

Some Remark on Parallel Operators

L. Ceragioli

Interleaving Commutativity

Given $\mathcal{T}_1, \mathcal{T}_2$ transition systems, is the following true?

$$\mathcal{T}_1 \parallel\!\!\parallel \mathcal{T}_2 = \mathcal{T}_2 \parallel\!\!\parallel \mathcal{T}_1$$

Interleaving Commutativity

Given $\mathcal{T}_1, \mathcal{T}_2$ transition systems, is the following true?

$$\mathcal{T}_1 \parallel\!\!\parallel \mathcal{T}_2 = \mathcal{T}_2 \parallel\!\!\parallel \mathcal{T}_1$$

Yes! Any idea on how to prove it?

Interleaving Commutativity

Given $\mathcal{T}_1, \mathcal{T}_2$ transition systems, is the following true?

$$\mathcal{T}_1 \parallel\!\!\parallel \mathcal{T}_2 = \mathcal{T}_2 \parallel\!\!\parallel \mathcal{T}_1$$

Yes! Any idea on how to prove it?

(A little detail, it holds if $(s_1, s_2) = (s_2, s_1)$)

Interleaving Associativity

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, is the following true?

$$(\mathcal{T}_1 \parallel\!\!\parallel \mathcal{T}_2) \parallel\!\!\parallel \mathcal{T}_3 = \mathcal{T}_1 \parallel\!\!\parallel (\mathcal{T}_2 \parallel\!\!\parallel \mathcal{T}_3)$$

Interleaving Associativity

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, is the following true?

$$(\mathcal{T}_1 \parallel\!\!\parallel \mathcal{T}_2) \parallel\!\!\parallel \mathcal{T}_3 = \mathcal{T}_1 \parallel\!\!\parallel (\mathcal{T}_2 \parallel\!\!\parallel \mathcal{T}_3)$$

Yes! Any idea on how to prove it?

Interleaving Associativity

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, is the following true?

$$(\mathcal{T}_1 \parallel\!\!\parallel \mathcal{T}_2) \parallel\!\!\parallel \mathcal{T}_3 = \mathcal{T}_1 \parallel\!\!\parallel (\mathcal{T}_2 \parallel\!\!\parallel \mathcal{T}_3)$$

Yes! Any idea on how to prove it?

(A little detail, it holds if $((s_1, s_2), s_3) = (s_1, (s_2, s_3))$)

Synchronized Composition Associativity

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, and Syn_1, Syn_2 sets of actions, is the following true?

$$(\mathcal{T}_1 \parallel_{Syn_1} \mathcal{T}_2) \parallel_{Syn_2} \mathcal{T}_3 = \mathcal{T}_1 \parallel_{Syn_1} (\mathcal{T}_2 \parallel_{Syn_2} \mathcal{T}_3)$$

Synchronized Composition Associativity

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, and Syn_1, Syn_2 sets of actions, is the following true?

$$(\mathcal{T}_1 \parallel_{Syn_1} \mathcal{T}_2) \parallel_{Syn_2} \mathcal{T}_3 = \mathcal{T}_1 \parallel_{Syn_1} (\mathcal{T}_2 \parallel_{Syn_2} \mathcal{T}_3)$$

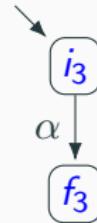
No!

Associativity Counterexample

Transition System \mathcal{T}_1

Transition System \mathcal{T}_2

Transition System \mathcal{T}_3

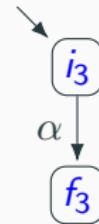


Associativity Counterexample

Transition System \mathcal{T}_1

Transition System \mathcal{T}_2

Transition System \mathcal{T}_3



$$Syn_1 = \{\alpha\}$$

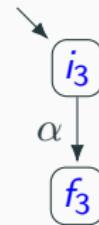
$$Syn_2 = \emptyset$$

Associativity Counterexample

Transition System \mathcal{T}_1

Transition System \mathcal{T}_2

Transition System \mathcal{T}_3



$$Syn_1 = \{\alpha\}$$

$$Syn_2 = \emptyset$$

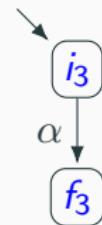
$$(\mathcal{T}_1 \parallel_{Syn_1} \mathcal{T}_2) \parallel_{Syn_2} \mathcal{T}_3 \neq \mathcal{T}_1 \parallel_{Syn_1} (\mathcal{T}_2 \parallel_{Syn_2} \mathcal{T}_3)$$

Associativity Counterexample

Transition System \mathcal{T}_1

Transition System \mathcal{T}_2

Transition System \mathcal{T}_3

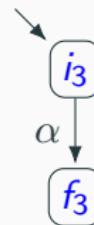


Associativity Counterexample

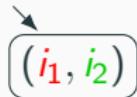
Transition System \mathcal{T}_1

Transition System \mathcal{T}_2

Transition System \mathcal{T}_3



Transition System $\mathcal{T}_1 \parallel_{\{\alpha\}} \mathcal{T}_2$

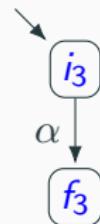


Associativity Counterexample

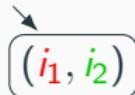
Transition System \mathcal{T}_1

Transition System \mathcal{T}_2

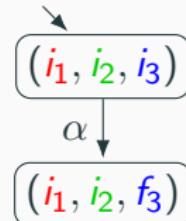
Transition System \mathcal{T}_3



Transition System $\mathcal{T}_1 \parallel_{\{\alpha\}} \mathcal{T}_2$



Transition System $(\mathcal{T}_1 \parallel_{\{\alpha\}} \mathcal{T}_2) \parallel_{\emptyset} \mathcal{T}_3$

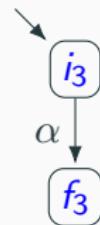


Associativity Counterexample

Transition System \mathcal{T}_1

Transition System \mathcal{T}_2

Transition System \mathcal{T}_3

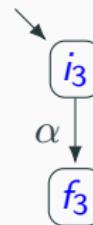


Associativity Counterexample

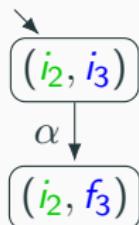
Transition System \mathcal{T}_1

Transition System \mathcal{T}_2

Transition System \mathcal{T}_3



Transition System $\mathcal{T}_2 \parallel_{\emptyset} \mathcal{T}_3$

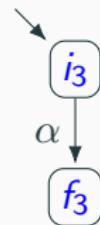


Associativity Counterexample

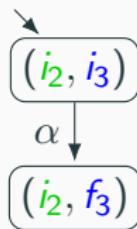
Transition System \mathcal{T}_1

Transition System \mathcal{T}_2

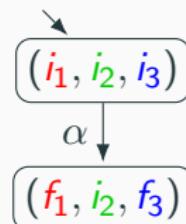
Transition System \mathcal{T}_3



Transition System $\mathcal{T}_2 \parallel_{\emptyset} \mathcal{T}_3$



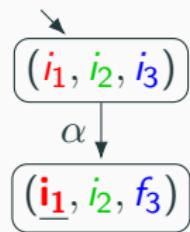
Transition System $\mathcal{T}_1 \parallel_{\{\alpha\}} (\mathcal{T}_2 \parallel_{\emptyset} \mathcal{T}_3)$



Associativity Counterexample

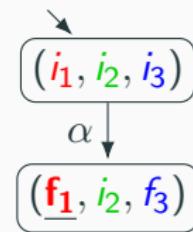
Transition System

$$(\mathcal{T}_1 \parallel_{\{\alpha\}} \mathcal{T}_2) \parallel_{\emptyset} \mathcal{T}_3$$



Transition System

$$\mathcal{T}_1 \parallel_{\{\alpha\}} (\mathcal{T}_2 \parallel_{\emptyset} \mathcal{T}_3)$$



Synchronized Associativity: a special case

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, and Syn a set of actions, is the following true?

$$(\mathcal{T}_1 \parallel_{Syn} \mathcal{T}_2) \parallel_{Syn} \mathcal{T}_3 = \mathcal{T}_1 \parallel_{Syn} (\mathcal{T}_2 \parallel_{Syn} \mathcal{T}_3)$$

Synchronized Associativity: a special case

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, and Syn a set of actions, is the following true?

$$(\mathcal{T}_1 \parallel_{Syn} \mathcal{T}_2) \parallel_{Syn} \mathcal{T}_3 = \mathcal{T}_1 \parallel_{Syn} (\mathcal{T}_2 \parallel_{Syn} \mathcal{T}_3)$$

Yes! Any idea on how to prove it?

Synchronized Associativity: another special case

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, is the following true?

$$(\mathcal{T}_1 \parallel \mathcal{T}_2) \parallel \mathcal{T}_3 = \mathcal{T}_1 \parallel (\mathcal{T}_2 \parallel \mathcal{T}_3)$$

(recall that $Syn = Act_1 \cap Act_2$ is the implicit synchronization set of $\mathcal{T}_1 \parallel \mathcal{T}_2$, with Act_1 the actions of \mathcal{T}_1 and Act_2 the actions of \mathcal{T}_2)

Synchronized Associativity: another special case

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, is the following true?

$$(\mathcal{T}_1 \parallel \mathcal{T}_2) \parallel \mathcal{T}_3 = \mathcal{T}_1 \parallel (\mathcal{T}_2 \parallel \mathcal{T}_3)$$

(recall that $Syn = Act_1 \cap Act_2$ is the implicit synchronization set of $\mathcal{T}_1 \parallel \mathcal{T}_2$, with Act_1 the actions of \mathcal{T}_1 and Act_2 the actions of \mathcal{T}_2)

Yes! Any idea on how to prove it?

More on \parallel

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, it holds that:

$$(\mathcal{T}_1 \parallel \mathcal{T}_2) \parallel \mathcal{T}_3 = \mathcal{T}_1 \parallel (\mathcal{T}_2 \parallel \mathcal{T}_3) = \mathcal{T}_1 \parallel \mathcal{T}_2 \parallel \mathcal{T}_3$$

More on \parallel

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, it holds that:

$$(\mathcal{T}_1 \parallel \mathcal{T}_2) \parallel \mathcal{T}_3 = \mathcal{T}_1 \parallel (\mathcal{T}_2 \parallel \mathcal{T}_3) = \mathcal{T}_1 \parallel \mathcal{T}_2 \parallel \mathcal{T}_3$$

Moreover:

$$\begin{aligned}\mathcal{T}_1 \parallel \mathcal{T}_2 \parallel \mathcal{T}_3 &= \mathcal{T}_1 \parallel \mathcal{T}_3 \parallel \mathcal{T}_2 = \\ \mathcal{T}_2 \parallel \mathcal{T}_1 \parallel \mathcal{T}_3 &= \mathcal{T}_2 \parallel \mathcal{T}_3 \parallel \mathcal{T}_1 = \\ \mathcal{T}_3 \parallel \mathcal{T}_1 \parallel \mathcal{T}_2 &= \mathcal{T}_3 \parallel \mathcal{T}_2 \parallel \mathcal{T}_1\end{aligned}$$

Composing the systems $\mathcal{T}_1, \dots, \mathcal{T}_n$ means that

- P_i can evolve independently with actions that are **only** in Act_i
- P_i, P_j can evolve by synchronizing with an action that is **only** in Act_i and in Act_j
- P_i, P_j, P_k can evolve by synchronizing with an action that is **only** in Act_i , Act_j and in Act_k
- ...

The composed system of $\mathcal{T}_1, \dots, \mathcal{T}_n$ is such that, for each action α , a state of the obtained transition system can perform an α action if and only if all the processes P_i with $\alpha \in Act_i$ perform the α action.