Software Validation and Verification

Lorenzo Ceragioli GianLuigi Ferrari

IMT school Lucca UniPl
lorenzo.ceragioli@imtlucca.it gian-luigi.ferrari@unipi.it

About Me

e Assistant Professor at IMT Lucca (RTD-A)

(@)

(@)

Systems Security Modelling and Analysis SySMA research unit
Bachelor, Master degree and PhD in Pisa with Degano and Galletta

e Research Interests
Verification of concurrent and interactive quantum systems (with Gadducci at UniPI)

(@)

(@)

Formal methods for computer security (with Galletta at IMT Lucca)

e C(Contacts

(@)

(@)

(@)

Mail: lorenzo.ceragioli@imtlucca.it
Page: Iceraqioli.github.io
Office time: Send me an email and we will schedule it!

IMT

SCUOLA
ALTI STUDI
LUCCA

mailto:lorenzo.ceragioli@imtlucca.it
http://lceragioli.github.io

SCUOLA

ALTI STUDI
LUCCA

Full Professor

Full Profe.ssor. Assistant Professor Assistant Professor Associate Professor
SySMA Head (IMT and University e & i
Modeling and of Genova) Machine Learning, & of;ma Se o Af‘ p yt e{sec;m z{'
Simulation, Software Computer Vision, Gl vxéar: ter%u" Y, igenzgl':\)ﬁnethecfc;ng‘

& N uantu r S,
berformance Cybersecurity, Lfeiong:Lesring Communication and Software Verification
Engineering, Computer security Computin Vulnerabilit: '

Computational Methods ping Assessmen{

Assistant Professor

Assistant Professor

Assistant Professor
Software Security,

Associate Professor Assistant Professor
Software Performance Formal Methods, Data Science, Machine Physical Layer
Software Verification, Modeling and Control, Mathematical Learning, Security
Formal Methods, Layered Queueing Foundations of CS, Spatio-temporal ;
Programming Networks, Autoscaling, Proof Theory, Certified
Languages Cloud Computing

J Machine Learning
Programming, Type
Theory, Non-classical

Logics

6G Security: Optical
communications,
Covert channels,
Security in critical
infrastructure systems

Course Outline

e Introduction to model checking ~2/3 of the course
o Lectures + Exercise Sessions
o The Subject for the written exam
o We will follow Principles of Model Checking by Christel Baier and Joost-Pieter Katoen

e Seminars on State-of-the-Art research ~1/3 of the course
o Guest Lecturers will present advanced topics
o You can select the subject for your seminar
o Research papers will be given as suggested reading

Exam

1. A written exam on model checking (we will see the syllabus shortly)
o You must get at least 18/30L before scheduling the seminar

2. A seminar (followed by questions) presenting the content of a research paper

on one of the advanced topics introduced during the last part of the course
o Alist of topics and related papers will be given
o Recall to introduce the needed background (but you can assume the audience knows the
basics of model checking and the course prerequisites)
o Around 30 minutes plus questions

Course Material

e \We will follow the book Introduction to
model checking by Baier and Katoen,
chapters 1 to 6 (see the errata corrige)

e We will also frequently use their slides

e Exercises sheets and solutions

e Everything but the book can be found at
my page Iceragioli.github.io/
(announcements section in case of
room changes, cancelled lessons etc)

e Papers from the seminars

Principles of Model Checking

Christel Baier and Joost-Pieter Katoen

https://lceragioli.github.io/

Course Prerequisites

Automata and language theory
Algorithms and data structures basics
Computability and complexity theory
Mathematical logic

Model Checking Course Syllabus

Modelling Systems
o Transition systems and program graphs
o Modelling Concurrent Systems

Linear Time Properties
o Invariants, Safety, Liveness and Fairness
o Checking regular safety properties
o Checking omega regular properties with Blchi automata
Linear Time Logics
o Positive Normal Forms
o Fairness
o Model checking LTL formulas
Branching Time Logics
o Computational Tree Logics
o Comparison of the expressivity of LTL, CTL and CTL*
o Model checking CTL and CTL* formulas

... it will make more sense after an introduction to model checking

What is System Verification?

“System verification amounts to establishing whether the system under
consideration possesses certain properties.”

More time and effort on verification and validation than on construction

Verification = “are we building the thing right?”

Validation = “are we building the right thing?”

Note: Correctness is always relative to a specification

Because

e The number of defects grows
exponentially with the number of
interacting system components
(concurrency, nondeterminism)

e Some systems cannot be (easily)
fixed after release

e Failures in critical systems may
be catastrophic

e |n catching software errors, the
sooner is the better

e |Itis just about money and safety

Explosion of first Ariane 5 flight, 1996
(overflow while converting from 64-bit floating point to
16-bit signed integer)

/

N\

AN

DAO attack on Ethereum, 2016
(Reentrancy problem)

Northeast blackout, 2003

Explosion of first Ariane 5 flight, 1996 (Mishandled race condition)
(Overflow during data conversion) i
rac-. uni
Treatment table
[ABB5G1-66
$Xx837
= H = power switch
I ® onﬂ?r:g‘ency ‘ . :) rapy room
Swilc! B
'] \ E ‘ - = v
pentium™ Tuniatle = N\ e
PROCESSOR position X
monitor
Control
console
Printer
Wi 881002 moritor™
Room

Display © Motion enable Beam on/off light interlock emergency
lerminal switch (footswitch) switch

Pentium FDIV bug, 1994

(Missing values in a lookup table) Therac-25 Radiation Overdosing, 1985-87

(Mishandled race condition)

Informal Approaches to System Verification

e Peerreview
o software inspection carried out by a team of engineers
o static technique: manual code inspection
o Subtle errors are hard to catch (e.g. concurrency)

e Software simulation and testing

take a model (simulation) or a realisation (testing)
stimulate it with certain inputs, i.e., the tests
observe reaction and check whether this is “desired”
number of possible behaviours is very large
unexplored behaviours may contain the fatal bug

o O O O O

Formal Methods: Applied mathematics for modelling and

analysing ICT systems

Deductive Methods

Associate logical statements
and derivation rules to program
constructs, and derive a proof
of the property for the system.

E.g. dependent types, proof
assistants, Hoare logic ...

Model-Based Methods

Generate and inspect a model
describing the system behavior

in @ mathematically precise and
unambiguous manner.

E.g. formal simulation and
testing, model checking ...

Model Checking

Model checking is an automated technique that,
given a finite representation of the behaviour of a system and a
formal property,
systematically checks whether this property holds

Model Checking Approach Schema

Al

Formalizing

property
specification

Model Checking

system

Modeling

violated +
counterexample

Simulation

location
error

Which Formal Model?

e Transition Systems
o States in which the program may be
o Propositions associated with states satisfying them
o Transitions for representing state updates
o Labels over transitions to represent interaction in a composable way

e Representing programs, possibly with multi-threads and communication

Modeling the System

e The model checker usually comes with a model description language (e.g.
Promela for the SPIN model checker)

e The target system may be an abstract entity, like a cryptographic protocol

e Orit may be a real system, like a piece of code

e [f the language of the target system has a formal semantics then
correctness of the model can be formally proved

e Otherwise, correctness can only be "corroborated by experiments" though
simulation

Formalizing the Requirements

e Usually by some modal logic (decidability/expressivity balance)
o Modal operators such as “always”, “eventually”, “necessarily”, “possibly”
o oP, OP, with P a logical proposition

functional correctness (does the system do what it is supposed to do?)
reachability (is it possible to end up in a deadlock state?)

safety (“something bad never happens”)

liveness (“something good will eventually happen”)

fairness (does, under certain conditions, an event occur repeatedly?)

(We should check consistency, otherwise model checking is useless)

Recall: Propositional Logic

Deduction system
® = true

a € AP

Py ANDy | D

a

Based on proofs: inductively
defined data structures (lists or
Model-based semantics tre.es) Construct.ed gccordlng to the
axioms and derivation rules.

Interpretations M AP — {031}

W = true \III\I’Q.,,\IJHI—(I)

nE=a iff p(a) =1

pE —® iff pjE® V=P APy
— O AV iff ® and '

T AV iff pE®and p = UEd,

Model Checking from a Logical Perspective

1. Define a logic suitable for the properties of interest (additional operators w.r.t.
classical propositional logic) &

2. Define a model-based semantics (with an appropriate mathematical entities in
the role of the models)

3. (Define a translation from programming or modeling language to the set of
chosen mathematical models)

4. Design a decision algorithm for u = ®

Model Checking Approach Schema

Al

Formalizing

property
specification

Model Checking

system

Modeling

violated +
counterexample

Simulation

location
error

Model Checking Approach Schema

AJ
Formalizing

25

violated +
counterexample

pE= @

system

Modeling

o

Simulation

location
error

An Example of Deductive Verification Method

{ZAb} P{T}
(Ale/x]} x:=e {A} (7} while bdo P {Z / —b)
{A} PiB} 1B} Q {C} A=A {AYP{B} B =B
{A} P; Q {C} | {A} P {B)

The strengths of model checking

Widely applicable (hardware, software, protocols, configuration files, ...)
Allows for partial verification (only most relevant properties)

Not biased to the most possible scenarios (such as testing)

Potential “push-button” technology (automated tools)

Diagnostic information in case of property violation (counterexamples)

Sound and interesting mathematical foundations (logics, graph algorithms ...)

The weaknesses of model checking

Decidability issues (check integer function termination?)

Tractability issues (state explosion)

No completeness for the logic (some property may be unexpressible)

Main focus on control-intensive applications (less data-oriented)

It is only as “good” as the system model

It requires expertise in optimizing models and properties for efficiency

It is not a compositional approach (verifying that two systems S and S: satisfy
a property P does not imply that their composition S:®S. satisfies P)

Striking Model-Checking Examples

e Security: Needham-Schroeder public-key protocol: error that remained
undiscovered for 17 years unrevealed

e Transportation systems: train model containing 10476 states

e Programming Languages: Model checkers for C, Java and C++ used (and
developed) by Microsoft, NASA, etc. (device drivers)

e Hardware Verification: Successful applications of (symbolic) model checking
to large hardware systems, part of the hardware development process at IBM

e Space: Formal analysis of Mars Science Laboratory, Deep Space 1, Cassini,
the Mars Exploration Rovers, Deep Impact, etc.

e Health: Verification of medical device transmission protocols

An Important Field of Application: Concurrent Programs

Consider these three threads and assume x =0

1. while true do
2. ifx<200 then
3. X:=x+1
4. od

1. while true do
2. ifx>0then
3. X:=X-1
4. od

1. while true do

2. ifx =200 then
3. X:=0

4. od

Verify: is x always between (and including) 0 and 2007

BwnNn =

. While true do

if x <200 then
X =x+1
od

S

. While true do

if x > 0 then
X:=x-1
od

s L~

. While true do

if x = 200 then
x:=0
od

(x=0,pc1=2,pc2=2,pc3 =
.

(x = 0pc1—3‘pc32 2, pc3 =

(x=1,pc1=1,pc2=2,pc3 =

(x =1, pc1—2'ﬁg2 2,pc3 =

(x=1,pcl1 =3, pc2=2,pc3 =

(x = 2pc1-1‘pcv;2 2,pc3 =

2)
2)
2)
2)
2)
2)

(x =200, pc1 =1,pc2 =2, pc3 =2)
(x =200, pc1 =1, pc2 =3, pc3 =2)

'4-4-

.

(x =200, pc1 =

4.

, pc2 = 3, pc3 = 3)

(x=0,pc1=1,pc2=3, pc3=1)
(x=-1,pc1=1,pc2=1,pc3=1)

4.

Using Spin Model Checker

int x = 0;

proctype Inc() {

do :: true -> if ::

}

proctype Dec() {

do :: true -> if ::

}

proctype Reset() {

do :: true -> if ::

}

(x < 200) -> x

(x> 0) -> x =

(x == 200) ->

+ 1 f1 od

1 fi od

0 fi od

proctype Check() {
assert (x »>= 0 && x <= 200)

}
init {
atomic{ run Inc() ; run Dec() ; run Reset() ; run Check() }

}

spin: text of failed assertion: assert(((x>=0)&&(x<=200)))

We can fix the problem by imposing atomicity

Model Checking Course Syllabus

« Modelling Systems
o Transition systems and program graphs
o Modelling Concurrent Systems

. Linear Time Properties
o Invariants, Safety, Liveness and Fairness
o Checking regular safety properties
o Checking omega regular properties with Blchi automata
- Linear Time Logics
o Positive Normal Forms
o Fairness
o Model checking LTL formulas
. Branching Time Logics
o Computational Tree Logics
o Comparison of the expressivity of LTL, CTL and CTL*
o Model checking CTL and CTL* formulas

