y) {
    if (x > 5) {
        if (y == x + 2)
            bug();
    }
}

Step 3
Run again with new input
Concrete execution 
takes the true branch of x > 5,
checks y == x + 2  (0 == 8) which evaluates 
false.

Path condition:
(x > 5) ∧ (y ≠ x + 2)

Negate y ≠ x + 2
new constraint (y == x + 2).

Solver produces x = 6, y = 8.



Concolic step by step
int foo(int x, int y) {
    if (x > 5) {
        if (y == x + 2)
            bug();
    }
}

Step 4
Run again
Concrete execution triggers bug();

Found a real bug with no false positives.



Concolic step by step
int foo(int x, int y) {
    if (x > 5) {
        if (y == x + 2)
            bug();
    }
}

The strategy: the concolic engine explored all paths sequentially, guided by 
concrete runs, instead of exploring all 4 combinations symbolically.



Discussion

Symbolic execution How concolic testing helps
Exponential path explosion One path per iteration (systematic 

exploration)
Constraint solving overload Smaller, incremental path 

constraints per run
Missing real inputs Concrete execution gives actual 

input values
Unmodeled library/native code Concrete execution uses the real 

runtime behavior



Concolic execution: the algorithm

26

Algorithm

Repeat until all paths are covered

↭ Execute program with concrete input i and collect
symbolic constraints at branch points: C

↭ Negate one constraint to force taking an
alternative branch b→: Constraints C →

↭ Call constraint solver to find solution for C →: New
concrete input i→

↭ Execute with i→ to take branch b→

↭ Check at runtime that b→ is indeed taken
Otherwise: ”divergent execution”



Example
function f(a) {
    if (Math.random() < 0.5) {
        if (a > 1) {
            console.log("YES");
        }
    }
}



function f(a) {
    if (Math.random() < 0.5) {
        if (a > 1) {
            console.log("YES");
        }
    }
}

Type Values Notes
Concrete a = 0 The real input
Symbolic a₀ Symbolic values
Path Cond. True



function f(a) {
    if (Math.random() < 0.5) {
        if (a > 1) {
            console.log("YES");
        }
    }
} Step 1 – if (Math.random() < 0.5)

Concrete
Suppose the runtime call returns Math.random() = 0.3.
0.3 < 0.5 ----- true branch taken.

Symbolic
Since Math.random() is external  we record its result, but not a 
symbolic variable.

New path condition:
𝑃𝐶 = random < 0.5



function f(a) {
    if (Math.random() < 0.5) {
        if (a > 1) {
            console.log("YES");
        }
    }
} Step 2 – if (a > 1)

Concrete
a = 0 then the gaurda 0 > 1 is false, the inner conditional is not 
executed.
Nothing printed.

Symbolic
Add condition for the branch actually taken:

𝑃𝐶 = random < 0.5 ∧ 𝑎! ≤ 1



function f(a) {
    if (Math.random() < 0.5) {
        if (a > 1) {
            console.log("YES");
        }
    }
}

RUN #1
SUMMARY

Run Concrete input(s) Branch outcome Path Condition Output
1 a = 0, 

random = 0.3
Outer = true, 
Inner = false

(random < 0.5) ∧ 
(a₀ ≤ 1)

(none)



function f(a) {
    if (Math.random() < 0.5) {
        if (a > 1) {
            console.log("YES");
        }
    }
}

RUN #2

Step 4 – Generate new paths

Option A – Flip inner condition
Negate (a₀ ≤ 1) this becomes (a₀ > 1)
Solver solution: a = 2.

New run (#2): a = 2, keep random = 0.3

Path condition (random < 0.5) ∧ (a₀ > 1)

Concrete run prints "YES".



function f(a) {
    if (Math.random() < 0.5) {
        if (a > 1) {
            console.log("YES");
        }
    }
}

RUN #3

Step 4 – Generate new paths

Option B – Flip outer condition
Negate (random < 0.5) that is (random ≥ 0.5)
forcing the value (e.g., 0.8).

New run (#3): random = 0.8, a = 2

Path condition (random ≥ 0.5)

No "YES" printed.
This is called divergent execution



SUMMARY

Path Condition 
(symbolic)

Example concrete 
values

Output

1 random < 0.5 ∧ a ≤ 1 random = 0.3, a = 0 (no output)

2 random < 0.5 ∧ a > 1 random = 0.3, a = 2 "YES"

3 random ≥ 0.5 random = 0.8, (any a) (no output)



Discussion (#2)
• Concrete engine: runs the program on actual data.

Symbolic engines: tracks the execution ro build  formulas for the path conditions.

• Concolic executor feeds new inputs from the solver to the concrete runner.
• Symbolic constraints are used to systematically cover unexplored branches.

• Actual toolkits
• DART (Directed Automated Random Testing, Godefroid et al., PLDI 2005),
• CUTE (Sen et al., FSE 2005),
• SAGE (Microsoft fuzzing platform),
• KLEE (for LLVM),



Doscussion (#3)

• Still needs heuristics to decide which branch to flip
• Loops with symbolic bounds can still cause huge state spaces.
• Constraint solving can still be expensive (e.g. with non-linear 

terms).
• Handling concurrency and I/O is hard because the concrete 

environment affects symbolic tracking.



Final 
remarks

32

Summary: Symbolic & Concolic Testing

Solver-supported, whitebox testing

↭ Reason symbolically about (parts of) inputs

↭ Create new inputs that cover not yet explored
paths

↭ More systematic but also more expensive than
random and fuzz testing

↭ Open challenges
↫ Effective exploration of huge search space
↫ Other applications of constraint-based program

analysis, e.g., debugging and automated program
repair


