OverView OVERVIEW2.2

Introduction

Modelling parallel systems
Transition systems
Modeling hard- and software systems
Parallelism and communication —

Linear Time Properties
Regular Properties
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction

1/145

Parallelism and communication Pc2.2-1

“real” parallel system

P="P| ..

in

transition system

T=T|...7

2/145

Parallelism and communication Pc2.2-1

“real” parallel system
P=Pi|-.-.| Pan

compositional analysis
design semantics
transition system

T=T|...7

3/145

Parallelism and communication Pc2.2-1

“real” parallel system
P=Pi|-.-.| Pan

compositional analysis
design semantics
transition system

T=T|...7

goal: define semantic parallel operators
on transition systems or program graphs that
model “real” parallel operators

4/145

Interleaving operator ||| for TS

e interleaving of concurrent, independent actions
of parallel processes (modelled by TS)

e representation by nondeterministic choice:
“which subprocess performs the next step?”

5/145

Interleaving operator ||| for TS

e interleaving of concurrent, independent actions
of parallel processes (modelled by TS)

e representation by nondeterministic choice:
“which subprocess performs the next step?”

effect(a|||3) = effect(a;[+[3:c)

aI i Iﬁ ;<>f

6/145

Interleaving operator ||| for TS

e interleaving of concurrent, independent actions
of parallel processes (modelled by TS)

e representation by nondeterministic choice:
“which subprocess performs the next step?”

effect(a|||3) = effect(a;[+[3:c)

aI i Iﬁ ;<>f

parallel execution
of @ and 3 on
two processors

7/145

Interleaving operator ||| for TS

e interleaving of concurrent, independent actions
of parallel processes (modelled by TS)

e representation by nondeterministic choice:
“which subprocess performs the next step?”

effect(a|||3) = effect(a;[+[3:c)

aI i Iﬁ

parallel execution serial execution on
of @ and 3 on a single processor
two processors in arbitrary order

I

8/145

Interleaving operator ||| for TS PP——
T = (51,Act;,—1,5.1, APy, L1)
75 = (52) ACt27 —2, S0,2) AP2) L2)

9/145

Interleaving operator ||| for TS res e TS
T = (51,Act;,—1,5.1, APy, L1)
75 = (52) ACt27 -2, S0,2) AP2) L2)
The transition system 7; ||| 72 is defined by:
7]. ||| 75 = (SIXS27ACt1) ACt27 -, S0,1X50,2) AP) L)

where the transition relation — is given by:

10/145

InterleaVing Operator ||I for TS PC2.2-DEF-INTERLEAVING-T'S

Ti = (51,Acti,—1, 50,1, APy, L)
T, = (52,Acty, —2,502,AP,, L2)
The transition system 7; ||| 72 is defined by:
T ||| T2 = (51%S2, Acty U Acty, —, Sp.1% So0.2, AP, L)
where the transition relation — is given by:
S1 —a>1 s o3 _a)2 $
(s1,9) = (sh2) (s1,92) = (s1,5)

11/145

InterleaVing Operator ||I for TS PC2.2-DEF-INTERLEAVING-T'S

Ti = (51,Acti,—1, 50,1, APy, L)
T, = (52,Acty, —2,502,AP,, L2)
The transition system 7; ||| 72 is defined by:
T ||| T2 = (51%S2, Acty U Acty, —, Sp.1% So0.2, AP, L)
where the transition relation — is given by:
S1 —a>1 s o3 _a)2 $
(s1,9) = (sh2) (s1,92) = (s1,5)

atomic propositions: AP = AP, W AP,
labeling function: L({s1,%2)) = Li(s1) U La(s2)

12/145

SOS-notation (structured operational semantics) ...

just a simple notation for operational semantics

premise
conclusion

13 /145

SOS-notation (structured operational semantics) ...

just a simple notation for operational semantics

premise
conclusion

E.g., “the relation — is given by ...”
S1 —a>1 5{ S —a>2 55
«
(51) 5‘2) — (517 52) (517 52) <517 55)
means that — is the smallest relation such that:

(1) Ifs 5 sy, then (51,52> (s1,2)

(2) If 55— 55, then (s1, %) — (1, %)

14/145

Useless lights for non-crossing streets

15/145

Useless lights for non-crossing streets

16/145

Dependent actions

dependent actions a@ = x:=2x and 3 = x:=x+1

representations in
transition systems

(x=3) x=3
a B
(x=6) (x=4)

S

17 /145

Dependent actions
dependent actions a@ = x:=2x and 3 = x:=x+1

x=3 x=3

(x=6) x=4

representations in
transition systems

interleaving operator |||

18/145

Interleaving fails for dependent actions

dependent actions a@ = x:=2x and 3 = x:=x+1

representations in
transition systems

x=3
a

B

=

x=3

S

interleaving operator ||| for transition systems “fails”

inconsistent
states

19/145

Interleaving for program graphs

20/145

Interleaving for program graphs

... for modeling parallel systems with
subprocesses communicating via shared variables

21/145

Interleaving for program graphs

program graph Py
(Locy,. . .,—1,--.

)

program graph P»
(Locy, . ..,—,...

)

interleaving operator

Pi|||P2 = (Loa x Loc,...,—,...)

22/145

Interleaving for program graphs

program graph Py program graph P,
(Locy,...,—1,...) (Locy, ..., —9,...)

interleaving operator

Pi|||P2 = (Loa x Loc,...,—,...)

. L x
n&S. e €8S,

A A
(,0) 50 0) (0, 0) 5 (0, 8)

23/145

Interleaving for program graphs

PG; = (Loc;, Act;, Effect;, — ;, Locy ;, 9o,i)
PG1 ||| PG2 = (LOCl X L()Cz,ACtl] ACtQ, Effect, —, LOC()_l X LOC()‘Q,g(],l A g(]_z)

g g«

21 —1 Pll £2 9 (,2
- g ’ and o g, ,
(l1,€2) — (l1,02) (l1,€2) — (l1,8)

Effect; (v, 0|,y)(v) if v € Var;
n(v) otherwise

Bfect(cn)(0) = {

23/145

Example: interleaving for PG

” .

x 1= 2x X=X—I—1

24/145

Example: interleaving for PG

n a

xi=x+1

25/145

Example: interleaving for PG

P P,

x 1= 2x EX:=X—I—1

transition system Tp, ||| p,

P P2

X:=2x .7 < x:=x+1
) (65 x=4)
)

Ci=
x:=x+1 |£/1 €,2| x:=2x [¢ 0 x=T

(4 ¢ x=8)

26/145

Example: interleaving for PG

P P,

x 1= 2x EX:=X—I—1

transition system Tp, ||| p,

P P2

X:=2x .7 < x:=x+1
) (65 x=4)
)

Ci=
x:=x+1 |£/1 €,2| x:=2x [¢ 0 x=T

note: Tp, | p, # Tp, ||| Zp,

(4 ¢ x=8)

27/145

Mutual exclusion with semaphore

process P;

N

process P,

~

shared variables 4+ semaphor y

PC2.2-9

28/145

Mutual exclusion with semaphore

process P;

N

process P,

~

shared variables 4+ semaphor y

protocol for process P;

LOOP FOREVER
noncritical actions;
AWAIT y > 0 DO

y:=y—1
0D
critical actions;
y:=y+1

END LOOQOP

29/145

Mutual exclusion with semaphore

process P;

N

process P,

~

shared variables 4+ semaphor y

protocol for process P;

LOOP FOREVER

AWAIT y >0 D0

y:=y—1
0D
critical actions;
y:=y+1
END LOOP

program graph P;

y>0
L yi=y—1

crlt,

30/145

Mutual exclusion with semaphore

yimy+1{ (waity) yimy+1{ (waits)

y>0: yi=y—1 ., iy >0:y==y—1

(.critl) (.‘.Critg)

31/145

Mutual exclusion with semaphore

yimy+1{ (waity) yimy+1{ (waits)

y>0: yi=y—1 y>0: y:=y—1

l.critl) (crity)

;;rcl)”g;am graph . ~(noncrit; Noncrity)=...

< (waity_noncrity J*-..~~(noncrit; wait,) ™,

Ty S0 T T Ty >0

yi=y—1"

3 y=y+1; L yi=y+l

L a 0: —oa
A

32/145

Mutual exclusion with semaphore

yimy+1{ (waity) yimy+1{ (waits)

y>0: y:=y—1 . y>0: y:=y—1

(.critl) (crity)

g“l’lf;am graph . ~(noncrit; Noncrity)=...

y=y+1," T e yi=y+l

“ (waity_noncrity)*....-~~(noncrit; waity

STy > 07 3
yi=y—1 "

Lyi=y+l

crit; noncrit,

1 Cwaity crit,)

33/145

Mutual exclusion with semaphore

yimy+1{ (waity) yimy+1{ (waits)

y>0: yi=y—1 y>0: y:=y—1

(.critl) (crity)

;;rcl)”g;am graph . ~(noncrit; Noncrity)=...

< (waity_noncrity J*-..~~(noncrit; wait,) ™,

Ty S0 T T Ty >0

yi=y—1"

3 y=y+1; L yi=y+l

A

y=y+l e (crity Crifz Y reachable ?

34/145

Mutual exclusion with semaphore

yimy+1{ (waity) yimy+1{ (waits)

y>0: yi=y—1 y>0: y:=y—1

(.critl) (crity)

;;rcl)”g;am graph . ~(noncrit; Noncrity)=...

< (waity_noncrity J*-..~~(noncrit; wait,) ™,

Ty S0 T T Ty >0

yi=y—1"

3 y=y+1; L yi=y+l

L a 0: —oa
A

35/145

Mutual exclusion with semaphore

yimy+1{ (waity) yimy+1{ (waity)

y>0: yi=y—1 y>0: y:=y—1
(crit;) (crity)

;;rcl)”g;am graph . ~(noncrit; Noncrity)=...

y=y+1 o

~ (waity noncrit,

Y >0

36 /145

Mutual exclusion with semaphore

P

yi=y+1 (wait;)

y>0: y:=y—1

(.critl)

program graph

P P2

PC2.2-10

P2

yimy+1{ (waity)

-------------- =(noncrit; noncrit,)~

y=y+1

) y=y+1/

" (waity noncrit,

Y >0 -

y >0: y:=y—1

37/145

Mutual exclusion with semaphore

yimy+1{ (waity) yimy+1{ (waits)

y>0: y:=y—1 y >0: y:=y—1
(crity) (crity)

;;rcl)”g;am graph . ~(noncrity noncrity)=-....

y=y+1 o

" (waity noncrit,

Y >0

y=y+1/

72,21 Cwaity crtt;

38/145

Mutual exclusion with semaphore

” N

.,y >0:y=y-1 y >0: y:=y—1
(critl)

program graph
P P2

—y+1

39/145

TS for mutual exclusion with semaphore

y:=y+1 (wait1) y:=y+1 (wait2)

y >0: y:=y—1 n, iy >0ry=y-1

(‘x.critl) (‘.critz)

reachable fragment of the transition system 7p ||,
N

noncrit; noncrit, y=1

N

@valtl noncrity y=1 oncrit; wait, y=1

(crit; noncrit, y_o) (waltl waity y=1) (noncrit; crit, y=0)

(crltl waity y= 0) (wait; crit, y=0)

40/145

Concurrency of the request actions

yi=y+1]

P P,

y:=y+1
y >0: y:=y—1 s ly>0:y=y-1

(“‘.critl) (‘.Cl’itg)

reachable fragment of the transition system 7p ||,
N

noncrit; noncrit, y=1

N

@valtl noncrity y=1 oncrit; wait, y=1

(crit; noncrit, y-@ (waltl waity y=1) (noncrit; crit, y=0)

(crltl waity y= 0) (wait; crit, y=0)

41/145

Concurrency of the request actions

yi=y+1]

P P,

y:=y+1
y >0: y:=y—1 s ly>0:y=y-1

(“‘.critl) (‘.Cl’itg)

interleaving of the independent request actions
N

noncrit; noncrit, y=1

N

@valtl noncrit, y=1 oncrit; wait, y=)

(crit; noncrit, y-@ (waltl waity y=1) (noncrit; crit, y=0)

(crltl waity y_O) (wait; crity y=0)

42/145

Competition

y:=y+1 (wa|t1) y:=y+1 wait2

s, Wy >0ry=y-l y >0: y:=y—1

(crit;) (\. crity)

reachable fragment of the transition system 7p ||,
N

noncrit; noncrit, y=1
(wait; noncrit, y=1 noncrit; wait, y=1)

(crity noncrit, y=1) (wait; wait, y=1)\ (noncrity crit, y=0)

(crity; wait, y=0) (wait;y crit, y=0)

43/145

Competition

y:=y+1 (wa|t1) y:=y+1 wait2

y>0: yi=y—1 .. y>0: y:=y—1

(crit;) (\.critg)

reachable fragment of the transition system 7p ||,
N

noncrit; noncrit, y=1
(wait; noncrit, y=1 noncrit; wait, y=1)

(crity noncrit, y=1) (wait; wait, y=1)\ (noncrit; crit, y=0)

(crity; wait, y=0) (wait; crity y=0)

44/145

Competition

y:=y+1:;' (wait;) y:i=y+1 [wait2]

., [y >0ry=y-l y >0: y:=y—1

(.critl) (crity)
...competition between the waiting processes ...

N

noncrit; noncrit, y=1
(wait; noncrit, y=1 noncrit; wait, y=1)

(crity noncrit, y=1) (wait; wait, y=1)\ (noncrit; crit, y=0)

(crit; wait; y=0) (wait; crit; y=0)

45/145

Peterson algorithm for mutual exclusion pe2.2-12

46 /145

Peterson algorithm for mutual exclusion

process Py

process P,

N

/

shared variables

PC2.2-12

47 /145

Peterson algorithm for mutual exclusion

process Py

process P,

N

/

shared variables

+ by, by, x

PC2.2-12

48 /145

Peterson algorithm for mutual exclusion

process Py

process P

N\

/

shared variables

+ by, by, x

by, b, Boolean variables, x € {1,2}

PC2.2-12

49 /145

Peterson algorithm for mutual exclusion pe2.2-12

process Py

process P

N\

/

shared variables

+ by, by, x

by, b, Boolean variables, x € {1,2}

LOOP FOREVER
noncritical actions;

END LOOP

(* protocol for P, *)

b;:=1; x:=2;
AWAIT x=1V —b, DO critical section OD
b :=0

50/145

Peterson algorithm for mutual exclusion pe2.2-12

process Py| process P, noncglltl I
N / X=
shared variables b:=0: G’@

+ by, by, x X=1V —b;
cr|t1

by, b, Boolean variables, x € {1,2}

LOOP FOREVER (* protocol for P, *)
noncritical actions;
b;:=1; x:=2;
AWAIT x=1V —b, DO critical section OD
b,:=0

END LOOP

51/145

Peterson algorithm for mutual exclusion pe2.2-12

process Py | | process P, noncr|t1
N\ / b;:=1 ; x:=2
shared variables by:=0: G@
+ b17 b2) X x=1V b,
crltl |

by, b, Boolean variables, x € {1,2}

LOOP FOREVER (* protocol for P, *)
noncritical actions;
atomic{b:=1; x:=2};
AWAIT x=1V —b, DO critical section OD
b,:=0

END LOOP

52/145

Program graphs for Peterson algorithm

Py P, (@onaTD)

S ib=1xe=2 Z b=l x:=1
by:=0/ by:=01

53/145

Program graphs for Peterson algorithm

Py P, (onciD)

S ib=1xe=2 Z b=l x:=1
by:=0/ by:=0{
\
program graph L u noncrltl noncrltzJ‘
Pl P {Waltl noncrltz]j ,’[noncrltl Wa|t2]
(crity nongrltz] [Wa’_lt]_ vvajcz] [non"crltl crits)
.................. [Cmr.ltl Crl{é J

54 /145

Program graphs for Peterson algorithm

Py P, (onciD)

S ib=1xe=2 Z b=l x:=1
by:=0/ by:=0{
\
program graph L u noncrltl noncrltzJ‘
Pl P {Waltl noncrltz]j ,’[noncrltl Wa|t2]
(crity nongrltz] [Wa’_lt]_ vvajcz] [non"crltl crits)
.................. [c?ltl crlfz J

55 /145

TS for the Peterson algorithm

\-[noncritl némcritz] [noncrltl noncrltz]‘/
X=

[waitl noncritz] [noncritl waitg]

X=

. . /
crit; noncrits
X=

\
[noncntl cr|t2 ’

wait; crity

crit; waity
x=2

x=1

56 /145

TS for the Peterson algorithm

\-[noncritl némcritz] [noncrltl noncrltz]‘/
X=

wait; noncrit, noncrit; wait,
X= X=

. . /
crit; noncrits
X=

~

[noncntl cr|t2 ’
wait,
5"

wait; crity
x=2

crit; waity
x=1

value of by is given by wait; V crit;
value of b, is given by waity V crit;

57 /145

TS for the Peterson algorithm

\-[noncritl némcritz] [noncrltl noncrltz]‘/
X=

wait; noncrit, noncrit; wait,
X= X=

o

[critl noncrit,]
wait;
X=

x=2
crit; waity
x=1

~

[noncntl cr|t2
wait,
5"

wait; crity
x=2

value of by is given by wait; V crit; + unreachable
value of b, is given by waity V crit; states

58 /145

TS for the Peterson algorithm

\-[noncritl némcritz] [noncrltl noncrltz]‘/
X=

wait; noncrit, noncrit; wait,
X= X=

o

[critl noncrit,]
wait;
X=

x=2
crit; waity
x=1

~

[noncntl cr|t2
wait,
5]

wait; crity
x=2

value of by is given by wait; V crit; + unreachable
value of b, is given by waity V crit; states

59 /145

TS for the Peterson algorithm

\-[noncritl némcritz] [noncrltl noncrltz]‘/
X=

[waitl noncritz] [noncritl waitg]

X= X=

. . /
crit; noncrits
X=

~

[noncrltl crity ’
wait; waity
x=2
wait; crity

crit; waity
x=1

value of by is given by wait; V crit; + unreachable
value of b, is given by waity V crit; states

60 /145

TS for the Peterson algorithm

PC2.2-14

\-[noncritl némcritz] [noncrltl noncrltz]‘/
X=

X

[waitl noncritz] [noncritl waitg]

X=
®

o

wait; waity , .. [waity waitp
x=1 | x=2

wait; crity
x=2

crit; noncrit,
X=

crit; waity

x=1

value of by is given by wait; V crit;
value of b, is given by waity V crit;

\
[noncntl cr|t2 ’

+ unreachable
states

61 /145

TS for the Peterson algorithm

\-[noncritl némcritz] [noncrltl noncrltz]‘/
X=

wait; noncrit, noncrit; wait,
X=2 X=
crit; noncrits ' noncr|t1 cr|t2
X= ! .
wait; waity , .. [waity waitp
x=1 | x=2
crit; waity wait; crity
x=1 x=2
value of by is given by wait; V crit; + unreachable

value of b, is given by waity V crit;

states

62 /145

TS for the Peterson algorithm

PC2.2-14

noncrit; noncrit, noncrit; noncrit,
X=2 x=1
wait; noncrit, noncrit; wait,
e
. . “‘ \ 0 O
crit; noncrits noncrit; crity
[x=2] : x=1 ’

crit; waits
x=1

value of by is given by wait; V crit;
value of b, is given by waity V crit;

AN
wait; waitp , .. [waity waitp
x=1 | x=2
wait; crity
x=2

+ unreachable
states

63 /145

Variant of Peterson algorithm

P

b1:=0

(noncrit;)

x:=2
(request))

b1:=1
(waity)

x=1v —|b2

Centy)

PC2.2-15

64 /145

PC2.2-15

Variant of Peterson algorithm

P (ndmerED P

x:=2
(request,)

b1:=0 b1:=1
(waity)

x=1v —|b2

Centy)

possible executions
noncrit; noncrit, x=1 -b,

65 /145

Variant of Peterson algorithm

P1 (noncrit;) P}

x:=2
(request,)
b1:=0 b1:=1 b2:=0
(waity)
x=1v —|b2

Centy)

possible executions

noncrit; noncrit, x=1 -b; -b,
noncrit; request, x=1 -b; =b,

66 /145

Variant of Peterson algorithm

P1 (noncrit;) P}

x:=2
(request,)

b1:=0 b1:=1 b2:=0
(waity)

x=1v —|b2 x=2 V —lbl

Centy)

possible executions

PC2.2-15

noncrit; noncrit, x=1 -b; -b,
noncrit; request, x=1 -b; =b,
request; request, x=2 =b; =b,

67 /145

Variant of Peterson algorithm

P1 (noncrit;) P}

x:=2
(request,)

b1:=0 b1:=1 b2:=0
(wait;)

x=1v —|b2 x=2 V —lbl

Centy)

possible executions

PC2.2-15

noncrit; noncrit, X
noncrit; request, X
request; request, x

wait; request, x

UL
NN =

68 /145

Variant of Peterson algorithm

P1 (noncrit;) P}

x:=2

(request,)
b1:=0 b1:=1 b2:=0

(waity)

x=1v —|b2 x=2 V —lbl
Cerity)
possible executions

noncrit; noncrit, x=1 -b; -b,
noncrit; request, x=1 -b; =b,
request; request, x=2 =b; =b,
wait; request, x=2 b; -b,
crit; request, x=2 b; -b,

69 /145

Variant of Peterson algorithm

P1 (noncrit;) P}

x:=2
(request,)
b1:=0 b1:=1 b2:=0
(waity)
x=1v —|b2 x=2 V —lbl
Cerity)
possible executions
noncrit; noncrit, x=1 -b; -b,
noncrit; request, x=1 -b; =b,
request; request, x=2 =b; =b,
wait; request, x=2 b; -b,
crit; request, x=2 b; -b,
crit1 wait2 x=2 b]_ b2

70/145

Variant of Peterson algorithm

P1 (noncrit;) P}

x:=2
(request,)
b1:=0 b1:=1 b2:=0
(waity)
x=1v —|b2
Cerity)
possible executions
noncrit; noncrit, x=1 -b; -b,
noncrit; request, x=1 -b; =b,
request; request, x=2 =b; =b,
wait; request, x=2 b; -b,
crit; request, x=2 b; -b,
crit1 wait2 x=2 b]_ b2
crit1 crit2 x=2 b]_ b2

PC2.2-15

71/145

Variant of Peterson algorithm

P1 (noncrit;) P}

x:=2
(request))

b1:=0 b1:=1 b2:=0

(waity)
x=1v —|b2

Centy)

possible executions

noncrit; noncrit, X
noncrit; request, X
request; request, x

wait; request,

i
NINDNNN -
o
[y

crity request, x= b,
crit; wait, X= b;
crit1 crit2 X= b]_

incorrect!

PC2.2-15

72/145

Operators for parallelism and communication

77 /145

Operators for parallelism and communication

e true concurrency: interleaving operator ||| for TS
(no communication, no dependencies)

78 /145

Operators for parallelism and communication
e true concurrency: interleaving operator ||| for TS
(no communication, no dependencies)

e communication via shared variables
* description of subsystems by program graphs
* interleaving ||| for program graphs
* TS is obtained by “unfolding”

79/145

Operators for parallelism and communication

e true concurrency: interleaving operator ||| for TS
(no communication, no dependencies)

e communication via shared variables
* description of subsystems by program graphs
* interleaving ||| for program graphs
* TS is obtained by “unfolding”

e synchronous message passing

80 /145

Operators for parallelism and communication

e true concurrency: interleaving operator ||| for TS
(no communication, no dependencies)

e communication via shared variables
* description of subsystems by program graphs
* interleaving ||| for program graphs
* TS is obtained by “unfolding”

e synchronous message passing
* operator ||sy, for TS
* interleaving for independent actions
* synchronization over actions in Syn

81/145

Operators for parallelism and communication

e true concurrency: interleaving operator ||| for TS
(no communication, no dependencies)

e communication via shared variables
* description of subsystems by program graphs
* interleaving ||| for program graphs
* TS is obtained by “unfolding”

e synchronous message passing «— data abstract
* operator ||sy, for TS
* interleaving for independent actions
* synchronization over actions in Syn

82/145

Operators for parallelism and communication

e true concurrency: interleaving operator ||| for TS
(no communication, no dependencies)

e communication via shared variables
* description of subsystems by program graphs
* interleaving ||| for program graphs
* TS is obtained by “unfolding”

e synchronous message passing «— data abstract
* operator ||sy, for TS
* interleaving for independent actions
* synchronization over actions in Syn

e channel systems
communication via shared variables + via channels

83/145

Synchronous message passing PC2.2.17

84 /145

Synchronous message passing PC2.2.17

’Ii = (51, ACtl, —1,.. .), 75 = (52, ACtz, —9,..) TS

Syn C Acty N Act; set of synchronization actions

85/145

Synchronous message passing PC2.2.17
T = (Sl, ACtl, —1,.. .), T = (52, ACtz, —9,..) TS
Syn C Acty N Act; set of synchronization actions

composite transition system:
71 ”Synqi = (SIXS27 ACtl U ACt2’ .. -)

for modeling the concurrent execution of 7; and 75
with synchronization over all actions in Syn

86 /145

Synchronous message passing PC2.2.17
T = (Sl, ACtl, —1,.. .), T = (52, ACtz, —9,..) TS
Syn C Acty N Act; set of synchronization actions
composite transition system:
71 ”Synqi = (SIXS27 ACtl U ACt2’ .. -)

interleaving for all actions a € Act; \ Syn:
s1 1 s] 5 $
(51, %) = (51, %2) (s1,92) = (s1,5)

87 /145

Synchronous message passing PC2.2.17
T = (Sl, ACtl, —1,.. .), T = (52, ACtz, —9,..) TS
Syn C Acty N Act; set of synchronization actions
composite transition system:
71 ”Synqi = (SIXS27 ACtl U ACt2’ .. -)

interleaving for all actions a € Act; \ Syn:
s1 1 s] 5 $
(51, %) = (51, %2) (s1,92) = (s1,5)

handshaking (rendezvous) for all a € Syn:

88 /145

Synchronous message passing PC2.2.17

T = (51,Act1, —1,...), T = (5, Acty, —2,...) TS
Syn C Acty N Act; set of synchronization actions
composite transition system:
T |lsyn T2 = (51X S2, Acty U Acty, —, . ..)

interleaving for all actions a € Act; \ Syn:

s1 1 S| 9 $

(s1,92) = (s1,%2) (s1,92) = (s1,5)
handshaking (rendezvous) for all a € Syn:
115 N 525

(51, sQ) - (5{7 59

89 /145

Mutual exclusion

by synchronous message passing

90 /145

Mutual exclusion

by synchronous message passing using an arbiter

91/145

Mutual exclusion with an arbiter

protocol for process P;

LOOP FOREVER DO
noncritical actions
request
critical section
release
noncritical actions

0D

92/145

Mutual exclusion with an arbiter

protocol for process P; transition system 7;

LOOP FOREVER DO
noncritical actions

request -

critical section @@
release request
noncritical actions

noncrit;

release

0D

93/145

Mutual exclusion with an arbiter

protocol for process P; transition system 7;

LOOP FOREVER DQ noncrit;
noncritical actions
request -
critical section @@ release
release request
noncritical actions
0D
Arbiter:
selects nondeterministically
a synchronization partner request release
Tor D

94 /145

Mutual exclusion with an arbiter

(71 ||| 72) |lsyn Arbiter where Syn = {request, release}

95 /145

Mutual exclusion with an arbiter

(71 ||| 72) |lsyn Arbiter where Syn = {request, release}

T N

“pure” handshaking
interleaving for actions
for TS request and release

96 /145

Mutual exclusion with an arbiter

(71 ||| 72) ||syn Arbiter where Syn = {request, release}

\
noncrit; noncrity
unlock

AN

E/valtl noncr|t2 noncrit; Waltzj

unlock unlock
/q uest req ue\
Wa|t1 walts
unlock
request

release release

crit; noncrit noncrit; crity
lock lock

release

walty crity
lock

release

crltl Wa|t2
Ioc

97 /145

Mutual exclusion with an arbiter

(71 ||| 72) ||syn Arbiter where Syn = {request, release}

\
noncrit; noncrity
unlock

AN

E/valtl noncr|t2 noncrit; Waltzj

unlock unlock
/q uest req ue\
Wa|t1 walty
unlock
request

release release

crit; noncrit noncrit; crity
lock lock

release
walty crity
lock

nondeterministic choice: who enters the critical section?

98 /145

release

crltl Wa|t2
Ioc

synChronous message passing PC2.2-HANDSHAKING-GENERALIZATION

synchronization operator ||y, for
three or more processes

99 /145

synChronous message passing PC2.2-HANDSHAKING-GENERALIZATION

Ty = (51,Act;,—1,...)
‘1—2 = (52) ACt2) —2,..)
T = (Ss3,Acts,—3,...) transition systems
ﬂ = (54) ACt4) >4, - . -)

100 /145

s ynCh ronous m essage paSSi ng PC2.2-HANDSHAKING-GENERALIZATION

T
T
T3
T,

= (51,Acty,—1,...)
= (52, Acty, —9, ..)
= (83, Act3, —3, .. g transition systems

(547 ACt4) —4,

for Syn C Act; U Actr U Actz U Act, U . ..

def
T "5}'075 ”Syn’]% ”Syn’Z:l ”Syn .-

((Tillsn) lsnT) llsm T2) lism -

101/145

Synchronous message passing

T
T
T
T,

for Syn C Act; U Actr U Actz U Act, U . ..

T "5yn75 ”Syn’]g ”Syn n ”Syn e
(@50) snT:) lsn T5) s -

or any other order of paranthesis

(51, ACtl, —1,..)
(52, ACtz, —9, ...

(537 ACt3) —3,
(547 ACt4) —4,

PC2.2-HANDSHAKING-GENERALIZATION

)
g transition systems

def

102/145

s ynCh ronous m essage paSSi ng PC2.2-HANDSHAKING-GENERALIZATION

T = (51, Acty, —1, ..)
T = (52, Acty, —, ..)
T = (Ss3,Acts,—3,.. g transition systems

ﬂ (547 ACt4) —4,

for Syn C Act; U Actro U Actz U Acty U . ..

def
T "5}'075 ”Syn’]% ”Syn’Z:t ”Syn .-

((Tillsn) lsnT) llsm T2) lism -

def
where, eg., i |lsn B = Ti||lnTa

with H = Syn N Act; N Act,

103 /145

Parallel operator ||

i = (5,Act;,—,...) transition systems s.t.
T = (5,Act),—,...) Act; N Act;N Acty = 0)
T3 = (S3,Acts,—3,...) if i,J, k are pairwise
Ty = (54,Acts,—4,...) distinct
def
IAFAFAFA -

(((71 ”Synl,z 75) ||Syn1,2,3 75) ”5}'01,2,3,4 ﬂ) te

where Sym > Act; N Acty
Syn1’2»3 (ACt1 U ACtg) N Act
Syn1,2,3,4 = (ACt1 U Acty U ACt3) N Acty

104 /145

Booking system in supermarket pC2.2-21

Scanner @

scan code

Booking - Program

code price

Printer

price print

Scanner || BP || Printer

105 /145

Booking system in supermarket pC2.2-21

Scanner '0) Scanner || BP || Printer

scan code

Booking -Program

print
code . price
3 rint
Printer @ P
price . print transfer

SCan

106 /145

Booking system in supermarket pC2.2-21

Scanner '0) Scanner || BP || Printer

scan code

Booking -Program

print
code . price
3 rint
Printer Q P
price . print transfer

SCan

107 /145

Booking system in supermarket pC2.2-21

Scanner '0) Scanner || BP || Printer

scan code

Booking -Program

print
code . price
3 rint
Printer Q P
price . print transfer

SCan

108 /145

Booking system in supermarket pC2.2-21

Scanner '0) Scanner || BP || Printer

scan code

Booking -Program

print
code . price
3 rint
Printer Q P
price . print transfer

SCan

109/145

Interleaving

Scanner Q

scan code

Booking -Program

code price

Printer

price print

CEBOACES

PC2.2-21A

Scanner || BP || Printer

110/145

Booking system in supermarket pe2.2.21

Scanner '0) Scanner || BP || Printer

scan code

Booking - Program

(0)
code . price
a rint
Printer @ Pri
price . print
D

111/145

Booking system in supermarket pe2.2.21

Scanner D) Scanner || BP || Printer

scan code

Booking - Program

(0)
code . price
a rint
Printer @ Pri
price . print
D

112 /145

Booking system in supermarket pe2.2.21

Scanner '0) Scanner || BP || Printer

scan code

Booking - Program

(0)
code . price
0 rint
Printer @ Pri
price . print
D

113 /145

Booking system in supermarket pe2.2.21

Scanner D) Scanner || BP || Printer

scan code

Booking - Program

(0)
code . price
0 rint
Printer @ Pri
price . print
D

114 /145

Booking system in supermarket pe2.2.21

Scanner D) Scanner || BP || Printer

scan code

Booking - Program

(0)
code . price
a rint
Printer @ Pri
price . print
@D

115/145

Booking system in supermarket pe2.2.21

Scanner '0) Scanner || BP || Printer

scan code

Booking - Program

(0)
code . price
0 rint
Printer @ Pri
price . print
@D

116 /145

Interleaving pe2.2.21

Scanner

Scanner || BP || Printer

scan code

C_©

Booking - Program

()
code . price
ol
Printer Q Prin
price . print
@

117 /145

