
Symbolic Semantics 
and Intermediate 
Representation



The issue

• Compilers and analyzers work on 
Intermediate Representations 
(IRs) rather than source code.

• IRs are simplified, structured 
languages used for formal 
reasoning and program analysis.

• Examples: LLVM IR, Java 
bytecode, WebAssembly 
(WASM), … .

• Goal: Understand IR semantics 
and challenges of symbolic 
operational semantics.



Intermediate Representation

An IR is a machine-
independent, typed 

language that exposes 
control and data flow 

explicitly.

Features: explicit 
control flow, explicit 
memory ops, static 

typing, close to 
machine level.



WASM (fragment)
(func $add 
  (param $x i32) 
  (param $y i32) 
  (result i32)
  local.get $x
  local.get $y
  i32.add
)



WASM (fragment)
(func $add 
  (param $x i32) 
  (param $y i32) 
  (result i32)
  local.get $x
  local.get $y
  i32.add
)

(func $add … ) defines a function named $add.
$add takes two parameters, $x and $y, both 32-bit integers (i32).
$add returns a single 32-bit integer ((result i32)).

$add.body:
local.get $x pushes the value of $x onto the stack.
local.get $y pushes $y.
i32.add pops both values, adds them, and pushes the result (which becomes the 
return value).

WASM is a stack machine



The WASM Execution Model

Stack-based virtual machine with no 
registers.

Linear memory: array of bytes private 
to the module.

Structured control: block, loop, if, br, 
br_if.

Sandboxed: cannot access host 
memory or syscalls.

Execution state: ⟨instr_seq, store, 
memory, locals, stack⟩.



Operational Semantics 
(Concrete)

Defines small-step transitions between states

𝑖32. 𝑐𝑜𝑛𝑠𝑡	𝑛, 𝜎 → ⟨𝜎 ⋅ 𝑝𝑢𝑠ℎ(𝑛)	⟩

𝑖32. 𝑎𝑑𝑑	𝜎 ⋅ 𝑛! ⋅ 𝑛"	 → ⟨𝜎 ⋅ (𝑛! + 𝑛"	⟩

𝑖𝑓	0	 ≤ 𝑎 ≤ 𝑚𝑒𝑚. 𝑠𝑖𝑧𝑒
𝑠𝑡𝑜𝑟𝑒	𝑎	𝑣,𝑚𝑒𝑚 → ⟨𝑚𝑒𝑚 𝑎 = 𝑣 ⟩



A core IR



An Intermediate programming language (syntax)



The expression 
get_input(src) returns 
input from the source 
stream src. 

We model input stream 
as a suitable list, 
        scr = v:: src’

We omit the type-
checking 
mechanism of our 
language and 
assume things are 
well-typed in the 
obvious way, Remark



Run-time structures

• S: the ordered sequence of program statements    
S = Nat -> Stmt
• µ: memory  µ: Loc -> Values
• r: environment r: Var -> Loc + Values
• pc: program counter
• i: next instruction



Program evolution: expressions

𝜇, 𝜌 ⊢ 𝑒 ⇓ 𝑣

Intuition: evaluationg the expression e in the run-time context 
provided by the memory µ and the environment r
produces v as result



Program evolution: statements

Σ, 𝜇, 𝜌, 𝑝𝑐: 𝑠𝑚𝑡 → Σ, 𝜇!, 𝜌!, 𝑝𝑐!: 𝑠𝑚𝑡′

• Intuition: the execution of the statement smt in the run-time 
context given by
• the program list (S), 
• the currentr memory state (µ), 
• the current binding for variable (r) 
• the current program counter (pc) 

• yields a new state of program execution (Σ, 𝜇!, 𝜌!, 𝑝𝑐!)



Σ, 𝜇, 𝜌, 𝑝𝑐: 𝑠𝑚𝑡 → Σ, 𝜇#, 𝜌#, 𝑝𝑐#: 𝑠𝑚𝑡′

• Intuition: the execution of the statement 
smt in the run-time context yields a new 
state of program execution (S, µ´, r´, pc´)

• The program Σ does is not modified by 
transitions. 
• We do not allow programs with 

dynamically generated code. 

Remark



A sample of the operational semantics (expressions)

𝑠𝑟𝑐 = 𝑣 ∷ 𝑠𝑟𝑐′
𝜇, 𝜌 ⊢ 𝑔𝑒𝑡𝐼𝑛𝑝𝑢𝑡 𝑠𝑟𝑐 ⇓ 𝑣

𝜇, 𝜌 ⊢ 𝑒 ⇓ 𝑣! 𝑣 = 𝜇(𝑣!)
𝜇, 𝜌 ⊢ 𝑙𝑜𝑎𝑑 𝑒 ⇓ 𝑣

𝜇. 𝜌 ⊢ 𝑣𝑎𝑟 ⇓ 𝜌 𝑣𝑎𝑟



A sample of the operational semantics 
(statement)

𝜇, 𝜌 ⊢ 𝑒 ⇓ 𝑣 𝜌! = 𝜌 𝑣𝑎𝑟 = 𝑣 𝜄 = Σ[𝑝𝑐 + 1]
Σ, 𝜇, 𝜌, 𝑝𝑐: 𝑣𝑎𝑟 = 𝑒 → Σ, 𝜇, 𝜌!, 𝑝𝑐 + 1: 𝜄



A sample of the operational semantics 
(statement)

𝜇, 𝜌 ⊢ 𝑒 ⇓ 𝑣 𝜌! = 𝜌 𝑣𝑎𝑟 = 𝑣 𝜄 = Σ[𝑝𝑐 + 1]
Σ, 𝜇, 𝜌, 𝑝𝑐: 𝑣𝑎𝑟 = 𝑒 → Σ, 𝜇, 𝜌!, 𝑝𝑐 + 1: 𝜄

The current state of
execution



A sample of the operational semantics 
(statement)

𝜇, 𝜌 ⊢ 𝑒 ⇓ 𝑣 𝜌! = 𝜌 𝑣𝑎𝑟 = 𝑣 𝜄 = Σ[𝑝𝑐 + 1]
Σ, 𝜇, 𝜌, 𝑝𝑐: 𝑣𝑎𝑟 = 𝑒 → Σ, 𝜇, 𝜌!, 𝑝𝑐 + 1: 𝜄

The current state of
execution

Evaluation of the
expression



A sample of the operational semantics 
(statement)

𝜇, 𝜌 ⊢ 𝑒 ⇓ 𝑣 𝜌! = 𝜌 𝑣𝑎𝑟 = 𝑣 𝜄 = Σ[𝑝𝑐 + 1]
Σ, 𝜇, 𝜌, 𝑝𝑐: 𝑣𝑎𝑟 = 𝑒 → Σ, 𝜇, 𝜌!, 𝑝𝑐 + 1: 𝜄

The current state of
execution

Evaluation of the
expression

The continuation
(next instruction)

The new binding



A sample of the operational semantics 
(statement)

𝜇, 𝜌 ⊢ 𝑒 ⇓ 𝑣 𝜌! = 𝜌 𝑣𝑎𝑟 = 𝑣 𝜄 = Σ[𝑝𝑐 + 1]
Σ, 𝜇, 𝜌, 𝑝𝑐: 𝑣𝑎𝑟 = 𝑒 → Σ, 𝜇, 𝜌!, 𝑝𝑐 + 1: 𝜄

The current state of
execution

Evaluation of the
expression

The continuation
(next instruction)

The new binding

The next state of execution



A sample of the operational semantics (statements)

𝜇, 𝜌 ⊢ 𝑒 ⇓ 𝑣! 𝜄 = Σ[𝑣!]
Σ, 𝜇, 𝜌, 𝑝𝑐: 𝑔𝑜𝑡𝑜 𝑒 → Σ, 𝜇, 𝜌, 𝑣!: 𝜄

𝜇, 𝜌 ⊢ 𝑒! ⇓ 𝑣! 𝜇, 𝜌 ⊢ 𝑒" ⇓ 𝑣"	 𝜄 = Σ 𝑝𝑐 + 1 𝜇$ = 𝜇[𝑣! = 𝑣"]
Σ, 𝜇, 𝜌, 𝑝𝑐: 𝑆𝑡𝑜𝑟𝑒 𝑒!, 𝑒" → Σ, 𝜇$, 𝜌, 𝑝𝑐 + 1: 𝜄

𝜇, 𝜌 ⊢ 𝑒 ⇓ 1 𝜄 = Σ[𝑝𝑐 + 1]
Σ, 𝜇, 𝜌, 𝑝𝑐: 𝑎𝑠𝑠𝑒𝑟𝑡 𝑒 → Σ, 𝜇, 𝜌, 𝑝𝑐 + 1: 𝜄



What about 
functions?
Function calls in 
high-level 
programming 
language  are 
compiled by storing 
the return address 
and  transferring 
control flow. 



From 
Concrete 

to 
Symbolic 

Semantics

• Symbolic execution replaces 
concrete values by symbolic 
variables.

• Path conditions (Π) 
represent branch decisions 
as logical formulas.



Symbolic Operational Semantics

Symbolic state
Π, Σ, 𝜇, 𝜌, 𝑝𝑐: 𝑠𝑚𝑡

• the program list (S), 
• the currentr memory state (µ), 
• the current binding for variable (r) 
• the current program counter (pc)
• The current path condition (𝚷)



S-INPUT

𝑣	𝑓𝑟𝑒𝑠ℎ	𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝜇, 𝜌 ⊢ 𝑔𝑒𝑡𝐼𝑛𝑝𝑢𝑡() ⇓ 𝑣	



S-ASSERT

𝜇, 𝜌 ⊢ 𝑒 ↓ 𝑒!	Π! = Π	 ∧ 𝑒! = 𝑡𝑟𝑢𝑒)	 𝜄 = Σ 𝑝𝑐 + 1
Π, Σ, 𝜇, 𝜌, 𝑝𝑐: 𝑎𝑠𝑠𝑒𝑟𝑡 𝑒 → Π!, Σ, 𝜇, 𝜌, 𝑝𝑐 + 1: 𝜄



S-COND-TRUE

𝜇, 𝜌 ⊢ 𝑒 ↓ 𝑒!	 𝜇, 𝜌 ⊢ 𝑒6 ↓ 𝑣6	 Π! = Π ∧ 𝑒! = 1 	 𝜄 = Σ 𝑣6
Π, Σ, 𝜇, 𝜌, 𝑝𝑐: 𝑖𝑓	𝑒	𝑡ℎ𝑒𝑛	𝑔𝑜𝑡𝑜	𝑒6𝑒𝑙𝑠𝑒	𝑔𝑜𝑡𝑜	𝑒7 → Π!, Σ, 𝜇, 𝜌, 𝑣6: 𝜄



S-COND-TRUE

𝜇, 𝜌 ⊢ 𝑒 ↓ 𝑒!	 𝜇, 𝜌 ⊢ 𝑒6 ↓ 𝑣6	 Π! = Π ∧ 𝑒! = 1 	 𝜄 = Σ 𝑣6
Π, Σ, 𝜇, 𝜌, 𝑝𝑐: 𝑖𝑓	𝑒	𝑡ℎ𝑒𝑛	𝑔𝑜𝑡𝑜	𝑒6𝑒𝑙𝑠𝑒	𝑔𝑜𝑡𝑜	𝑒7 → Π!, Σ, 𝜇, 𝜌, 𝑣6: 𝜄

STRONG ASSUMPTION: 𝒗𝟏must be an actual value



S-COND-TRUE

𝜇, 𝜌 ⊢ 𝑒 ↓ 𝑒!	 𝜇, 𝜌 ⊢ 𝑒6 ↓ 𝑣6	 Π! = Π ∧ 𝑒! = 1 	 𝜄 = Σ 𝑣6
Π, Σ, 𝜇, 𝜌, 𝑝𝑐: 𝑖𝑓	𝑒	𝑡ℎ𝑒𝑛	𝑔𝑜𝑡𝑜	𝑒6𝑒𝑙𝑠𝑒	𝑔𝑜𝑡𝑜	𝑒7 → Π!, Σ, 𝜇, 𝜌, 𝑣6: 𝜄

STRONG ASSUMPTION: 𝒗𝟏must be an actual value

How can we encode this constraint?



Statement 𝝆 𝚷 pc

start {} true 1

x= 2*get_input() {x = 2 *s} true 2

If x-5 =14 then goto 3 else goto 4 {x = 2 *s} ((2*s) – 5 = 14) 3

If x-5 =14 then goto 3 else goto 4 {x = 2 *s} !((2*s) – 5 = 14) 4



Challenging issue

• What should we do when the analysis uses 
the memory model (𝜇) whose index must be 
a non-negative integer with a symbolic 
index?



Memory 
model

• Memory is a linear 
memory: a contiguous byte 
array.
– It starts at 0 and grows in 

multiples of 64 KB “pages”.
• Addresses are integers (no 

pointers or segmentation).
• There are no raw pointers 

to the host.
• Memory operations 

are explicit:



Memory model (semantically)

• The memory is a function 

𝜇: 𝐴𝑑𝑑𝑟 → 𝐵𝑦𝑡𝑒



Symbolic View of Linear Memory

• In symbolic execution, the memory is modeled 
as a symbolic array, typically using the 
SMT theory of arrays:

Mem:Array(Int, Byte)



Memory Ops

Mem Op Symbolic Encoding
store a v mem' = store(mem, a, v)

load a x = select(mem, a..a+3) (4 bytes)



Memory Ops

Mem Op Symbolic Encoding
store a v mem' = store(mem, a, v)

load a x = select(mem, a) (4 bytes)



Memory Ops

Mem Op Symbolic Encoding
store a v Mem’ = store(mem, a, v)

load a x = select(mem, a) (4 bytes)

mem’ is the same as mem except at index a, where the value is v.
Subsequent reads are performed on mem’.



Symbolic Addresses
Concrete addresses
If the address is concrete (e.g. a = 100), easy:

mem' = store(Mem, 100, v).

Symbolic addresses
If a is symbolic, e.g. a = a₀, the read or write cannot be 
resolved concretely.



Symbolic Addresses

Symbolic addresses

Reads produce a conditional expression:

𝑠𝑒𝑙𝑒𝑐𝑡 𝑠𝑡𝑜𝑟𝑒 𝑚𝑒𝑚, 𝑎6, 𝑣6 , 𝑎7 =
𝑖𝑡𝑒(𝑎7 = 𝑎6, 𝑣6, 𝑠𝑒𝑙𝑒𝑐𝑡 𝑚𝑒𝑚, 𝑎7 )

Writes create a new memory expression with that 
conditional update.

This leads to nested ITE chains or deep store/select 
terms, which can grow quickly and stress SMT solvers.



Memory: grow and bound

The symbolic executor must:

1.Maintain a symbolic bound MEM_SIZE.
2.Add guards on every access:

0 ≤ 𝑎 < 𝑀𝐸𝑀_𝑆𝐼𝑍𝐸

When memory grows, update:
𝑀𝐸𝑀_𝑆𝐼𝑍E′ = 𝑀𝐸𝑀_𝑆𝐼𝑍𝐸 + 64𝐾𝐵 ∗ 𝑛 

)where n may be symbolic or concrete).



Address Space Partitioning (WASM)
WASM forbids overlapping segments unless the program 
explicitly overwrites memory.

WASM Executors partition memory into disjoint 
regions (stack, heap, globals).

Symbolically: each region is a separate symbolic array:

StackMem, HeapMem, GlobalMem

This avoids having a single enormous symbolic array term for 
the entire 4 GB space.



Challenges: 
Memory 

model

• Symbolic memory: nested 
ITEs and large SMT terms.

• Path explosion: every 
conditional doubles states.

• Bounds: must encode 
0 ≤ addr < MEM_SIZE.



Symbolic Load/Store (WASM)

(local.get $addr)
(local.get $val)
(i32.store)

(local.get $addr)
(i32.load)

local.get $addr pushes the address onto the stack.
local.get $val pushes the value.
i32.store pops both (address and value) and writes the value into 
linear memory at the given address.

The second pair of statements (local.get $addr, i32.load) 
reads back (load) the 32-bit value from the same memory address.



Symbolic Load/Store (WASM)

• Symbolic SMT model: 

𝑚𝑒𝑚[ = 𝑠𝑡𝑜𝑟𝑒 𝑚𝑒𝑚, 𝑎\, 𝑣\ ; 𝑠𝑒𝑙𝑒𝑐𝑡 𝑚𝑒𝑚[𝑎\

Intuition: 𝑥 = 𝑣\



Symbolic Load/Store (WASM)

• Symbolic SMT model: 

𝑚𝑒𝑚[ = 𝑠𝑡𝑜𝑟𝑒 𝑚𝑒𝑚, 𝑎\, 𝑣\ ; 𝑠𝑒𝑙𝑒𝑐𝑡 𝑚𝑒𝑚[𝑎\

Intuition: 𝑥 = 𝑣\
• But this is not enough: Add bounds constraint: 

0	 ≤ 𝑎\ ≤ 𝑀𝐸𝑀_𝑆𝐼𝑍𝐸



Overall
(memory 1)
(func $f (param $addr i32) (param $v i32) 
(result i32)
  local.get $addr
  local.get $v
  i32.store        ;; Mem1 = store(Mem0, addr, v)
  local.get $addr
  i32.load         ;; result = select(Mem1, addr)
)



(memory 1)
(func $f (param $addr i32) (param $v i32) (result i32)
  local.get $addr
  local.get $v
  i32.store        ;; Mem1 = store(Mem0, addr, v)
  local.get $addr
  i32.load         ;; result = select(Mem1, addr)
)

; Variables
(declare-fun Mem0 () (Array (_ BitVec 32) (_ BitVec 8)))
(declare-fun a () (_ BitVec 32))
(declare-fun v () (_ BitVec 32))
; 4-byte store and load
(define-fun Mem1 () (Array (_ BitVec 32) (_ BitVec 8))
  (store (store (store (store Mem0 a ((_ extract 7 0) v))
                       (bvadd a #x00000001) ((_ extract 15 8) v))
                       (bvadd a #x00000002) ((_ extract 23 16) v))
                       (bvadd a #x00000003) ((_ extract 31 24) v)))
(define-fun x () (_ BitVec 32)
  (concat (select Mem1 (bvadd a #x00000003))
          (select Mem1 (bvadd a #x00000002))
          (select Mem1 (bvadd a #x00000001))
          (select Mem1 a)))

x = v



(memory 0)
(func $f (param $addr i32) (param $v i32) (result i32)
  local.get $addr
  local.get $v
  i32.store        ;; Mem1 = store(Mem0, addr, v)
  local.get $addr
  i32.load         ;; result = select(Mem1, addr)
)

(declare-fun Mem0 () (Array (_ BitVec 32) (_ BitVec 8)))
(declare-fun a () (_ BitVec 32))
(declare-fun v () (_ BitVec 32))

Mem0 is the linear memory modeled as an array from 32-bit addresses to 8-bit bytes:
Mem0 : (Array BV32 → BV8).

a is a 32-bit address (bit-vector).
v is a 32-bit word

The SMT array theory is the standard way to model memory and loads/stores.



(memory 0)
(func $f (param $addr i32) (param $v i32) (result i32)
  local.get $addr
  local.get $v
  i32.store        ;; Mem1 = store(Mem0, addr, v)
  local.get $addr
  i32.load         ;; result = select(Mem1, addr)
)

(define-fun Mem1 () (Array (_ BitVec 32) (_ BitVec 8))
  (store (store (store (store Mem0 a ((_ extract 7 0) v))
                       (bvadd a #x00000001) ((_ extract 15 8) v))
                       (bvadd a #x00000002) ((_ extract 23 16) v))
                       (bvadd a #x00000003) ((_ extract 31 24) v)))

store writes 4 bytes of v into memory starting at a:
• Byte 0 (least significant 8 bits) at address a
• Byte 1 at a + 1
• Byte 2 at a + 2
• Byte 3 (most significant 8 bits) at a + 3

(_ extract 7 0) v takes the lowest 8 bits of v .
(_ extract 15 8) v is the next 8 bits, and so on.
bvadd does 32-bit modular addition on addresses.

each (store M i b) returns a new array that maps address i to byte b and leaves 
all other addresses as in M. Nesting the four stores yields Mem1, which differs 
from Mem0 only at a, a+1, a+2, a+3.



(memory 0)
(func $f (param $addr i32) (param $v i32) (result i32)
  local.get $addr
  local.get $v
  i32.store        ;; Mem1 = store(Mem0, addr, v)
  local.get $addr
  i32.load         ;; result = select(Mem1, addr)
)

(define-fun Mem1 () (Array (_ BitVec 32) (_ BitVec 8))
  (store (store (store (store Mem0 a ((_ extract 7 0) v))
                       (bvadd a #x00000001) ((_ extract 15 8) v))
                       (bvadd a #x00000002) ((_ extract 23 16) v))
                       (bvadd a #x00000003) ((_ extract 31 24) v)))

Mem1[a] = v[7:0]
Mem1[a+1] = v[15:8]
Mem1[a+2] = v[23:16]
Mem1[a+3] = v[31:24]

All other addresses equal Mem0.



(memory 0)
(func $f (param $addr i32) (param $v i32) (result i32)
  local.get $addr
  local.get $v
  i32.store        ;; Mem1 = store(Mem0, addr, v)
  local.get $addr
  i32.load         ;; result = select(Mem1, addr)
)

(define-fun x () (_ BitVec 32)
  (concat (select Mem1 (bvadd a #x00000003))
          (select Mem1 (bvadd a #x00000002))
          (select Mem1 (bvadd a #x00000001))
          (select Mem1 a)))

load reads 4 bytes starting at a and reassembles a 32-bit word
(select Mem1 i) reads the byte at address i.
concat packs 4 bytes into 32 bits in order of the word: 
the leftmost argument becomes the most significant byte of x.
Using the selects in the order (a+3, a+2, a+1, a) exactly reconstructs the 32-bit 
value.



(memory 0)
(func $f (param $addr i32) (param $v i32) (result i32)
  local.get $addr
  local.get $v
  i32.store        ;; Mem1 = store(Mem0, addr, v)
  local.get $addr
  i32.load         ;; result = select(Mem1, addr)
)

(define-fun x () (_ BitVec 32)
  (concat (select Mem1 (bvadd a #x00000003))
          (select Mem1 (bvadd a #x00000002))
          (select Mem1 (bvadd a #x00000001))
          (select Mem1 a)))

he selects return:
select Mem1 a = v[7:0]
select Mem1 a+1 = v[15:8]
select Mem1 a+2 = v[23:16]
select Mem1 a+3 = v[31:24]

x = concat(v[31:24], v[23:16], v[15:8], v[7:0]) = v



Why this is correct (array axioms)

The theory-of-arrays gives two key equalities:
1.Read-after-write (same index):
select(store(M, i, v), i) = v
2.Read-after-write (different index):
i ≠ j ⇒ select(store(M, i, v), j) = 
select(M, j)

Applying these four times to the nested stores yields 
exactly the bytes we expect at a, a+1, a+2, a+3. 
Concatenating them recreates v.



Summary & 
Takeaways

• IRs like WASM enable precise 
formal reasoning.

• Concrete semantics: 
deterministic transitions.

• Symbolic semantics: generalize to 
formulas over symbols.

• Main hurdles: symbolic memory, 
symbolic adresses.

• Solutions: (SMT) abstract 
domains, invariants, regioned 
memory, concolic testing.


