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Systems Security Modelling and Analysis SySMA research unit
Bachelor, Master degree and PhD in Pisa with Degano and Galletta

e Research Interests
Verification of concurrent and interactive quantum systems (with Gadducci at UniPI)
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Formal methods for computer security (with Galletta at IMT Lucca)
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Mail: lorenzo.ceragioli@imtlucca.it
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Course Outline

e Introduction to model checking ~2/3 of the course
o Lectures + Exercise Sessions
o The Subject for the written exam
o  We will follow Principles of Model Checking by Christel Baier and Joost-Pieter Katoen

e Seminars on State-of-the-Art research ~1/3 of the course
o Guest Lecturers will present advanced topics
o You can select the subject for your seminar
o Research papers will be given as suggested reading



Exam

1. A written exam on model checking (we will see the syllabus shortly)
o You must get at least 18/30L before scheduling the seminar

2. A seminar (followed by questions) presenting the content of a research paper

on one of the advanced topics introduced during the last part of the course
o Alist of topics and related papers will be given
o Recall to introduce the needed background (but you can assume the audience knows the
basics of model checking and the course prerequisites)
o Around 30 minutes plus questions



Course Material

e \We will follow the book Introduction to
model checking by Baier and Katoen,
chapters 1 to 6 (see the errata corrige)

e We will also frequently use their slides

e Exercises sheets and solutions

e Everything but the book can be found at
my page Iceragioli.github.io/
(announcements section in case of
room changes, cancelled lessons etc)

e Papers from the seminars

Principles of Model Checking

Christel Baier and Joost-Pieter Katoen



https://lceragioli.github.io/

Course Prerequisites

Automata and language theory
Algorithms and data structures basics
Computability and complexity theory
Mathematical logic



Model Checking Course Syllabus

Modelling Systems
o  Transition systems and program graphs
o Modelling Concurrent Systems

Linear Time Properties
o Invariants, Safety, Liveness and Fairness
o  Checking regular safety properties
o  Checking omega regular properties with Blchi automata
Linear Time Logics
o  Positive Normal Forms
o Fairness
o  Model checking LTL formulas
Branching Time Logics
o  Computational Tree Logics
o  Comparison of the expressivity of LTL, CTL and CTL*
o  Model checking CTL and CTL* formulas

... it will make more sense after an introduction to model checking



What is System Verification?

“System verification amounts to establishing whether the system under
consideration possesses certain properties.”

More time and effort on verification and validation than on construction

Verification = “are we building the thing right?”

Validation = “are we building the right thing?”

Note: Correctness is always relative to a specification



Because

e The number of defects grows
exponentially with the number of
interacting system components
(concurrency, nondeterminism)

e Some systems cannot be (easily)
fixed after release

e Failures in critical systems may
be catastrophic

e |n catching software errors, the
sooner is the better

e |Itis just about money and safety

Explosion of first Ariane 5 flight, 1996
(overflow while converting from 64-bit floating point to
16-bit signed integer)
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Informal Approaches to System Verification

e Peerreview
o software inspection carried out by a team of engineers
o static technique: manual code inspection
o Subtle errors are hard to catch (e.g. concurrency)

e Software simulation and testing

take a model (simulation) or a realisation (testing)
stimulate it with certain inputs, i.e., the tests
observe reaction and check whether this is “desired”
number of possible behaviours is very large
unexplored behaviours may contain the fatal bug

o O O O O



Formal Methods: Applied mathematics for modelling and

analysing ICT systems

Deductive Methods

Associate logical statements
and derivation rules to program
constructs, and derive a proof
of the property for the system.

E.g. dependent types, proof
assistants, Hoare logic ...

Model-Based Methods

Generate and inspect a model
describing the system behavior

in @ mathematically precise and
unambiguous manner.

E.g. formal simulation and
testing, model checking ...



Model Checking

Model checking is an automated technique that,
given a finite representation of the behaviour of a system and a
formal property,
systematically checks whether this property holds
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Which Formal Model?

e Transition Systems
o States in which the program may be
o Propositions associated with states satisfying them
o Transitions for representing state updates
o Labels over transitions to represent interaction in a composable way

e Representing programs, possibly with multi-threads and communication



Modeling the System

e The model checker usually comes with a model description language (e.g.
Promela for the SPIN model checker)

e The target system may be an abstract entity, like a cryptographic protocol

e Orit may be a real system, like a piece of code

e [f the language of the target system has a formal semantics then
correctness of the model can be formally proved

e Otherwise, correctness can only be "corroborated by experiments" though
simulation



Formalizing the Requirements

e Usually by some modal logic (decidability/expressivity balance)
o Modal operators such as “always”, “eventually”, “necessarily”, “possibly”
o oP, OP, with P a logical proposition

functional correctness (does the system do what it is supposed to do?)
reachability (is it possible to end up in a deadlock state?)

safety (“something bad never happens”)

liveness (“something good will eventually happen”)

fairness (does, under certain conditions, an event occur repeatedly?)

(We should check consistency, otherwise model checking is useless)
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Model Checking from a Logical Perspective

1. Define a logic suitable for the properties of interest (additional operators w.r.t.
classical propositional logic) &

2. Define a model-based semantics (with an appropriate mathematical entities in
the role of the models)

3. (Define a translation from programming or modeling language to the set of
chosen mathematical models)

4. Design a decision algorithm for u = ®
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An Example of Deductive Verification Method

{ZAb} P{T}
(Ale/x]} x:=e {A} (7} while bdo P {Z / —b)
{A} PiB} 1B} Q {C} A=A {AYP{B} B =B
{A} P; Q {C} | {A} P {B)




The strengths of model checking

Widely applicable (hardware, software, protocols, configuration files, ...)
Allows for partial verification (only most relevant properties)

Not biased to the most possible scenarios (such as testing)

Potential “push-button” technology (automated tools)

Diagnostic information in case of property violation (counterexamples)

Sound and interesting mathematical foundations (logics, graph algorithms ...)



The weaknesses of model checking

Decidability issues (check integer function termination?)

Tractability issues (state explosion)

No completeness for the logic (some property may be unexpressible)

Main focus on control-intensive applications (less data-oriented)

It is only as “good” as the system model

It requires expertise in optimizing models and properties for efficiency

It is not a compositional approach (verifying that two systems S and S: satisfy
a property P does not imply that their composition S:®S. satisfies P)



Striking Model-Checking Examples

e Security: Needham-Schroeder public-key protocol: error that remained
undiscovered for 17 years unrevealed

e Transportation systems: train model containing 10476 states

e Programming Languages: Model checkers for C, Java and C++ used (and
developed) by Microsoft, NASA, etc. (device drivers)

e Hardware Verification: Successful applications of (symbolic) model checking
to large hardware systems, part of the hardware development process at IBM

e Space: Formal analysis of Mars Science Laboratory, Deep Space 1, Cassini,
the Mars Exploration Rovers, Deep Impact, etc.

e Health: Verification of medical device transmission protocols



An Important Field of Application: Concurrent Programs

Consider these three threads and assume x =0

1. while true do
2. ifx<200 then
3. X:=x+1
4. od

1. while true do
2. ifx>0then
3. X:=X-1
4. od

1. while true do

2. ifx =200 then
3. X:=0

4. od

Verify: is x always between (and including) 0 and 2007
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Using Spin Model Checker

int x = 0;

proctype Inc() {

do :: true -> if ::

}

proctype Dec() {

do :: true -> if ::

}

proctype Reset() {

do :: true -> if ::

}

(x < 200) -> x

(x> 0) -> x =

(x == 200) ->

+ 1 f1 od

1 fi od

0 fi od

proctype Check() {
assert (x »>= 0 && x <= 200)

}
init {
atomic{ run Inc() ; run Dec() ; run Reset() ; run Check() }

}

spin: text of failed assertion: assert(((x>=0)&&(x<=200)))

We can fix the problem by imposing atomicity




Model Checking Course Syllabus

« Modelling Systems
o  Transition systems and program graphs
o Modelling Concurrent Systems

. Linear Time Properties
o Invariants, Safety, Liveness and Fairness
o  Checking regular safety properties
o  Checking omega regular properties with Blchi automata
- Linear Time Logics
o  Positive Normal Forms
o Fairness
o  Model checking LTL formulas
. Branching Time Logics
o  Computational Tree Logics
o  Comparison of the expressivity of LTL, CTL and CTL*
o  Model checking CTL and CTL* formulas



