Symbolic Semantics
and Intermediate
Representation

 Compilers and analyzers work on
Intermediate Representations
(IRs) rather than source code.

* |Rs are simplified, structured
languages used for formal
reasoning and program analysis.

 Examples: LLVM IR, Java
bytecode, WebAssembly
(WASM),

e Goal: Understand IR semantics
and challenges of symbolic I
operational semantics.

o

“l Intermediate Representation

Features: explicit
control flow, explicit
memory ops, static
typing, close to
machine level.

An IR is a machine-
independent, typed
language that exposes
control and data flow

explicitly.

WASM (fragment)

(func Sadd
(param $Sx 132)
(param Sy 132)
(result 132)
local.get Sx
local.get Sy
i32.add

WASM (fragment)

(func Sadd
(param $x 132)
(param Sy 132)
(result 132) WASM is a stack machine
local.get $Sx
local.get Sy
i32.add
)

(func $add ..) defines a function named $Sadd.
Sadd takes two parameters, $x and Sy, both 32-bit integers (132).
Sadd returns asingle 32-bit integer ((result 132)).

Sadd.body:
local.get S$x pushesthe value of Sx onto the stack.

local.get Sy pushes Sy.
132 .add pops both values, adds them, and pushes the result (which becomes the

return value).

The WASM Execution Model

Stack-based virtual machine with no
registers.

Linear memory: array of bytes private
to the module.

Structured control: block, loop, if, br,
br_if.

Sandboxed: cannot access host
memory or syscalls.

Execution state: (instr_seq, store,
memory, locals, stack).

Operational Semantics
(Concrete)

L

Defines small-step transitions between states
(i32.const n,o) = {0 - push(n))
(i32.add o -ny-n,)—>{(oc-(n;y +n,)

if 0 <a<mem.size

(store a v,mem) - (mem|a = v])

A core IR

An Intermediate programming language (syntax)

program = stmt*
stmt s = var := exp | store(exp, exp)
| goto exp | assert exp
| if exp then goto exp
else goto exp
exp e = load(exp) | exp Op exp | On exp
| var | get_input(src) | v
Ov ::= typical binary operators
Ou ::= typical unary operators

value v ::= 32-bit unsigned integer

The expression

get _input(src) returns
input from the source
stream src.

We model input stream
as a suitable list,

scr = v:: src’

We omit the type-
checking
mechanism of our
language and
assume things are
well-typed in the
obvious way,

Run-time structures

« 2: the ordered sequence of program statements
2 = Nat -> Stmt

° u: memory uU: Loc -> Values
* p: environment p: Var -> Loc + Values
° pc: program counter

* 1: next instruction

Program evolution: expressions

wp Felw

Intuition: evaluationg the expression e in the run-time context
provided by the memory u and the environment p
produces v as result

Program evolution: statements

X, u,p,pc: smt > X, u',p',pc': smt’

Intuition: the execution of the statement smt in the run-time
context given by

e the program list (X),

* the currentr memory state (p),

* the current binding for variable (p)

* the current program counter (pc)

yields a new state of program execution (X, u’, p’, pc’)

X, u,p,pc: smt - X, u’,p',pc’: smt’

Intuition: the execution of the statement
smt in the run-time context yields a new

state of program execution (X, u’, p’, pc’)
The program 2 does is not modified by
transitions.

* We do not allow programs with
dynamically generated code.

A sample of the operational semantics (expressions)

!

Sr¢ =V .- Src

u,p F getinput(src) 4 v

wprelv v=pu)
w,p+loade v

u.p +var U p(var)

A sample of the operational semantics
(statement)

uprelv p' =plvar=v] 1=Z[pc+ 1]

X, U, p,pc: var =e > X, u, p',pc+ 1:1

A sample of the operational semantics
(statement)

uprelv p' =plvar =v] 1=Z[pc+1]

X, U, p,pc:var =e - X, u, p',pc+1:1t

The current state of
execution

A sample of the operational semantics
(statement)

Evaluation of the
expression

uprelv p' =plvar =v] 1= Z[pc+1]

X, U, p,pc:var =e - X, u, p',pc+1:1t

The current state of
execution

A sample of the operational semantics
(statement)

I The new binding I

- The continuation
Evaluation of the (next instruction)
expression

uprelv p' =plvar=v] (= Z[pc+ 1]

X, u,p,pc:var =e - X, u, p,pc+1:1

The current state of
execution

A sample of the operational semantics
(statement)

I The new binding I

- The continuation
Evaluation of the (next instruction)
expression

uprelv p' =plvar =v] 1= Z[pc+1]

X, U, p,pc:var =e - X, u, p',pc+1:1t

The current state of
execution

I The next state of execution I

A sample of the operational semantics (statements)

wprelv =Xv]
X, U, p,pc:gotoe = X, U, p, vt

wprebv upre dvy,t=2ZEpc+ 1]y =pu[v, =v,]
Z; W, p, pC:StOre(el; eZ) - Z, ‘u,, P, PC + 1:t

wprell =ZXZ[pc+ 1]
X, u,p,pc:assert(e) - X, u,p,pc+ 1:1

”el‘at ion

Tror & "Mx
mod . ysa RROR\X":

-

ror

What about
functions?

.. e SE_Z = Fal
< r. = se
°Perat10n == “MIRROR 7"

i —mod.use x - False
rmod.use y = fa)qe

““"OP_-od.use_z=True FunCtion Ca”S in

Melection at the end -add -
_Ob.select= 1 h h -I I
#er_ob.select=1 ’ e Ve
ntext.scene.objects.actiw

Wi "Selected” + str(modifier " programming

#irror_ob.select = 0
bpy .- context.selected_obs

gata.objects[one.name].sel Ianguage are
- compiled by storing
the return address
eypes:00erato Y, srccent 8 and transferring
control flow.

grint("plea
_ OPERATOR CLASSES -=~

irro s pror_X
- 'jzc: llirror,ll"ro -
- y

‘ rror x-

: "::eﬁzive/"”
e

-
ect 15 e

From * Symbolic execution replaces

Concrete concrete values by symbolic
variables.
to "
: e Path conditions (II)
SymbOI'C represent branch decisions
Semantics as logical formulas. 0

/
/

o

Symbolic Operational Semantics

Symbolic state
IL X, u, p,pc: smt

e the program list (X),

* the currentr memory state (),

* the current binding for variable (p)

* the current program counter (pc)
—) + The current path condition (II)

S-INPUT

v fresh symbolic constant

u,p = getinput() Vv

S-ASSERT

uprele I’ =11 Ale' =true) 1= ZX[pc+ 1))
I1,%, u,p,pc:assert(e) » ', %, u, p,pc + 1:1

S-COND-TRUE

uprele uprelvy M=0A =1) 1 =ZXZ[v,]
[, u p,pc:if ethen goto eqelse goto e, = I1', %, u, p, v1:1

S-COND-TRUE

uprele uprelvy M=0A =1) 1 =ZXZ[v,]
[, u p,pc:if ethen goto eqelse goto e, = I1', %, u, p, v1:1

STRONG ASSUMPTION: v{must be an actual value

S-COND-TRUE

uprele uprelvy M=0A =1) 1 =ZXZ[v,]
[, u p,pc:if ethen goto eqelse goto e, = I1', %, u, p, v1:1

STRONG ASSUMPTION: v{must be an actual value

How can we encode this constraint?

start true
x=2*get_input() {x = 2 *s} true 2
If x-5 =14 then goto 3 else goto 4 {x =2 *s} ((2*s) — 5 = 14) 3

If x-5 =14 then goto 3 else goto 4 {x =2 *s} I((2*s)-5=14) 4

Challenging issue

 What should we do when the analysis uses
the memory model (1) whose index must be
a non-negative integer with a symbolic
index?

Memory is a linear
memory: a contiguous byte
array.

— |t starts at 0 and grows in
multiples of 64 KB “pages”.

Addresses are integers (no
pointers or segmentation).

There are no raw pointers
to the host.

Memory operations
are explicit:

Memory model (semantically)

* The memory is a function

u: Addr — Byte

Symbolic View of Linear Memory

* |n symbolic execution, the memory is modeled
as a symbolic array, typically using the
SMT theory of arrays:

Mem:Array (Int, Byte)

Symbolic Encoding

mem' = store(mem, a, v)

load a X = select(mem, a..a+3) (4 bytes)

Memory Ops

Symbolic Encoding

mem' = store(mem, a, v)

load a X = select(mem, a) (4 bytes)

Memory Ops

mem’ is the same as mem except at index a, where the value is v.
Subsequent reads are performed on mem’.

m Symbolic Encoding

Mem’ = store(mem, a, v)

X = select(mem, a) (4 bytes)

Memory Ops

Symbolic Addresses

Concrete addresses
If the address is concrete (e.g.a = 100), easy:

mem' = store (Mem, 100, wv).
Symbolic addresses

If a is symbolic, e.g. a = ag, the read or write cannot be
resolved concretely.

Symbolic Addresses

Symbolic addresses

Reads produce a conditional expression:
select(store(mem,a{,v1),a,) =
ite(a, = aq,vq,select(mem,a,))

Writes create a new memory expression with that

conditional update.

This leads to nested ITE chains or deep store/select
terms, which can grow quickly and stress SMT solvers.

Memory: grow and bound

The symbolic executor must:

1.Maintain a symbolic bound MEM STIZE.
2.Add guards on every access:

0<a<MEM_SIZE

When memory grows, update:
MEM SIZE' = MEM _SIZE + 64KB *n

)where n may be symbolic or concrete).

Address Space Partitioning (WASM)

WASM forbids overlapping segments unless the program
explicitly overwrites memory.

WASM Executors partition memory into disjoint
regions (stack, heap, globals).

Symbolically: each region is a separate symbolic array:
StackMem, HeapMem, GlobalMem

This avoids having a single enormous symbolic array term for
the entire 4 GB space.

* Symbolic memory: nested
ITEs and large SMT terms.

* Path explosion: every
conditional doubles states.

Challenges:
Memory

model
e Bounds: must encode

0 < addr < MEM SIZE.

Symbolic Load/Store (WASM)

(local.get $addr)
(local.get S$val)
(132 .store)

(local.get $addr)
(132 .1load)

local.get $addr pushes the address onto the stack.
local.get $val pushesthe value.

132 .store pops both (address and value) and writes the value into
linear memory at the given address.

The second pair of statements (local.get $addr, 132.load)
reads back (1oad) the 32-bit value from the same memory address.

Symbolic Load/Store (WASM)

* Symbolic SMT model:

mem' = store(mem, a,, vy); select(mem’a,)

Intuition: x = v,

Symbolic Load/Store (WASM)

* Symbolic SMT model:

mem' = store(mem, a,, vy); select(mem’a,)

Intuition: x = v,

e But this is not enough: Add bounds constraint:
0 <ayg < MEM_SIZE

Overall

(memory 1)
(func Sf (param Saddr i32) (param Sv i32)
(result i32)
local.get Saddr
local.get Sv
i32.store ;; Mem1 = store(MemO, addr, v)
local.get Saddr
i32.load ;; result = select(Mem1, addr)

)

(memory 1)
(func Sf (param Saddri32) (param Svi32) (result i32)
local.get Saddr

local.get Sv X=V
i32.store ;; Mem1 = store(MemO, addr, v)
local.get Saddr
i32.load ;; result = select(Mem1, addr)
)
; Variables

(declare-fun MemO () (Array (_ BitVec 32) (_ BitVec 8)))
(declare-fun a () (_ BitVec 32))
(declare-fun v () (_ BitVec 32))
; 4-byte store and load
(define-fun Mem1 () (Array (_ BitVec 32) (_ BitVec 8))
(store (store (store (store MemO a ((_ extract 7 0) v))
(bvadd a #x00000001) ((_ extract 15 8) v))
(bvadd a #x00000002) ((_ extract 23 16) v))
(bvadd a #x00000003) ((_ extract 31 24) v)))
(define-fun x () (_ BitVec 32)
(concat (select Mem1 (bvadd a #x00000003))
(select Mem1 (bvadd a #x00000002))
(select Mem1 (bvadd a #x00000001))
(select Mem1 a)))

(memory 0)
(func Sf (param Saddr i32) (param Sv i32) (result i32)
local.get Saddr

local.get Sv

i32.store ;; Mem1 = store(MemO, addr, v)
local.get Saddr

i32.load ;; result = select(Mem1, addr)

)

(declare-fun MemO () (Array (_ BitVec 32) (_ BitVec 8)))
(declare-fun a () (_ BitVec 32))
(declare-fun v () (_ BitVec 32))

MemO is the linear memory modeled as an array from 32-bit addresses to 8-bit bytes:
Mem(O : (Array BV32 - BVE).

a is a 32-bit address (bit-vector).
v is a 32-bit word

The SMT array theory is the standard way to model memory and loads/stores.

(memory 0)
(func Sf (param Saddr i32) (param Sv i32) (result i32)
local.get Saddr

local.get Sv

i32.store ;; Mem1 = store(MemO, addr, v)
local.get Saddr

i32.load ;; result = select(Mem1, addr)

)
(define-fun Mem1 () (Array (_ BitVec 32) (_ BitVec 8))
(store (store (store (store MemO a ((_ extract 7 0) v))
(bvadd a #x00000001) ((_ extract 15 8) v))
(bvadd a #x00000002) ((_ extract 23 16) v))
(bvadd a #x00000003) ((_ extract 31 24) v)))

store writes 4 bytes of v into memory starting at a:
* Byte O (least significant 8 bits) at address a
* Bytelata + 1
* Byte2ata + 2
* Byte 3 (most significant 8 bits) ata + 3
(extract 7 0) v takesthe lowest 8 bits of v .

(extract 15 8) wisthe next 8 bits, and so on.

bvadd does 32-bit modular addition on addresses.

each (store M 1 Db) returns a new array that maps address i to byte b and leaves
all other addresses as in M. Nesting the four stores yields Mem1, which differs
from MemO onlyata, a+l1, a+2, a+3.

(memory 0)
(func $f (param Saddr i32) (param Sv i32) (result i32)
local.get Saddr

local.get Sv
i32.store ;; Mem1 = store(MemO, addr, v)
local.get Saddr
i32.load ;; result = select(Mem1, addr)
)
(define-fun Mem1 () (Array (_ BitVec 32) (_ BitVec 8))
(store (store (store (store MemO a ((_ extract 7 0) v))
(bvadd a #x00000001) ((_ extract 15 8) v))
(bvadd a #x00000002) ((_ extract 23 16) v))
(bvadd a #x00000003) ((_ extract 31 24) v)))
Meml[a] = v[7:0]
Meml [a+1l] = v[15:8]
Meml [a+2] = v[23:16]
Meml [a+3] = v[31:24]

All other addresses equal MemO.

(memory 0)
(func Sf (param Saddr i32) (param Sv i32) (result i32)
local.get Saddr

local.get Sv

i32.store ;; Mem1 = store(MemO, addr, v)
local.get Saddr

i32.load ;; result = select(Mem1, addr)

)

(define-fun x () (_ BitVec 32)
(concat (select Mem1 (bvadd a #x00000003))
(select Mem1 (bvadd a #x00000002))
(select Mem1 (bvadd a #x00000001))

(select Mem1 a)))

load reads 4 bytes starting at a and reassembles a 32-bit word

(select Meml i) readsthe byte at address i.

concat packs 4 bytes into 32 bits in order of the word:

the leftmost argument becomes the most significant byte of x.

Using the selects in the order (a+3, a+2, a+1, a) exactly reconstructs the 32-bit

value.

(memory 0)
(func $f (param Saddr i32) (param Sv i32) (result i32)
local.get Saddr

local.get Sv

i32.store ;; Mem1 = store(MemO, addr, v)
local.get Saddr

i32.load ;; result = select(Mem1, addr)

)

(define-fun x () (_ BitVec 32)

(concat (select Mem1 (bvadd a #x00000003))
(select Mem1 (bvadd a #x00000002))
(select Mem1 (bvadd a #x00000001))
(select Mem1 a)))

he selects return:

select Meml a = v[7:0]
select Meml a+l1l = v[15:8]
select Meml a+2 = v[23:106]
select Meml a+3 = v[31:24]

X = concat(v[31:24], v[23:16], v[15:8], v[7:0]) = v

Why this is correct (array axioms)

The theory-of-arrays gives two key equalities:
1.Read-after-write (same index):
select(store(M, 1, V), 1) = Vv
2.Read-after-write (different index):

1 #] = select(store(M, 1, Vv), 7J) =
select (M, 7J)

Applying these four times to the nested stores yields
exactly the bytes we expectata, a+1l, a+2, a+3.
Concatenating them recreates v.

Summary &
Takeaways

IRs like WASM enable precise
formal reasoning.

Concrete semantics:
deterministic transitions.

Symbolic semantics: generalize to
formulas over symbols.

Main hurdles: symbolic memory,
symbolic adresses.

Solutions: (SMT) abstract
domains, invariants, regioned
memory, concolic testing.

