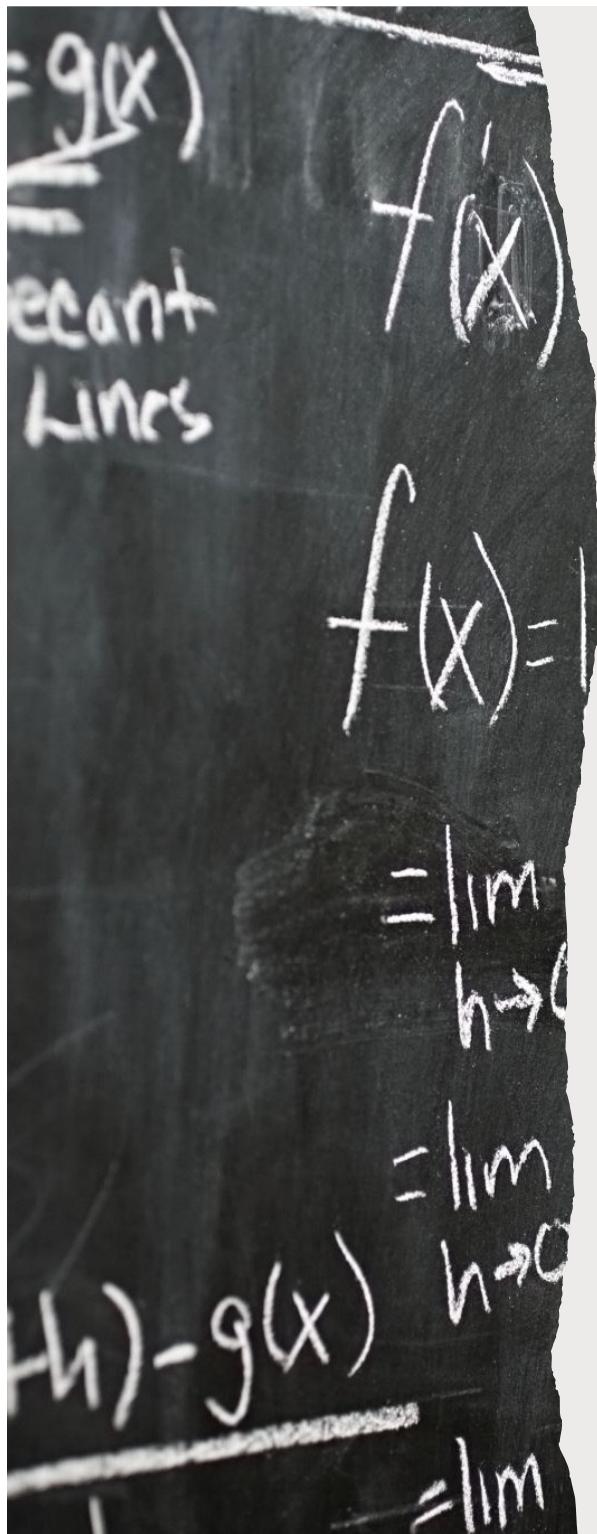


Symbolic Semantics and Intermediate Representation



The issue

- Compilers and analyzers work on Intermediate Representations (IRs) rather than source code.
- IRs are simplified, structured languages used for formal reasoning and program analysis.
- Examples: LLVM IR, Java bytecode, WebAssembly (WASM),
- Goal: Understand IR semantics and challenges of symbolic operational semantics.

Intermediate Representation

An IR is a machine-independent, typed language that exposes control and data flow explicitly.

Features: explicit control flow, explicit memory ops, static typing, close to machine level.

WASM (fragment)

```
(func $add
  (param $x i32)
  (param $y i32)
  (result i32)
  local.get $x
  local.get $y
  i32.add
)
```

WASM (fragment)

```
(func $add
  (param $x i32)
  (param $y i32)
  (result i32)           WASM is a stack machine
  local.get $x
  local.get $y
  i32.add
)
```

(func \$add ...) defines a function named \$add.
\$add takes two parameters, \$x and \$y, both 32-bit integers (i32).
\$add returns a single 32-bit integer ((result i32)).

\$add.body:

local.get \$x pushes the value of \$x onto the stack.
local.get \$y pushes \$y.
i32.add pops both values, adds them, and pushes the result (which becomes the return value).

The WASM Execution Model

Stack-based virtual machine with no registers.

Linear memory: array of bytes private to the module.

Structured control: block, loop, if, br, br_if.

Sandboxed: cannot access host memory or syscalls.

Execution state: $\langle \text{instr_seq}, \text{store}, \text{memory}, \text{locals}, \text{stack} \rangle$.

Operational Semantics (Concrete)

Defines small-step transitions between states

$$\langle i32.\text{const } n, \sigma \rangle \rightarrow \langle \sigma \cdot \text{push}(n) \rangle$$

$$\langle i32.\text{add } \sigma \cdot n_1 \cdot n_2 \rangle \rightarrow \langle \sigma \cdot (n_1 + n_2) \rangle$$

$$\frac{\text{if } 0 \leq a \leq \text{mem.size}}{\langle \text{store } a \ v, \text{mem} \rangle \rightarrow \langle \text{mem}[a = v] \rangle}$$

A circular graphic with a dark center and a multi-layered, glowing outer ring. The ring features a gradient of colors, including magenta, blue, and red, with some white highlights. The text 'A core IR' is centered within the dark center of the circle.

A core IR

An Intermediate programming language (syntax)

```
program    ::=  stmt*
stmt s     ::=  var := exp | store(exp, exp)
               | goto exp | assert exp
               | if exp then goto exp
               | else goto exp
exp e      ::=  load(exp) | exp  $\diamond_b$  exp |  $\diamond_u$  exp
               | var | get_input(src) | v
 $\diamond_b$        ::=  typical binary operators
 $\diamond_u$        ::=  typical unary operators
value v    ::=  32-bit unsigned integer
```

Remark

The expression
get_input(src) returns
input from the source
stream *src*.

We model input stream
as a suitable list,

$$\text{scr} = \text{v} :: \text{src}'$$

We omit the type-
checking
mechanism of our
language and
assume things are
well-typed in the
obvious way,

Run-time structures

- Σ : the ordered sequence of program statements
 $\Sigma = \text{Nat} \rightarrow \text{Stmt}$
- μ : memory $\mu: \text{Loc} \rightarrow \text{Values}$
- ρ : environment $\rho: \text{Var} \rightarrow \text{Loc} + \text{Values}$
- pc : program counter
- l : next instruction

Program evolution: expressions

$$\mu, \rho \vdash e \Downarrow v$$

Intuition: evaluationg the expression e in the run-time context provided by the memory μ and the environment ρ produces v as result

Program evolution: statements

$$\Sigma, \mu, \rho, pc : smt \rightarrow \Sigma, \mu', \rho', pc' : smt'$$

- **Intuition: the execution of the statement smt in the run-time context given by**
 - the program list (Σ),
 - the current memory state (μ),
 - the current binding for variable (ρ)
 - the current program counter (pc)
- **yields a new state of program execution (Σ, μ', ρ', pc')**

Remark

$$\Sigma, \mu, \rho, pc: smt \rightarrow \Sigma, \mu', \rho', pc': smt'$$

- **Intuition: the execution of the statement smt in the run-time context yields a new state of program execution (Σ, μ', ρ', pc')**
- **The program Σ does is not modified by transitions.**
 - We do not allow programs with dynamically generated code.

A sample of the operational semantics (expressions)

$$\frac{src = v :: src'}{\mu, \rho \vdash get\text{Input}(src) \Downarrow v}$$

$$\frac{\mu, \rho \vdash e \Downarrow v_1 \quad v = \mu(v_1)}{\mu, \rho \vdash load\ e \Downarrow v}$$

$$\frac{}{\mu, \rho \vdash var \Downarrow \rho(var)}$$

A sample of the operational semantics (statement)

$$\frac{\mu, \rho \vdash e \Downarrow v \quad \rho' = \rho[\text{var} = v] \quad \iota = \Sigma[pc + 1]}{\Sigma, \mu, \rho, pc: \text{var} = e \rightarrow \Sigma, \mu, \rho', pc + 1: \iota}$$

A sample of the operational semantics (statement)

$$\frac{\mu, \rho \vdash e \Downarrow v \quad \rho' = \rho[\text{var} = v] \quad \iota = \Sigma[pc + 1]}{\Sigma, \mu, \rho, pc: \text{var} = e \rightarrow \Sigma, \mu, \rho', pc + 1: \iota}$$

The current state of
execution

A sample of the operational semantics (statement)

Evaluation of the expression

$$\frac{\mu, \rho \vdash e \Downarrow v \quad \rho' = \rho[\text{var} = v] \quad \iota = \Sigma[\text{pc} + 1]}{\Sigma, \mu, \rho, \text{pc}: \text{var} = e \rightarrow \Sigma, \mu, \rho', \text{pc} + 1: \iota}$$

The current state of execution

A sample of the operational semantics (statement)

$$\frac{\mu, \rho \vdash e \Downarrow v \quad \rho' = \rho[\text{var} = v] \quad \iota = \Sigma[\text{pc} + 1]}{\Sigma, \mu, \rho, \text{pc}: \text{var} = e \rightarrow \Sigma, \mu, \rho', \text{pc} + 1: \iota}$$

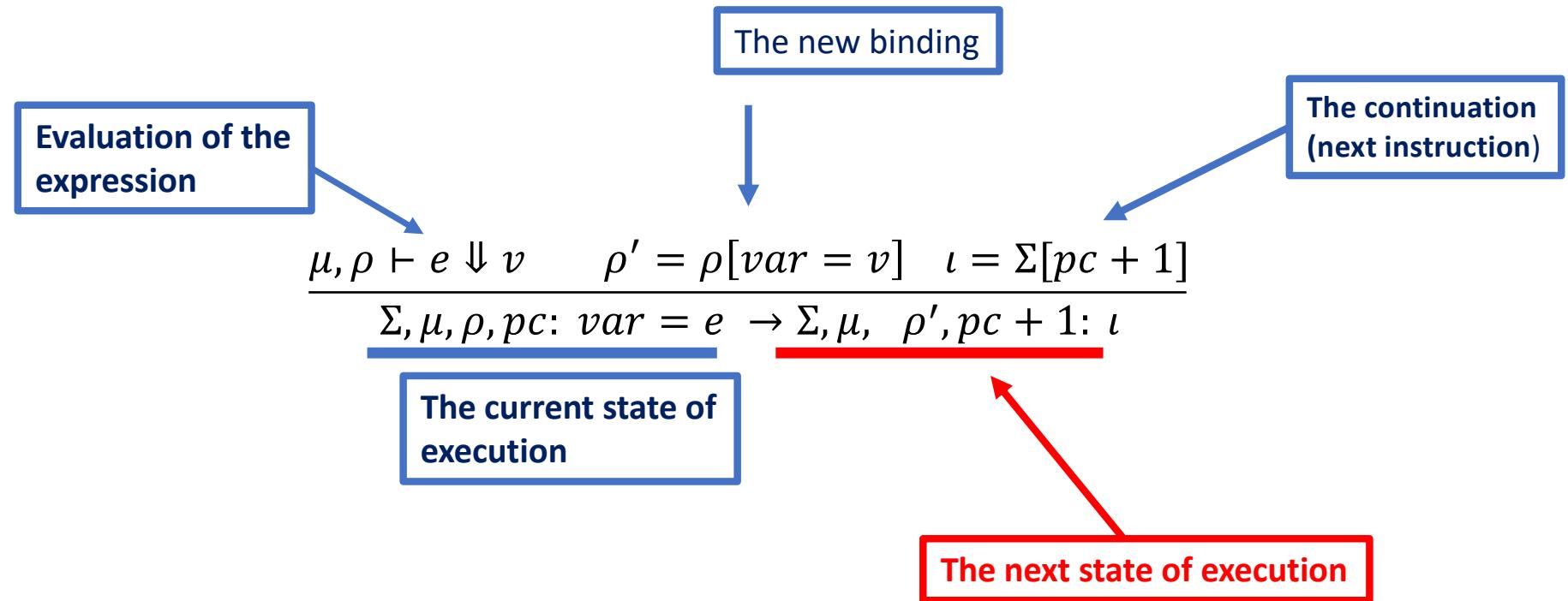
Evaluation of the expression

The new binding

The continuation (next instruction)

The current state of execution

A sample of the operational semantics (statement)

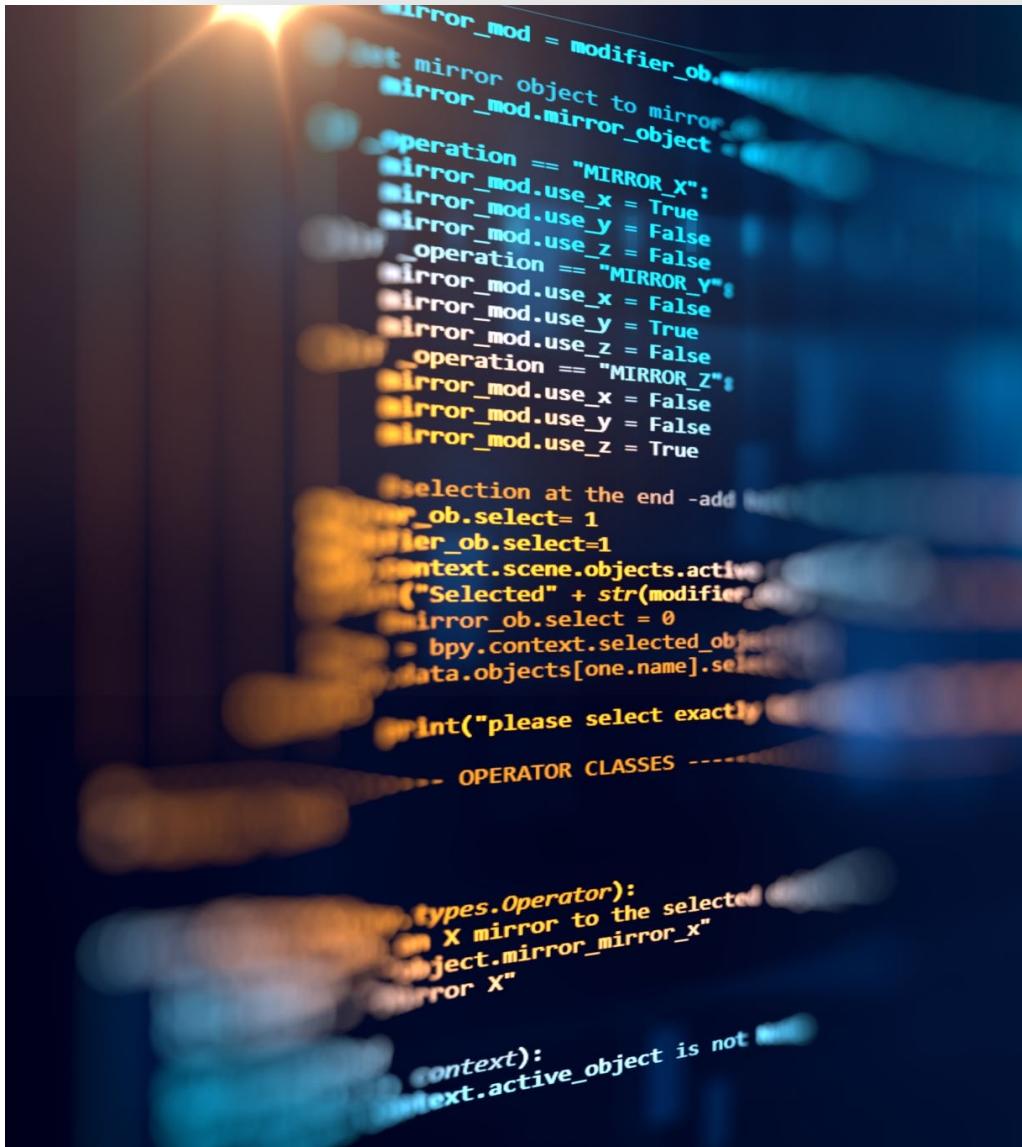


A sample of the operational semantics (statements)

$$\frac{\mu, \rho \vdash e \Downarrow v_1 \quad \iota = \Sigma[v_1]}{\Sigma, \mu, \rho, pc: goto\ e \rightarrow \Sigma, \mu, \rho, v_1: \iota}$$

$$\frac{\mu, \rho \vdash e_1 \Downarrow v_1 \quad \mu, \rho \vdash e_2 \Downarrow v_2 \quad \iota = \Sigma[pc + 1] \quad \mu' = \mu[v_1 = v_2]}{\Sigma, \mu, \rho, pc: Store(e_1, e_2) \rightarrow \Sigma, \mu', \rho, pc + 1: \iota}$$

$$\frac{\mu, \rho \vdash e \Downarrow 1 \quad \iota = \Sigma[pc + 1]}{\Sigma, \mu, \rho, pc: assert(e) \rightarrow \Sigma, \mu, \rho, pc + 1: \iota}$$

A photograph of a person's hand pointing at a computer screen. The screen displays a block of Python code. The code is related to 3D modeling, specifically for a 'mirror' modifier. It includes logic for setting up a mirror object, defining use options for X, Y, and Z axes, and handling user selection. The code is annotated with comments and includes sections for 'OPERATOR CLASSES' and 'types.Operator'.

```
mirror_mod = modifier_obj
# mirror object to mirror
mirror_mod.mirror_object = ob
operation = "MIRROR_X"
mirror_mod.use_x = True
mirror_mod.use_y = False
mirror_mod.use_z = False
operation = "MIRROR_Y"
mirror_mod.use_x = False
mirror_mod.use_y = True
mirror_mod.use_z = False
operation = "MIRROR_Z"
mirror_mod.use_x = False
mirror_mod.use_y = False
mirror_mod.use_z = True

selection at the end - add
mirror_mod.select = 1
mirror_mod.select=1
bpy.context.scene.objects.active = mirror_mod
("Selected" + str(modifier))
mirror_mod.select = 0
bpy.context.selected_objects = []
data.objects[one.name].select = 1
int("please select exactly one object")
-- OPERATOR CLASSES --
types.Operator:
    X mirror to the selected object.mirror_mirror_x
    mirror X
    context):
    context.active_object is not None
```

What about
functions?

***Function calls in
high-level
programming
language are
compiled by storing
the return address
and transferring
control flow.***

From Concrete to Symbolic Semantics

- Symbolic execution replaces concrete values by symbolic variables.
- Path conditions (Π) represent branch decisions as logical formulas.

Symbolic Operational Semantics

Symbolic state

$\Pi, \Sigma, \mu, \rho, pc: \text{smt}$

- the program list (Σ),
- the current memory state (μ),
- the current binding for variable (ρ)
- the current program counter (pc)
- • The current path condition (Π)

S-INPUT

$$\frac{v \text{ fresh symbolic constant}}{\mu, \rho \vdash \text{getInput()} \Downarrow v}$$

S-ASSERT

$$\frac{\mu, \rho \vdash e \downarrow e' \ \Pi' = \Pi \ \wedge \ (e' = \text{true}) \ \ \iota = \Sigma[pc + 1])}{\Pi, \Sigma, \mu, \rho, pc : \text{assert}(e) \rightarrow \Pi', \Sigma, \mu, \rho, pc + 1 : \iota}$$

S-COND-TRUE

$$\frac{\mu, \rho \vdash e \downarrow e' \quad \mu, \rho \vdash e_1 \downarrow v_1 \quad \Pi' = \Pi \wedge (e' = 1) \quad \iota = \Sigma[v_1]}{\Pi, \Sigma, \mu, \rho, pc: \text{if } e \text{ then goto } e_1 \text{ else goto } e_2 \rightarrow \Pi', \Sigma, \mu, \rho, v_1: \iota}$$

S-COND-TRUE

$$\frac{\mu, \rho \vdash e \downarrow e' \quad \mu, \rho \vdash e_1 \downarrow v_1 \quad \Pi' = \Pi \wedge (e' = 1) \quad \iota = \Sigma[v_1]}{\Pi, \Sigma, \mu, \rho, pc: \text{if } e \text{ then goto } e_1 \text{ else goto } e_2 \rightarrow \Pi', \Sigma, \mu, \rho, v_1: \iota}$$

STRONG ASSUMPTION: v_1 must be an actual value

S-COND-TRUE

$$\frac{\mu, \rho \vdash e \downarrow e' \quad \mu, \rho \vdash e_1 \downarrow v_1 \quad \Pi' = \Pi \wedge (e' = 1) \quad \iota = \Sigma[v_1]}{\Pi, \Sigma, \mu, \rho, pc: \text{if } e \text{ then goto } e_1 \text{ else goto } e_2 \rightarrow \Pi', \Sigma, \mu, \rho, v_1: \iota}$$

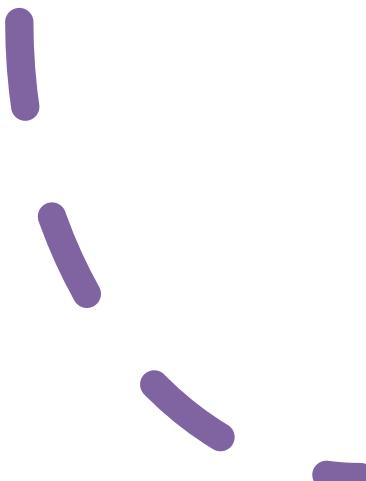
STRONG ASSUMPTION: v_1 must be an actual value

How can we encode this constraint?

Statement	ρ	Π	pc
start	{}	true	1
$x = 2 * \text{get_input}()$	$\{x = 2 * s\}$	true	2
If $x - 5 = 14$ then goto 3 else goto 4	$\{x = 2 * s\}$	$((2 * s) - 5 = 14)$	3
If $x - 5 = 14$ then goto 3 else goto 4	$\{x = 2 * s\}$	$!((2 * s) - 5 = 14)$	4

Challenging issue

- What should we do when the analysis uses the memory model (μ) whose index must be a non-negative integer with a *symbolic index*?



Memory model

- Memory is a **linear memory**: a contiguous byte array.
 - It starts at **0** and grows in multiples of 64 KB “pages”.
- Addresses are **integers** (no pointers or segmentation).
- There are **no raw pointers to the host**.
- Memory operations are **explicit**:

Memory model (semantically)

- The memory is a function

$$\mu: \textit{Addr} \rightarrow \textit{Byte}$$

Symbolic View of Linear Memory

- In symbolic execution, the memory is modeled as a **symbolic array**, typically using the **SMT theory of arrays**:

Mem:Array(Int, Byte)

Mem Op	Symbolic Encoding
store a v	$\text{mem}' = \text{store}(\text{mem}, a, v)$
load a	$x = \text{select}(\text{mem}, a..a+3)$ (4 bytes)

Memory Ops

Mem Op	Symbolic Encoding
store a v	$\text{mem}' = \text{store}(\text{mem}, a, v)$
load a	$x = \text{select}(\text{mem}, a)$ (4 bytes)

Memory Ops

mem' is the same as mem except at index a , where the value is v . Subsequent reads are performed on mem' .

Mem Op	Symbolic Encoding
store a v	$\text{Mem}' = \text{store}(\text{mem}, a, v)$
load a	$x = \text{select}(\text{mem}, a)$ (4 bytes)

Memory Ops

Symbolic Addresses

Concrete addresses

If the address is concrete (e.g. $a = 100$), easy:

```
mem' = store(Mem, 100, v).
```

Symbolic addresses

If a is symbolic, e.g. $a = a_0$, the read or write cannot be resolved concretely.

Symbolic Addresses

Symbolic addresses

Reads produce a conditional expression:

$$\begin{aligned} \text{select}(\text{store}(\text{mem}, a_1, v_1), a_2) = \\ \text{ite}(a_2 = a_1, v_1, \text{select}(\text{mem}, a_2)) \end{aligned}$$

Writes create a new memory expression with that conditional update.

This leads to **nested ITE chains** or **deep store/select terms**, which can grow quickly and stress SMT solvers.

Memory: grow and bound

The symbolic executor must:

1. Maintain a symbolic bound MEM_SIZE .
2. Add guards on every access:

$$0 \leq a < MEM_SIZE$$

When memory grows, update:

$$MEM_SIZE' = MEM_SIZE + 64KB * n$$

)where n may be symbolic or concrete).

Address Space Partitioning (WASM)

WASM forbids overlapping segments unless the program explicitly overwrites memory.

WASM Executors partition memory into **disjoint regions** (stack, heap, globals).

Symbolically: each region is a separate symbolic array:

StackMem, HeapMem, GlobalMem

This avoids having a single enormous symbolic array term for the entire 4 GB space.

Challenges: Memory model

- Symbolic memory: nested ITEs and large SMT terms.
- Path explosion: every conditional doubles states.
- Bounds: must encode $0 \leq \text{addr} < \text{MEM_SIZE}$.

Symbolic Load/Store (WASM)

```
(local.get $addr)  
(local.get $val)  
(i32.store)
```

```
(local.get $addr)  
(i32.load)
```

`local.get $addr` pushes the address onto the stack.

`local.get $val` pushes the value.

`i32.store` pops both (address and value) and writes the value into linear memory at the given address.

The second pair of statements (`local.get $addr, i32.load`) reads back (`load`) the 32-bit value from the same memory address.

Symbolic Load/Store (WASM)

- Symbolic SMT model:

$$mem' = store(mem, a_0, v_0); select(mem' a_0)$$

Intuition: $x = v_0$

Symbolic Load/Store (WASM)

- Symbolic SMT model:

$$mem' = store(mem, a_0, v_0); select(mem' a_0)$$

Intuition: $x = v_0$

- But this is not enough: Add bounds constraint:
$$0 \leq a_0 \leq MEM_SIZE$$

Overall

```
(memory 1)
(func $f (param $addr i32) (param $v i32)
(result i32)
  local.get $addr
  local.get $v
  i32.store    ;; Mem1 = store(Mem0, addr, v)
  local.get $addr
  i32.load     ;; result = select(Mem1, addr)
)
```

```
(memory 1)
(func $f (param $addr i32) (param $v i32) (result i32)
  local.get $addr
  local.get $v
  i32.store    ;; Mem1 = store(Mem0, addr, v)
  local.get $addr
  i32.load     ;; result = select(Mem1, addr)
)
```

$x = v$

; Variables

```
(declare-fun Mem0 () (Array (_ BitVec 32) (_ BitVec 8)))
(declare-fun a () (_ BitVec 32))
(declare-fun v () (_ BitVec 32))
; 4-byte store and load
(define-fun Mem1 () (Array (_ BitVec 32) (_ BitVec 8))
  (store (store (store (store Mem0 a ((_ extract 7 0) v))
    (bvadd a #x00000001) ((_ extract 15 8) v))
    (bvadd a #x00000002) ((_ extract 23 16) v))
    (bvadd a #x00000003) ((_ extract 31 24) v)))
(define-fun x () (_ BitVec 32)
  (concat (select Mem1 (bvadd a #x00000003))
    (select Mem1 (bvadd a #x00000002))
    (select Mem1 (bvadd a #x00000001))
    (select Mem1 a)))
```

```
(memory 0)
(func $f (param $addr i32) (param $v i32) (result i32)
  local.get $addr
  local.get $v
  i32.store    ;; Mem1 = store(Mem0, addr, v)
  local.get $addr
  i32.load     ;; result = select(Mem1, addr)
)
```

```
(declare-fun Mem0 () (Array (_ BitVec 32) (_ BitVec 8)))
(declare-fun a () (_ BitVec 32))
(declare-fun v () (_ BitVec 32))
```

Mem0 is the linear memory modeled as an **array** from 32-bit addresses to 8-bit bytes:

Mem0 : (Array BV32 → BV8).

a is a 32-bit **address** (bit-vector).

v is a 32-bit **word**

The SMT **array theory** is the standard way to model memory and loads/stores.

```

(memory 0)
(func $f (param $addr i32) (param $v i32) (result i32)
  local.get $addr
  local.get $v
  i32.store    ;; Mem1 = store(Mem0, addr, v)
  local.get $addr
  i32.load     ;; result = select(Mem1, addr)
)
(define-fun Mem1 () (Array (_ BitVec 32) (_ BitVec 8))
  (store (store (store (store Mem0 a ((_ extract 7 0) v))
    (bvadd a #x00000001) ((_ extract 15 8) v))
    (bvadd a #x00000002) ((_ extract 23 16) v))
    (bvadd a #x00000003) ((_ extract 31 24) v)))
)

```

store writes 4 bytes of v into memory starting at a :

- Byte 0 (least significant 8 bits) at address a
- Byte 1 at $a + 1$
- Byte 2 at $a + 2$
- Byte 3 (most significant 8 bits) at $a + 3$

$((_ extract 7 0) v)$ takes the **lowest 8 bits** of v .

$((_ extract 15 8) v)$ is the next 8 bits, and so on.

bvadd does 32-bit modular addition on addresses.

each $(\text{store } M \ i \ b)$ returns a **new array** that maps address i to byte b and leaves all other addresses as in M . Nesting the four stores yields Mem1 , which differs from Mem0 **only** at $a, a+1, a+2, a+3$.

```

(memory 0)
(func $f (param $addr i32) (param $v i32) (result i32)
  local.get $addr
  local.get $v
  i32.store    ;; Mem1 = store(Mem0, addr, v)
  local.get $addr
  i32.load     ;; result = select(Mem1, addr)
)
(define-fun Mem1 () (Array (_ BitVec 32) (_ BitVec 8))
  (store (store (store (store Mem0 a ((_ extract 7 0) v))
    (bvadd a #x00000001) ((_ extract 15 8) v)))
    (bvadd a #x00000002) ((_ extract 23 16) v)))
  (bvadd a #x00000003) ((_ extract 31 24) v)))

```

```

Mem1 [a]  = v [7:0]
Mem1 [a+1] = v [15:8]
Mem1 [a+2] = v [23:16]
Mem1 [a+3] = v [31:24]

```

All other addresses equal Mem0.

```
(memory 0)
(func $f (param $addr i32) (param $v i32) (result i32)
  local.get $addr
  local.get $v
  i32.store    ;; Mem1 = store(Mem0, addr, v)
  local.get $addr
  i32.load     ;; result = select(Mem1, addr)
)
```

```
(define-fun x () (_ BitVec 32)
  (concat (select Mem1 (bvadd a #x00000003))
          (select Mem1 (bvadd a #x00000002))
          (select Mem1 (bvadd a #x00000001))
          (select Mem1 a)))
```

load reads 4 bytes starting at a and reassembles a 32-bit word

$(\text{select } \text{Mem1 } i)$ reads the byte at address i .

concat packs 4 bytes into 32 bits in order of the **word**:

the leftmost argument becomes the **most significant** byte of x .

Using the selects in the order $(a+3, a+2, a+1, a)$ exactly reconstructs the 32-bit value.

```

(memory 0)
(func $f (param $addr i32) (param $v i32) (result i32)
  local.get $addr
  local.get $v
  i32.store    ;; Mem1 = store(Mem0, addr, v)
  local.get $addr
  i32.load     ;; result = select(Mem1, addr)
)
(define-fun x () (_ BitVec 32)
  (concat (select Mem1 (bvadd a #x00000003))
          (select Mem1 (bvadd a #x00000002))
          (select Mem1 (bvadd a #x00000001))
          (select Mem1 a)))

```

he selects return:

```

select Mem1 a = v[7:0]
select Mem1 a+1 = v[15:8]
select Mem1 a+2 = v[23:16]
select Mem1 a+3 = v[31:24]

```

$x = \text{concat}(v[31:24], v[23:16], v[15:8], v[7:0]) = v$

Why this is correct (array axioms)

The theory-of-arrays gives two key equalities:

1. Read-after-write (same index):

$$\text{select}(\text{store}(M, i, v), i) = v$$

2. Read-after-write (different index):

$$i \neq j \Rightarrow \text{select}(\text{store}(M, i, v), j) = \text{select}(M, j)$$

Applying these four times to the nested stores yields exactly the bytes we expect at $a, a+1, a+2, a+3$. Concatenating them recreates v .

Summary & Takeaways

- IRs like WASM enable precise formal reasoning.
- Concrete semantics: deterministic transitions.
- Symbolic semantics: generalize to formulas over symbols.
- Main hurdles: symbolic memory, symbolic addresses.
- Solutions: (SMT) abstract domains, invariants, regioned memory, concolic testing.

