
Overview overview3

Introduction

Modelling parallel systems

Linear Time Properties
state-based and linear time view ←−←−←−
definition of linear time properties
invariants and safety
liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction
2 / 343

State-based view of TS sbv2.3-1

transition system T = (S , Act,−→, S0, AP , L)T = (S , Act,−→, S0, AP, L)T = (S , Act,−→, S0, AP, L)⏐⏐"
⏐⏐"
⏐⏐" abstraction from actions

state graph GTGTGT
• set of nodes === state space SSS
• edges === transitions without action label

ActActAct for modeling interactions/communication
and specifying fairness assumptions

AP, LAP , LAP , L for specifying properties

6 / 343

State-based view of TS sbv2.3-1

transition system T = (S , Act,−→, S0, AP , L)T = (S , Act,−→, S0, AP, L)T = (S , Act,−→, S0, AP, L)⏐⏐"
⏐⏐"
⏐⏐" abstraction from actions

state graph GTGTGT
• set of nodes === state space SSS
• edges === transitions without action label

use standard notations
for graphs, e.g.,

Post(s)Post(s)Post(s) === {t ∈ S : s → t}{t ∈ S : s → t}{t ∈ S : s → t}
Pre(s)Pre(s)Pre(s) === {u ∈ S : u → s}{u ∈ S : u → s}{u ∈ S : u → s}

sssuuu

...

......

...

......

Pre(s)Pre(s)Pre(s)

ttt

...

......

...

......

Post(s)Post(s)Post(s)
7 / 343

Execution and path fragments sbv2.3-2

execution fragment: sequence of consecutive transitions

s0
α0−→ s1

α1−→ ...s0
α0−→ s1

α1−→ ...s0
α0−→ s1

α1−→ ... infinite or

s0
α0−→ s1

α1−→ ...
αn−1−→ sns0

α0−→ s1
α1−→ ...

αn−1−→ sns0
α0−→ s1

α1−→ ...
αn−1−→ sn finite

path fragment: sequence of states arising from the
projection of an execution fragment to the states

π = s0 s1 s2...π = s0 s1 s2...π = s0 s1 s2... infinite or π = s0 s1 ... snπ = s0 s1 ... snπ = s0 s1 ... sn finite

such that si+1 ∈ Post(si)si+1 ∈ Post(si)si+1 ∈ Post(si) for all i < |π|i < |π|i < |π|

initial: if s0 ∈ S0 =s0 ∈ S0 =s0 ∈ S0 = set of initial states

maximal: if infinite or ending in a terminal state
12 / 343

Notations for paths sbv2.3-2a

path fragment: sequence of states

π = s0 s1 s2...π = s0 s1 s2...π = s0 s1 s2... infinite or π = s0 s1 ... snπ = s0 s1 ... snπ = s0 s1 ... sn finite

s.t. si+1 ∈ Post(si)si+1 ∈ Post(si)si+1 ∈ Post(si) for all i < |π|i < |π|i < |π|

initial: if s0 ∈ S0 =s0 ∈ S0 =s0 ∈ S0 = set of initial states
maximal: if infinite or ending in terminal state

path of TS TTT =̂̂=̂= initial, maximal path fragment
path of state sss =̂̂=̂= maximal path fragment starting

in state sss

Paths(T)Paths(T)Paths(T) === set of all initial, maximal path fragments
Paths(s)Paths(s)Paths(s) === set of all maximal path fragments

starting in state sss
15 / 343

Paths of a TS sbv2.3-3

TTT :
ααα βββ

s0s0s0

s1s1s1 s2s2s2

How many paths are there in TTT ?

16 / 343

Paths of a TS sbv2.3-3

TTT :
ααα βββ

s0s0s0

s1s1s1 s2s2s2

How many paths are there in TTT ?

answer: 222, namely s0 s1 s1 s1...s0 s1 s1 s1...s0 s1 s1 s1... and s0 s2s0 s2s0 s2

17 / 343

Paths of a TS and its states sbv2.3-3

TTT :
ααα βββ

s0s0s0

s1s1s1 s2s2s2

How many paths are there in TTT ?

answer: 222, namely s0 s1 s1 s1...s0 s1 s1 s1...s0 s1 s1 s1... and s0 s2s0 s2s0 s2

Paths(s1)Paths(s1)Paths(s1) === set of all maximal paths fragments
starting in s1s1s1

===
{
sω
1

}{
sω
1

}{
sω
1

}
where sω

1 = s1 s1 s1 s1 . . .sω
1 = s1 s1 s1 s1 . . .sω
1 = s1 s1 s1 s1 . . .

18 / 343

Paths of a TS and its states sbv2.3-3

TTT :
ααα βββ

s0s0s0

s1s1s1 s2s2s2

How many paths are there in TTT ?

answer: 222, namely s0 s1 s1 s1...s0 s1 s1 s1...s0 s1 s1 s1... and s0 s2s0 s2s0 s2

Paths(s1)Paths(s1)Paths(s1) === set of all maximal paths fragments
starting in s1s1s1

===
{
sω
1

}{
sω
1

}{
sω
1

}
where sω

1 = s1 s1 s1 s1 . . .sω
1 = s1 s1 s1 s1 . . .sω
1 = s1 s1 s1 s1 . . .

Pathsfin(s1)Pathsfin(s1)Pathsfin(s1) === set of all finite path fragments
starting in s1s1s1

===
{
sn
1 : n ∈ N, n ≥ 1

}{
sn
1 : n ∈ N, n ≥ 1

}{
sn
1 : n ∈ N, n ≥ 1

}

19 / 343

Overview overview3.1

Introduction

Modelling parallel systems

Linear Time Properties
state-based and linear time view ←−←−←−
definition of linear time properties
invariants and safety
liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction
20 / 343

Overview overview3.1

Introduction

Modelling parallel systems

Linear Time Properties
state-based and linear time view ←−←−←−
definition of linear time properties
invariants and safety
liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction
21 / 343

Linear-time vs branching-time ltb2.4-1

22 / 343

Linear-time vs branching-time ltb2.4-1

transition system
T = (S , Act,→, S0, AP, L)T = (S , Act,→, S0, AP , L)T = (S , Act,→, S0, AP, L)

23 / 343

Linear-time vs branching-time ltb2.4-1

transition system
T = (S , Act,→, S0, AP, L)T = (S , Act,→, S0, AP , L)T = (S , Act,→, S0, AP, L)

state graph
+++ labeling

abstraction from actions

24 / 343

Linear-time vs branching-time ltb2.4-1

transition system
T = (S , Act,→, S0, AP, L)T = (S , Act,→, S0, AP , L)T = (S , Act,→, S0, AP, L)

state graph
+++ labeling

abstraction from actions

linear-time view branching-time view

25 / 343

Linear-time vs branching-time ltb2.4-1

transition system
T = (S , Act,→, S0, AP, L)T = (S , Act,→, S0, AP , L)T = (S , Act,→, S0, AP, L)

state graph
+++ labeling

abstraction from actions

linear-time view
path-based

state sequences
branching structure

irrelevant

branching-time view

nondeterministic
branches

state & branches

26 / 343

Example: vending machine ltb2.4-2

pay

select

spritecoke

vending machine with
111 coin deposit

select drink after
having paid

27 / 343

Example: vending machine ltb2.4-2

pay

select

spritecoke

vending machine with
111 coin deposit

select drink after
having paid

pay

paid c paid s

spritecoke

vending machine with
222 coin deposits

select drink by inserting
the coin

28 / 343

Example: vending machine ltb2.4-2

pay

select

spritecoke

insert
coin

αααβββ

take
coke

take
sprite

vending machine with
111 coin deposit

select drink after
having paid

pay

paid c paid s

spritecoke

insert
coin

insert
coin

αααβββ
take
coke

take
sprite

vending machine with
222 coin deposits

select drink by inserting
the coin

29 / 343

Example: vending machine ltb2.4-2

pay

select

spritecoke

insert
coin

αααβββ

take
coke

take
sprite pay

paid c paid s

spritecoke

insert
coin

insert
coin

αααβββ
take
coke

take
sprite

state based view: abstracts from actions and projects
onto atomic propositions, e.g. AP = {coke, sprite}AP = {coke, sprite}AP = {coke, sprite}

30 / 343

Example: vending machine ltb2.4-2

pay

select

spritecoke

pay

paid c paid s

spritecoke

state based view: abstracts from actions and projects
onto atomic propositions, e.g. AP = {coke, sprite}AP = {coke, sprite}AP = {coke, sprite}
e.g., L(L(L(coke) = {coke}) = {coke}) = {coke}, L(L(L(pay) = ∅) = ∅) = ∅

31 / 343

Example: vending machine ltb2.4-2

pay

select

spritecoke

pay

paid c paid s

spritecoke

state based view: abstracts from actions and projects
onto atomic propositions, e.g. AP = {coke, sprite}AP = {coke, sprite}AP = {coke, sprite}

linear time: all observable behaviors are of the form
.

or
32 / 343

Example: vending machine ltb2.4-3

pay

select

spritecoke

pay

paid c paid s

spritecoke

state based view: abstracts from actions and projects
on atomc propositions, e.g., AP = {pay , drink}AP = {pay , drink}AP = {pay , drink}

33 / 343

Example: vending machine ltb2.4-3

pay

select

spritecoke

pay

paid c paid s

spritecoke

state based view: abstracts from actions and projects
on atomc propositions, e.g., AP = {pay , drink}AP = {pay , drink}AP = {pay , drink}

34 / 343

Example: vending machine ltb2.4-3

pay

select

spritecoke

pay

paid c paid s

spritecoke

state based view: abstracts from actions and projects
on atomc propositions, e.g., AP = {pay , drink}AP = {pay , drink}AP = {pay , drink}

linear & branching time:
all observable behaviors have the form

.

35 / 343

Linear-time vs branching-time ltb2.4-1-traces

transition system
T = (S , Act,→, S0, AP, L)T = (S , Act,→, S0, AP , L)T = (S , Act,→, S0, AP, L)

state graph
+++ labeling

abstraction from actions

linear-time view

state sequences

branching-time view

state & branches

36 / 343

Linear-time vs branching-time ltb2.4-1-traces

transition system
T = (S , Act,→, S0, AP, L)T = (S , Act,→, S0, AP , L)T = (S , Act,→, S0, AP, L)

state graph
+++ labeling

abstraction from actions

linear-time view

state sequences
⇓⇓⇓

traces

branching-time view

state & branches
⇓⇓⇓

computation tree

projection
on APAPAP

37 / 343

Traces ltb2.4-4

38 / 343

Traces ltb2.4-4

for TS with labeling function L : S → 2APL : S → 2APL : S → 2AP

execution: states +++ actions

s0
α1−→ s1

α2−→ s2
α3−→ . . .s0

α1−→ s1
α2−→ s2

α3−→ . . .s0
α1−→ s1

α2−→ s2
α3−→ . . . infinite or finite

paths: sequences of states
s0 s1 s2 . . .s0 s1 s2 . . .s0 s1 s2 . . . infinite or s0 s1 . . . sns0 s1 . . . sns0 s1 . . . sn finite

39 / 343

Traces ltb2.4-4

for TS with labeling function L : S → 2APL : S → 2APL : S → 2AP

execution: states +++ actions

s0
α1−→ s1

α2−→ s2
α3−→ . . .s0

α1−→ s1
α2−→ s2

α3−→ . . .s0
α1−→ s1

α2−→ s2
α3−→ . . . infinite or finite

paths: sequences of states
s0 s1 s2 . . .s0 s1 s2 . . .s0 s1 s2 . . . infinite or s0 s1 . . . sns0 s1 . . . sns0 s1 . . . sn finite

traces: sequences of sets of atomic propositions

L(s0) L(s1) L(s2) . . .L(s0) L(s1) L(s2) . . .L(s0) L(s1) L(s2) . . .

40 / 343

Traces ltb2.4-4

for TS with labeling function L : S → 2APL : S → 2APL : S → 2AP

execution: states +++ actions

s0
α1−→ s1

α2−→ s2
α3−→ . . .s0

α1−→ s1
α2−→ s2

α3−→ . . .s0
α1−→ s1

α2−→ s2
α3−→ . . . infinite or finite

paths: sequences of states
s0 s1 s2 . . .s0 s1 s2 . . .s0 s1 s2 . . . infinite or s0 s1 . . . sns0 s1 . . . sns0 s1 . . . sn finite

traces: sequences of sets of atomic propositions

L(s0) L(s1) L(s2) . . .L(s0) L(s1) L(s2) . . .L(s0) L(s1) L(s2) . . . ∈ (2AP)ω ∪ (2AP)+∈ (2AP)ω ∪ (2AP)+∈ (2AP)ω ∪ (2AP)+

41 / 343

Traces ltb2.4-4

for TS with labeling function L : S → 2APL : S → 2APL : S → 2AP

execution: states +++ actions

s0
α1−→ s1

α2−→ s2
α3−→ . . .s0

α1−→ s1
α2−→ s2

α3−→ . . .s0
α1−→ s1

α2−→ s2
α3−→ . . . infinite or finite

paths: sequences of states
s0 s1 s2 . . .s0 s1 s2 . . .s0 s1 s2 . . . infinite or s0 s1 . . . sns0 s1 . . . sns0 s1 . . . sn finite

traces: sequences of sets of atomic propositions

L(s0) L(s1) L(s2) . . .L(s0) L(s1) L(s2) . . .L(s0) L(s1) L(s2) . . . ∈ (2AP)ω ∪ (2AP)+∈ (2AP)ω ∪ (2AP)+∈ (2AP)ω ∪ (2AP)+

for simplicity: we often assume that the given TS has
no terminal states

42/343

Traces ltb2.4-4

for TS with labeling function L : S → 2APL : S → 2APL : S → 2AP

execution: states +++ actions

s0
α1−→ s1

α2−→ s2
α3−→ . . .s0

α1−→ s1
α2−→ s2

α3−→ . . .s0
α1−→ s1

α2−→ s2
α3−→ . . . infinite or ✘✘✘✘✘❳❳❳❳❳finite

paths: sequences of states
s0 s1 s2 . . .s0 s1 s2 . . .s0 s1 s2 . . . infinite or✭✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤❤s0 s1 . . . sns0 s1 . . . sns0 s1 . . . sn finite

traces: sequences of sets of atomic propositions

L(s0) L(s1) L(s2) . . .L(s0) L(s1) L(s2) . . .L(s0) L(s1) L(s2) . . . ∈ (2AP)ω ∪ ✘✘✘✘✘✘❳❳❳❳❳❳(2AP)+∈ (2AP)ω ∪ ✘✘✘✘✘✘❳❳❳❳❳❳(2AP)+∈ (2AP)ω ∪ ✘✘✘✘✘✘❳❳❳❳❳❳(2AP)+

for simplicity: we often assume that the given TS has
no terminal states

43/343

Treatment of terminal states ltb2.4-6

perform standard graph algorithms to compute
the reachable fragment of the given TS

Reach(T) =Reach(T) =Reach(T) =

{
set of states that are reachable

from some initial state

44 / 343

Treatment of terminal states ltb2.4-6

perform standard graph algorithms to compute
the reachable fragment of the given TS

Reach(T) =Reach(T) =Reach(T) =

{
set of states that are reachable

from some initial state

for each reachable terminal state sss :

• if sss stands for an intended halting configuration
then add a transition from sss to a trap state:

45 / 343

Treatment of terminal states ltb2.4-6

perform standard graph algorithms to compute
the reachable fragment of the given TS

Reach(T) =Reach(T) =Reach(T) =

{
set of states that are reachable

from some initial state

for each reachable terminal state sss :

• if sss stands for an intended halting configuration
then add a transition from sss to a trap state:

sss

... ...

sss

... ...

!!! stop

46 / 343

Treatment of terminal states ltb2.4-6

perform standard graph algorithms to compute
the reachable fragment of the given TS

Reach(T) =Reach(T) =Reach(T) =

{
set of states that are reachable

from some initial state

for each reachable terminal state sss :

• if sss stands for an intended halting configuration
then add a transition from sss to a trap state:

sss

... ...

sss

... ...

!!! stop

• if sss stands for system fault, e.g., deadlock then
correct the design before checking further properties

47 / 343

Traces of a transition system ltb2.4-5

Let TTT be a TS

Traces(T)Traces(T)Traces(T)
def
=
def
=
def
=

{
trace(π) : π ∈ Paths(T)

}{
trace(π) : π ∈ Paths(T)

}{
trace(π) : π ∈ Paths(T)

}

Tracesfin(T)Tracesfin(T)Tracesfin(T)
def
=
def
=def
=

{
trace(π̂) : π̂ ∈ Pathsfin(T)

}{
trace(π̂) : π̂ ∈ Pathsfin(T)

}{
trace(π̂) : π̂ ∈ Pathsfin(T)

}

48 / 343

Traces of a transition system ltb2.4-5

Let TTT be a TS

Traces(T)Traces(T)Traces(T)
def
=
def
=
def
=

{
trace(π) : π ∈ Paths(T)

}{
trace(π) : π ∈ Paths(T)

}{
trace(π) : π ∈ Paths(T)

}

↑↑↑
initial, maximal path fragment

Tracesfin(T)Tracesfin(T)Tracesfin(T)
def
=
def
=def
=

{
trace(π̂) : π̂ ∈ Pathsfin(T)

}{
trace(π̂) : π̂ ∈ Pathsfin(T)

}{
trace(π̂) : π̂ ∈ Pathsfin(T)

}

↑↑↑
initial, finite path fragment

49 / 343

Traces of a transition system ltb2.4-5

Let TTT be a TS←−←−←− without terminal states

Traces(T)Traces(T)Traces(T)
def
=
def
=
def
=

{
trace(π) : π ∈ Paths(T)

}{
trace(π) : π ∈ Paths(T)

}{
trace(π) : π ∈ Paths(T)

}

↑↑↑
initial, infinite path fragment

Tracesfin(T)Tracesfin(T)Tracesfin(T)
def
=
def
=def
=

{
trace(π̂) : π̂ ∈ Pathsfin(T)

}{
trace(π̂) : π̂ ∈ Pathsfin(T)

}{
trace(π̂) : π̂ ∈ Pathsfin(T)

}

↑↑↑
initial, finite path fragment

50 / 343

Traces of a transition system ltb2.4-5

Let TTT be a TS←−←−←− without terminal states

Traces(T)Traces(T)Traces(T)
def
=
def
=
def
=

{
trace(π) : π ∈ Paths(T)

}{
trace(π) : π ∈ Paths(T)

}{
trace(π) : π ∈ Paths(T)

}
⊆ (2AP)ω⊆ (2AP)ω⊆ (2AP)ω

↑↑↑
initial, infinite path fragment

Tracesfin(T)Tracesfin(T)Tracesfin(T)
def
=
def
=def
=

{
trace(π̂) : π̂ ∈ Pathsfin(T)

}{
trace(π̂) : π̂ ∈ Pathsfin(T)

}{
trace(π̂) : π̂ ∈ Pathsfin(T)

}
⊆ (2AP)∗⊆ (2AP)∗⊆ (2AP)∗

↑↑↑
initial, finite path fragment

51 / 343

Example: traces ltb2.4-5a

Let TTT be a TS without terminal states.

Traces(T)Traces(T)Traces(T)
def
=
def
=def
=

{
trace(π) : π ∈ Paths(T)

}{
trace(π) : π ∈ Paths(T)

}{
trace(π) : π ∈ Paths(T)

}
⊆ (2AP)ω⊆ (2AP)ω⊆ (2AP)ω

Tracesfin(T)Tracesfin(T)Tracesfin(T)
def
=
def
=def
=

{
trace(π̂) : π̂ ∈ Pathsfin(T)

}{
trace(π̂) : π̂ ∈ Pathsfin(T)

}{
trace(π̂) : π̂ ∈ Pathsfin(T)

}
⊆ (2AP)∗⊆ (2AP)∗⊆ (2AP)∗

{a}{a}{a} ∅∅∅
TS TTT with a single
atomic proposition aaa

52 / 343

Example: traces ltb2.4-5a

Let TTT be a TS without terminal states.

Traces(T)Traces(T)Traces(T)
def
=
def
=def
=

{
trace(π) : π ∈ Paths(T)

}{
trace(π) : π ∈ Paths(T)

}{
trace(π) : π ∈ Paths(T)

}
⊆ (2AP)ω⊆ (2AP)ω⊆ (2AP)ω

Tracesfin(T)Tracesfin(T)Tracesfin(T)
def
=
def
=def
=

{
trace(π̂) : π̂ ∈ Pathsfin(T)

}{
trace(π̂) : π̂ ∈ Pathsfin(T)

}{
trace(π̂) : π̂ ∈ Pathsfin(T)

}
⊆ (2AP)∗⊆ (2AP)∗⊆ (2AP)∗

{a}{a}{a} ∅∅∅
TS TTT with a single
atomic proposition aaa

Traces(T)Traces(T)Traces(T) ===
{
{a}∅ω, ∅ω

}{
{a}∅ω, ∅ω

}{
{a}∅ω, ∅ω

}

Tracesfin(T)Tracesfin(T)Tracesfin(T) ===
{
{a}∅n : n ≥ 0

}
∪

{
∅m : m ≥ 1

}{
{a}∅n : n ≥ 0

}
∪

{
∅m : m ≥ 1

}{
{a}∅n : n ≥ 0

}
∪

{
∅m : m ≥ 1

}

53 / 343

Mutual exclusion with semaphore ltb2.4-8

P1P1P1 noncrit1

wait1

crit1

y > 0: y :=y−1y > 0: y :=y−1y > 0: y :=y−1

y :=y+1y :=y+1y :=y+1

P2P2P2 noncrit2

wait2

crit2

y > 0: y :=y−1y > 0: y :=y−1y > 0: y :=y−1

y :=y+1y :=y+1y :=y+1

transition system TP1|||P2
TP1|||P2TP1|||P2

arises by unfolding the
composite program graph P1 ||| P2P1 ||| P2P1 ||| P2

54 / 343

Mutual exclusion with semaphore TP1|||P2
TP1|||P2TP1|||P2

ltb2.4-8

noncrit1 noncrit2
y=1y=1y=1

wait1 noncrit2
y=1y=1y=1

noncrit1 wait2
y=1y=1y=1

crit1 noncrit2
y=0y=0y=0

wait1 wait2
y=1y=1y=1

noncrit1 crit2
y=0y=0y=0

crit1 wait2
y=0y=0y=0

wait1 crit2
y=0y=0y=0

set of atomic propositions AP = {crit1, crit2}AP = {crit1, crit2}AP = {crit1, crit2}

55 / 343

Mutual exclusion with semaphore TP1|||P2
TP1|||P2TP1|||P2

ltb2.4-8

noncrit1 noncrit2
y=1y=1y=1

noncrit1 noncrit2
y=1y=1y=1

wait1 noncrit2
y=1y=1y=1

noncrit1 wait2
y=1y=1y=1

crit1crit1crit1 noncrit2
y=0y=0y=0

wait1 wait2
y=1y=1y=1

noncrit1 crit2crit2crit2
y=0y=0y=0

crit1crit1crit1 wait2
y=0y=0y=0

wait1 crit2crit2crit2
y=0y=0y=0

set of atomic propositions AP = {crit1, crit2}AP = {crit1, crit2}AP = {crit1, crit2}

e.g., L(⟨L(⟨L(⟨noncrit1, noncrit2,y=1⟩)y=1⟩)y=1⟩) ===
L(⟨L(⟨L(⟨wait1, noncrit2,y=1⟩)y=1⟩)y=1⟩) === ∅∅∅

56 / 343

Mutual exclusion with semaphore TP1|||P2
TP1|||P2TP1|||P2

ltb2.4-8

noncrit1 noncrit2
y=1y=1y=1

noncrit1 noncrit2
y=1y=1y=1

wait1 noncrit2
y=1y=1y=1

noncrit1 wait2
y=1y=1y=1

crit1crit1crit1 noncrit2
y=0y=0y=0

wait1 wait2
y=1y=1y=1

noncrit1 crit2crit2crit2
y=0y=0y=0

crit1crit1crit1 wait2
y=0y=0y=0

wait1 crit2crit2crit2
y=0y=0y=0

set of atomic propositions AP = {crit1, crit2}AP = {crit1, crit2}AP = {crit1, crit2}
traces, e.g., ∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...

57 / 343

Mutual exclusion with semaphore TP1|||P2
TP1|||P2TP1|||P2

ltb2.4-8

noncrit1 noncrit2
y=1y=1y=1

noncrit1 noncrit2
y=1y=1y=1

wait1 noncrit2
y=1y=1y=1

noncrit1 wait2
y=1y=1y=1

crit1crit1crit1 noncrit2
y=0y=0y=0

wait1 wait2
y=1y=1y=1

noncrit1 crit2crit2crit2
y=0y=0y=0

crit1crit1crit1 wait2
y=0y=0y=0

wait1 crit2crit2crit2
y=0y=0y=0

set of atomic propositions AP = {crit1, crit2}AP = {crit1, crit2}AP = {crit1, crit2}
traces, e.g., ∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...

∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...
58 / 343

Mutual exclusion with semaphore TP1|||P2
TP1|||P2TP1|||P2

ltb2.4-8

noncrit1 noncrit2
y=1y=1y=1

noncrit1 noncrit2
y=1y=1y=1

wait1 noncrit2
y=1y=1y=1

noncrit1 wait2
y=1y=1y=1

crit1crit1crit1 noncrit2
y=0y=0y=0

wait1 wait2
y=1y=1y=1

noncrit1 crit2crit2crit2
y=0y=0y=0

crit1crit1crit1 wait2
y=0y=0y=0

wait1 crit2crit2crit2
y=0y=0y=0

set of atomic propositions AP = {crit1, crit2}AP = {crit1, crit2}AP = {crit1, crit2}
traces, e.g., ∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...

∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...
↑↑↑↑↑↑↑↑↑

59 / 343

Mutual exclusion with semaphore TP1|||P2
TP1|||P2TP1|||P2

ltb2.4-8

noncrit1 noncrit2
y=1y=1y=1

noncrit1 noncrit2
y=1y=1y=1

wait1 noncrit2
y=1y=1y=1

noncrit1 wait2
y=1y=1y=1

crit1crit1crit1 noncrit2
y=0y=0y=0

wait1 wait2
y=1y=1y=1

noncrit1 crit2crit2crit2
y=0y=0y=0

crit1crit1crit1 wait2
y=0y=0y=0

wait1 crit2crit2crit2
y=0y=0y=0

set of atomic propositions AP = {crit1, crit2}AP = {crit1, crit2}AP = {crit1, crit2}
traces, e.g., ∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...

∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...
↑↑↑↑↑↑↑↑↑

60 / 343

Mutual exclusion with semaphore TP1|||P2
TP1|||P2TP1|||P2

ltb2.4-8

noncrit1 noncrit2
y=1y=1y=1

noncrit1 noncrit2
y=1y=1y=1

wait1 noncrit2
y=1y=1y=1

noncrit1 wait2
y=1y=1y=1

crit1crit1crit1 noncrit2
y=0y=0y=0

wait1 wait2
y=1y=1y=1

noncrit1 crit2crit2crit2
y=0y=0y=0

crit1crit1crit1 wait2
y=0y=0y=0

wait1 crit2crit2crit2
y=0y=0y=0

set of atomic propositions AP = {crit1, crit2}AP = {crit1, crit2}AP = {crit1, crit2}
traces, e.g., ∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...

∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...
↑↑↑↑↑↑↑↑↑

61 / 343

Mutual exclusion with semaphore TP1|||P2
TP1|||P2TP1|||P2

ltb2.4-8

noncrit1 noncrit2
y=1y=1y=1

noncrit1 noncrit2
y=1y=1y=1

wait1 noncrit2
y=1y=1y=1

noncrit1 wait2
y=1y=1y=1

crit1crit1crit1 noncrit2
y=0y=0y=0

wait1 wait2
y=1y=1y=1

noncrit1 crit2crit2crit2
y=0y=0y=0

crit1crit1crit1 wait2
y=0y=0y=0

wait1 crit2crit2crit2
y=0y=0y=0

set of atomic propositions AP = {crit1, crit2}AP = {crit1, crit2}AP = {crit1, crit2}
traces, e.g., ∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...

∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...
↑↑↑↑↑↑↑↑↑

62 / 343

Mutual exclusion with semaphore TP1|||P2
TP1|||P2TP1|||P2

ltb2.4-8

noncrit1 noncrit2
y=1y=1y=1

noncrit1 noncrit2
y=1y=1y=1

wait1 noncrit2
y=1y=1y=1

noncrit1 wait2
y=1y=1y=1

crit1crit1crit1 noncrit2
y=0y=0y=0

wait1 wait2
y=1y=1y=1

noncrit1 crit2crit2crit2
y=0y=0y=0

crit1crit1crit1 wait2
y=0y=0y=0

wait1 crit2crit2crit2
y=0y=0y=0

set of atomic propositions AP = {crit1, crit2}AP = {crit1, crit2}AP = {crit1, crit2}
traces, e.g., ∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...

∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...
↑↑↑↑↑↑↑↑↑

63 / 343

Mutual exclusion with semaphore TP1|||P2
TP1|||P2TP1|||P2

ltb2.4-8

noncrit1 noncrit2
y=1y=1y=1

noncrit1 noncrit2
y=1y=1y=1

wait1 noncrit2
y=1y=1y=1

noncrit1 wait2
y=1y=1y=1

crit1crit1crit1 noncrit2
y=0y=0y=0

wait1 wait2
y=1y=1y=1

noncrit1 crit2crit2crit2
y=0y=0y=0

crit1crit1crit1 wait2
y=0y=0y=0

wait1 crit2crit2crit2
y=0y=0y=0

set of atomic propositions AP = {crit1, crit2}AP = {crit1, crit2}AP = {crit1, crit2}
traces, e.g., ∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...

∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...
↑↑↑↑↑↑↑↑↑

64 / 343

Mutual exclusion with semaphore TP1|||P2
TP1|||P2TP1|||P2

ltb2.4-8

noncrit1 noncrit2
y=1y=1y=1

noncrit1 noncrit2
y=1y=1y=1

wait1 noncrit2
y=1y=1y=1

noncrit1 wait2
y=1y=1y=1

crit1crit1crit1 noncrit2
y=0y=0y=0

wait1 wait2
y=1y=1y=1

noncrit1 crit2crit2crit2
y=0y=0y=0

crit1crit1crit1 wait2
y=0y=0y=0

wait1 crit2crit2crit2
y=0y=0y=0

set of atomic propositions AP = {crit1, crit2}AP = {crit1, crit2}AP = {crit1, crit2}
traces, e.g., ∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...

∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...
↑↑↑↑↑↑↑↑↑

65 / 343

Mutual exclusion with semaphore TP1|||P2
TP1|||P2TP1|||P2

ltb2.4-8

noncrit1 noncrit2
y=1y=1y=1

noncrit1 noncrit2
y=1y=1y=1

wait1 noncrit2
y=1y=1y=1

noncrit1 wait2
y=1y=1y=1

crit1crit1crit1 noncrit2
y=0y=0y=0

wait1 wait2
y=1y=1y=1

noncrit1 crit2crit2crit2
y=0y=0y=0

crit1crit1crit1 wait2
y=0y=0y=0

wait1 crit2crit2crit2
y=0y=0y=0

set of atomic propositions AP = {crit1, crit2}AP = {crit1, crit2}AP = {crit1, crit2}
traces, e.g., ∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...∅ ∅ {crit1}∅ ∅ {crit1}∅ ∅ {crit1} ...

∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...∅ ∅ ∅ {crit1}∅ {crit2} {crit2}∅ ...
↑↑↑↑↑↑↑↑↑

66 / 343

Mutual exclusion with semaphor TP1|||P2
TP1|||P2TP1|||P2

ltb2.4-9

noncrit1 noncrit2
y=1y=1y=1

wait1 noncrit2
y=1y=1y=1

noncrit1 wait2
y=1y=1y=1

crit1 noncrit2
y=0y=0y=0

wait1 wait2
y=1y=1y=1

noncrit1 crit2
y=0y=0y=0

crit1 wait2
y=0y=0y=0

wait1 crit2
y=0y=0y=0

set of propositions AP = {wait1, crit1, wait2, crit2}AP = {wait1, crit1, wait2, crit2}AP = {wait1, crit1, wait2, crit2}

67 / 343

Mutual exclusion with semaphor TP1|||P2
TP1|||P2TP1|||P2

ltb2.4-9

noncrit1noncrit1noncrit1 noncrit2noncrit2noncrit2
y=1y=1y=1

wait1wait1wait1 noncrit2
y=1

noncrit1 wait2wait2wait2
y=1

crit1crit1crit1 noncrit2
y=0

wait1wait1wait1 wait2wait2wait2
y=1

noncrit1 crit2crit2crit2
y=0

crit1crit1crit1 wait2wait2wait2
y=0

wait1wait1wait1 crit2crit2crit2
y=0y=0y=0

set of propositions AP = {wait1, crit1, wait2, crit2}AP = {wait1, crit1, wait2, crit2}AP = {wait1, crit1, wait2, crit2}
e.g., L(⟨noncrit1, noncrit2, y=1⟩)L(⟨noncrit1, noncrit2, y=1⟩)L(⟨noncrit1, noncrit2, y=1⟩) === ∅∅∅

L(⟨wait1, crit2, y=1⟩)L(⟨wait1, crit2, y=1⟩)L(⟨wait1, crit2, y=1⟩) === {wait1, crit2}{wait1, crit2}{wait1, crit2}
68 / 343

Mutual exclusion with semaphor TP1|||P2
TP1|||P2TP1|||P2

ltb2.4-9

noncrit1 noncrit2
y=1

wait1wait1wait1 noncrit2
y=1

noncrit1 wait2wait2wait2
y=1

crit1crit1crit1 noncrit2
y=0

wait1wait1wait1 wait2wait2wait2
y=1

noncrit1 crit2crit2crit2
y=0

crit1crit1crit1 wait2wait2wait2
y=0

wait1wait1wait1 crit2crit2crit2
y=0

set of propositions AP = {wait1, crit1, wait2, crit2}AP = {wait1, crit1, wait2, crit2}AP = {wait1, crit1, wait2, crit2}
traces, e.g.,

∅
(
{wait1} {wait1, wait2} {wait1, crit2}

)ω∅
(
{wait1} {wait1, wait2} {wait1, crit2}

)ω∅
(
{wait1} {wait1, wait2} {wait1, crit2}

)ω

69 / 343

Mutual exclusion with semaphor TP1|||P2
TP1|||P2TP1|||P2

ltb2.4-9

noncrit1 noncrit2
y=1

wait1wait1wait1 noncrit2
y=1

noncrit1 wait2wait2wait2
y=1

crit1crit1crit1 noncrit2
y=0

wait1wait1wait1 wait2wait2wait2
y=1

noncrit1 crit2crit2crit2
y=0

crit1crit1crit1 wait2wait2wait2
y=0

wait1wait1wait1 crit2crit2crit2
y=0

set of propositions AP = {wait1, crit1, wait2, crit2}AP = {wait1, crit1, wait2, crit2}AP = {wait1, crit1, wait2, crit2}
traces, e.g.,

∅
(
{wait1} {wait1, wait2} {wait1, crit2}

)ω∅
(
{wait1} {wait1, wait2} {wait1, crit2}

)ω∅
(
{wait1} {wait1, wait2} {wait1, crit2}

)ω

70 / 343

Overview overview3.2.tex

Introduction

Modelling parallel systems

Linear Time Properties
state-based and linear time view
definition of linear time properties ←−←−←−
invariants and safety
liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction
71 / 343

Model checking ltb2.4-14a

system P1∥. . .∥PnP1∥. . .∥PnP1∥. . .∥Pn

transition
system TTT

requirements

specification specspecspec

model checker
does TTT satisfy specspecspec ?

yes no +++ error indication
72 / 343

Model checking ltb2.4-14a

syntactic description
of P1∥. . .∥PnP1∥. . .∥PnP1∥. . .∥Pn

state graph of
transition system TTT

requirements

specification specspecspec

model checker
does TTT satisfy specspecspec ?

yes no +++ error indication

SOS-rules abstraction
from actions

73 / 343

Model checking ltb2.4-14a

syntactic description
of P1∥. . .∥PnP1∥. . .∥PnP1∥. . .∥Pn

state graph of
transition system TTT

requirements

specification specspecspec

model checker
does TTT satisfy specspecspec ?

yes no +++ error indication

SOS-rules abstraction
from actions

74 / 343

Model checking ltb2.4-14a

syntactic description
of P1∥. . .∥PnP1∥. . .∥PnP1∥. . .∥Pn

state graph of
transition system TTT

requirements

specification specspecspec ,
e.g., LT property

model checker
does TTT satisfy specspecspec ?

yes no +++ error indication

SOS-rules abstraction
from actions

75 / 343

Linear-time properties (LT properties) ltb2.4-14

76 / 343

Linear-time properties (LT properties) ltb2.4-14

for TS over APAPAP without terminal states

An LT property over APAPAP is a language EEE of infinite
words over the alphabet Σ = 2APΣ = 2APΣ = 2AP , i.e., E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
.

78 / 343

Linear-time properties (LT properties) ltb2.4-14

for TS over APAPAP without terminal states

An LT property over APAPAP is a language EEE of infinite
words over the alphabet Σ = 2APΣ = 2APΣ = 2AP , i.e., E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
.

E.g., for mutual exclusion problems and
AP =

{
crit1, crit2, . . .

}
AP =

{
crit1, crit2, . . .

}
AP =

{
crit1, crit2, . . .

}

safety:

MUTEXMUTEXMUTEX ===
set of all infinite words A0 A1 A2 . . .A0 A1 A2 . . .A0 A1 A2 . . .
over 2AP2AP2AP such that for all i ∈ Ni ∈ Ni ∈ N:

crit1 ̸∈ Aicrit1 ̸∈ Aicrit1 ̸∈ Ai or crit2 ̸∈ Aicrit2 ̸∈ Aicrit2 ̸∈ Ai

79 / 343

LT properties for mutual exclusion protocols ltb2.4-13

AP =
{
wait1, crit1, wait2, crit2

}
AP =

{
wait1, crit1, wait2, crit2

}
AP =

{
wait1, crit1, wait2, crit2

}

safety:

MUTEXMUTEXMUTEX ===
set of all infinite words A0 A1 A2 . . .A0 A1 A2 . . .A0 A1 A2 . . .
over 2AP2AP2AP such that for all i ∈ Ni ∈ Ni ∈ N:

crit1 ̸∈ Aicrit1 ̸∈ Aicrit1 ̸∈ Ai or crit2 ̸∈ Aicrit2 ̸∈ Aicrit2 ̸∈ Ai

∅ {wait1} {crit1}∅ {wait1} {crit1} . . .∅ {wait1} {crit1}∅ {wait1} {crit1} . . .∅ {wait1} {crit1}∅ {wait1} {crit1} . . . ∈ MUTEX∈ MUTEX∈ MUTEX

80 / 343

LT properties for mutual exclusion protocols ltb2.4-13

AP =
{
wait1, crit1, wait2, crit2

}
AP =

{
wait1, crit1, wait2, crit2

}
AP =

{
wait1, crit1, wait2, crit2

}

safety:

MUTEXMUTEXMUTEX ===
set of all infinite words A0 A1 A2 . . .A0 A1 A2 . . .A0 A1 A2 . . .
over 2AP2AP2AP such that for all i ∈ Ni ∈ Ni ∈ N:

crit1 ̸∈ Aicrit1 ̸∈ Aicrit1 ̸∈ Ai or crit2 ̸∈ Aicrit2 ̸∈ Aicrit2 ̸∈ Ai

∅ {wait1} {crit1}∅ {wait1} {crit1} . . .∅ {wait1} {crit1}∅ {wait1} {crit1} . . .∅ {wait1} {crit1}∅ {wait1} {crit1} . . . ∈ MUTEX∈ MUTEX∈ MUTEX

∅ {wait1} {crit1} {crit1, wait2} {crit1, crit2} ...∅ {wait1} {crit1} {crit1, wait2} {crit1, crit2} ...∅ {wait1} {crit1} {crit1, wait2} {crit1, crit2} ... ̸∈ MUTEX̸∈ MUTEX̸∈ MUTEX

81 / 343

LT properties for mutual exclusion protocols ltb2.4-13

AP =
{
wait1, crit1, wait2, crit2

}
AP =

{
wait1, crit1, wait2, crit2

}
AP =

{
wait1, crit1, wait2, crit2

}

safety:

MUTEXMUTEXMUTEX ===
set of all infinite words A0 A1 A2 . . .A0 A1 A2 . . .A0 A1 A2 . . .
over 2AP2AP2AP such that for all i ∈ Ni ∈ Ni ∈ N:

crit1 ̸∈ Aicrit1 ̸∈ Aicrit1 ̸∈ Ai or crit2 ̸∈ Aicrit2 ̸∈ Aicrit2 ̸∈ Ai

∅ {wait1} {crit1}∅ {wait1} {crit1} . . .∅ {wait1} {crit1}∅ {wait1} {crit1} . . .∅ {wait1} {crit1}∅ {wait1} {crit1} . . . ∈ MUTEX∈ MUTEX∈ MUTEX

∅ {wait1} {crit1} {crit1, wait2} {crit1, crit2} ...∅ {wait1} {crit1} {crit1, wait2} {crit1, crit2} ...∅ {wait1} {crit1} {crit1, wait2} {crit1, crit2} ... ̸∈ MUTEX̸∈ MUTEX̸∈ MUTEX

∅ ∅ {wait1, crit1, crit2} ...∅ ∅ {wait1, crit1, crit2} ...∅ ∅ {wait1, crit1, crit2} ... ̸∈ MUTEX̸∈ MUTEX̸∈ MUTEX

82 / 343

LT properties for mutual exclusion protocols ltb2.4-13

AP =
{
wait1, crit1, wait2, crit2

}
AP =

{
wait1, crit1, wait2, crit2

}
AP =

{
wait1, crit1, wait2, crit2

}

safety:

MUTEXMUTEXMUTEX ===
set of all infinite words A0 A1 A2 . . .A0 A1 A2 . . .A0 A1 A2 . . .
over 2AP2AP2AP such that for all i ∈ Ni ∈ Ni ∈ N:

crit1 ̸∈ Aicrit1 ̸∈ Aicrit1 ̸∈ Ai or crit2 ̸∈ Aicrit2 ̸∈ Aicrit2 ̸∈ Ai

liveness (starvation freedom):

LIVELIVELIVE ===

set of all infinite words A0 A1 A2 . . .A0 A1 A2 . . .A0 A1 A2 . . . s.t.
∞
∃ i ∈ N.wait1 ∈ Ai =⇒

∞
∃ i ∈ N.crit1 ∈ Ai

∞
∃ i ∈ N.wait1 ∈ Ai =⇒

∞
∃ i ∈ N.crit1 ∈ Ai

∞
∃ i ∈ N.wait1 ∈ Ai =⇒

∞
∃ i ∈ N.crit1 ∈ Ai

∧
∞
∃ i ∈ N.wait2 ∈ Ai =⇒

∞
∃ i ∈ N.crit2 ∈ Ai

∞
∃ i ∈ N.wait2 ∈ Ai =⇒

∞
∃ i ∈ N.crit2 ∈ Ai

∞
∃ i ∈ N.wait2 ∈ Ai =⇒

∞
∃ i ∈ N.crit2 ∈ Ai

83 / 343

Satisfaction relation for LT properties ltb2.4-15

84 / 343

Satisfaction relation for LT properties ltb2.4-15

An LT property over APAPAP is a language EEE of infinite
words over the alphabet Σ = 2APΣ = 2APΣ = 2AP , i.e., E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
.

85 / 343

Satisfaction relation for LT properties ltb2.4-15

An LT property over APAPAP is a language EEE of infinite
words over the alphabet Σ = 2APΣ = 2APΣ = 2AP , i.e., E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
.

Satisfaction relation |=|=|= for TS:

If TTT is a TS (without terminal states) over APAPAP
and EEE an LT property over APAPAP then

T |= ET |= ET |= E iff Traces(T) ⊆ ETraces(T) ⊆ ETraces(T) ⊆ E

86 / 343

Satisfaction relation for LT properties ltb2.4-15

An LT property over APAPAP is a language EEE of infinite
words over the alphabet Σ = 2APΣ = 2APΣ = 2AP , i.e., E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
.

Satisfaction relation |=|=|= for TS and states:

If TTT is a TS (without terminal states) over APAPAP
and EEE an LT property over APAPAP then

T |= ET |= ET |= E iff Traces(T) ⊆ ETraces(T) ⊆ ETraces(T) ⊆ E

If sss is a state in TTT then

s |= Es |= Es |= E iff Traces(s) ⊆ ETraces(s) ⊆ ETraces(s) ⊆ E

87 / 343

Mutual exclusion with semaphore ltb2.4-16

noncrit1 noncrit2
y=1

wait1wait1wait1 noncrit2
y=1

noncrit1 wait2wait2wait2
y=1

crit1crit1crit1 noncrit2
y=0

wait1wait1wait1 wait2wait2wait2
y=1

noncrit1 crit2crit2crit2
y=0

crit1crit1crit1 wait2wait2wait2
y=0

wait1wait1wait1 crit2crit2crit2
y=0

TSem |= MUTEXTSem |= MUTEXTSem |= MUTEX

88 / 343

Mutual exclusion with semaphore ltb2.4-16

noncrit1 noncrit2
y=1

wait1wait1wait1 noncrit2
y=1

noncrit1 wait2wait2wait2
y=1

crit1crit1crit1 noncrit2
y=0

wait1wait1wait1 wait2wait2wait2
y=1

noncrit1 crit2crit2crit2
y=0

crit1crit1crit1 wait2wait2wait2
y=0

wait1wait1wait1 crit2crit2crit2
y=0

TSem |= MUTEXTSem |= MUTEXTSem |= MUTEX , TSem |= LIVETSem |= LIVETSem |= LIVE ?

89/343

Mutual exclusion with semaphore ltb2.4-16

noncrit1 noncrit2
y=1

wait1wait1wait1 noncrit2
y=1

noncrit1 wait2wait2wait2
y=1

crit1crit1crit1 noncrit2
y=0

wait1wait1wait1 wait2wait2wait2
y=1

noncrit1 crit2crit2crit2
y=0

crit1crit1crit1 wait2wait2wait2
y=0

wait1wait1wait1 crit2crit2crit2
y=0

TSem |= MUTEXTSem |= MUTEXTSem |= MUTEX , TSem ̸|= LIVETSem ̸|= LIVETSem ̸|= LIVE

∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE

90 / 343

Mutual exclusion with semaphore ltb2.4-16

noncrit1 noncrit2
y=1

wait1wait1wait1 noncrit2
y=1

noncrit1 wait2wait2wait2
y=1

crit1crit1crit1 noncrit2
y=0

wait1wait1wait1 wait2wait2wait2
y=1

noncrit1 crit2crit2crit2
y=0

crit1crit1crit1 wait2wait2wait2
y=0

wait1wait1wait1 crit2crit2crit2
y=0

TSem |= MUTEXTSem |= MUTEXTSem |= MUTEX , TSem ̸|= LIVETSem ̸|= LIVETSem ̸|= LIVE

∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE

91 / 343

Mutual exclusion with semaphore ltb2.4-16

noncrit1 noncrit2
y=1

wait1wait1wait1 noncrit2
y=1

noncrit1 wait2wait2wait2
y=1

crit1crit1crit1 noncrit2
y=0

wait1wait1wait1 wait2wait2wait2
y=1

noncrit1 crit2crit2crit2
y=0

crit1crit1crit1 wait2wait2wait2
y=0

wait1wait1wait1 crit2crit2crit2
y=0

TSem |= MUTEXTSem |= MUTEXTSem |= MUTEX , TSem ̸|= LIVETSem ̸|= LIVETSem ̸|= LIVE

∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE

92 / 343

Mutual exclusion with semaphore ltb2.4-16

noncrit1 noncrit2
y=1

wait1wait1wait1 noncrit2
y=1

noncrit1 wait2wait2wait2
y=1

crit1crit1crit1 noncrit2
y=0

wait1wait1wait1 wait2wait2wait2
y=1

noncrit1 crit2crit2crit2
y=0

crit1crit1crit1 wait2wait2wait2
y=0

wait1wait1wait1 crit2crit2crit2
y=0

TSem |= MUTEXTSem |= MUTEXTSem |= MUTEX , TSem ̸|= LIVETSem ̸|= LIVETSem ̸|= LIVE

∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE

93 / 343

Mutual exclusion with semaphore ltb2.4-16

noncrit1 noncrit2
y=1

wait1wait1wait1 noncrit2
y=1

noncrit1 wait2wait2wait2
y=1

crit1crit1crit1 noncrit2
y=0

wait1wait1wait1 wait2wait2wait2
y=1

noncrit1 crit2crit2crit2
y=0

crit1crit1crit1 wait2wait2wait2
y=0

wait1wait1wait1 crit2crit2crit2
y=0

TSem |= MUTEXTSem |= MUTEXTSem |= MUTEX , TSem ̸|= LIVETSem ̸|= LIVETSem ̸|= LIVE

∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE

94 / 343

Mutual exclusion with semaphore ltb2.4-16

noncrit1 noncrit2
y=1

wait1wait1wait1 noncrit2
y=1

noncrit1 wait2wait2wait2
y=1

crit1crit1crit1 noncrit2
y=0

wait1wait1wait1 wait2wait2wait2
y=1

noncrit1 crit2crit2crit2
y=0

crit1crit1crit1 wait2wait2wait2
y=0

wait1wait1wait1 crit2crit2crit2
y=0

TSem |= MUTEXTSem |= MUTEXTSem |= MUTEX , TSem ̸|= LIVETSem ̸|= LIVETSem ̸|= LIVE

∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE

95 / 343

Mutual exclusion with semaphore ltb2.4-16

noncrit1 noncrit2
y=1

wait1wait1wait1 noncrit2
y=1

noncrit1 wait2wait2wait2
y=1

crit1crit1crit1 noncrit2
y=0

wait1wait1wait1 wait2wait2wait2
y=1

noncrit1 crit2crit2crit2
y=0

crit1crit1crit1 wait2wait2wait2
y=0

wait1wait1wait1 crit2crit2crit2
y=0

TSem |= MUTEXTSem |= MUTEXTSem |= MUTEX , TSem ̸|= LIVETSem ̸|= LIVETSem ̸|= LIVE

∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE∅ {wait1}
(
{wait1, wait2} {crit1, wait2}{wait2}

)ω ̸∈ LIVE

96 / 343

Peterson’s mutual exclusion algorithm ltb2.4-17

97 / 343

Peterson’s mutual exclusion algorithm ltb2.4-17

for competing processes P1P1P1 and P2P2P2,

using three additional shared variables
b1, b2 ∈ {0, 1}b1, b2 ∈ {0, 1}b1, b2 ∈ {0, 1}, x ∈ {1, 2}x ∈ {1, 2}x ∈ {1, 2}

98 / 343

Peterson’s mutual exclusion algorithm ltb2.4-17

for competing processes P1P1P1 and P2P2P2,

using three additional shared variables
b1, b2 ∈ {0, 1}b1, b2 ∈ {0, 1}b1, b2 ∈ {0, 1}, x ∈ {1, 2}x ∈ {1, 2}x ∈ {1, 2}

P1P1P1 P2P2P2noncrit1

wait1

b1:=1; x :=2b1:=1; x :=2b1:=1; x:=2

crit1

x=1∨¬ b2x=1∨¬ b2x=1∨¬ b2

b1:=0b1:=0b1:=0

noncrit2

wait2

b2:=1; x :=1b2:=1; x:=1b2:=1; x:=1

crit2

x=2∨¬ b1x=2∨¬ b1x=2∨¬ b1

b2:=0b2:=0b2:=0

99 / 343

Peterson’s mutual exclusion algorithm ltb2.4-17

noncrit1 noncrit2noncrit1 noncrit2noncrit1 noncrit2
x=2x=2x=2

noncrit1 noncrit2noncrit1 noncrit2noncrit1 noncrit2
x=1x=1x=1

wait1 noncrit2wait1 noncrit2wait1 noncrit2
x=2x=2x=2

noncrit1 wait2noncrit1 wait2noncrit1 wait2
x=1x=1x=1

crit1 noncrit2crit1 noncrit2crit1 noncrit2
x=2x=2x=2

noncrit1 crit2noncrit1 crit2noncrit1 crit2
x=1x=1x=1

wait1 wait2wait1 wait2wait1 wait2
x=1x=1x=1

wait1 wait2wait1 wait2wait1 wait2
x=2x=2x=2

crit1 wait2crit1 wait2crit1 wait2
x=1x=1x=1

wait1 crit2wait1 crit2wait1 crit2
x=2x=2x=2

TPet |= MUTEXTPet |= MUTEXTPet |= MUTEX

100 / 343

Peterson’s mutual exclusion algorithm ltb2.4-17

noncrit1 noncrit2noncrit1 noncrit2noncrit1 noncrit2
x=2x=2x=2

noncrit1 noncrit2noncrit1 noncrit2noncrit1 noncrit2
x=1x=1x=1

wait1 noncrit2wait1 noncrit2wait1 noncrit2
x=2x=2x=2

noncrit1 wait2noncrit1 wait2noncrit1 wait2
x=1x=1x=1

crit1 noncrit2crit1 noncrit2crit1 noncrit2
x=2x=2x=2

noncrit1 crit2noncrit1 crit2noncrit1 crit2
x=1x=1x=1

wait1 wait2wait1 wait2wait1 wait2
x=1x=1x=1

wait1 wait2wait1 wait2wait1 wait2
x=2x=2x=2

crit1 wait2crit1 wait2crit1 wait2
x=1x=1x=1

wait1 crit2wait1 crit2wait1 crit2
x=2x=2x=2

TPet |= MUTEXTPet |= MUTEXTPet |= MUTEX and TPet |= LIVETPet |= LIVETPet |= LIVE

101 / 343

Peterson’s mutual exclusion algorithm ltb2.4-17

noncrit1 noncrit2noncrit1 noncrit2noncrit1 noncrit2
x=2x=2x=2

noncrit1 noncrit2noncrit1 noncrit2noncrit1 noncrit2
x=1x=1x=1

wait1 noncrit2wait1 noncrit2wait1 noncrit2
x=2x=2x=2

noncrit1 wait2noncrit1 wait2noncrit1 wait2
x=1x=1x=1

crit1 noncrit2crit1 noncrit2crit1 noncrit2
x=2x=2x=2

noncrit1 crit2noncrit1 crit2noncrit1 crit2
x=1x=1x=1

wait1 wait2wait1 wait2wait1 wait2
x=1x=1x=1

wait1 wait2wait1 wait2wait1 wait2
x=2x=2x=2

crit1 wait2crit1 wait2crit1 wait2
x=1x=1x=1

wait1 crit2wait1 crit2wait1 crit2
x=2x=2x=2

TPet |= MUTEXTPet |= MUTEXTPet |= MUTEX and TPet |= LIVETPet |= LIVETPet |= LIVE

102 / 343

Peterson’s mutual exclusion algorithm ltb2.4-17

noncrit1 noncrit2noncrit1 noncrit2noncrit1 noncrit2
x=2x=2x=2

noncrit1 noncrit2noncrit1 noncrit2noncrit1 noncrit2
x=1x=1x=1

wait1 noncrit2wait1 noncrit2wait1 noncrit2
x=2x=2x=2

noncrit1 wait2noncrit1 wait2noncrit1 wait2
x=1x=1x=1

crit1 noncrit2crit1 noncrit2crit1 noncrit2
x=2x=2x=2

noncrit1 crit2noncrit1 crit2noncrit1 crit2
x=1x=1x=1

wait1 wait2wait1 wait2wait1 wait2
x=1x=1x=1

wait1 wait2wait1 wait2wait1 wait2
x=2x=2x=2

crit1 wait2crit1 wait2crit1 wait2
x=1x=1x=1

wait1 crit2wait1 crit2wait1 crit2
x=2x=2x=2

TPet |= MUTEXTPet |= MUTEXTPet |= MUTEX and TPet |= LIVETPet |= LIVETPet |= LIVE

103 / 343

Peterson’s mutual exclusion algorithm ltb2.4-17

noncrit1 noncrit2noncrit1 noncrit2noncrit1 noncrit2
x=2x=2x=2

noncrit1 noncrit2noncrit1 noncrit2noncrit1 noncrit2
x=1x=1x=1

wait1 noncrit2wait1 noncrit2wait1 noncrit2
x=2x=2x=2

noncrit1 wait2noncrit1 wait2noncrit1 wait2
x=1x=1x=1

crit1 noncrit2crit1 noncrit2crit1 noncrit2
x=2x=2x=2

noncrit1 crit2noncrit1 crit2noncrit1 crit2
x=1x=1x=1

wait1 wait2wait1 wait2wait1 wait2
x=1x=1x=1

wait1 wait2wait1 wait2wait1 wait2
x=2x=2x=2

crit1 wait2crit1 wait2crit1 wait2
x=1x=1x=1

wait1 crit2wait1 crit2wait1 crit2
x=2x=2x=2

TPet |= MUTEXTPet |= MUTEXTPet |= MUTEX and TPet |= LIVETPet |= LIVETPet |= LIVE

104 / 343

Peterson’s mutual exclusion algorithm ltb2.4-17

noncrit1 noncrit2noncrit1 noncrit2noncrit1 noncrit2
x=2x=2x=2

noncrit1 noncrit2noncrit1 noncrit2noncrit1 noncrit2
x=1x=1x=1

wait1 noncrit2wait1 noncrit2wait1 noncrit2
x=2x=2x=2

noncrit1 wait2noncrit1 wait2noncrit1 wait2
x=1x=1x=1

crit1 noncrit2crit1 noncrit2crit1 noncrit2
x=2x=2x=2

noncrit1 crit2noncrit1 crit2noncrit1 crit2
x=1x=1x=1

wait1 wait2wait1 wait2wait1 wait2
x=1x=1x=1

wait1 wait2wait1 wait2wait1 wait2
x=2x=2x=2

crit1 wait2crit1 wait2crit1 wait2
x=1x=1x=1

wait1 crit2wait1 crit2wait1 crit2
x=2x=2x=2

TPet |= MUTEXTPet |= MUTEXTPet |= MUTEX and TPet |= LIVETPet |= LIVETPet |= LIVE

105 / 343

LT properties and trace inclusion ltb2.4-LT-trace

An LT property over APAPAP is a language EEE of infinite
words over the alphabet Σ = 2APΣ = 2APΣ = 2AP , i.e., E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
.

If TTT is a TS over APAPAP then T |= ET |= ET |= E iff Traces(T) ⊆ ETraces(T) ⊆ ETraces(T) ⊆ E .

106 / 343

LT properties and trace inclusion ltb2.4-LT-trace

An LT property over APAPAP is a language EEE of infinite
words over the alphabet Σ = 2APΣ = 2APΣ = 2AP , i.e., E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
.

If TTT is a TS over APAPAP then T |= ET |= ET |= E iff Traces(T) ⊆ ETraces(T) ⊆ ETraces(T) ⊆ E .

Consequence of these definitions:

If T1T1T1 and T2T2T2 are TS over APAPAP then for all
LT properties EEE over APAPAP :

Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)∧∧∧T2 |= ET2 |= ET2 |= E =⇒=⇒=⇒ T1 |= ET1 |= ET1 |= E

107 / 343

LT properties and trace inclusion ltb2.4-LT-trace

An LT property over APAPAP is a language EEE of infinite
words over the alphabet Σ = 2APΣ = 2APΣ = 2AP , i.e., E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
.

If TTT is a TS over APAPAP then T |= ET |= ET |= E iff Traces(T) ⊆ ETraces(T) ⊆ ETraces(T) ⊆ E .

Consequence of these definitions:

If T1T1T1 and T2T2T2 are TS over APAPAP then for all
LT properties EEE over APAPAP :

Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)∧∧∧T2 |= ET2 |= ET2 |= E =⇒=⇒=⇒ T1 |= ET1 |= ET1 |= E

↖ ↗↖ ↗↖ ↗
note: Traces(T1) ⊆ Traces(T2) ⊆ ETraces(T1) ⊆ Traces(T2) ⊆ ETraces(T1) ⊆ Traces(T2) ⊆ E

108 / 343

LT properties and trace inclusion ltb2.4-LT-trace

An LT property over APAPAP is a language EEE of infinite
words over the alphabet Σ = 2APΣ = 2APΣ = 2AP , i.e., E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
.

If TTT is a TS over APAPAP then T |= ET |= ET |= E iff Traces(T) ⊆ ETraces(T) ⊆ ETraces(T) ⊆ E .

If T1T1T1 and T2T2T2 are TS over APAPAP then the
following statements are equivalent:

(1) Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)

(2) for all LT-properties EEE over APAPAP :
whenever T2 |= ET2 |= ET2 |= E then T1 |= ET1 |= ET1 |= E

109 / 343

LT properties and trace inclusion ltb2.4-LT-trace

An LT property over APAPAP is a language EEE of infinite
words over the alphabet Σ = 2APΣ = 2APΣ = 2AP , i.e., E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
.

If TTT is a TS over APAPAP then T |= ET |= ET |= E iff Traces(T) ⊆ ETraces(T) ⊆ ETraces(T) ⊆ E .

If T1T1T1 and T2T2T2 are TS over APAPAP then the
following statements are equivalent:

(1) Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)

(2) for all LT-properties EEE over APAPAP :
whenever T2 |= ET2 |= ET2 |= E then T1 |= ET1 |= ET1 |= E

(1) =⇒=⇒=⇒ (2):
√√√

110 / 343

LT properties and trace inclusion ltb2.4-LT-trace

An LT property over APAPAP is a language EEE of infinite
words over the alphabet Σ = 2APΣ = 2APΣ = 2AP , i.e., E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
.

If TTT is a TS over APAPAP then T |= ET |= ET |= E iff Traces(T) ⊆ ETraces(T) ⊆ ETraces(T) ⊆ E .

If T1T1T1 and T2T2T2 are TS over APAPAP then the
following statements are equivalent:

(1) Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)

(2) for all LT-properties EEE over APAPAP :
whenever T2 |= ET2 |= ET2 |= E then T1 |= ET1 |= ET1 |= E

(2) =⇒=⇒=⇒ (1): consider E = Traces(T2)E = Traces(T2)E = Traces(T2)
111 / 343

Relevance of trace inclusion ltb2.4-19a

Trace inclusion appears naturally

• as an implementation/refinement relation

• when resolving nondeterminism

• in the context of abstractions

112 / 343

Software design cycle ltb2.4-19

requirements

specification

design TiTiTi

design Ti+1Ti+1Ti+1

refinement

113 / 343

Software design cycle ltb2.4-19

requirements

specification

design TiTiTi

design Ti+1Ti+1Ti+1

←−←−←− LT property EEE

←−←−←− Ti |= ETi |= ETi |= E

refinement

114 / 343

Software design cycle ltb2.4-19

requirements

specification

design TiTiTi

design Ti+1Ti+1Ti+1

←−←−←− LT property EEE

←−←−←− Ti |= ETi |= ETi |= E

←−←−←− Ti+1 ⊑ TiTi+1 ⊑ TiTi+1 ⊑ Ti

refinement

implementation/refinement relation ⊑⊑⊑:

Ti+1 ⊑ TiTi+1 ⊑ TiTi+1 ⊑ Ti iff “Ti+1Ti+1Ti+1 correctly implements TiTiTi”
115 / 343

Trace inclusion as an implementation relation ltb2.4-19

requirements

specification

design TiTiTi

design Ti+1Ti+1Ti+1

←−←−←− Ti |= ETi |= ETi |= E

←−←−←− Ti+1 ⊑ TiTi+1 ⊑ TiTi+1 ⊑ Ti

trace inclusion

Ti+1 ⊑ TiTi+1 ⊑ TiTi+1 ⊑ Ti iff

Traces(Ti+1) ⊆ Traces(Ti)Traces(Ti+1) ⊆ Traces(Ti)Traces(Ti+1) ⊆ Traces(Ti)

refinement

implementation/refinement relation ⊑⊑⊑:

Ti+1 ⊑ TiTi+1 ⊑ TiTi+1 ⊑ Ti iff “Ti+1Ti+1Ti+1 correctly implements TiTiTi”
116 / 343

Trace inclusion as an implementation relation ltb2.4-19

requirements

specification

design TiTiTi

design Ti+1Ti+1Ti+1

←−←−←− Ti |= ETi |= ETi |= E

←−←−←− Ti+1 ⊑ TiTi+1 ⊑ TiTi+1 ⊑ Ti implies Ti+1 |= ETi+1 |= ETi+1 |= E

trace inclusion

Ti+1 ⊑ TiTi+1 ⊑ TiTi+1 ⊑ Ti iff

Traces(Ti+1) ⊆ Traces(Ti)Traces(Ti+1) ⊆ Traces(Ti)Traces(Ti+1) ⊆ Traces(Ti)

refinement

implementation/refinement relation ⊑⊑⊑:

Ti+1 ⊑ TiTi+1 ⊑ TiTi+1 ⊑ Ti iff “Ti+1Ti+1Ti+1 correctly implements TiTiTi”
117 / 343

Mutual exclusion with semaphore ltb2.4-20

n1 n2 y=1n1 n2 y=1n1 n2 y=1

w1 n2 y=1w1 n2 y=1w1 n2 y=1 n1 w2 y=1n1 w2 y=1n1 w2 y=1

c1 n2 y=0c1 n2 y=0c1 n2 y=0 w1 w2 y=1w1 w2 y=1w1 w2 y=1 n1 c2 y=0n1 c2 y=0n1 c2 y=0

c1 w2 y=0c1 w2 y=0c1 w2 y=0 w1 c2 y=0w1 c2 y=0w1 c2 y=0

118 / 343

Mutual exclusion with semaphore ltb2.4-20

competition in state
⟨wait1 wait2 y=1⟩⟨wait1 wait2 y=1⟩⟨wait1 wait2 y=1⟩

n1 n2 y=1n1 n2 y=1n1 n2 y=1

w1 n2 y=1w1 n2 y=1w1 n2 y=1 n1 w2 y=1n1 w2 y=1n1 w2 y=1

c1 n2 y=0c1 n2 y=0c1 n2 y=0 w1 w2 y=1w1 w2 y=1w1 w2 y=1 n1 c2 y=0n1 c2 y=0n1 c2 y=0

c1 w2 y=0c1 w2 y=0c1 w2 y=0 w1 c2 y=0w1 c2 y=0w1 c2 y=0

119 / 343

Mutual exclusion with semaphore ltb2.4-20

competition in state
⟨wait1 wait2 y=1⟩⟨wait1 wait2 y=1⟩⟨wait1 wait2 y=1⟩

resolve the nondeterminism by giving
priority to process P1P1P1

n1 n2 y=1n1 n2 y=1n1 n2 y=1

w1 n2 y=1w1 n2 y=1w1 n2 y=1 n1 w2 y=1n1 w2 y=1n1 w2 y=1

c1 n2 y=0c1 n2 y=0c1 n2 y=0 w1 w2 y=1w1 w2 y=1w1 w2 y=1 n1 c2 y=0n1 c2 y=0n1 c2 y=0

c1 w2 y=0c1 w2 y=0c1 w2 y=0 w1 c2 y=0w1 c2 y=0w1 c2 y=0
X

120/343

Mutual exclusion with semaphore ltb2.4-20

TSemTSemTSem n1 n2 y=1n1 n2 y=1n1 n2 y=1

w1 n2 y=1w1 n2 y=1w1 n2 y=1 n1 w2 y=1n1 w2 y=1n1 w2 y=1

c1 n2 y=0c1 n2 y=0c1 n2 y=0 w1 w2 y=1w1 w2 y=1w1 w2 y=1 n1 c2 y=0n1 c2 y=0n1 c2 y=0

c1 w2 y=0c1 w2 y=0c1 w2 y=0 w1 c2 y=0w1 c2 y=0w1 c2 y=0

T ′SemT ′SemT ′Sem n1 n2 y=1n1 n2 y=1n1 n2 y=1

w1 n2 y=1w1 n2 y=1w1 n2 y=1 n1 w2 y=1n1 w2 y=1n1 w2 y=1

c1 n2 y=0c1 n2 y=0c1 n2 y=0 w1 w2 y=1w1 w2 y=1w1 w2 y=1 n1 c2 y=0n1 c2 y=0n1 c2 y=0

c1 w2 y=0c1 w2 y=0c1 w2 y=0 w1 c2 y=0w1 c2 y=0w1 c2 y=0

121 / 343

Mutual exclusion with semaphore ltb2.4-20

TSemTSemTSem n1 n2 y=1n1 n2 y=1n1 n2 y=1

w1 n2 y=1w1 n2 y=1w1 n2 y=1 n1 w2 y=1n1 w2 y=1n1 w2 y=1

c1 n2 y=0c1 n2 y=0c1 n2 y=0 w1 w2 y=1w1 w2 y=1w1 w2 y=1 n1 c2 y=0n1 c2 y=0n1 c2 y=0

c1 w2 y=0c1 w2 y=0c1 w2 y=0 w1 c2 y=0w1 c2 y=0w1 c2 y=0

T ′SemT ′SemT ′Sem n1 n2 y=1n1 n2 y=1n1 n2 y=1

w1 n2 y=1w1 n2 y=1w1 n2 y=1 n1 w2 y=1n1 w2 y=1n1 w2 y=1

c1 n2 y=0c1 n2 y=0c1 n2 y=0 w1 w2 y=1w1 w2 y=1w1 w2 y=1 n1 c2 y=0n1 c2 y=0n1 c2 y=0

c1 w2 y=0c1 w2 y=0c1 w2 y=0 w1 c2 y=0w1 c2 y=0w1 c2 y=0

Paths(T ′Sem) ⊆ Paths(TSem)Paths(T ′Sem) ⊆ Paths(TSem)Paths(T ′Sem) ⊆ Paths(TSem)
122 / 343

Mutual exclusion with semaphore ltb2.4-20

TSemTSemTSem n1 n2 y=1n1 n2 y=1n1 n2 y=1

w1 n2 y=1w1 n2 y=1w1 n2 y=1 n1 w2 y=1n1 w2 y=1n1 w2 y=1

c1 n2 y=0c1 n2 y=0c1 n2 y=0 w1 w2 y=1w1 w2 y=1w1 w2 y=1 n1 c2 y=0n1 c2 y=0n1 c2 y=0

c1 w2 y=0c1 w2 y=0c1 w2 y=0 w1 c2 y=0w1 c2 y=0w1 c2 y=0

T ′SemT ′SemT ′Sem n1 n2 y=1n1 n2 y=1n1 n2 y=1

w1 n2 y=1w1 n2 y=1w1 n2 y=1 n1 w2 y=1n1 w2 y=1n1 w2 y=1

c1 n2 y=0c1 n2 y=0c1 n2 y=0 w1 w2 y=1w1 w2 y=1w1 w2 y=1 n1 c2 y=0n1 c2 y=0n1 c2 y=0

c1 w2 y=0c1 w2 y=0c1 w2 y=0 w1 c2 y=0w1 c2 y=0w1 c2 y=0

Traces(T ′Sem) ⊆ Traces(TSem)Traces(T ′Sem) ⊆ Traces(TSem)Traces(T ′Sem) ⊆ Traces(TSem) for any APAPAP
123 / 343

Mutual exclusion with semaphore ltb2.4-20

TSemTSemTSem n1 n2 y=1n1 n2 y=1n1 n2 y=1

w1 n2 y=1w1 n2 y=1w1 n2 y=1 n1 w2 y=1n1 w2 y=1n1 w2 y=1

c1 n2 y=0c1 n2 y=0c1 n2 y=0 w1 w2 y=1w1 w2 y=1w1 w2 y=1 n1 c2 y=0n1 c2 y=0n1 c2 y=0

c1 w2 y=0c1 w2 y=0c1 w2 y=0 w1 c2 y=0w1 c2 y=0w1 c2 y=0

T ′SemT ′SemT ′Sem

e.g., for AP =AP =AP =
{crit1, crit2}{crit1, crit2}{crit1, crit2}n1 n2 y=1n1 n2 y=1n1 n2 y=1

w1 n2 y=1w1 n2 y=1w1 n2 y=1 n1 w2 y=1n1 w2 y=1n1 w2 y=1

c1 n2 y=0c1 n2 y=0c1 n2 y=0 w1 w2 y=1w1 w2 y=1w1 w2 y=1 n1 c2 y=0n1 c2 y=0n1 c2 y=0

c1 w2 y=0c1 w2 y=0c1 w2 y=0 w1 c2 y=0w1 c2 y=0w1 c2 y=0

Traces(TSem) |= ETraces(TSem) |= ETraces(TSem) |= E implies Traces(T ′Sem) |= ETraces(T ′Sem) |= ETraces(T ′Sem) |= E for any EEE
124 / 343

Relevance of trace inclusion ltb2.4-20a

Trace inclusion appears naturally

• as an implementation/refinement relation

• when resolving nondeterminism ←−←−←−
e.g., Traces(T ′Sem) ⊆ Traces(TSem)Traces(T ′Sem) ⊆ Traces(TSem)Traces(T ′Sem) ⊆ Traces(TSem)

• in the context of abstractions

125 / 343

Relevance of trace inclusion ltb2.4-20a

Trace inclusion appears naturally

• as an implementation/refinement relation

• when resolving nondeterminism
↑↑↑

whenever T ′T ′T ′ results from TTT by a scheduling policy
for resolving nondeterministic choices in TTT then

Traces(T ′) ⊆ Traces(T)Traces(T ′) ⊆ Traces(T)Traces(T ′) ⊆ Traces(T)

• in the context of abstractions

126 / 343

Relevance of trace inclusion ltb2.4-20b

Trace inclusion appears naturally

• as an implementation/refinement relation

• when resolving nondeterminism

• in the context of abstractions ←−←−←−

127 / 343

Trace inclusion and data abstraction ltb2.4-21

...

......
x :=7; y :=5;x :=7; y :=5;x :=7; y :=5;
WHILE x> 0x> 0x> 0 DO

x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

OD
...
......

128 / 343

Trace inclusion and data abstraction ltb2.4-21

...

......
ℓ0ℓ0ℓ0 x :=7; y :=5;x :=7; y :=5;x :=7; y :=5;
ℓ1ℓ1ℓ1 WHILE x> 0x> 0x> 0 DO

x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

OD
ℓ2ℓ2ℓ2

...

......

does ℓ2∧odd(y)ℓ2∧odd(y)ℓ2∧odd(y)
never hold ?

129/343

Trace inclusion and data abstraction ltb2.4-21

...

......
ℓ0ℓ0ℓ0 x :=7; y :=5;x :=7; y :=5;x :=7; y :=5;
ℓ1ℓ1ℓ1 WHILE x> 0x> 0x> 0 DO

x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

OD
ℓ2ℓ2ℓ2

...

......

does ℓ2∧odd(y)ℓ2∧odd(y)ℓ2∧odd(y)
never hold ?

program
graph

ℓ0ℓ0ℓ0 ℓ1ℓ1ℓ1 ℓ2ℓ2ℓ2
x :=7x :=7x :=7
y :=5y :=5y :=5

x≤0x≤0x≤0

x> 0 :x> 0 :x> 0 :
x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

130 / 343

Trace inclusion and data abstraction ltb2.4-21

...

......
ℓ0ℓ0ℓ0 x :=7; y :=5;x :=7; y :=5;x :=7; y :=5;
ℓ1ℓ1ℓ1 WHILE x> 0x> 0x> 0 DO

x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

OD
ℓ2ℓ2ℓ2

...

......

does ℓ2∧odd(y)ℓ2∧odd(y)ℓ2∧odd(y)
never hold ?

program
graph

ℓ0ℓ0ℓ0 ℓ1ℓ1ℓ1 ℓ2ℓ2ℓ2
x :=7x :=7x :=7
y :=5y :=5y :=5

x≤0x≤0x≤0

x> 0 :x> 0 :x> 0 :
x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

let TTT be the associated TS

←−←−←− T |=T |=T |= “never ℓ2∧odd(y)ℓ2∧odd(y)ℓ2∧odd(y)” ?

131/343

Trace inclusion and data abstraction ltb2.4-21

...

......
ℓ0ℓ0ℓ0 x :=7; y :=5;x :=7; y :=5;x :=7; y :=5;
ℓ1ℓ1ℓ1 WHILE x> 0x> 0x> 0 DO

x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

OD
ℓ2ℓ2ℓ2

...

......

does ℓ2∧odd(y)ℓ2∧odd(y)ℓ2∧odd(y)
never hold ?

data abstraction w.r.t.
the predicates
x> 0x> 0x> 0, x=0x=0x=0, x ≡2 yx ≡2 yx ≡2 y

program
graph

ℓ0ℓ0ℓ0 ℓ1ℓ1ℓ1 ℓ2ℓ2ℓ2
x :=7x :=7x :=7
y :=5y :=5y :=5

x≤0x≤0x≤0

x> 0 :x> 0 :x> 0 :
x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

let TTT be the associated TS

←−←−←− T |=T |=T |= “never ℓ2∧odd(y)ℓ2∧odd(y)ℓ2∧odd(y)” ?

132/343

Trace inclusion and data abstraction ltb2.4-21

...

......
ℓ0ℓ0ℓ0 x :=7; y :=5;x :=7; y :=5;x :=7; y :=5;
ℓ1ℓ1ℓ1 WHILE x> 0x> 0x> 0 DO

x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

OD
ℓ2ℓ2ℓ2

...

......

does ℓ2∧odd(y)ℓ2∧odd(y)ℓ2∧odd(y)
never hold ?

data abstraction w.r.t.
the predicates
x> 0x> 0x> 0, x=0x=0x=0, x ≡2 yx ≡2 yx ≡2 y ←−←−←− i.e., x−yx−yx−y is even

program
graph

ℓ0ℓ0ℓ0 ℓ1ℓ1ℓ1 ℓ2ℓ2ℓ2
x :=7x :=7x :=7
y :=5y :=5y :=5

x≤0x≤0x≤0

x> 0 :x> 0 :x> 0 :
x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

let TTT be the associated TS

←−←−←− T |=T |=T |= “never ℓ2∧odd(y)ℓ2∧odd(y)ℓ2∧odd(y)” ?

133/343

Trace inclusion and data abstraction ltb2.4-21

...

......
ℓ0ℓ0ℓ0 x :=7; y :=5;x :=7; y :=5;x :=7; y :=5;
ℓ1ℓ1ℓ1 WHILE x> 0x> 0x> 0 DO

x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

OD
ℓ2ℓ2ℓ2

...

......

does ℓ2∧odd(y)ℓ2∧odd(y)ℓ2∧odd(y)
never hold ?

data abstraction w.r.t.
the predicates
x> 0x> 0x> 0, x=0x=0x=0, x ≡2 yx ≡2 yx ≡2 y

program
graph

ℓ0ℓ0ℓ0 ℓ1ℓ1ℓ1 ℓ2ℓ2ℓ2
x :=7x :=7x :=7
y :=5y :=5y :=5

x≤0x≤0x≤0

x> 0 :x> 0 :x> 0 :
x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

let TTT be the associated TS

ℓ0ℓ0ℓ0
.

ℓ1ℓ1ℓ1
x> 0x> 0x> 0

x ≡2 yx ≡2 yx ≡2 y

ℓ2ℓ2ℓ2
x=0x=0x=0

x ≡2 yx ≡2 yx ≡2 y

abstract transition system T ′T ′T ′

134 / 343

Trace inclusion and data abstraction ltb2.4-21

...

......
ℓ0ℓ0ℓ0 x :=7; y :=5;x :=7; y :=5;x :=7; y :=5;
ℓ1ℓ1ℓ1 WHILE x> 0x> 0x> 0 DO

x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

OD
ℓ2ℓ2ℓ2

...

......

does ℓ2∧odd(y)ℓ2∧odd(y)ℓ2∧odd(y)
never hold ?

data abstraction w.r.t.
the predicates
x> 0x> 0x> 0, x=0x=0x=0, x ≡2 yx ≡2 yx ≡2 y

program
graph

ℓ0ℓ0ℓ0 ℓ1ℓ1ℓ1 ℓ2ℓ2ℓ2
x :=7x :=7x :=7
y :=5y :=5y :=5

x≤0x≤0x≤0

x> 0 :x> 0 :x> 0 :
x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

let TTT be the associated TS

ℓ0ℓ0ℓ0
.

ℓ1ℓ1ℓ1
x> 0x> 0x> 0

x ≡2 yx ≡2 yx ≡2 y

ℓ2ℓ2ℓ2
x=0x=0x=0

x ≡2 yx ≡2 yx ≡2 y

T ′ |=T ′ |=T ′ |= “never ℓ2∧odd(y)ℓ2∧odd(y)ℓ2∧odd(y)”

135 / 343

Trace inclusion and data abstraction ltb2.4-21

...

......
ℓ0ℓ0ℓ0 x :=7; y :=5;x :=7; y :=5;x :=7; y :=5;
ℓ1ℓ1ℓ1 WHILE x> 0x> 0x> 0 DO

x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

OD
ℓ2ℓ2ℓ2

...

......

does ℓ2∧odd(y)ℓ2∧odd(y)ℓ2∧odd(y)
never hold ?

data abstraction w.r.t.
the predicates
x> 0x> 0x> 0, x=0x=0x=0, x ≡2 yx ≡2 yx ≡2 y

program
graph

ℓ0ℓ0ℓ0 ℓ1ℓ1ℓ1 ℓ2ℓ2ℓ2
x :=7x :=7x :=7
y :=5y :=5y :=5

x≤0x≤0x≤0

x> 0 :x> 0 :x> 0 :
x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

let TTT be the associated TS

ℓ0ℓ0ℓ0
.

ℓ1ℓ1ℓ1
x> 0x> 0x> 0

x ≡2 yx ≡2 yx ≡2 y

ℓ2ℓ2ℓ2
x=0x=0x=0

x ≡2 yx ≡2 yx ≡2 y

T ′ |=T ′ |=T ′ |= “never ℓ2∧odd(y)ℓ2∧odd(y)ℓ2∧odd(y)”

Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)
136 / 343

Trace inclusion and data abstraction ltb2.4-21

...

......
ℓ0ℓ0ℓ0 x :=7; y :=5;x :=7; y :=5;x :=7; y :=5;
ℓ1ℓ1ℓ1 WHILE x> 0x> 0x> 0 DO

x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

OD
ℓ2ℓ2ℓ2

...

......

does ℓ2∧odd(y)ℓ2∧odd(y)ℓ2∧odd(y)
never hold ?

program
graph

ℓ0ℓ0ℓ0 ℓ1ℓ1ℓ1 ℓ2ℓ2ℓ2
x :=7x :=7x :=7
y :=5y :=5y :=5

x≤0x≤0x≤0

x> 0 :x> 0 :x> 0 :
x :=x−1x :=x−1x :=x−1;
y :=y+1y :=y+1y :=y+1

let TTT be the associated TS

ℓ0ℓ0ℓ0
.

ℓ1ℓ1ℓ1
x> 0x> 0x> 0

x ≡2 yx ≡2 yx ≡2 y

ℓ2ℓ2ℓ2
x=0x=0x=0

x ≡2 yx ≡2 yx ≡2 y

T ′ |=T ′ |=T ′ |= “never ℓ2∧odd(y)ℓ2∧odd(y)ℓ2∧odd(y)”

Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)T |=T |=T |= “never ℓ2∧odd(y)ℓ2∧odd(y)ℓ2∧odd(y)”

{
137 / 343

Trace equivalence ltb2.4-21a

Transition systems T1T1T1 and T2T2T2 over the same set APAPAP
of atomic propositions are called trace equivalent iff

Traces(T1) = Traces(T2)Traces(T1) = Traces(T2)Traces(T1) = Traces(T2)

i.e., trace equivalence requires trace inclusion in
both directions

Trace equivalent TS satisfy the same LT properties

141/ 343

LT properties and trace relations ltb2.4-traceequiv

Let T1T1T1 and T2T2T2 be TS over APAPAP .

The following statements are equivalent:

(1) Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)

(2) for all LT-properties EEE : T2 |= ET2 |= ET2 |= E =⇒=⇒=⇒ T1 |= ET1 |= ET1 |= E

The following statements are equivalent:

(1) Traces(T1) = Traces(T2)Traces(T1) = Traces(T2)Traces(T1) = Traces(T2)

(2) for all LT-properties EEE : T1 |= ET1 |= ET1 |= E iff T2 |= ET2 |= ET2 |= E

142 / 343

Trace equivalent beverage machines ltb2.4-22

pay

select

spritecoke

pay

paid c paid s

spritecoke

143 / 343

Trace equivalent beverage machines ltb2.4-22

pay

select

spritecoke

pay

paid c paid s

spritecoke

set of atomic propositions AP = {pay , coke, sprite}AP = {pay , coke, sprite}AP = {pay , coke, sprite}

144 / 343

Trace equivalent beverage machines ltb2.4-22

pay

select

spritecoke

pay

paid c paid s

spritecoke

set of atomic propositions AP = {pay , coke, sprite}AP = {pay , coke, sprite}AP = {pay , coke, sprite}

145 / 343

Trace equivalent beverage machines ltb2.4-22

pay

select

spritecoke

pay

paid c paid s

spritecoke

set of atomic propositions AP = {pay , coke, sprite}AP = {pay , coke, sprite}AP = {pay , coke, sprite}
Traces(T1) = Traces(T2) =Traces(T1) = Traces(T2) =Traces(T1) = Traces(T2) = set of all infinite words

{pay}∅ {drink1} {pay}∅ {drink2} . . .{pay}∅ {drink1} {pay}∅ {drink2} . . .{pay}∅ {drink1} {pay}∅ {drink2} . . .

where drink1, drink2, . . . ∈ {coke, sprite}drink1, drink2, . . . ∈ {coke, sprite}drink1, drink2, . . . ∈ {coke, sprite}
146 / 343

Trace equivalent beverage machines ltb2.4-22

pay

select

spritecoke

pay

paid c paid s

spritecoke

set of atomic propositions AP = {pay , coke, sprite}AP = {pay , coke, sprite}AP = {pay , coke, sprite}
Traces(T1) = Traces(T2) =Traces(T1) = Traces(T2) =Traces(T1) = Traces(T2) = set of all infinite words

{pay}∅ {drink1} {pay}∅ {drink2} . . .{pay}∅ {drink1} {pay}∅ {drink2} . . .{pay}∅ {drink1} {pay}∅ {drink2} . . .

T1T1T1 and T2T2T2 satisfy the same LT-properties over APAPAP
147 / 343

