O V e rV i ew OVERVIEW3

Introduction
Modelling parallel systems

Linear Time Properties
state-based and linear time view  «—
definition of linear time properties
invariants and safety
liveness and fairness

Regular Properties
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction

2/343



State-based view of TS s5v2.3-1
transition system 7 = (S, Act,—, Sp, AP, L)

l abstraction from actions

state graph Gr
e set of nodes = state space S
e edges = transitions without action label

Act  for modeling interactions/communication
and specifying fairness assumptions

AP, L for specifying properties

6/343



State-based view of TS s5v2.3-1
transition system 7 = (S, Act,—, Sp, AP, L)

l abstraction from actions

state graph Gr
e set of nodes = state space S
e edges = transitions without action label

use standard notations
for graphs, e.g.,

Post(s) = {t€ S:s—t}
Pre(s) = {u€S:u— s}

7/343



Execution and path fragments S5v2.3-2

execution fragment: sequence of consecutive transitions

Qo aq C e -

So —> S| — ... infinite  or
060 aq Op—1 -

Sy —> S| — ... > sp finite

path fragment: sequence of states arising from the
projection of an execution fragment to the states

T = 5951 5... infinite or m™=s81...5, finite

such that s;41 € Post(s;) for all i < ||

initial: if sp € Sg = set of initial states

maximal: if infinite or ending in a terminal state

12/343



Notations for paths SBV2.3-2

path fragment: sequence of states
T = Sy S515... infinite or m=s55...5, finite
s.t. sit1 € Post(s;) for all i < ||

initial; if 59 € Sop = set of initial states
maximal: if infinite or ending in terminal state
path of TS T initial, maximal path fragment

I 1

maximal path fragment starting
in state s

path of state s

Paths(T) = set of all initial, maximal path fragments

Paths(s) = set of all maximal path fragments
starting in state s

15




Paths of a TS

T: S0
o B How many paths are there in 77
51 2

16/343



Paths of a TS

T: S0
o B How many paths are there in 77
51 2

answer. 2, namely sy 51 51 51... and s 5

17/343



Paths of a TS and its states

T: S0
o B How many paths are there in 77
51 2

answer. 2, namely sy 51 51 51... and s 5

Paths(s;) = set of all maximal paths fragments
starting in s;
= {Si*)} where 5‘1‘) =5155S8 ---

18/343



Paths of a TS and its states

T: S0
o B How many paths are there in 77
51 2

answer. 2, namely sy 51 51 51... and s 5

Paths(s;) = set of all maximal paths fragments
starting in s;
= {Si*)} where 5‘1‘) =5155S8 ---

Pathsg,(s1) = set of all finite path fragments
starting in s;
={sf:neN,n>1}

19/343



OverView OVERVIEW3.1

Introduction

Modelling parallel systems

Linear Time Properties
state-based and linear time view  «—
definition of linear time properties

invariants and safety
liveness and fairness

Regular Properties
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction

20 /343



OverView OVERVIEW3.1

Introduction

Modelling parallel systems

Linear Time Properties
state-based and linear time view — +«—
definition of linear time properties

invariants and safety
liveness and fairness

Regular Properties
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction

21/343



Linear-time vs branching-time Lrp2.4-1

22/343



Linear-time vs branching-time Lrp2.4-1

transition system

T = (S, Act,—, Sp, AP, L)

23 /343



Linear-time vs branching-time Lrp2.4-1

transition system

T = (S, Act,—, Sp, AP, L)

abstraction from actions

state graph
+ labeling

24/343



Linear-time vs branching-time Lrp2.4-1

T = (S, Act,—, Sp, AP, L)

transition system

abstraction from actions

state graph
+ labeling

linear-time view

/ \ branching-time view

25/343



Linear-time vs branching-time

LTB2.4-1

transition system

T = (S, Act,—, Sp, AP, L)

state graph
+ labeling

linear-time view
path-based
state sequences

irrelevant

branching structure

abstraction from actions

/ \ branching-time view

nondeterministic
branches

state & branches

26/343



Example: vending machine

vending machine with
1 coin deposit
select drink after
having paid

LTB2.4-2

27 /343



Example: vending machine Lr2.4-2

(sprite)
vending machine with vending machine with
1 coin deposit 2 coin deposits
select drink after select drink by inserting

having paid the coin

28 /343



Example: vending machine Lr2.4-2

take take _
(coke ) coke sprite(sprite

vending machine with vending machine with
1 coin deposit 2 coin deposits
select drink after select drink by inserting

having paid the coin

29 /343



Example: vending machine Lr2.4-2

take take
(sprite) (coke ) coke sprite(sprite

state based view: abstracts from actions and projects
onto atomic propositions, e.g. AP = {coke, }

30/343



Example: vending machine Lr2.4-2

state based view: abstracts from actions and projects
onto atomic propositions, e.g. AP = {coke, }

e.g., L(coke) = {coke}, L(pay) = &

31/343



Example: vending machine Lr2.4-2

state based view: abstracts from actions and projects
onto atomic propositions, e.g. AP = {coke, }

linear time: all observable behaviors are of the form

OO?O0.00.00.
Oor®

32/343



Example: vending machine Lrs2.4-3

(sprite)

state based view: abstracts from actions and projects
on atomc propositions, e.g., AP = {pay, drink}

33/343



Example: vending machine Lrs2.4-3

state based view: abstracts from actions and projects
on atomc propositions, e.g., AP = {pay, drink}

34/343



Example: vending machine Lrs2.4-3

state based view: abstracts from actions and projects
on atomc propositions, e.g., AP = {pay, drink}
linear & branching time:
all observable behaviors have the form

00000000000

35/343



Linear-time vs branching-time

LTB2.4-1-TRACES

transition system

T = (S, Act,—, Sp, AP, L)

state graph
+ labeling

linear-time view

state sequences

abstraction from actions

AN

branching-time view

state & branches

36 /343



Linear-time vs branching-time

LTB2.4-1-TRACES

transition system

T = (S, Act,—, Sp, AP, L)

state graph
+ labeling

linear-time view

state sequences

Y

traces

abstraction from actions

VAN

on AP

projection | branching-time view

state & branches

J

computation tree

37/343



38/343



Traces A

for TS with labeling function L : § — 24P

execution: states + actions

87 (a7 Q . .. ..
Sp —> §] —> 5p —> ... infinite or finite

paths: sequences of states
S S1S) ... infinite or 5951 ... .5, finite

39/343



Traces

LTB2.4-4

for TS with labeling function L : § — 24P

)

(07 a3

execution: states + actions

S

S0 > 51

> 5

7 e e

. infinite or finite

S0515...

paths: sequences of states
infinite or Sp 51 . .. S, finite

|

traces: sequences of sets of atomic propositions

L(sp) L(s1) L(sp) - --

40/343



Traces

LTB2.4-4

for TS with labeling function L : § — 24P

)

(07 a3

execution: states + actions

S

S0 > 51

> 5

7 e e

. infinite or finite

SHS15...

paths: sequences of states
infinite or Sp 51 . .. S, finite

|

traces: sequences of sets of atomic propositions

L(so) L(s1) L(sp) ... € (2*P)u (2*P)*

41/343



Traces A

for TS with labeling function L : § — 24P

execution: states + actions

87 (a7 Q . .. ..
Sp —> §] —> 5p —> ... infinite or finite

paths: sequences of states
S S1S) ... infinite or 5951 ... .5, finite

|

traces: sequences of sets of atomic propositions
L(so) L(s1) L(sp) ... € (2*P)u (2*P)*

for simplicity: we often assume that the given TS has
no terminal states

42/343



Traces A

for TS with labeling function L : § — 24P

execution: states + actions
o

Sop —> §] —> 5p —> ... infinite or “firre_

paths: sequences of states

0515 ... infinite or sgS—=rsy—fiite_

traces: sequences of sets of atomic propositions
L(so) L(s1) L(s2) - .. € (247)* u 289

for simplicity: we often assume that the given TS has
no terminal states

43 /343



Treatment of terminal states 1TB2.4-6

perform standard graph algorithms to compute
the reachable fragment of the given TS

) set of states that are reachable
Reach(T) = { from some initial state

44/343



Treatment of terminal states 1TB2.4-6

perform standard graph algorithms to compute
the reachable fragment of the given TS

) set of states that are reachable
Reach(T) = { from some initial state

for each reachable terminal state s:

e if s stands for an intended halting configuration
then add a transition from s to a trap state:

45 /343



Treatment of terminal states L1B2.4-6
perform standard graph algorithms to compute

the reachable fragment of the given TS

) set of states that are reachable
Reach(T) = { from some initial state

for each reachable terminal state s:

e if s stands for an intended halting configuration
then add a transition from s to a trap state:

ARV

46 /343



Treatment of terminal states LTB2.4-6

perform standard graph algorithms to compute
the reachable fragment of the given TS

Reach(T) _ set of states thqt-a-re reachable
from some initial state
for each reachable terminal state s:

e if s stands for an intended halting configuration
then add a transition from s to a trap state:

ARV

e if s stands for system fault, e.g., deadlock then
correct the design before checking further properties

47/343



Traces of a transition system LrB2.4-5

Let 7 bea TS

Traces(T) &ef {trace(r) : w € Paths(T)}

Tracesgn(T) &ef {trace(T) : © € Pathsn(T)}

48 /343



Traces of a transition system LrB2.4-5

Let 7 bea TS

Traces(T) &ef {trace(r) : w € Paths(T)}

initial, maximal path fragment

Tracesgin(T) &ef {trace(T) : © € Pathsn(T)}

initial, finite path fragment

49/343



Traces of a transition system LrB2.4-5

Let 7 be a TS «—| without terminal states

Traces(T) &ef {trace(r) : w € Paths(T)}

initial, infinite path fragment

Tracesgin(T) &ef {trace(T) : © € Pathsn(T)}

initial, finite path fragment

50 /343



Traces of a transition system LrB2.4-5

Let 7 be a TS «—| without terminal states

Traces(T) def {trace(ﬂ) = Paths(T)} C (24Py”

initial, infinite path fragment

Tracesgin(T) &ef {trace(T) : T € Pathss(T)} C (24F)*

initial, finite path fragment

51/343



Example: traces LTB2.4-54

Let 7 be a TS without terminal states.
Traces(T) & {trace(r) : m € Paths(T)} C (24P)~
Tracessn(T) & {trace(T) : T € Paths(T)} C (24F)*

h m TS T with a single
atomic proposition a

{a} 2

52 /343



Example: traces LTB2.4-54
Let 7 be a TS without terminal states.
Traces(T) & {trace(r) : m € Paths(T)} C (24P)~
Tracessn(T) & {trace(T) : T € Paths(T)} C (24F)*
h m TS T with a single
{a} > atomic proposition a
Traces(T) = {{a}e~, 2*}

Tracessn(T) = {{a}2":n>0} U {@™:m>1}

53 /343



Mutual exclusion with semaphore

Py (noncrity) P2 (noncrity)

y=y+1, y=y+1,

s,y >0ry=y-1 sy >0 y=y—1

l‘n‘critl ) (.‘Critg )

transition system 7p,|p, arises by unfolding the
composite program graph Py ||| P2

54 /343



Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
walt; noncrity noncrit; waity
y=1 ] [ y=1 )
/
crit; noncrity walt; walits noncrity crity
%) %™

crity wal altl crity
0 0

set of atomic propositions AP = {crity, crity }

55/343



Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
\
wait; nOhCI’Itg] noncrit; Waltgj
y=1 y=1
/ N
[crltl noncrltg] (noncrltl Cl’ltg]
y=0 =1 y=0

crit; wa| a|t1 crity
0 0

set of atomic propositions AP = {crity, crity }

e.g., L({noncrity, noncrity, y=1)) =
L({waity, noncritp,y=1)) = &

56 /343



Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltg] [noncrltl Waltg]
y=1 y=1
[
C:rltl noncrltg] (noncrltl Crltg)
y=0 =1 y=0

crit; wa| a|t1 crity
0 0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...

57 /343



Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl Cl’ltg]
y=0 =1 y=0

crity wa| a|t1 crity
0 0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...

58 /343



Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl cnt
y=0 =1 y=0

)

=0 =0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...

59 /343



Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltg) [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl cnt
y=0 =1 y=0

)

=0 =0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
T

60 /343



Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl cnt
y=0 =1 y=0

)

=0 =0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
T

61/343



Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl cnt
y=0 =1 y=0

)

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
T

62 /343



Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
\
wait; noncrltgj noncr|t1 Waltgj
y=1
[
[crltl noncrltgj [noncrltl Cl’ltg]

=0 =0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
T

63 /343



Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj Cnoncrltl cnt
y=0 =1 y=0

p

=0 =0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
T

64 /343



Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl cnt
y=0 =1 y=0

)

— et
=0 =0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crity} & ...
T

65 /343



Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltg) [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl Cl’ltg]
y=0 =1 y=0

crity wa| a|t1 crity
0 0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crity} & ...
T

66 /343



Mutual exclusion with semaphor 7p,p,

noncrl\t‘l noncrits
y=1
wait; noncrltzj @oncrltl walty
y=1 y=1 )
/
crit; noncrity walt; walty noncrit; crit
™5™ "%

)

set of propositions AP = {waity, crity, waity, crit }

67 /343



Mutual exclusion with semaphor 7p,p,

\
noncrit; noncrity
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1
~N
[crltl noncrltgj [noncrltl Crltz)
y=0 =1 y=0

crity wa| a|t1 crity

set of propositions AP = {waity, crity, waity, crit }

e.g., L({noncrity, noncrity, y=1)) = &
L({waity, crity, y=1)) = {waity, crit,}

68 /343



Mutual exclusion with semaphor 7p,p,

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1

[crltl noncrltgj [noncrltl Crltz)
y=0 =1 y=0

set of propositions AP = {waity, crity, waity, crit }

traces, e.g.,

@ ({wait; } {waity, wait, } {waity, crit})”

69 /343



Mutual exclusion with semaphor 7p,p,

\
noncrit; noncrits
-~ v=1
wait; noncrﬁé] @oncrltl Waltg)
y=1 _ y=1
[cntl noncntzj [noncntl Cl’ltg)

..............................
=0 =0

set of propositions AP = {waity, crity, waity, crit }

traces, e.g.,

@ ({wait; } {waity, wait, } {waity, crit})”

70/343



OverView OVERVIEW3.2.TEX

Introduction
Modelling parallel systems

Linear Time Properties
state-based and linear time view
definition of linear time properties +—
invariants and safety
liveness and fairness

Regular Properties
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction

71/343



Model checking

system Py]|...||Pa requirements
transition specification spec
system T P P

does T satisfy spec ?

—

yes no + error indication

{ model checker J

72/343



Model checking

syntactic description
of Py]|-..||Pn

SOS-rules\ abstraction
from actions

LTB2.4-14A

requirements

l

specification spec

/

state graph of
transition system 7T

N\

model checker
does 7 satisfy spec ?

~

J

~

yes

no + error indication

73/343



Model checking

syntactic description
of Py]|-..||Pn

requirements

SOS-rules\ abstraction

specification spec

from actions

/

4 )
state graph of
transition system 7T
N
model checker
does T satisfy spec ?
NS J

~

yes no + error indication

74 /343



Model checking

syntactic description
of Py]|-..||Pn

SOS-rules\ abstraction
from actions

LTB2.4-14A

requirements

specification spec,
e.g., LT property

/

f \
state graph of
transition system 7T

N\

model checker
does T satisfy spec ?

~

J

~

yes

no + error indication

75/343



Linear-time properties (LT properties)

76 /343



Linear-time properties (LT properties)

for TS over AP without terminal states

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P je., EC (2AP)w.

78 /343



Linear-time properties (LT properties)

for TS over AP without terminal states

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P je., EC (2AP)w.

E.g., for mutual exclusion problems and
AP = {critl, crity, . . }

safety:
set of all infinite words Ag A1 Ay. ..
MUTEX = over 24P such that for all i € N:
crity € A; or crity € A;

79/343



LT properties for mutual exclusion protocols ...

AP = {waitl, crity, waitp, critg}

safety:
Y set of all infinite words Ag A1 As. ..

MUTEX = over 2P such that for all i € N:
crity ¢ A; or crit ¢ A;

& {waity } {crit; } & {wait; } {crit } ... € MUTEX

80/343



LT properties for mutual exclusion protocols ...

AP = {waitl, crity, waitp, critg}

safety:
Y set of all infinite words Ag A1 As. ..

MUTEX = over 2P such that for all i € N:
crity ¢ A; or crity ¢ A;

& {waity } {crit; } & {wait; } {crit } ... € MUTEX
@ {wait; } {crit; } {crity, waity } {crity, crit2} ... € MUTEX

81/343



LT properties for mutual exclusion protocols ...

AP = {waitl, crity, waitp, critg}

safety:
Y set of all infinite words Ag A1 As. ..

MUTEX = over 2P such that for all i € N:
crity ¢ A; or crity ¢ A;

& {waity } {crit; } & {wait; } {crit } ... € MUTEX
@ {wait; } {crit; } {crity, waity } {crity, crit2} ... € MUTEX

@ & {waity, crity, crit } ... & MUTEX

82/343



LT properties for mutual exclusion protocols ...

AP = {waitl, crity, waitp, critg}

safety:
Y set of all infinite words Ag A1 As. ..

MUTEX = over 2P such that for all i € N:
crity ¢ A; or crit ¢ A;

liveness (starvation freedom):

set of all infinite words Ag A; As... s.t.
LIVE = 3JieNwait, € A, = 3 i € Ncrit, € A;
A 3 i€ Nwait, € A = 3 i € Nocrit, € A;

83/343



Satisfaction relation for LT properties LTB2.4-15

84 /343



Satisfaction relation for LT properties LTB2.4-15

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e, EC (2AP)w.

85/343



Satisfaction relation for LT properties LTB2.4-15

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e, EC (2AP)w.

Satisfaction relation |= for TS:

If 7 is a TS (without terminal states) over AP
and E an LT property over AP then

TEE iff Traces(T)CE

86 /343



Satisfaction relation for LT properties LTB2.4-15

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e, EC (2AP)w.

Satisfaction relation = for TS and states:

If 7 is a TS (without terminal states) over AP
and E an LT property over AP then

TEE iff Traces(T)CE
If s is a state in 7 then
sEE iff Traces(s) C E

87/343



Mutual exclusion with semaphore LTB2.4-16

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1

[noncrltl Crltz)
y=0

it; crnity
=0

cnty wa| a

=0

Tsem = MUTEX

88 /343



Mutual exclusion with semaphore LTB2.4-16

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1

[crltl noncrltgj [noncrltl Crltz)
y=0 =1 y=0

Tsem = MUTEX, Tsem |= LIVE ?

89 /343



Mutual exclusion with semaphore LTB2.4-16

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1

[noncrltl Crltg)
y=0

Ity critp
=0

y=0 =1
cnty wa| a

=0

Tsem = MUTEX, Tsem [~ LIVE

@ {wait; } ( {waity, wait, } {crity, wait, } {wait,} )* & LIVE

90 /343



Mutual exclusion with semaphore LTB2.4-16

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1

[noncrltl Crltg)
y=0

Ity critp
=0

y=0 =1
cnty wa| a

=0

Tsem = MUTEX, Tsem [~ LIVE

@ {wait; } ( {waity, wait, } {crity, wait, } {wait,} )* & LIVE

91/343



Mutual exclusion with semaphore LTB2.4-16

noncr|§c‘1 noncrits
y=1
_
walit; noncrity noncrit; waity
y=1 [ y=1 )

[noncrltl Crltg)
y=0

Ity critp
=0

y=0 =1
cnty wa| a

=0

Tsem = MUTEX, Tsem [~ LIVE

@ {wait; } ( {waity, wait, } {crity, wait, } {wait,} )* & LIVE

92/343



Mutual exclusion with semaphore LTB2.4-16

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1
[crltl noncrltgj [noncrltl Crltg)
y=0 | =1 y=0

""""
=0 =0

Tsem = MUTEX, Tsem [~ LIVE

@ {wait; } ( {waity, wait, } {crity, wait, } {wait,} )* & LIVE

93/343



Mutual exclusion with semaphore LTB2.4-16

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1
[crltl noncrltgj [noncrltl Crltg)
y=0 | =1 y=0

""""
=0 =0

Tsem = MUTEX, Tsem [~ LIVE

@ {wait; } ( {waity, wait, } {crity, wait, } {wait,} )* & LIVE

94 /343



Mutual exclusion with semaphore LTB2.4-16

\
noncrit; noncrits
y=1
wait; noncrltgj Goncrltl Waltgj
y=1 y=1
[crltl noncrltgj [noncrltl Crltg)
y=0 | =1 y=0

""""
=0 =0

Tsem = MUTEX, Tsem [~ LIVE

@ {wait; } ( {waity, wait, } {crity, wait, } {wait,} )* & LIVE

95 /343



Mutual exclusion with semaphore LTB2.4-16

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1
[crltl noncrltgj [noncrltl Crltg)
y=0 | =1 y=0

""""
=0 =0

Tsem = MUTEX, Tsem [~ LIVE

@ {wait; } ( {waity, wait, } {crity, wait, } {wait,} )* & LIVE

96 /343



Peterson’s mutual exclusion algorithm

97 /343



Peterson’s mutual exclusion algorithm

for competing processes Py and P,

using three additional shared variables

by, b, € {0,1}, x € {1,2}

98 /343



Peterson’s mutual exclusion algorithm

for competing processes Py and P,

using three additional shared variables

by, b, € {0,1}, x € {1,2}

2 2

by:=0 by:=0
. x=1V-b . x=2V b

99 /343



Peterson’s mutual exclusion algorithm

\ \

[noncrltl noncrltz] [noncntl noncrltz]

[waltl noncntz] [noncntl wa |t2]

crit; noncrity noncrit; crit,

x=1

crit; waitp
x=1

wait; crits
x=2

Tret = MUTEX

100 /343



Peterson’s mutual exclusion algorithm

noncrit; noncrity] [noncrit; noncrit,

[waltl noncntz] [noncntl wa |t2]

crit; noncrity noncrit; crit,

x=1

crit; waitp
x=1

wait; crits
x=2

Tret |E MUTEX and Tpe |= LIVE

101/343



Peterson’s mutual exclusion algorithm

noncrit; noncrity] [noncrit; noncrit,

[waltl noncntz] [noncntl wa |t2]

crit; noncrity noncrit; crit,

x=1

crit; waitp
x=1

wait; crits
x=2

Tret |E MUTEX and Tpe |= LIVE

102 /343



Peterson’s mutual exclusion algorithm

LTB2.4-17

noncrit; noncrit oncrit; noncrit,

3 f
<

x=2

[waltl noncrltz]

[noncntl wa |t2]

crit; noncrits
x=2

wait; wait,
x=1

crit; wait,
x=1

noncrit; crity
x=1

wait; crits
x=2

Tret |E MUTEX and Tpe |= LIVE

103 /343



Peterson’s mutual exclusion algorithm

\

\

LTB2.4-17

[noncrltl noncrltz] [noncntl noncrltz]

x=2

x=1

wait; noncritp
x=2

[noncntl wa |t2]
X=

‘s

crit; noncrits
x=2

wait; wait,
x=1

crit; wait,
x=1

wait; critp
x=2

noncrit; crity
x=1

Tret |E MUTEX and Tpe |= LIVE

104 /343



Peterson’s mutual exclusion algorithm

LTB2.4-17

noncrit; noncrita| [noncrit; noncrity
wait; noncritp noncrit; waitp

‘s

crit; noncrits
x=2

noncrit; crity
x=1

.

wait; wait,
x=1

crit; wait,
x=1

%et |: MUTEX and ’Zj’et

.
.
.

/" (wait; waity
x=2

'

.
N '
'

wait; critp
X=

= LIVE

105 /343



LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

106 /343



LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

Consequence of these definitions:

If 77 and 75 are TS over AP then for all
LT properties E over AP:

Traces(T;) C Traces(B) AL EE= T, EE

107 /343



LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

Consequence of these definitions:

If 77 and 75 are TS over AP then for all
LT properties E over AP:

Traces(T;) C Traces(B) AL EE= T, EE
N\ /

note: Traces(Ty) C Traces(T;) C E

108 /343



LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

If 73 and 75 are TS over AP then the
following statements are equivalent:

(1) Traces(T) C Traces(7Ts)

(2) for all LT-properties E over AP:
whenever 7, |= E then 1 E E

109 /343



LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

If 73 and 75 are TS over AP then the
following statements are equivalent:

(1) Traces(T) C Traces(7Ts)

(2) for all LT-properties E over AP:
whenever 7, |= E then 1 E E

(1) = (2): v

110/343



LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

If 73 and 75 are TS over AP then the
following statements are equivalent:

(1) Traces(T) C Traces(7Ts)

(2) for all LT-properties E over AP:
whenever 7, |= E then 1 E E

(2) => (1): consider E = Traces(T,)

111/343



Relevance of trace inclusion LTB2.4-19A

Trace inclusion appears naturally

e as an implementation /refinement relation
e when resolving nondeterminism

e in the context of abstractions

112 /343



Software design cycle LTB2.4-19

(requirements)
®)

)
o

i specification

design 7;

refinement

design Tiyq

113 /343



Software design cycle LTB2.4-19

(requirements)
®)

)
o

i specification | «— LT property E

design 7; | «— T, E E

refinement

design Tiyq

114 /343



Software design cycle LTB2.4-19

)
o

A

refi

(requirements)
®)

specification

design 7;

nement

design Tiyq

«— LT property E

<—’]7|=E

— TinC7T;

implementation /refinement relation C:

Tia CT; iff “Tiyq correctly implements T;"

115/343



Trace inclusion as an implementation relation 2419

)
o

A

refi

(requirements)
®)

specification

design 7;

nement

design Tiyq

trace inclusion
Tiy1 T T; iff
Traces(7;4+1) C Traces(T;)

<—’]7|=E

— TinLC7T;

implementation /refinement relation C:

T CT; iff

“Tiy1 correctly implements 7;"

116 /343



Trace inclusion as an implementation relation 2419

)
o

A

refi

(requirements)
®)

specification

design 7;

nement

design Tiyq

trace inclusion
Tiy1 T T; iff
Traces(7;4+1) C Traces(T;)

<—’]7|=E

— Ti1 C T; implies T4 E E

implementation /refinement relation C:

T CT; iff

“Tiy1 correctly implements 7;"

117 /343



Mutual exclusion with semaphore LTB2.4-20

0

wy m YW2 (m w y=1)

118 /343



Mutual exclusion with semaphore LTB2.4-20

W1 my
a m y—

competition in state
(wait1 waity y=1)

119/343



Mutual exclusion with semaphore LTB2.4-20

W1 my

(m o y=0)

a m y—

competition in state
(wait1 waity y=1)

resolve the nondeterminism by giving
priority to process Py

120/343



Mutual exclusion with semaphore

Tsem

1

‘.

’

Sem 1
‘ i

1
‘

121/343



Mutual exclusion with semaphore

Tsem

1

‘.

/
Sem

Paths(TZ,,,) C Paths(Tsem)

122 /343



Mutual exclusion with semaphore

Tsem

1
f

.

Traces(7¢,,,) € Traces(Zsem) for any AP

123 /343



Mutual exclusion with semaphore LTB2.4-20

e.g., for AP =
{crity, crity }

Traces(7sem) |= E implies Traces(74,,,) = E for any E

124 /343



Relevance of trace inclusion LTB2.4-20A

Trace inclusion appears naturally

e as an implementation /refinement relation
e when resolving nondeterminism —
e.g., Traces(73,,,) C Traces(Tsem)

e in the context of abstractions

125 /343



Relevance of trace inclusion LTB2.4-20A

Trace inclusion appears naturally

e as an implementation /refinement relation

e when resolving nondeterminism

whenever 77 results from 7 by a scheduling policy
for resolving nondeterministic choices in 7 then

Traces(T") C Traces(T)

e in the context of abstractions

126 /343



Relevance of trace inclusion LTB2.4-208

Trace inclusion appears naturally

e as an implementation /refinement relation
e when resolving nondeterminism

e in the context of abstractions

127 /343



Trace inclusion and data abstraction LTB2.4-21

x:.=7; y:=b;

WHILE x>0 DO
x:=x—1;
y:=y+1

0D

128 /343



Trace inclusion and data abstraction LTB2.4-21

{ x:.=7; y:=5;
¢; WHILE x>0 DO
x:=x—1;

=y+1
0D y=y

2

does £ A odd(y)
never hold ?

129/343



Trace inclusion and data abstraction LTB2.4-21

{ x:.=7; y:=5;
¢; WHILE x>0 DO
x:=x—1;

=y+1
0D y=y

2

does £ A odd(y)
never hold ?

program x>0:
graph x:=x—1,;
ois
&)tz
y:=b

130/343



Trace inclusion and data abstraction

{ x:.=7; y:=5;
¢; WHILE x>0 DO
x:=x—1;

=y+1
0D y=y

2

does £ A odd(y)
never hold ?

LTB2.4-21

program x>0:
graph x:=x—1,;
ois
&)tz
y:=b

let 7 be the associated TS

— T |= "never £y A odd(y)" ?

131/343



Trace inclusion and data abstraction

{ x:.=7; y:=5;
¢; WHILE x>0 DO
x:=x—1;

=y+1
0D y=y

2

does £ A odd(y)
never hold ?

data abstraction w.r.t.
the predicates

x>0, x=0, x=yy

LTB2.4-21

x>0:
x:=x—1:
y:=y+1

®

let 7 be the associated TS

program
graph

@ x:=T7

y:=b

o

U x<0

— T |= "never £y A odd(y)" ?

132/343



Trace inclusion and data abstraction LTB2.4-21

{ x:.=7; y:=5;
¢; WHILE x>0 DO
x:=x—1;

=y+1
0D y=y

2

does £ A odd(y)
never hold ?

data abstraction w.r.t.

the predicates

program x>0:
graph x:=x—1,;
ois
&)tz
y:=b

let 7 be the associated TS

— T |= "never £y A odd(y)" ?

x>0, x=0, x=py +«— i.e., x—y is even

133/343



Trace inclusion and data abstraction

{ x:.=7; y:=5;
¢; WHILE x>0 DO
x:=x—1;

=y+1
0D y=y

2

does £ A odd(y)
never hold ?

data abstraction w.r.t.
the predicates

x>0, x=0, x=yy

LTB2.4-21

program x>0:
graph x:=x—1,;
ois
&)tz
y:=b

let 7 be the associated TS

x>0 x—0
X=Yy X=2Yy

abstract transition system 7"

134 /343



Trace inclusion and data abstraction

{ x:.=7; y:=5;
¢; WHILE x>0 DO
x:=x—1;

=y+1
0D y=y

2

does £ A odd(y)
never hold ?

data abstraction w.r.t.
the predicates

x>0, x=0, x=yy

LTB2.4-21

program x>0:
graph x:=x—1,;
ois
&)tz
y:=b

let 7 be the associated TS

x>0 x—0
X=Yy X=2Yy

T = “never £ A odd(y)"

135/343



Trace inclusion and data abstraction

{ x:.=7; y:=5;
¢; WHILE x>0 DO
x:=x—1;

=y+1
0D y=y

2

does £ A odd(y)
never hold ?

data abstraction w.r.t.
the predicates

x>0, x=0, x=yy

LTB2.4-21

program x>0:
graph x:=x—1,;
ois
&)tz
y:=b

let 7 be the associated TS

x>0 x—0
X=Yy X=2Yy

T = “never £ A odd(y)"
Traces(T') C Traces(T")

36/343



Trace inclusion and data abstraction LTB2.4-21

: program x>.0 :
o |
1 xi=x—L; @ PR Y ey @
D y:=y+1 =5
b let 7 be the associated TS
does £, A odd(y)

never hold ?
X>0 x—o
X=2y X=py

T' | “never £y A odd(y)"
Traces(T') C Traces(T")

T & “never €, A odd(y)" {

37/343



Trace equivalence

Transition systems 7; and 75 over the same set AP
of atomic propositions are called trace equivalent iff

Traces(T1) = Traces(T3)

i.e., trace equivalence requires trace inclusion in
both directions

Trace equivalent TS satisfy the same LT properties

141/343



LT properties and trace relations S p—

Let 7; and 75 be TS over AP.

The following statements are equivalent:
(1) Traces(T1) C Traces(73)
(2) for all LT-properties E: ThlE E= T EFE

The following statements are equivalent:
(1) Traces(Ty) = Traces(73)
(2) for all LT-properties E: Ty EEiff T |E E

142 /343



Trace equivalent beverage machines 12,422

select

(sprite)

143 /343



Trace equivalent beverage machines 12,422

select

(sprite)  (coke )

set of atomic propositions AP = {pay, coke, }

144 /343



Trace equivalent beverage machines 12,422

pay

select

set of atomic propositions AP = {pay, coke, }

145 /343



Trace equivalent beverage machines 12,422

pay

select

set of atomic propositions AP = {pay, coke, }
Traces(Ty) = Traces(T;) = set of all infinite words
{pay} @ {drink, } {pay} @ {drink:} ...
where drink, drink,, . . . € {coke, }

146 /343



Trace equivalent beverage machines 12,422

pay

select

set of atomic propositions AP = {pay, coke, }

Traces(Ty) = Traces(T;) = set of all infinite words
{pay} @ {drink, } {pay} @ {drink:} ...

T: and 75 satisfy the same LT-properties over AP

147 /343



