

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view

definition of linear time properties

invariants and safety

liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

State-based view of TS

SBV2.3-1

transition system $\mathcal{T} = (S, \text{Act}, \longrightarrow, S_0, AP, L)$

abstraction from **actions**

state graph $G_{\mathcal{T}}$

- set of nodes = state space S
- edges = transitions without action label

Act for modeling **interactions/communication**
and specifying **fairness assumptions**

AP, L for specifying **properties**

State-based view of TS

SBV2.3-1

transition system $\mathcal{T} = (S, \text{Act}, \longrightarrow, S_0, AP, L)$

abstraction from **actions**

state graph $G_{\mathcal{T}}$

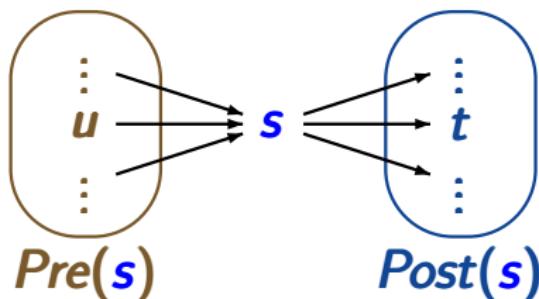
- set of nodes = state space S
- edges = transitions without action label

use standard notations

for graphs, e.g.,

$$Post(s) = \{t \in S : s \rightarrow t\}$$

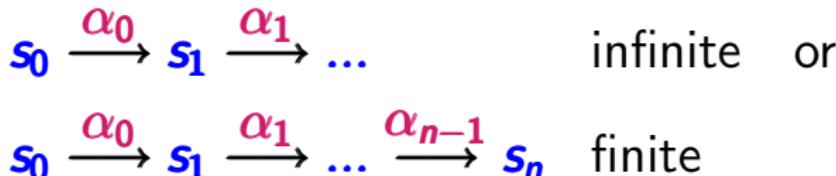
$$Pre(s) = \{u \in S : u \rightarrow s\}$$



Execution and path fragments

SBV2.3-2

execution fragment: sequence of consecutive transitions



path fragment: sequence of states arising from the projection of an execution fragment to the states

$$\pi = s_0 s_1 s_2 \dots \quad \text{infinite or} \quad \pi = s_0 s_1 \dots s_n \quad \text{finite}$$

such that $s_{i+1} \in \text{Post}(s_i)$ for all $i < |\pi|$

initial: if $s_0 \in S_0$ = set of initial states

maximal: if infinite or ending in a terminal state

path fragment: sequence of states

$\pi = s_0 s_1 s_2 \dots$ infinite or $\pi = s_0 s_1 \dots s_n$ finite

s.t. $s_{i+1} \in \text{Post}(s_i)$ for all $i < |\pi|$

initial: if $s_0 \in S_0$ = set of initial states

maximal: if infinite or ending in terminal state

path of TS \mathcal{T} $\hat{=}$ initial, maximal path fragment

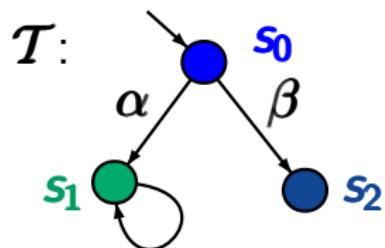
path of state s $\hat{=}$ maximal path fragment starting in state s

$\text{Paths}(\mathcal{T})$ = set of all initial, maximal path fragments

$\text{Paths}(s)$ = set of all maximal path fragments starting in state s

Paths of a TS

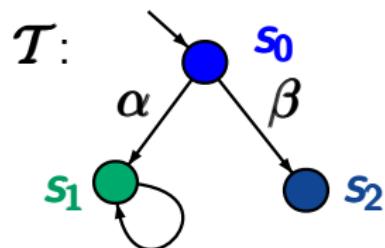
SBV2.3-3



How many paths are there in \mathcal{T} ?

Paths of a TS

SBV2.3-3

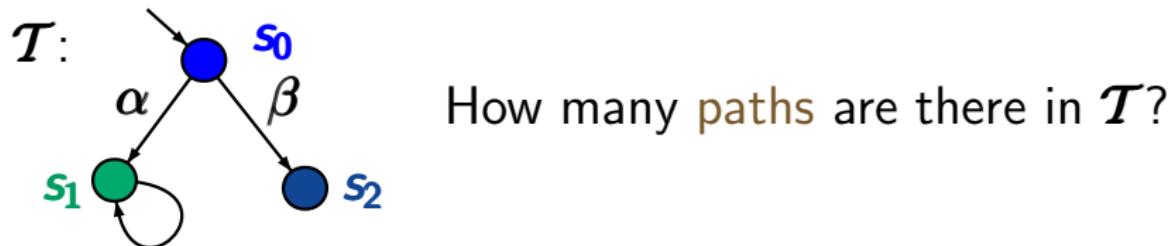


How many paths are there in \mathcal{T} ?

answer: 2, namely $s_0 s_1 s_1 s_1 \dots$ and $s_0 s_2$

Paths of a TS and its states

SBV2.3-3

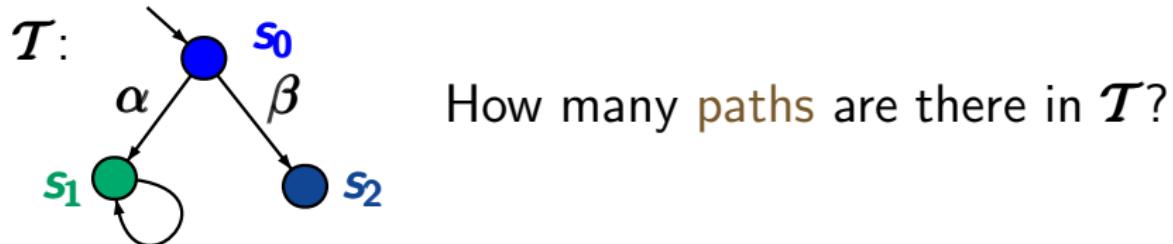


answer: 2, namely $s_0 s_1 s_1 s_1 \dots$ and $s_0 s_2$

Paths(s_1) = set of all maximal paths fragments
starting in s_1
= $\{s_1^\omega\}$ where $s_1^\omega = s_1 s_1 s_1 s_1 \dots$

Paths of a TS and its states

SBV2.3-3



answer: 2, namely $s_0 s_1 s_1 s_1 \dots$ and $s_0 s_2$

Paths(s_1) = set of all maximal paths fragments
starting in s_1
= $\{s_1^\omega\}$ where $s_1^\omega = s_1 s_1 s_1 s_1 \dots$

Paths_{fin}(s_1) = set of all finite path fragments
starting in s_1
= $\{s_1^n : n \in \mathbb{N}, n \geq 1\}$

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view ←

definition of linear time properties

invariants and safety

liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view ←

definition of linear time properties

invariants and safety

liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Linear-time vs branching-time

LTB2.4-1

Linear-time vs branching-time

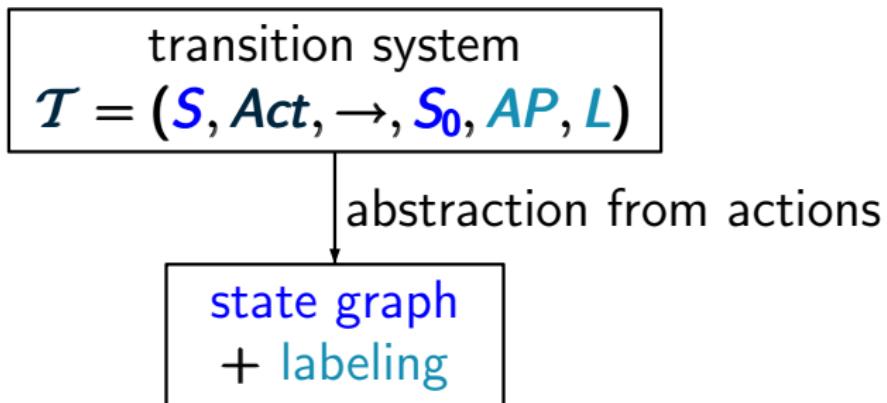
LTB2.4-1

transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

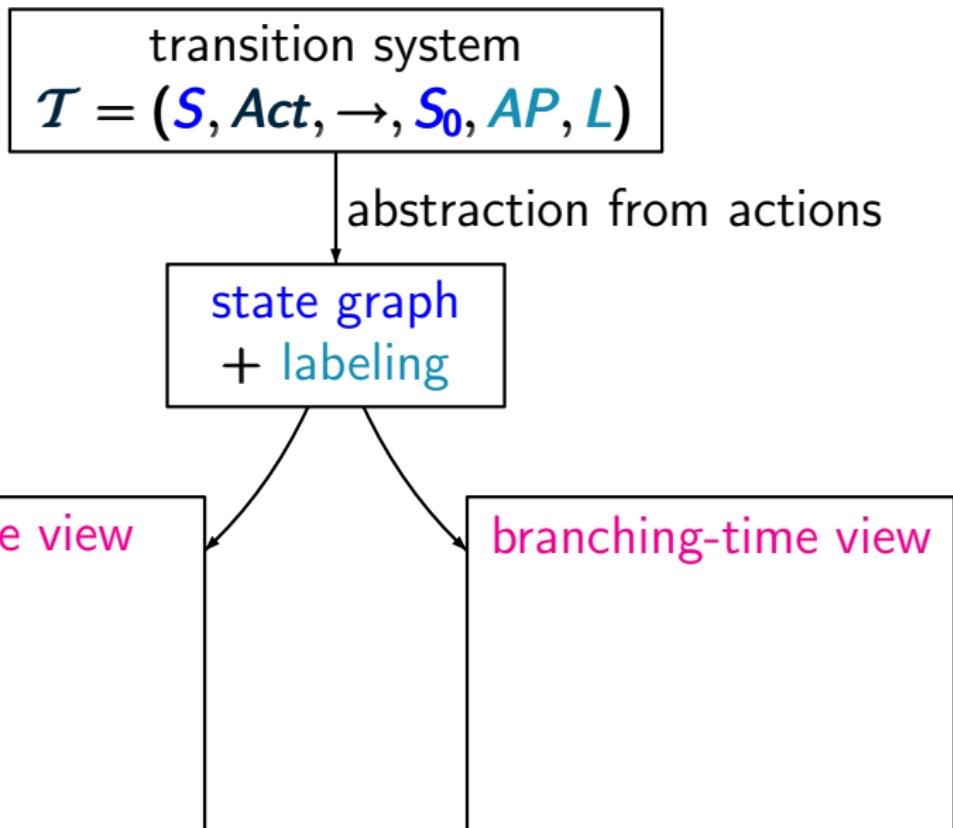
Linear-time vs branching-time

LTB2.4-1



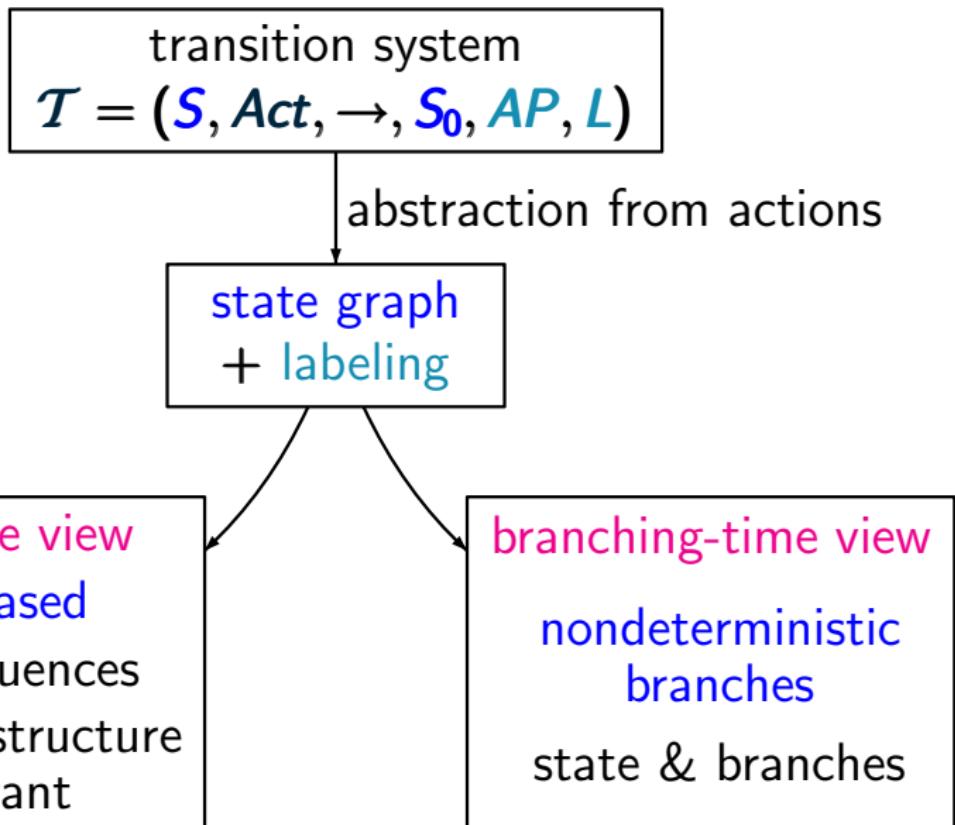
Linear-time vs branching-time

LTB2.4-1



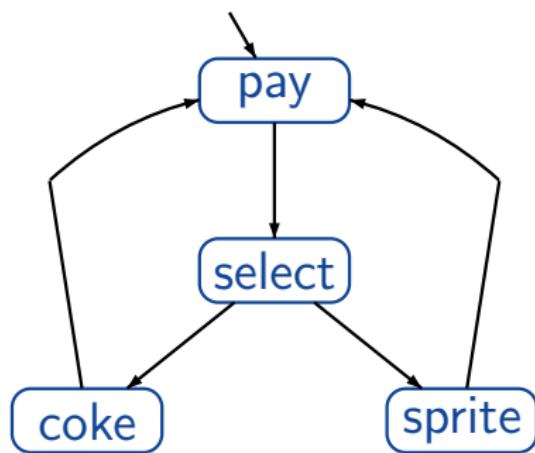
Linear-time vs branching-time

LTB2.4-1



Example: vending machine

LTB2.4-2

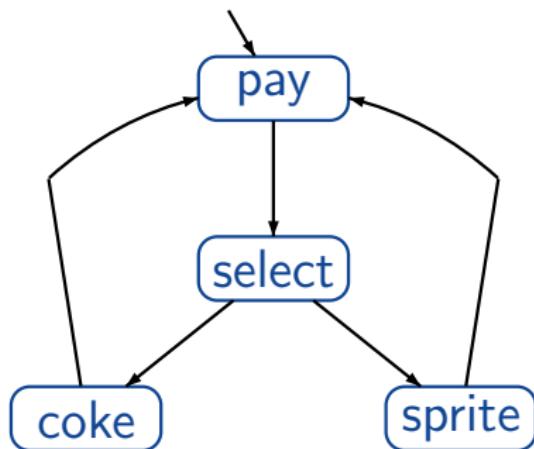


vending machine with
1 coin deposit

select drink after
having paid

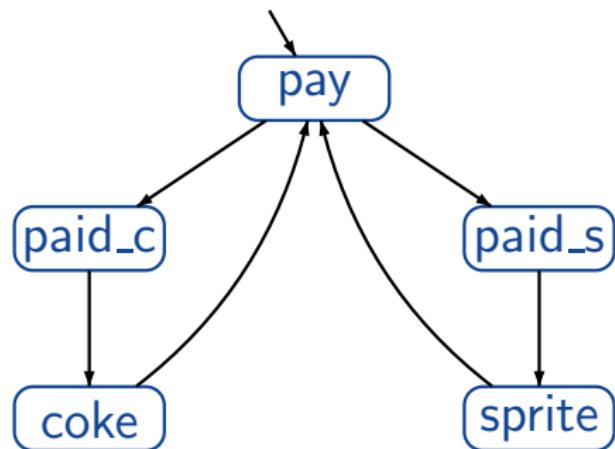
Example: vending machine

LTB2.4-2



vending machine with
1 coin deposit

select drink after
having paid

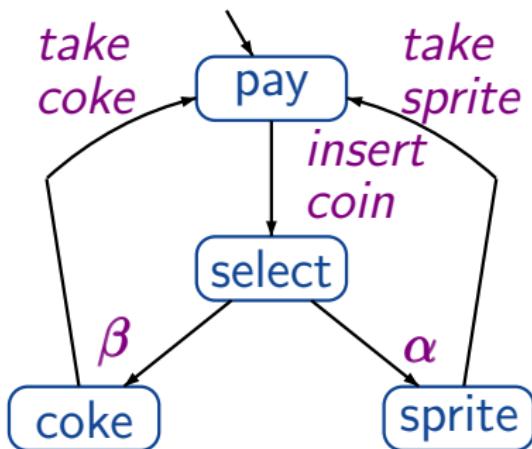


vending machine with
2 coin deposits

select drink by inserting
the coin

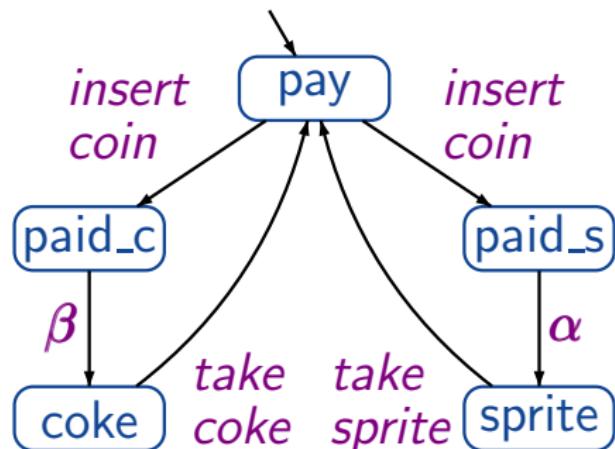
Example: vending machine

LTB2.4-2



vending machine with
1 coin deposit

select drink after
having paid

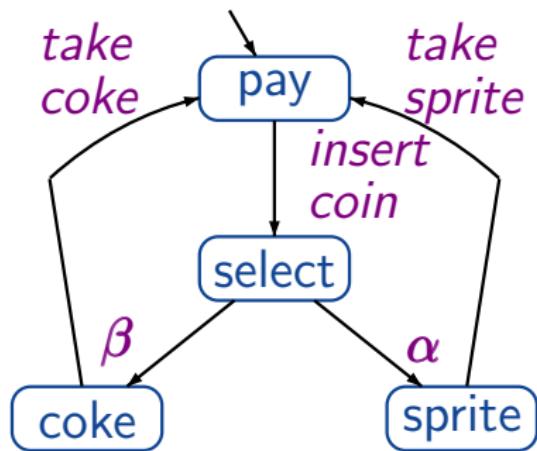
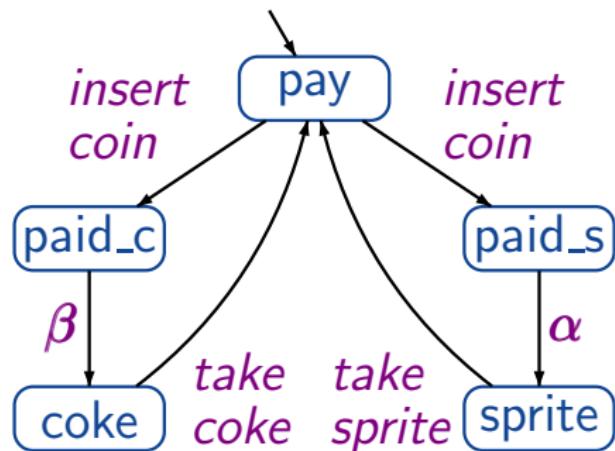


vending machine with
2 coin deposits

select drink by inserting
the coin

Example: vending machine

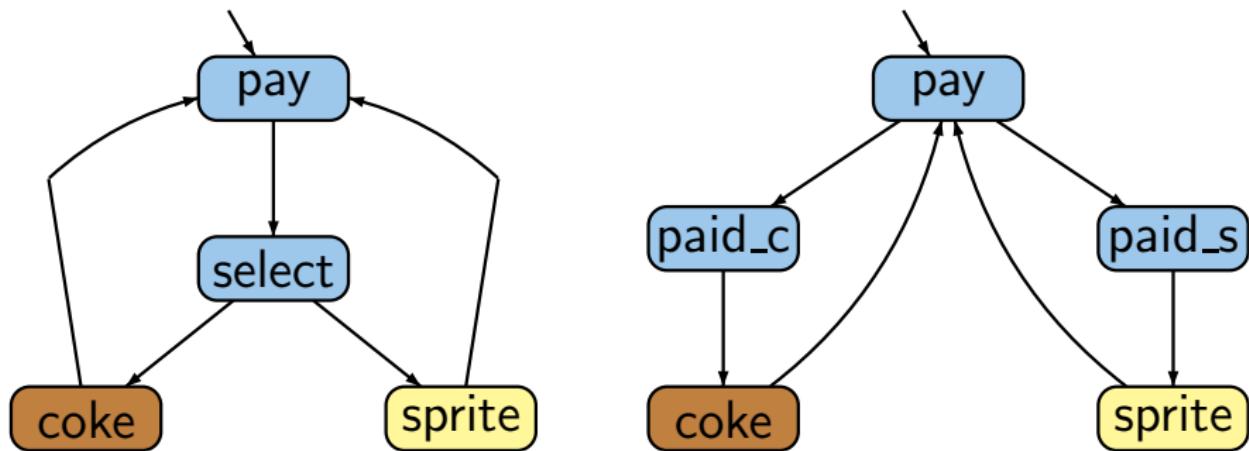
LTB2.4-2



state based view: abstracts from actions and projects onto atomic propositions, e.g. $AP = \{coke, sprite\}$

Example: vending machine

LTB2.4-2

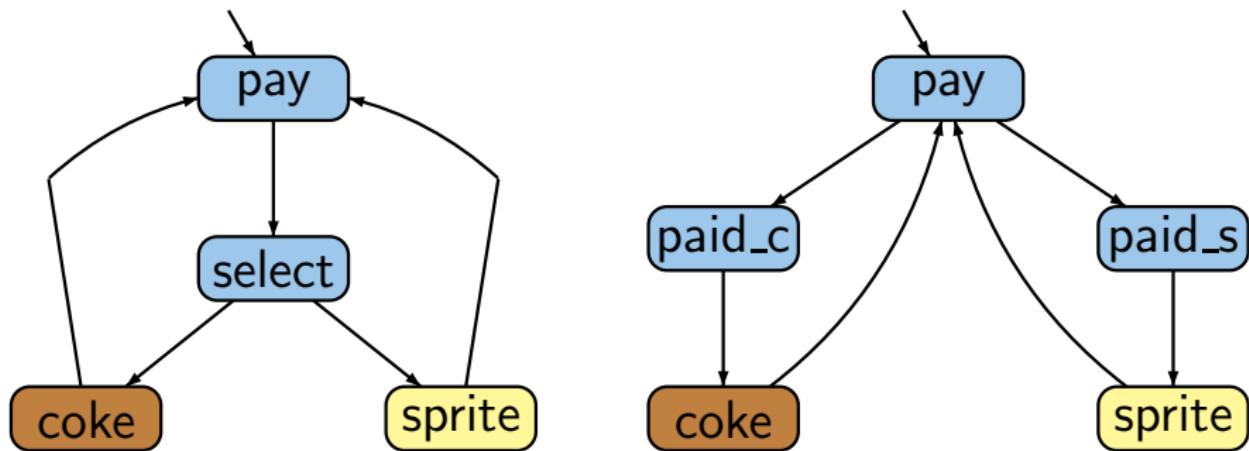


state based view: abstracts from actions and projects onto atomic propositions, e.g. $AP = \{coke, sprite\}$

e.g., $L(coke) = \{coke\}$, $L(pay) = \emptyset$

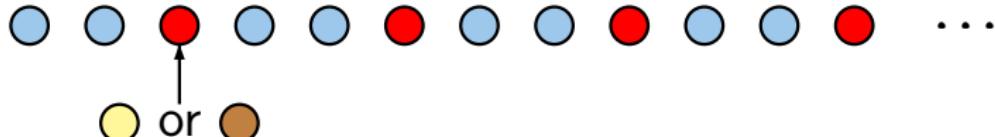
Example: vending machine

LTB2.4-2



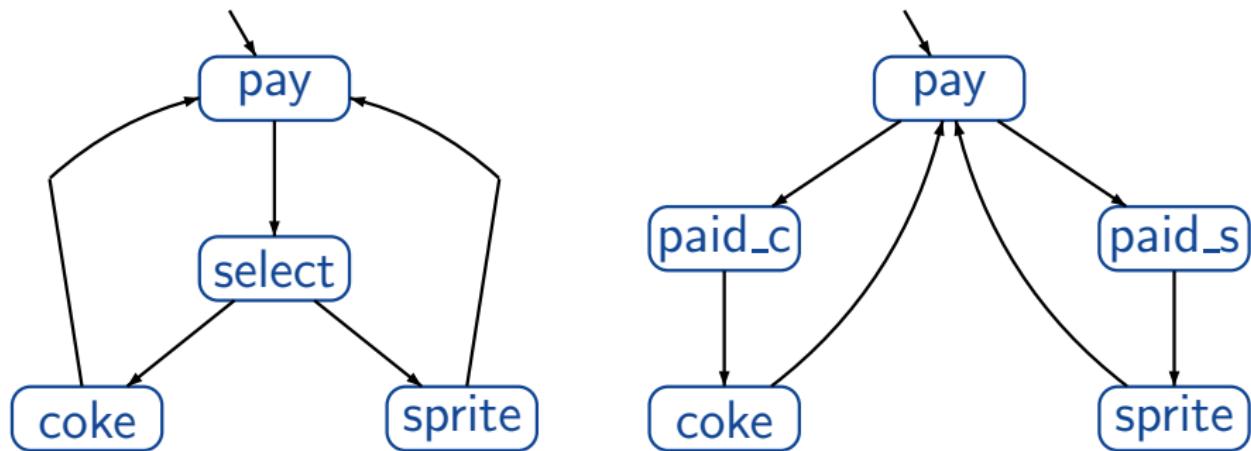
state based view: abstracts from actions and projects onto atomic propositions, e.g. $AP = \{\text{coke}, \text{sprite}\}$

linear time: all observable behaviors are of the form



Example: vending machine

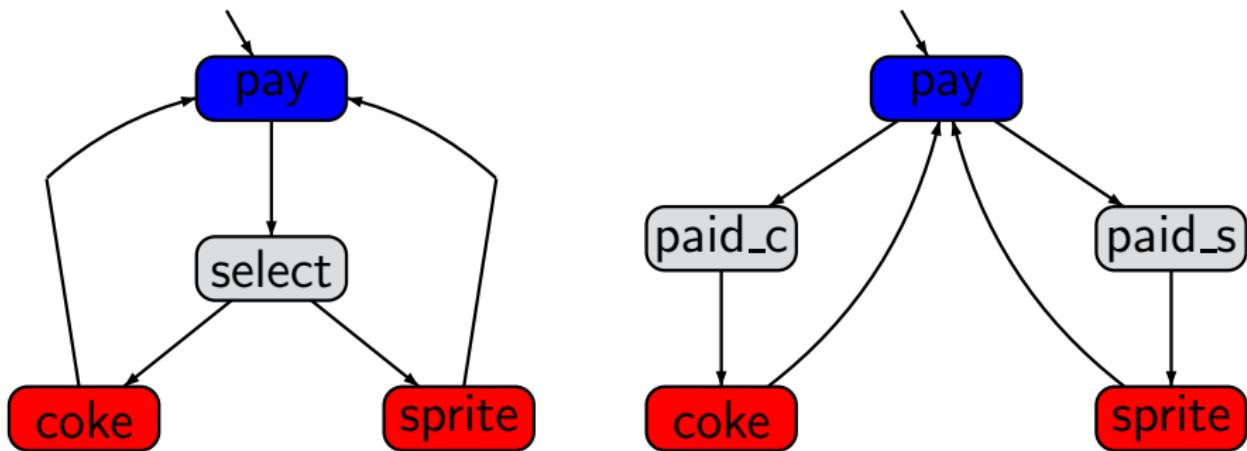
LTB2.4-3



state based view: abstracts from actions and projects on atomic propositions, e.g., $AP = \{\text{pay}, \text{drink}\}$

Example: vending machine

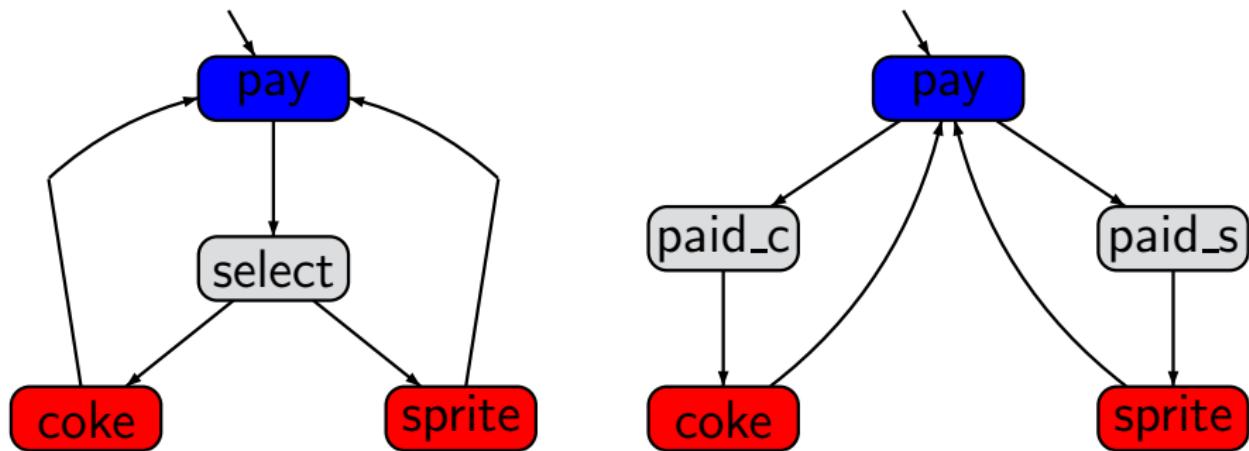
LTB2.4-3



state based view: abstracts from actions and projects on atomic propositions, e.g., $AP = \{pay, drink\}$

Example: vending machine

LTB2.4-3



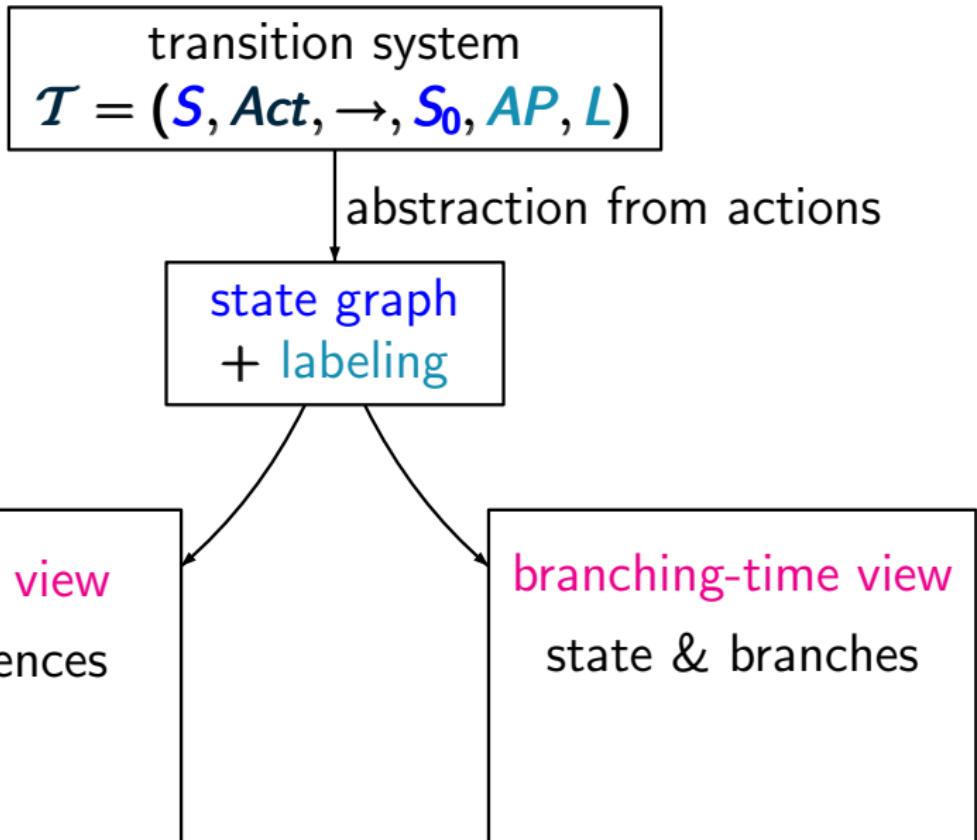
state based view: abstracts from actions and projects on atomic propositions, e.g., $AP = \{pay, drink\}$

linear & branching time:

all observable behaviors have the form

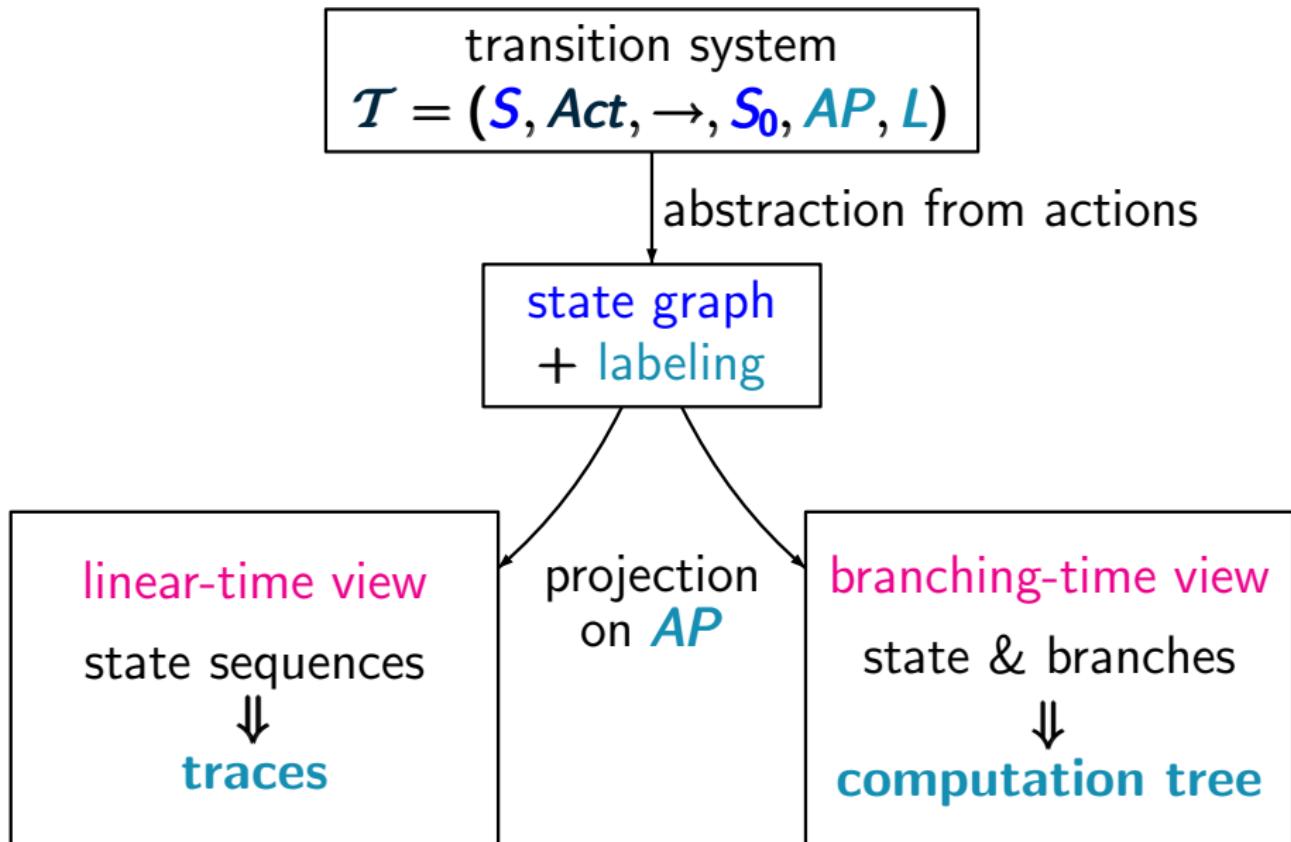
Linear-time vs branching-time

LTB2.4-1-TRACES



Linear-time vs branching-time

LTB2.4-1-TRACES



Traces

LTB2.4-4

for TS with labeling function $L : S \rightarrow 2^{AP}$

execution: states + actions

$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or finite}$$

paths: sequences of states

$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

for TS with labeling function $L : S \rightarrow 2^{AP}$

execution: states + actions

$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or finite}$$

paths: sequences of states

$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

traces: sequences of sets of atomic propositions

$$L(s_0) L(s_1) L(s_2) \dots$$

for TS with labeling function $L : S \rightarrow 2^{AP}$

execution: states + actions

$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or finite}$$

paths: sequences of states

$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

traces: sequences of sets of atomic propositions

$$L(s_0) L(s_1) L(s_2) \dots \in (2^{AP})^\omega \cup (2^{AP})^+$$

for TS with labeling function $L : S \rightarrow 2^{AP}$

execution: states + actions

$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or finite}$$

paths: sequences of states

$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

traces: sequences of sets of atomic propositions

$$L(s_0) L(s_1) L(s_2) \dots \in (2^{AP})^\omega \cup (2^{AP})^+$$

for simplicity: we often assume that the given TS has
no terminal states

for TS with labeling function $L : S \rightarrow 2^{AP}$

execution: states + actions

$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or } \cancel{\text{finite}}$$

paths: sequences of states

$$s_0 s_1 s_2 \dots \text{ infinite or } \cancel{s_0 s_1 \dots s_n} \text{ finite}$$

traces: sequences of sets of atomic propositions

$$L(s_0) L(s_1) L(s_2) \dots \in (2^{AP})^\omega \cup \cancel{(2^{AP})^+}$$

for simplicity: we often assume that the given TS has
no terminal states

Treatment of terminal states

LTB2.4-6

perform standard graph algorithms to compute the reachable fragment of the given TS

$$\text{Reach}(\mathcal{T}) = \left\{ \begin{array}{l} \text{set of states that are reachable} \\ \text{from some initial state} \end{array} \right.$$

perform standard graph algorithms to compute the reachable fragment of the given TS

$$\text{Reach}(\mathcal{T}) = \left\{ \begin{array}{l} \text{set of states that are reachable} \\ \text{from some initial state} \end{array} \right.$$

for each reachable terminal state s :

- if s stands for an intended halting configuration then add a transition from s to a trap state:

Treatment of terminal states

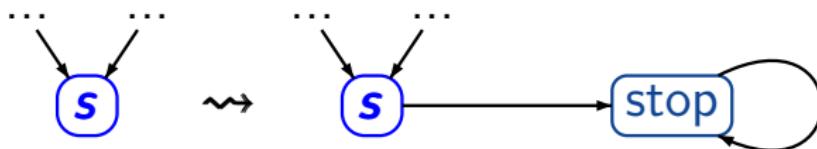
LTB2.4-6

perform standard graph algorithms to compute the reachable fragment of the given TS

$Reach(\mathcal{T}) = \left\{ \begin{array}{l} \text{set of states that are reachable} \\ \text{from some initial state} \end{array} \right.$

for each reachable terminal state s :

- if s stands for an intended halting configuration then add a transition from s to a trap state:



Treatment of terminal states

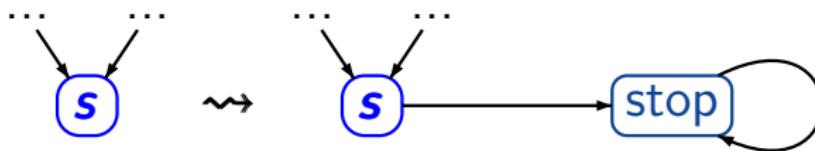
LTB2.4-6

perform standard graph algorithms to compute the reachable fragment of the given TS

$Reach(\mathcal{T}) = \left\{ \begin{array}{l} \text{set of states that are reachable} \\ \text{from some initial state} \end{array} \right.$

for each reachable terminal state s :

- if s stands for an **intended halting configuration** then add a transition from s to a trap state:



- if s stands for **system fault**, e.g., **deadlock** then correct the design before checking further properties

Traces of a transition system

LTB2.4-5

Let \mathcal{T} be a TS

$$Traces(\mathcal{T}) \stackrel{\text{def}}{=} \{trace(\pi) : \pi \in Paths(\mathcal{T})\}$$

$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \{trace(\hat{\pi}) : \hat{\pi} \in Paths_{fin}(\mathcal{T})\}$$

Traces of a transition system

LTB2.4-5

Let \mathcal{T} be a TS

$$Traces(\mathcal{T}) \stackrel{\text{def}}{=} \{trace(\pi) : \pi \in Paths(\mathcal{T})\}$$

↑
initial, maximal path fragment

$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \{trace(\hat{\pi}) : \hat{\pi} \in Paths_{fin}(\mathcal{T})\}$$

↑
initial, finite path fragment

Traces of a transition system

LTB2.4-5

Let \mathcal{T} be a TS ← without terminal states

$$Traces(\mathcal{T}) \stackrel{\text{def}}{=} \{trace(\pi) : \pi \in Paths(\mathcal{T})\}$$

↑
initial, infinite path fragment

$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \{trace(\hat{\pi}) : \hat{\pi} \in Paths_{fin}(\mathcal{T})\}$$

↑
initial, finite path fragment

Traces of a transition system

LTB2.4-5

Let \mathcal{T} be a TS ← without terminal states

$$Traces(\mathcal{T}) \stackrel{\text{def}}{=} \{trace(\pi) : \pi \in Paths(\mathcal{T})\} \subseteq (2^{AP})^\omega$$

↑
initial, infinite path fragment

$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \{trace(\hat{\pi}) : \hat{\pi} \in Paths_{fin}(\mathcal{T})\} \subseteq (2^{AP})^*$$

↑
initial, finite path fragment

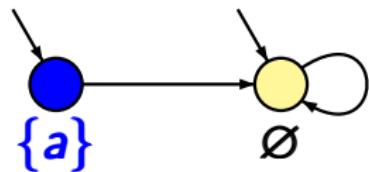
Example: traces

LTB2.4-5A

Let \mathcal{T} be a TS without terminal states.

$$Traces(\mathcal{T}) \stackrel{\text{def}}{=} \{ \text{trace}(\pi) : \pi \in Paths(\mathcal{T}) \} \subseteq (2^{AP})^\omega$$

$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \{ \text{trace}(\hat{\pi}) : \hat{\pi} \in Paths_{fin}(\mathcal{T}) \} \subseteq (2^{AP})^*$$



TS \mathcal{T} with a single atomic proposition a

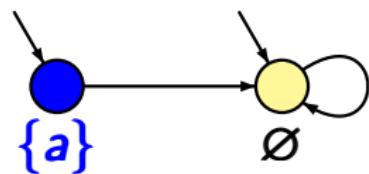
Example: traces

LTB2.4-5A

Let \mathcal{T} be a TS without terminal states.

$$Traces(\mathcal{T}) \stackrel{\text{def}}{=} \{ \text{trace}(\pi) : \pi \in Paths(\mathcal{T}) \} \subseteq (2^{AP})^\omega$$

$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \{ \text{trace}(\hat{\pi}) : \hat{\pi} \in Paths_{fin}(\mathcal{T}) \} \subseteq (2^{AP})^*$$



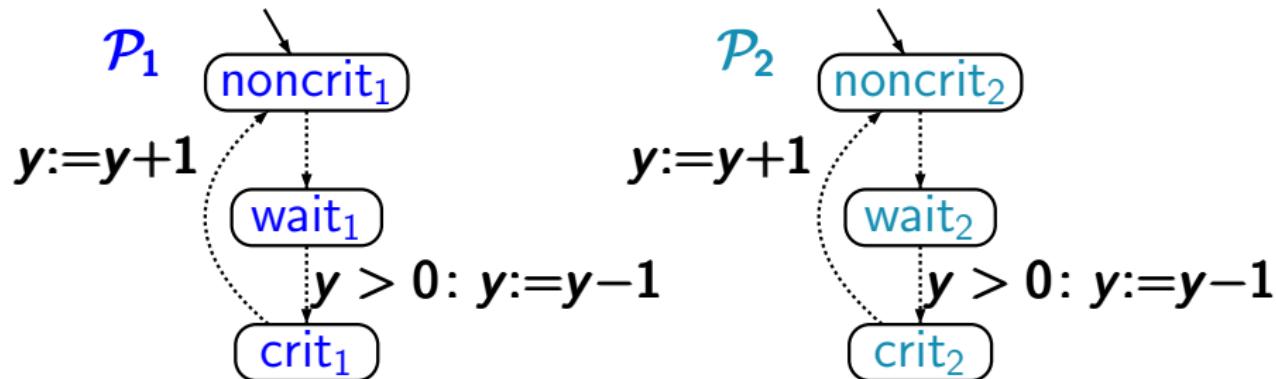
TS \mathcal{T} with a single atomic proposition a

$$Traces(\mathcal{T}) = \{ \{a\} \emptyset^\omega, \emptyset^\omega \}$$

$$Traces_{fin}(\mathcal{T}) = \{ \{a\} \emptyset^n : n \geq 0 \} \cup \{ \emptyset^m : m \geq 1 \}$$

Mutual exclusion with semaphore

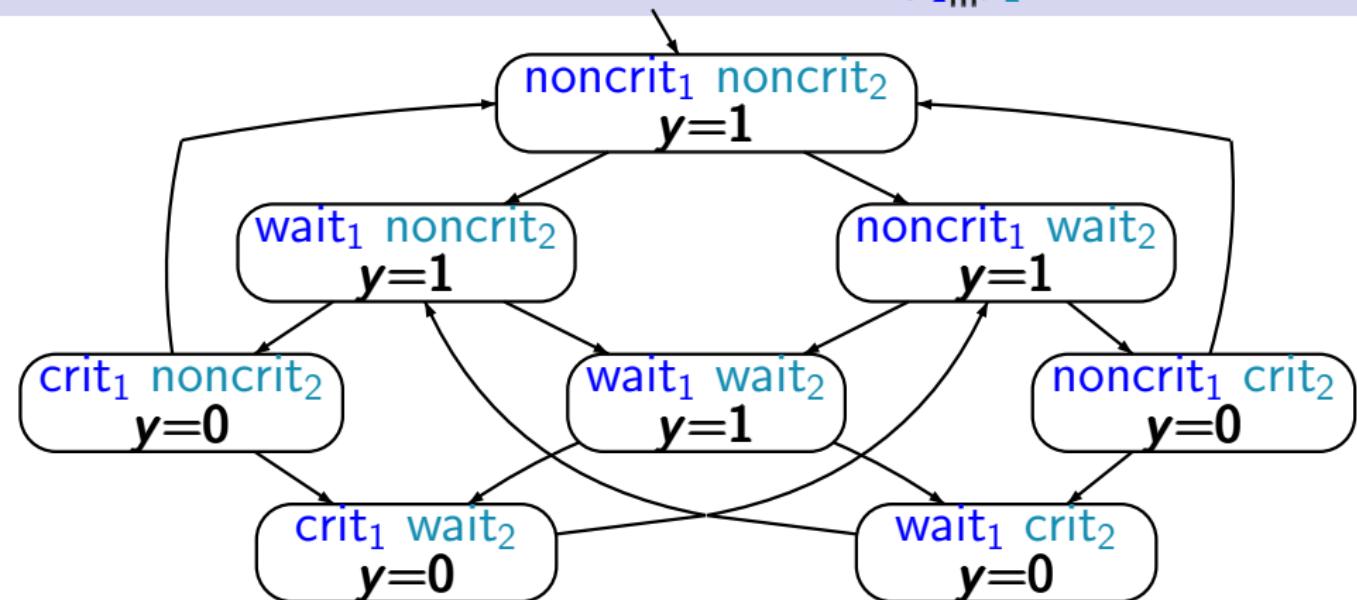
LTB2.4-8



transition system $\mathcal{T}_{\mathcal{P}_1 \parallel \mathcal{P}_2}$ arises by unfolding the composite program graph $\mathcal{P}_1 \parallel \mathcal{P}_2$

Mutual exclusion with semaphore $T_{P_1 \parallel \parallel P_2}$

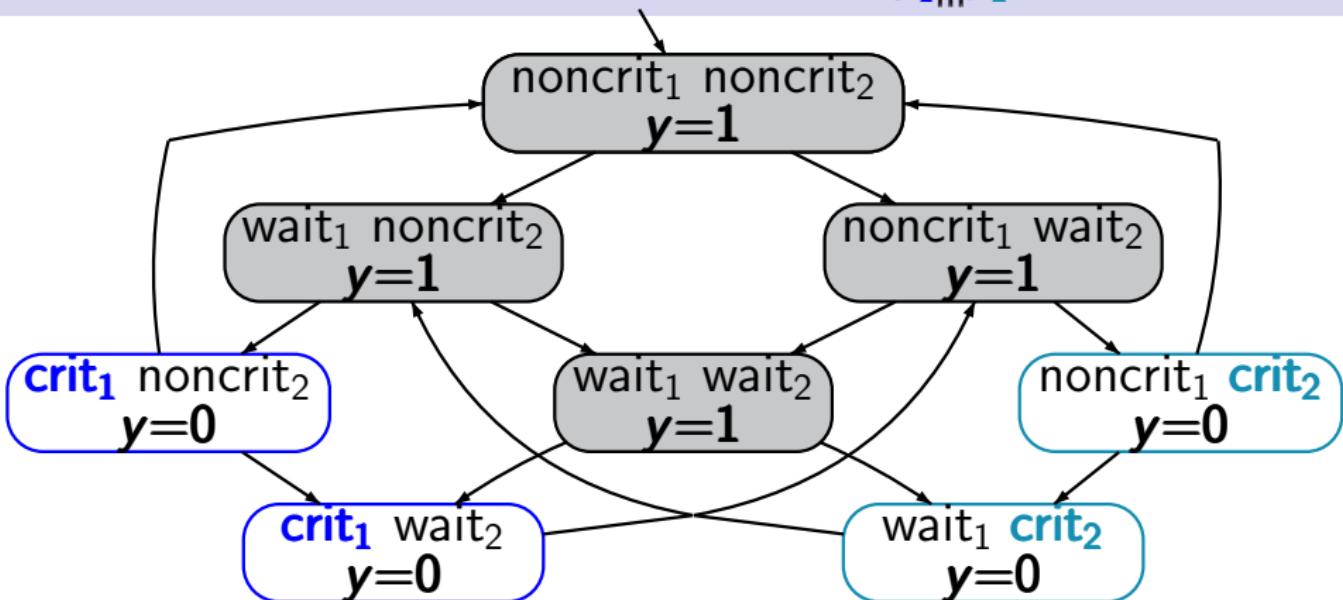
LTB2.4-8



set of atomic propositions $AP = \{\text{crit}_1, \text{crit}_2\}$

Mutual exclusion with semaphore $T_{P_1 \parallel \parallel P_2}$

LTB2.4-8



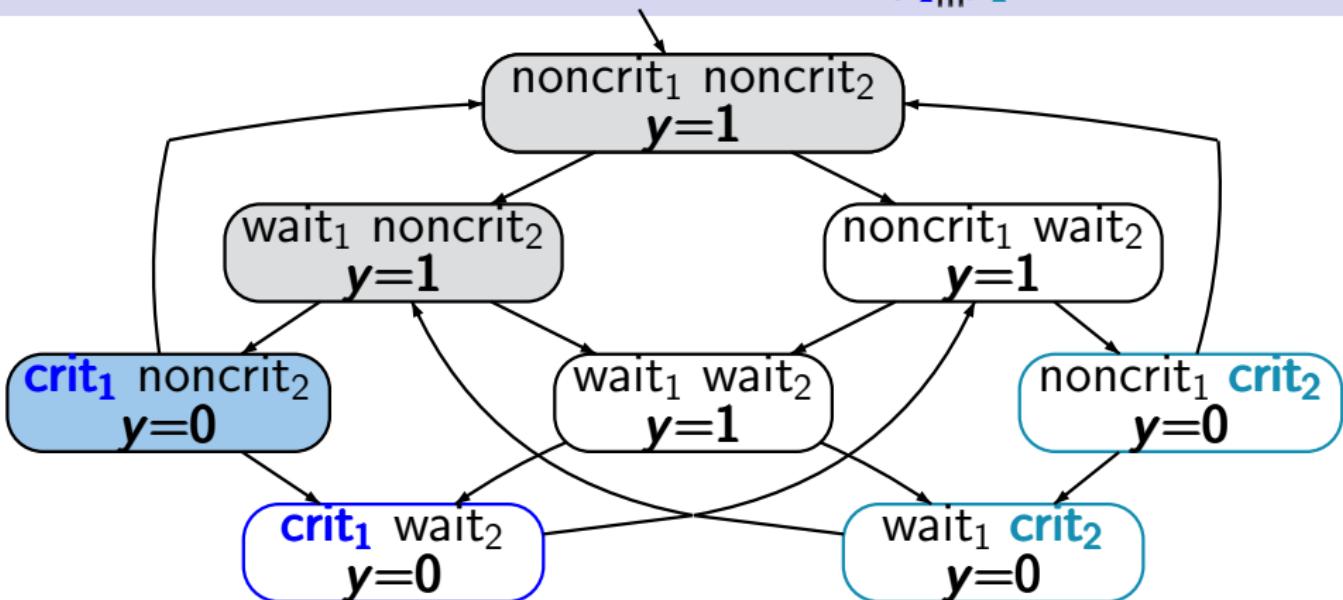
set of atomic propositions $AP = \{\text{crit}_1, \text{crit}_2\}$

e.g., $L(\langle \text{noncrit}_1, \text{noncrit}_2, y=1 \rangle) =$

$L(\langle \text{wait}_1, \text{noncrit}_2, y=1 \rangle) = \emptyset$

Mutual exclusion with semaphore $T_{P_1 \parallel \parallel P_2}$

LTB2.4-8

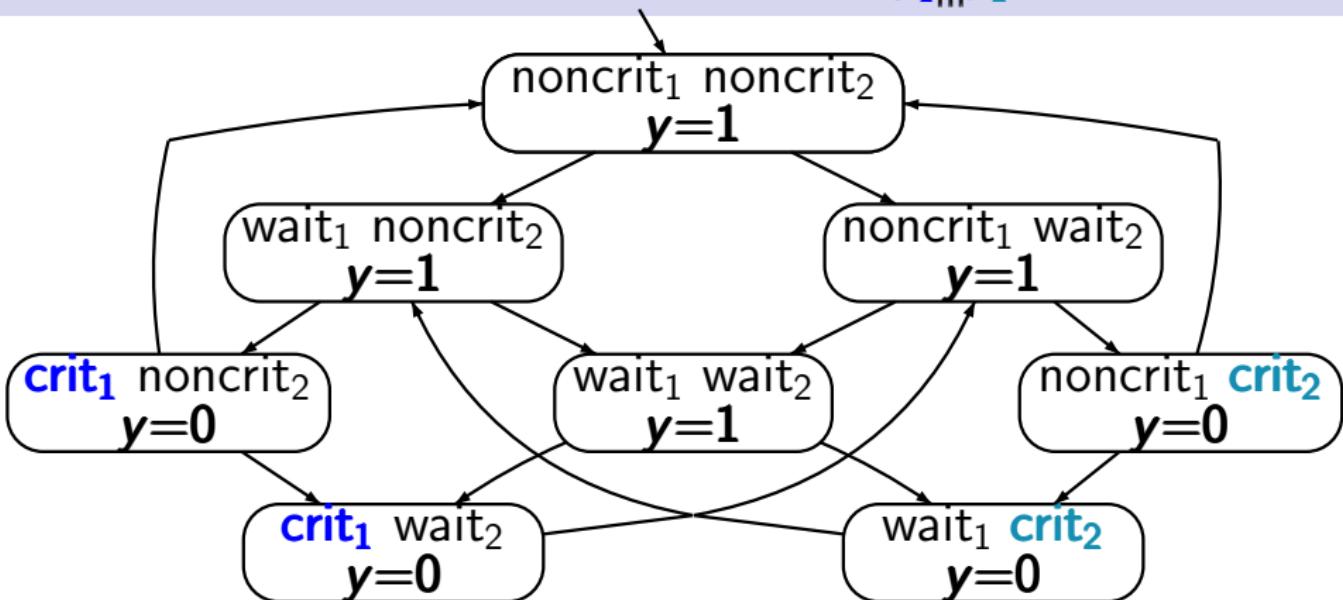


set of atomic propositions $AP = \{\text{crit}_1, \text{crit}_2\}$

traces, e.g., $\emptyset \emptyset \{\text{crit}_1\} \emptyset \emptyset \{\text{crit}_1\} \emptyset \emptyset \{\text{crit}_1\} \dots$

Mutual exclusion with semaphore $T_{P_1 \parallel \parallel P_2}$

LTB2.4-8



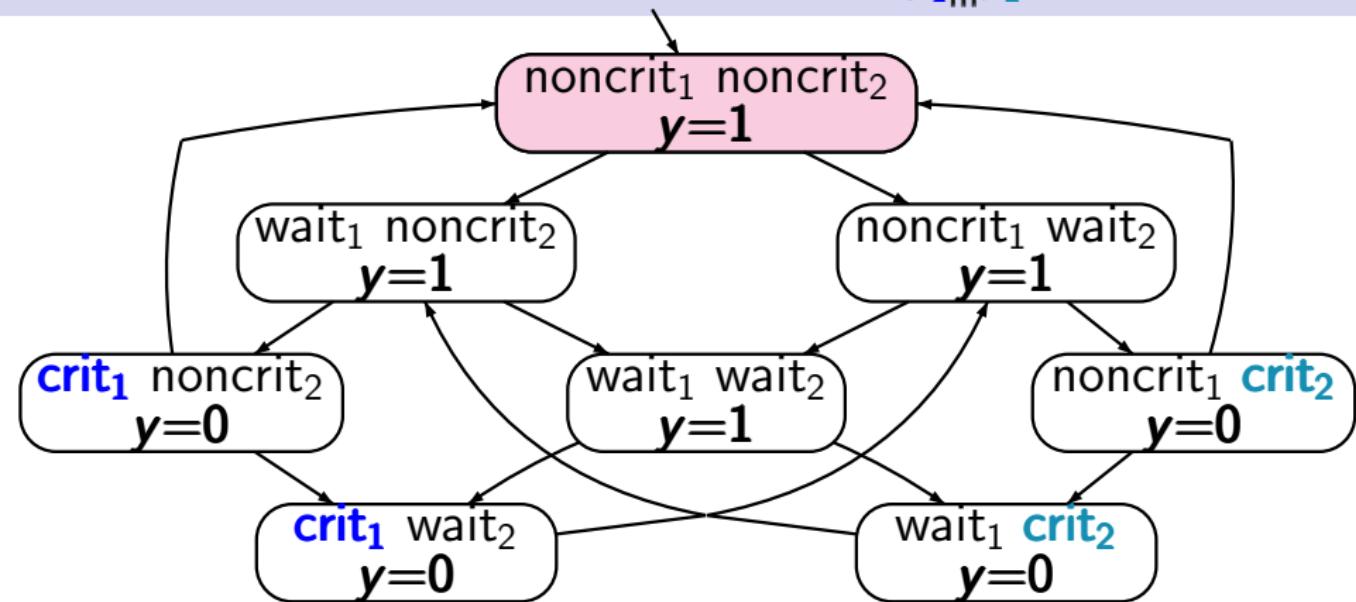
set of atomic propositions $AP = \{crit_1, crit_2\}$

traces, e.g., $\emptyset \emptyset \{crit_1\} \emptyset \emptyset \{crit_1\} \emptyset \emptyset \{crit_1\} \dots$

$\emptyset \emptyset \emptyset \{crit_1\} \emptyset \{crit_2\} \{crit_2\} \emptyset \dots$

Mutual exclusion with semaphore $T_{P_1 \parallel P_2}$

LTB2,4-8



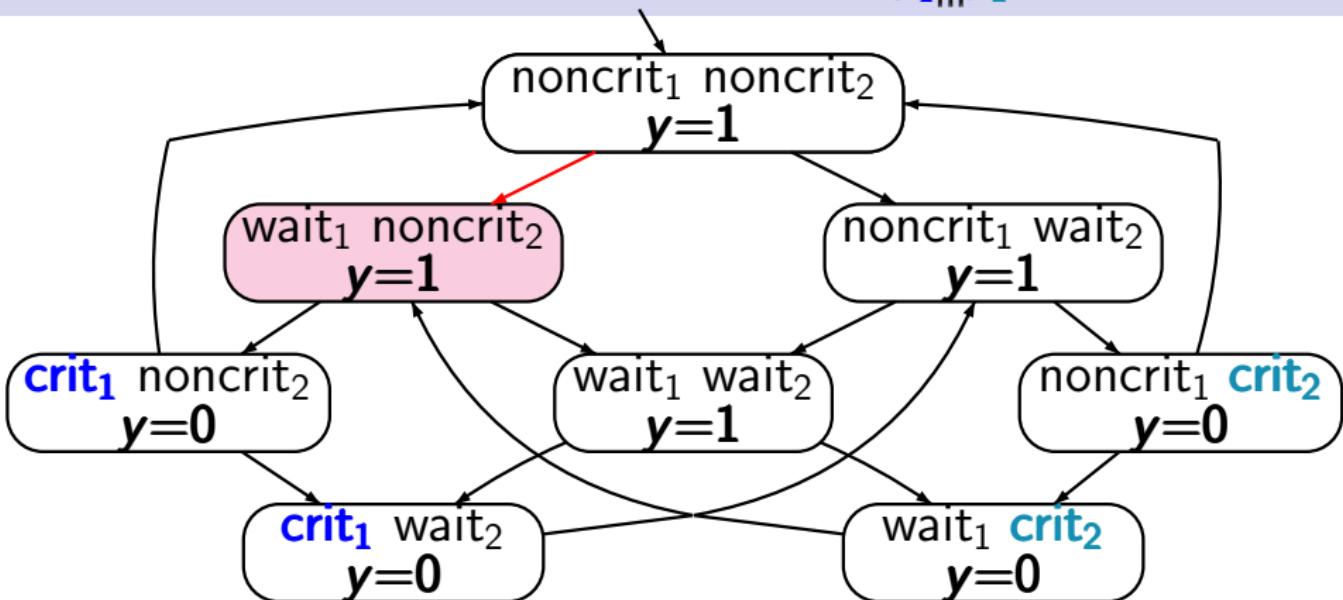
set of atomic propositions $AP = \{\text{crit}_1, \text{crit}_2\}$

traces, e.g., $\emptyset \emptyset \{crit_1\} \emptyset \emptyset \{crit_1\} \emptyset \emptyset \{crit_1\} \dots$

$\emptyset \emptyset \emptyset \{ \text{crit}_1 \} \emptyset \{ \text{crit}_2 \} \{ \text{crit}_2 \} \emptyset \dots$

Mutual exclusion with semaphore $T_{P_1 \parallel \parallel P_2}$

LTB2.4-8



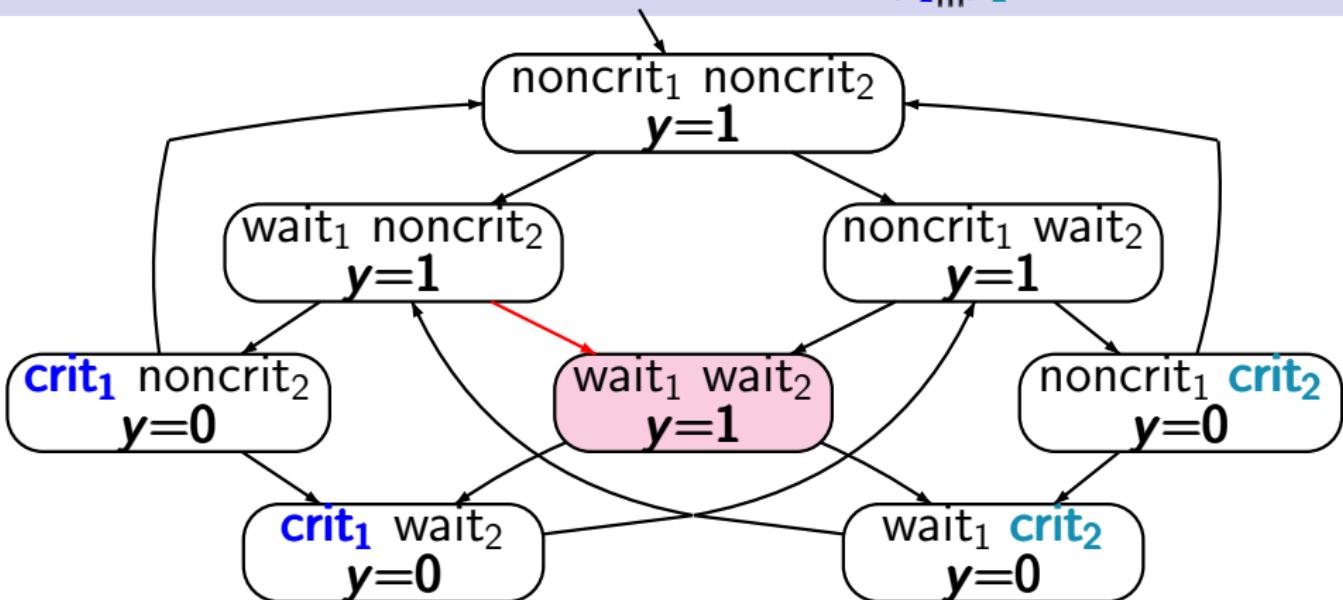
set of atomic propositions $AP = \{\text{crit}_1, \text{crit}_2\}$

traces, e.g., $\emptyset \emptyset \{\text{crit}_1\} \emptyset \emptyset \{\text{crit}_1\} \emptyset \emptyset \{\text{crit}_1\} \dots$

$\emptyset \emptyset \emptyset \{\text{crit}_1\} \emptyset \{\text{crit}_2\} \{\text{crit}_2\} \emptyset \dots$

Mutual exclusion with semaphore $T_{P_1 \parallel \parallel P_2}$

LTB2.4-8



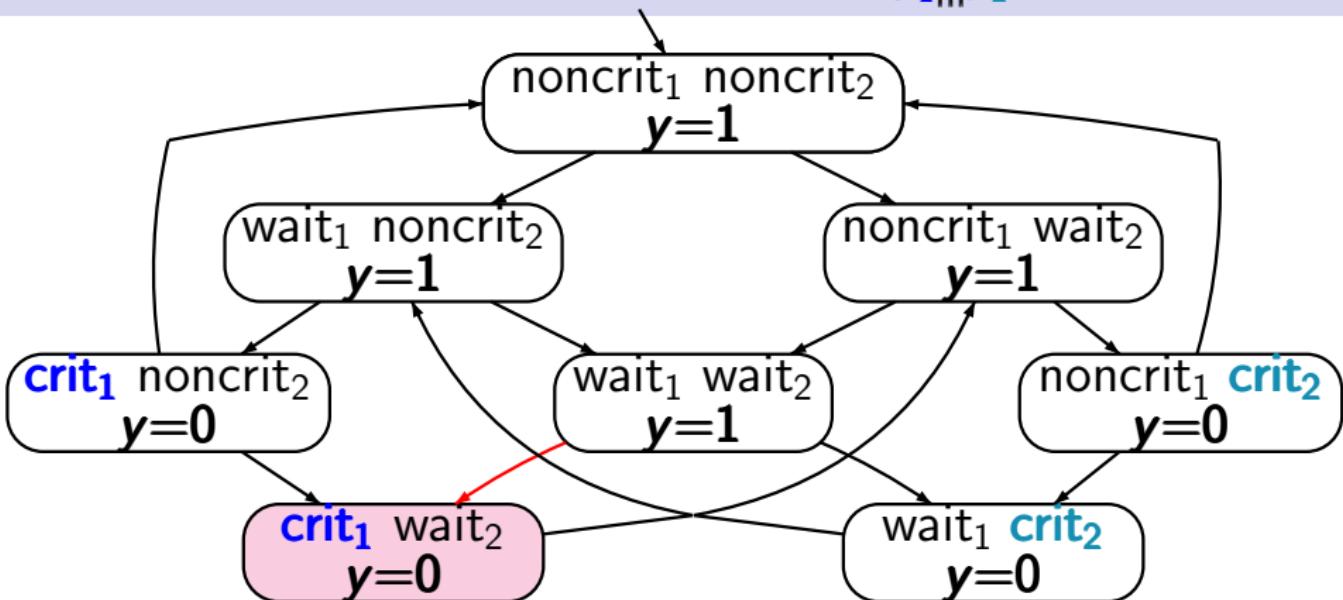
set of atomic propositions $AP = \{\text{crit}_1, \text{crit}_2\}$

traces, e.g., $\emptyset \emptyset \{\text{crit}_1\} \emptyset \emptyset \{\text{crit}_1\} \emptyset \emptyset \{\text{crit}_1\} \dots$

$\emptyset \emptyset \emptyset \{\text{crit}_1\} \emptyset \{\text{crit}_2\} \{\text{crit}_2\} \emptyset \dots$

Mutual exclusion with semaphore $T_{P_1 \parallel \parallel P_2}$

LTB2.4-8



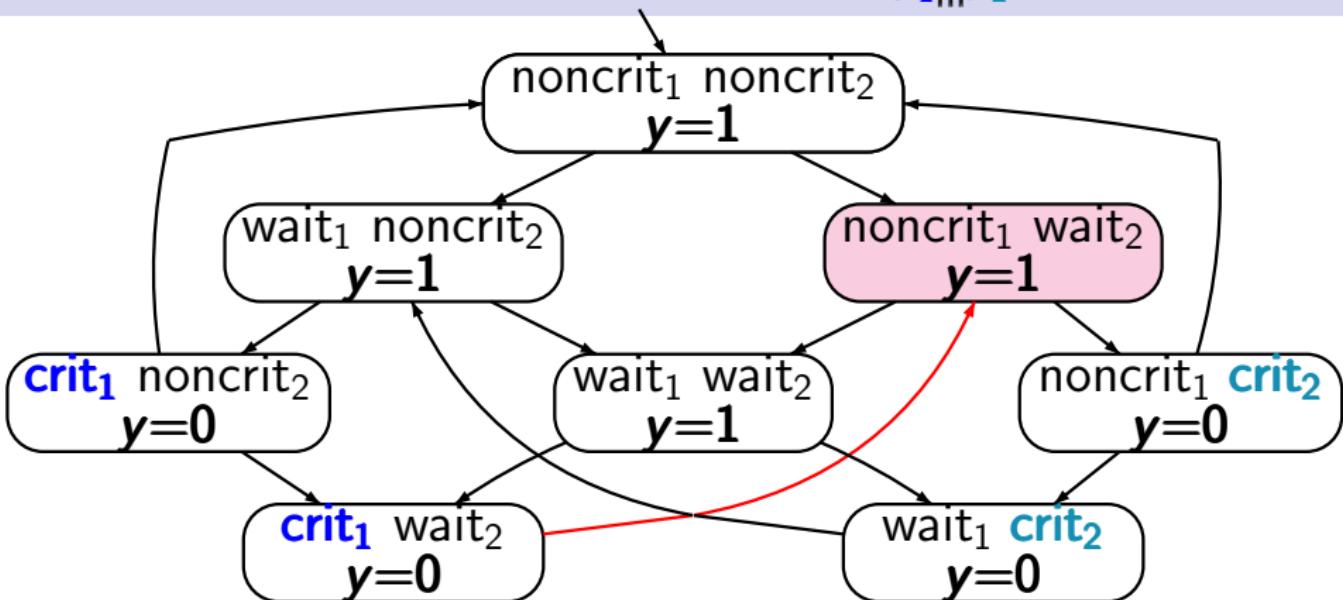
set of atomic propositions $AP = \{crit_1, crit_2\}$

traces, e.g., $\emptyset \emptyset \{crit_1\} \emptyset \emptyset \{crit_1\} \emptyset \emptyset \{crit_1\} \dots$

$\emptyset \emptyset \emptyset \{crit_1\} \emptyset \{crit_2\} \{crit_2\} \emptyset \dots$

Mutual exclusion with semaphore $T_{P_1 \parallel \parallel P_2}$

LTB2.4-8



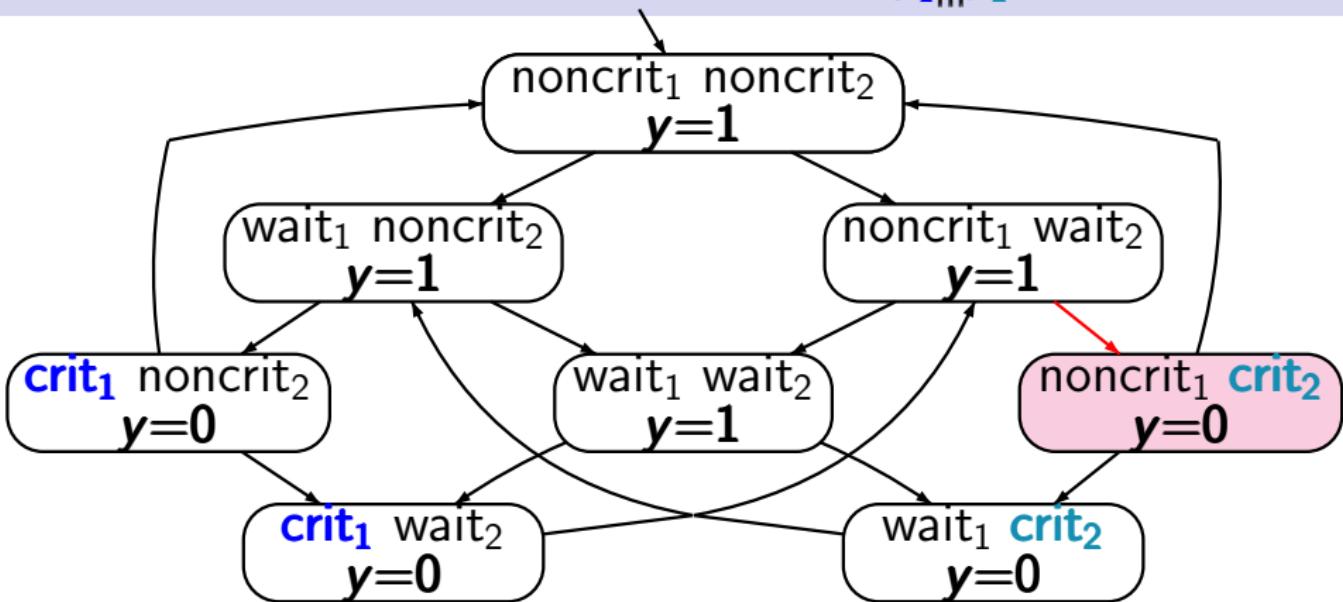
set of atomic propositions $AP = \{\text{crit}_1, \text{crit}_2\}$

traces, e.g., $\emptyset \emptyset \{\text{crit}_1\} \emptyset \emptyset \{\text{crit}_1\} \emptyset \emptyset \{\text{crit}_1\} \dots$

$\emptyset \emptyset \emptyset \{\text{crit}_1\} \emptyset \{\text{crit}_2\} \{\text{crit}_2\} \emptyset \dots$

Mutual exclusion with semaphore $T_{P_1 \parallel \parallel P_2}$

LTB2.4-8



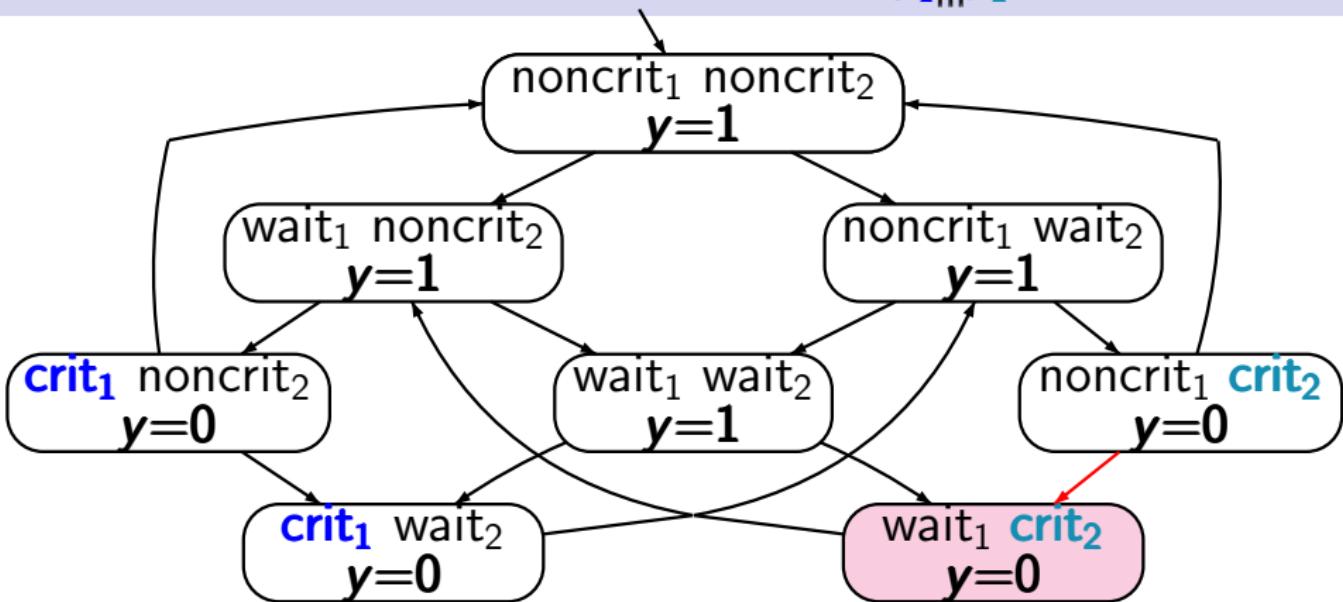
set of atomic propositions $AP = \{\text{crit}_1, \text{crit}_2\}$

traces, e.g., $\emptyset \emptyset \{\text{crit}_1\} \emptyset \emptyset \{\text{crit}_1\} \emptyset \emptyset \{\text{crit}_1\} \dots$

$\emptyset \emptyset \emptyset \{\text{crit}_1\} \emptyset \{\text{crit}_2\} \{\text{crit}_2\} \emptyset \dots$

Mutual exclusion with semaphore $T_{P_1 \parallel \parallel P_2}$

LTB2.4-8



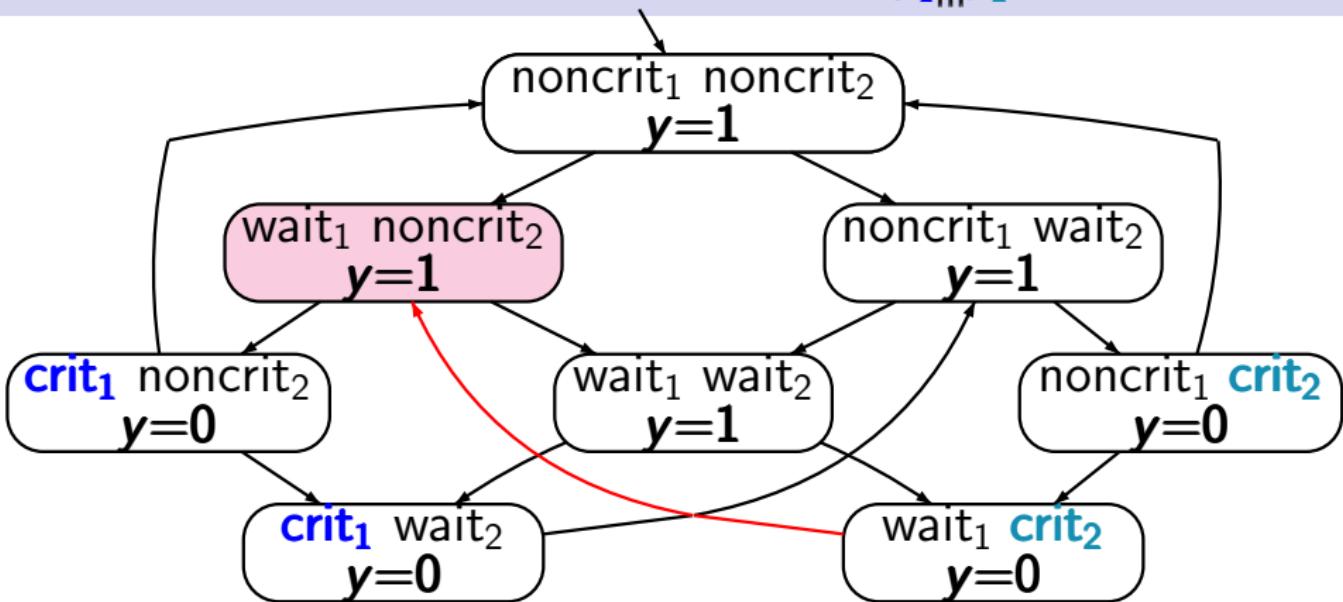
set of atomic propositions $AP = \{\text{crit}_1, \text{crit}_2\}$

traces, e.g., $\emptyset \emptyset \{\text{crit}_1\} \emptyset \emptyset \{\text{crit}_1\} \emptyset \emptyset \{\text{crit}_1\} \dots$

$\emptyset \emptyset \emptyset \{\text{crit}_1\} \emptyset \{\text{crit}_2\} \{\text{crit}_2\} \emptyset \dots$

Mutual exclusion with semaphore $T_{P_1 \parallel \parallel P_2}$

LTB2.4-8



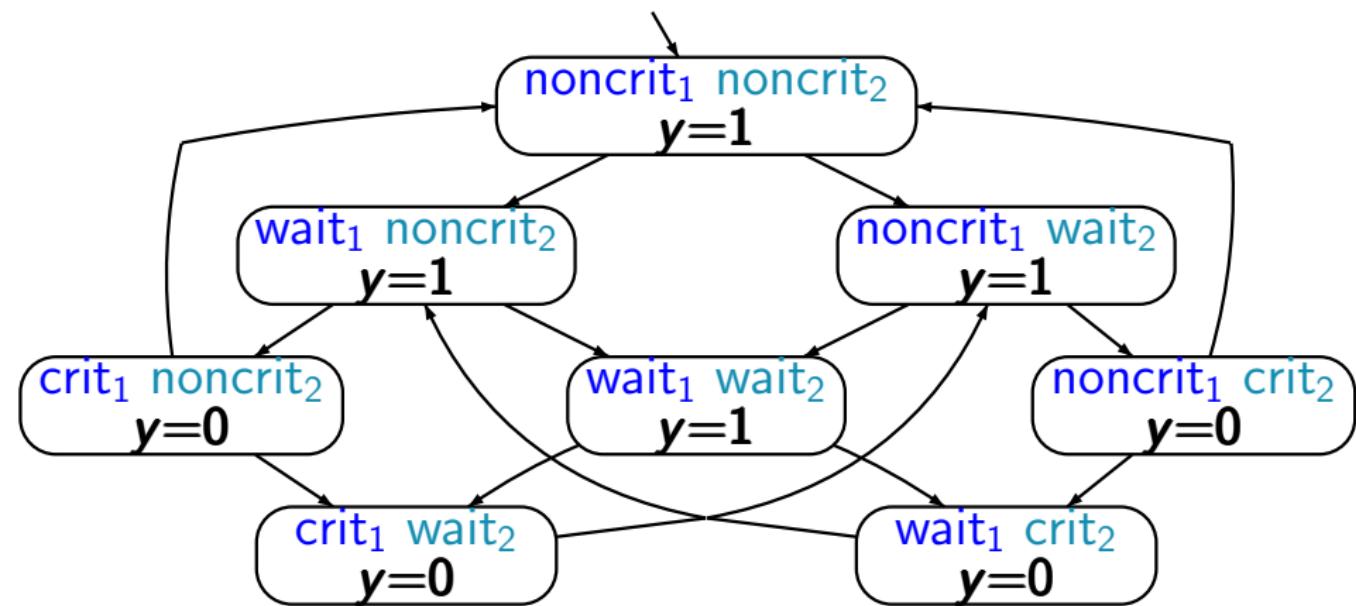
set of atomic propositions $AP = \{\text{crit}_1, \text{crit}_2\}$

traces, e.g., $\emptyset \emptyset \{\text{crit}_1\} \emptyset \emptyset \{\text{crit}_1\} \emptyset \emptyset \{\text{crit}_1\} \dots$

$\emptyset \emptyset \emptyset \{\text{crit}_1\} \emptyset \{\text{crit}_2\} \{\text{crit}_2\} \emptyset \dots$

Mutual exclusion with semaphor $T_{P_1 \parallel \parallel P_2}$

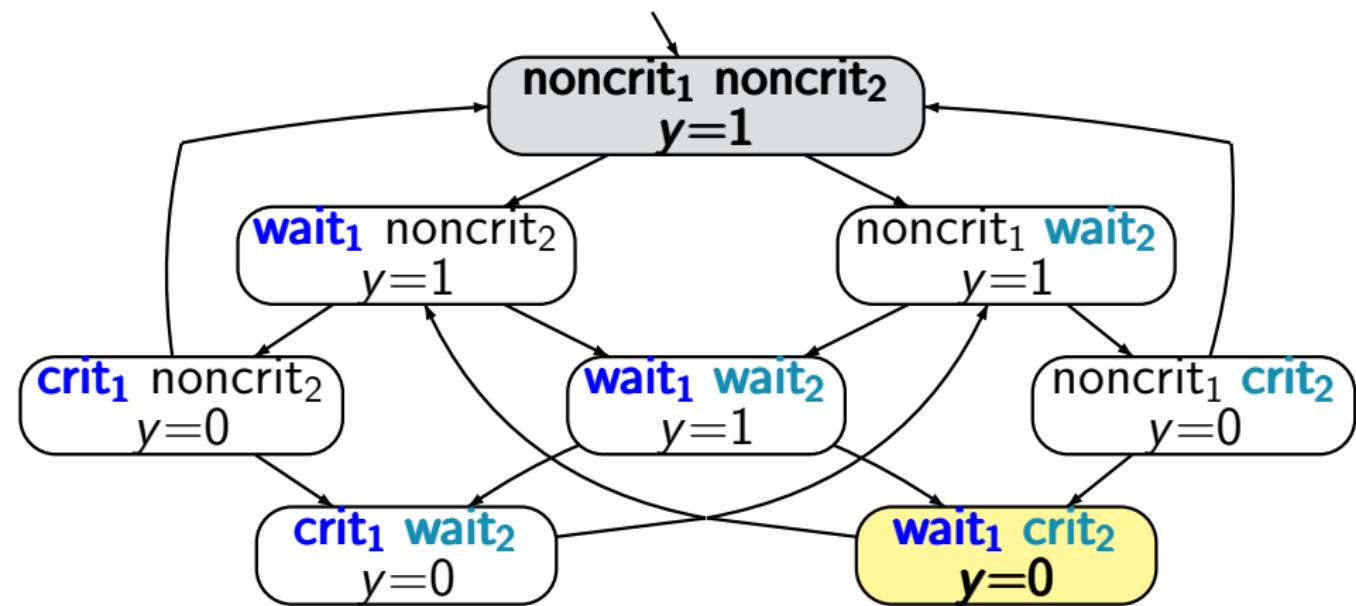
LTB2.4-9



set of propositions $AP = \{\text{wait}_1, \text{crit}_1, \text{wait}_2, \text{crit}_2\}$

Mutual exclusion with semaphor $T_{P_1 \parallel \parallel P_2}$

LTB2.4-9



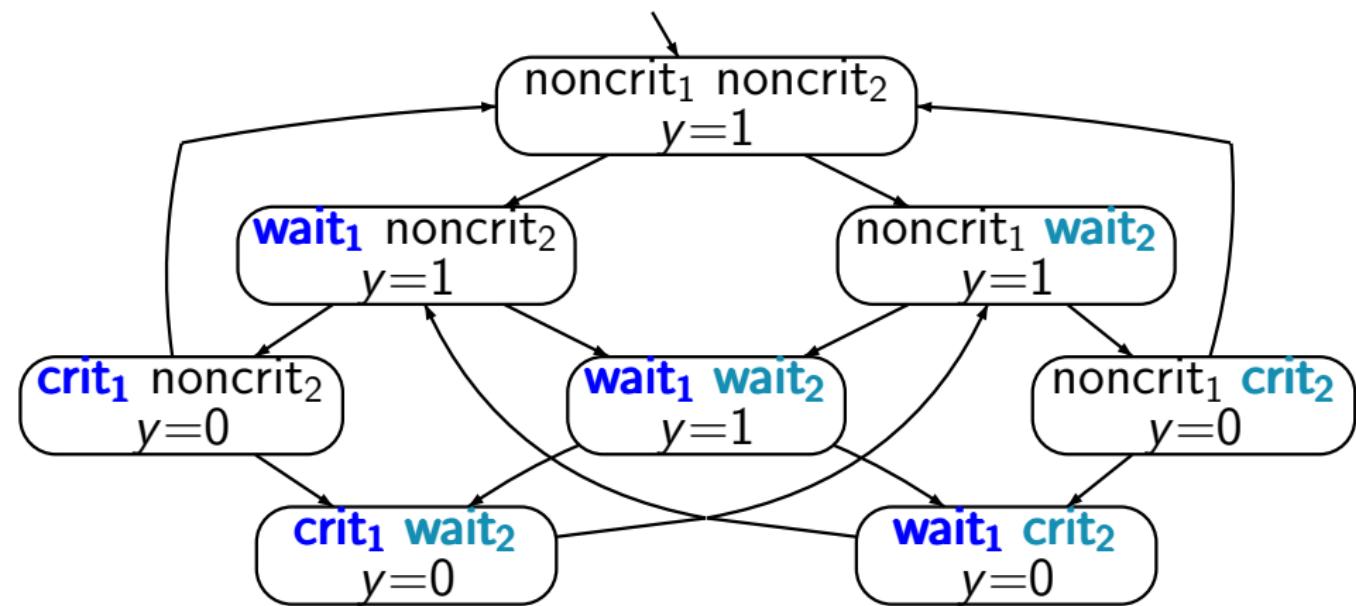
set of propositions $AP = \{\text{wait}_1, \text{crit}_1, \text{wait}_2, \text{crit}_2\}$

e.g., $L(\langle \text{noncrit}_1, \text{noncrit}_2, y=1 \rangle) = \emptyset$

$L(\langle \text{wait}_1, \text{crit}_2, y=1 \rangle) = \{\text{wait}_1, \text{crit}_2\}$

Mutual exclusion with semaphor $T_{P_1 \parallel \parallel P_2}$

LTB2.4-9



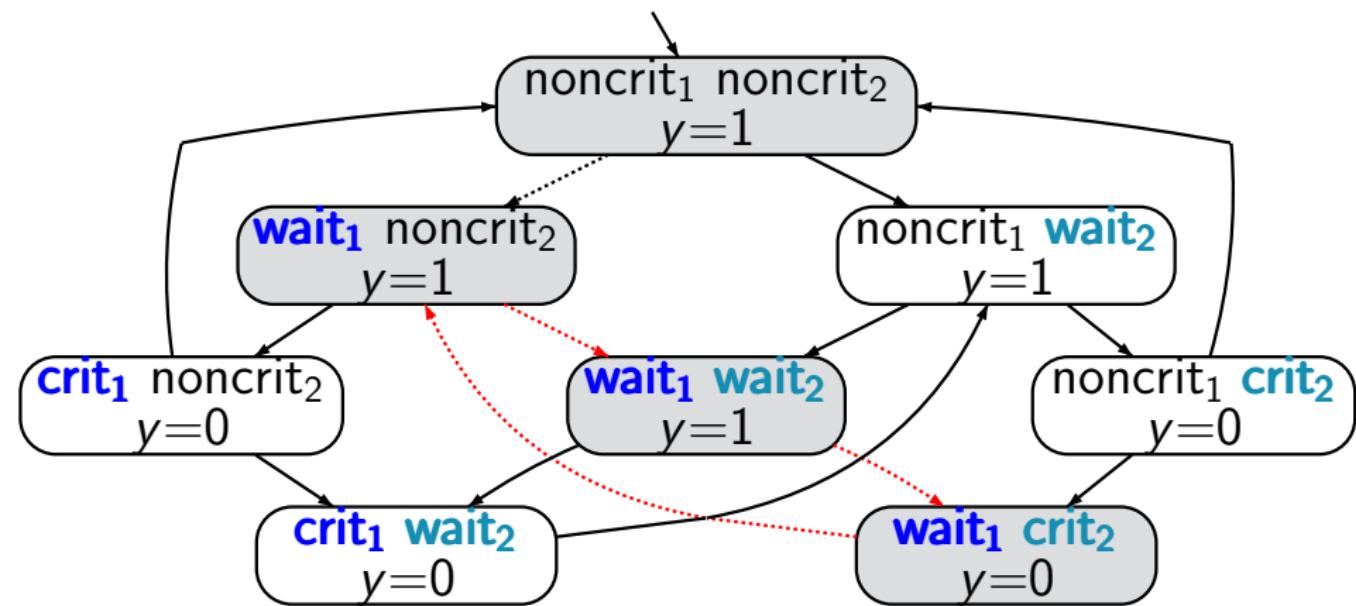
set of propositions $AP = \{\text{wait}_1, \text{crit}_1, \text{wait}_2, \text{crit}_2\}$

traces, e.g.,

$$\emptyset \left(\{\text{wait}_1\} \{\text{wait}_1, \text{wait}_2\} \{\text{wait}_1, \text{crit}_2\} \right)^\omega$$

Mutual exclusion with semaphor $T_{P_1 \parallel \parallel P_2}$

LTB2.4-9



set of propositions $AP = \{\text{wait}_1, \text{crit}_1, \text{wait}_2, \text{crit}_2\}$

traces, e.g.,

$$\emptyset \left(\{\text{wait}_1\} \{\text{wait}_1, \text{wait}_2\} \{\text{wait}_1, \text{crit}_2\} \right)^\omega$$

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view

definition of linear time properties ←

invariants and safety

liveness and fairness

Regular Properties

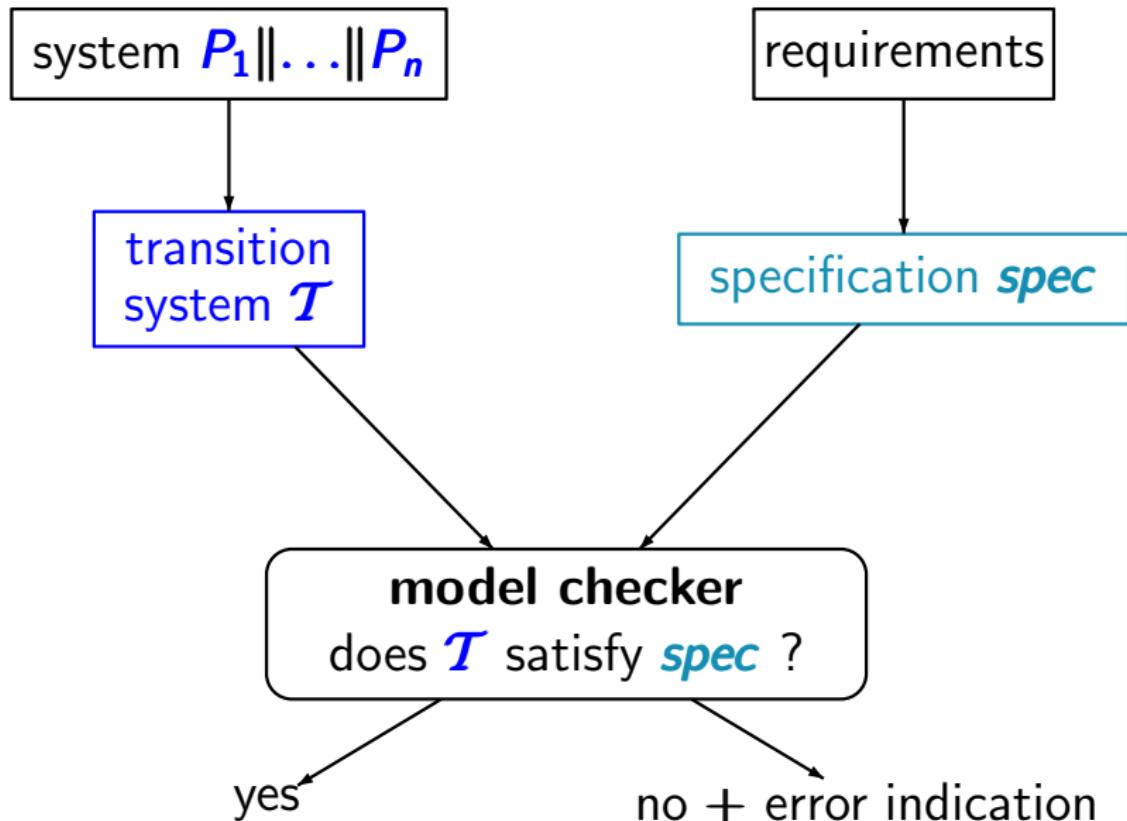
Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

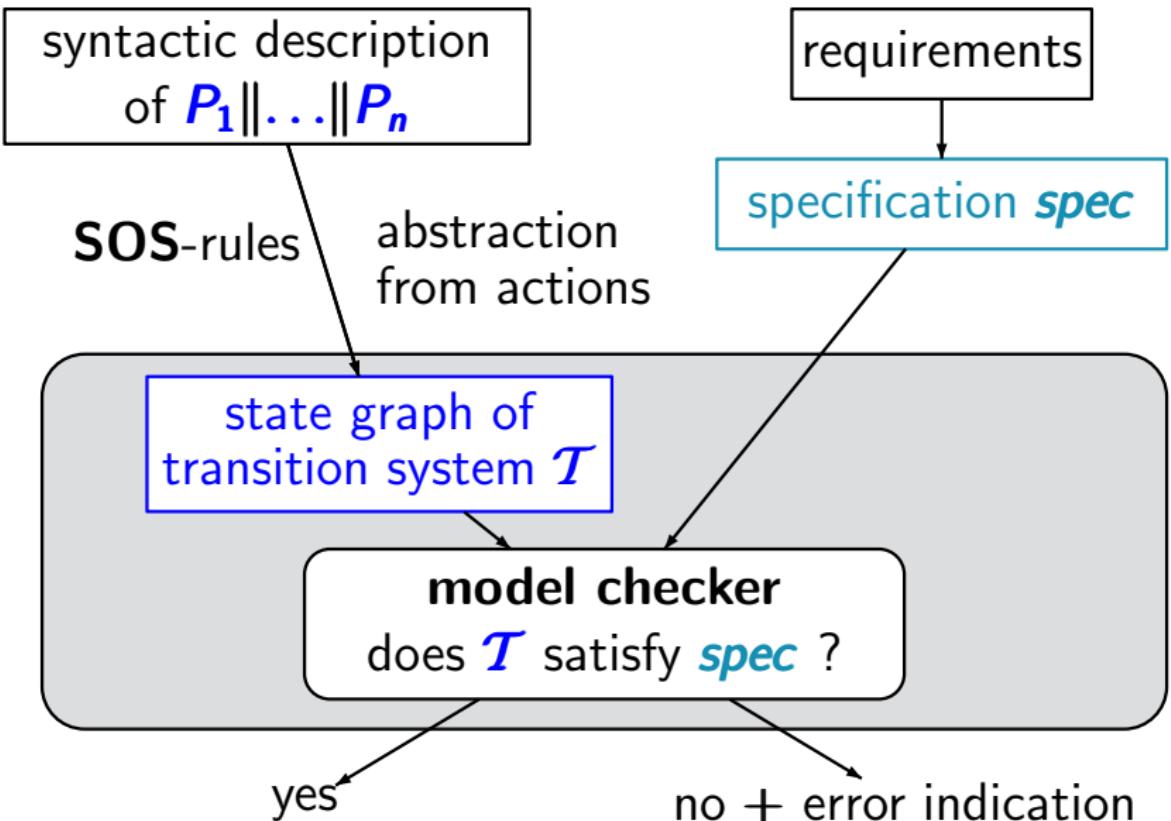
Model checking

LTB2.4-14A



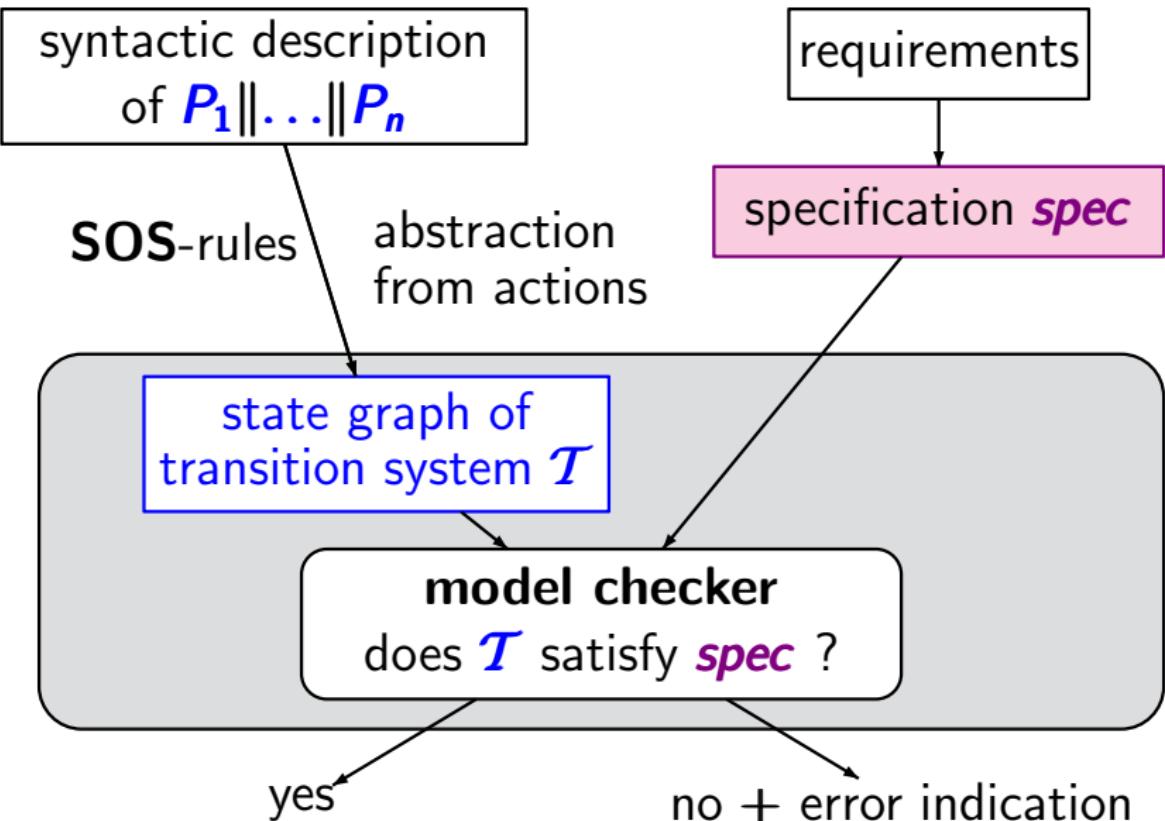
Model checking

LTB2.4-14A



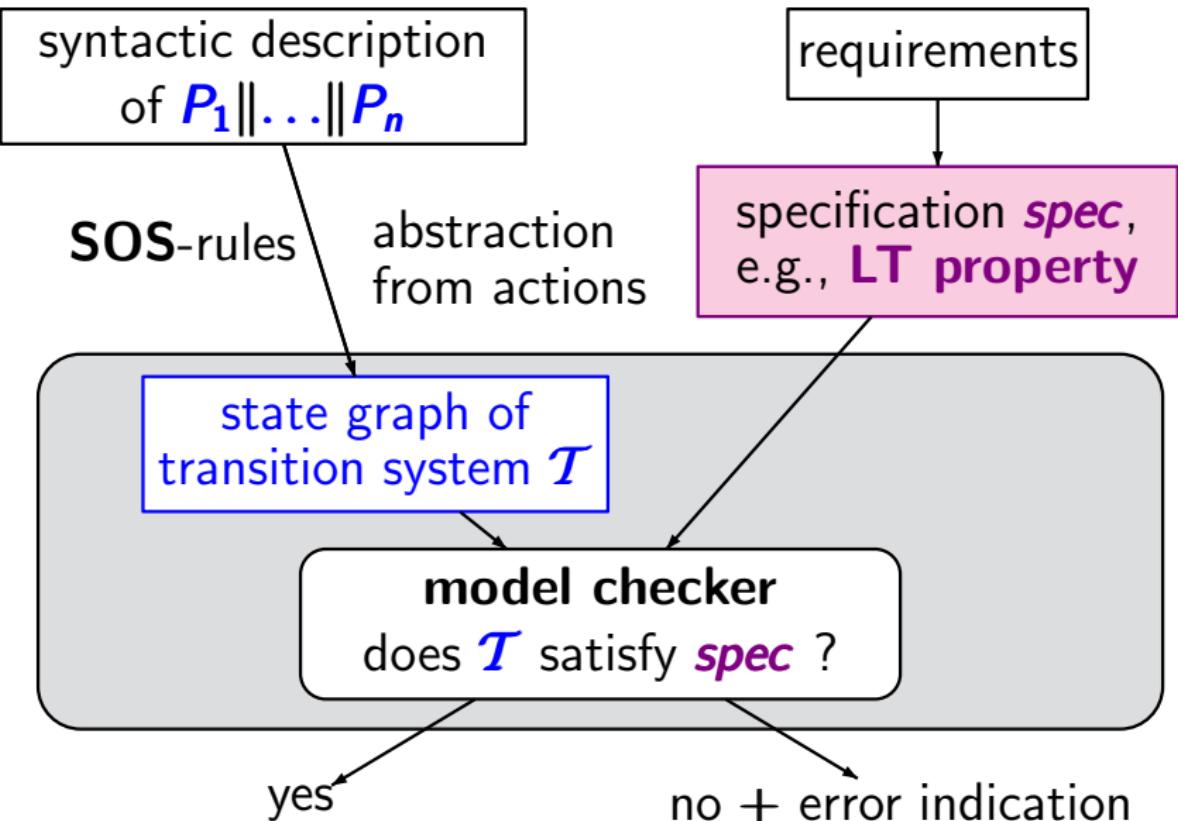
Model checking

LTB2.4-14A



Model checking

LTB2.4-14A



Linear-time properties (LT properties)

LTB2.4-14

Linear-time properties (LT properties)

LTB2.4-14

for TS over AP without terminal states

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^\omega$.

for TS over AP without terminal states

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^\omega$.

E.g., for mutual exclusion problems and

$$AP = \{\text{crit}_1, \text{crit}_2, \dots\}$$

safety:

set of all infinite words $A_0 A_1 A_2 \dots$

$MUTEX =$ over 2^{AP} such that for all $i \in \mathbb{N}$:

$$\text{crit}_1 \notin A_i \text{ or } \text{crit}_2 \notin A_i$$

LT properties for mutual exclusion protocols

LTB2.4-13

$$AP = \{\text{wait}_1, \text{crit}_1, \text{wait}_2, \text{crit}_2\}$$

safety:

set of all infinite words $A_0 A_1 A_2 \dots$

MUTEX = over 2^{AP} such that for all $i \in \mathbb{N}$:

$$\text{crit}_1 \notin A_i \text{ or } \text{crit}_2 \notin A_i$$

$$\emptyset \{ \text{wait}_1 \} \{ \text{crit}_1 \} \emptyset \{ \text{wait}_1 \} \{ \text{crit}_1 \} \dots \in \text{MUTEX}$$

LT properties for mutual exclusion protocols

LTB2.4-13

$$AP = \{\text{wait}_1, \text{crit}_1, \text{wait}_2, \text{crit}_2\}$$

safety:

set of all infinite words $A_0 A_1 A_2 \dots$

MUTEX = over 2^{AP} such that for all $i \in \mathbb{N}$:

$$\text{crit}_1 \notin A_i \text{ or } \text{crit}_2 \notin A_i$$

$\emptyset \{ \text{wait}_1 \} \{ \text{crit}_1 \} \emptyset \{ \text{wait}_1 \} \{ \text{crit}_1 \} \dots \in \text{MUTEX}$

$\emptyset \{ \text{wait}_1 \} \{ \text{crit}_1 \} \{ \text{crit}_1, \text{wait}_2 \} \{ \text{crit}_1, \text{crit}_2 \} \dots \notin \text{MUTEX}$

LT properties for mutual exclusion protocols

LTB2.4-13

$$AP = \{\text{wait}_1, \text{crit}_1, \text{wait}_2, \text{crit}_2\}$$

safety:

set of all infinite words $A_0 A_1 A_2 \dots$

MUTEX = over 2^{AP} such that for all $i \in \mathbb{N}$:

$$\text{crit}_1 \notin A_i \text{ or } \text{crit}_2 \notin A_i$$

$\emptyset \{ \text{wait}_1 \} \{ \text{crit}_1 \} \emptyset \{ \text{wait}_1 \} \{ \text{crit}_1 \} \dots \in \text{MUTEX}$

$\emptyset \{ \text{wait}_1 \} \{ \text{crit}_1 \} \{ \text{crit}_1, \text{wait}_2 \} \{ \text{crit}_1, \text{crit}_2 \} \dots \notin \text{MUTEX}$

$\emptyset \emptyset \{ \text{wait}_1, \text{crit}_1, \text{crit}_2 \} \dots \notin \text{MUTEX}$

LT properties for mutual exclusion protocols

LTB2.4-13

$$AP = \{\text{wait}_1, \text{crit}_1, \text{wait}_2, \text{crit}_2\}$$

safety:

set of all infinite words $A_0 A_1 A_2 \dots$

MUTEX = over 2^{AP} such that for all $i \in \mathbb{N}$:

$\text{crit}_1 \notin A_i$ or $\text{crit}_2 \notin A_i$

liveness (starvation freedom):

set of all infinite words $A_0 A_1 A_2 \dots$ s.t.

LIVE = $\exists i \in \mathbb{N}. \text{wait}_1 \in A_i \implies \exists i \in \mathbb{N}. \text{crit}_1 \in A_i$
 $\wedge \exists i \in \mathbb{N}. \text{wait}_2 \in A_i \implies \exists i \in \mathbb{N}. \text{crit}_2 \in A_i$

Satisfaction relation for LT properties

LTB2.4-15

Satisfaction relation for LT properties

LTB2.4-15

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^\omega$.

Satisfaction relation for LT properties

LTB2.4-15

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^\omega$.

Satisfaction relation \models for TS:

If \mathcal{T} is a TS (without terminal states) over AP and E an LT property over AP then

$$\mathcal{T} \models E \quad \text{iff} \quad \text{Traces}(\mathcal{T}) \subseteq E$$

Satisfaction relation for LT properties

LTB2.4-15

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^\omega$.

Satisfaction relation \models for TS and states:

If \mathcal{T} is a TS (without terminal states) over AP and E an LT property over AP then

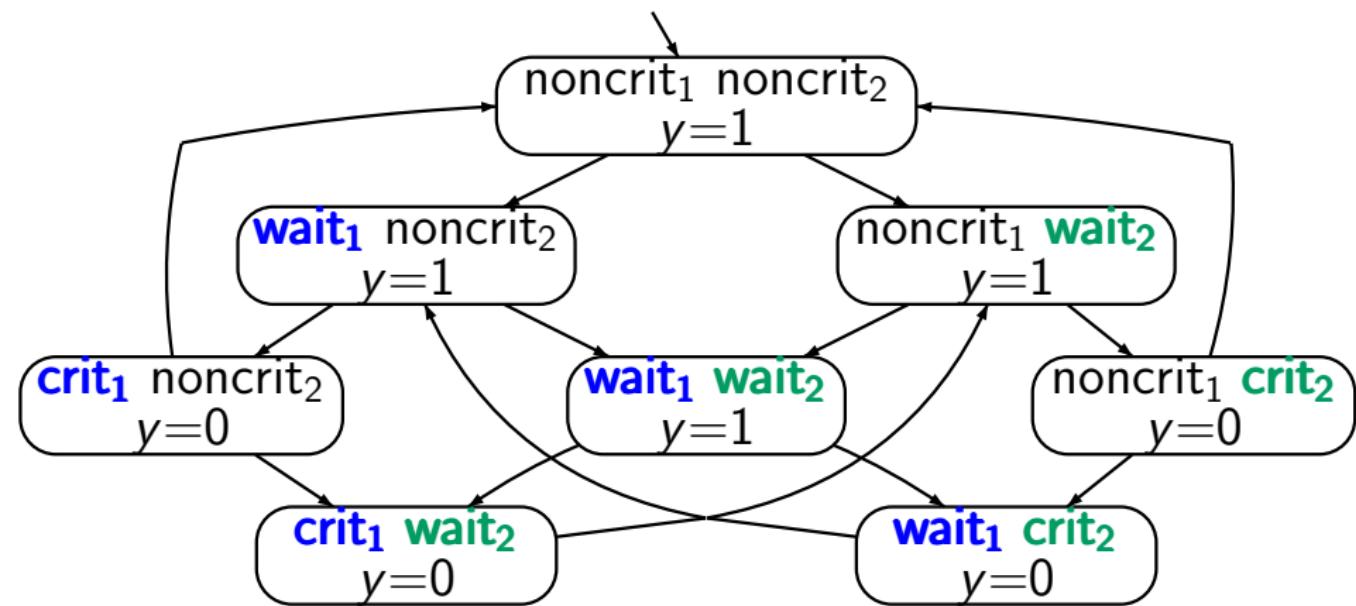
$$\mathcal{T} \models E \quad \text{iff} \quad \text{Traces}(\mathcal{T}) \subseteq E$$

If s is a state in \mathcal{T} then

$$s \models E \quad \text{iff} \quad \text{Traces}(s) \subseteq E$$

Mutual exclusion with semaphore

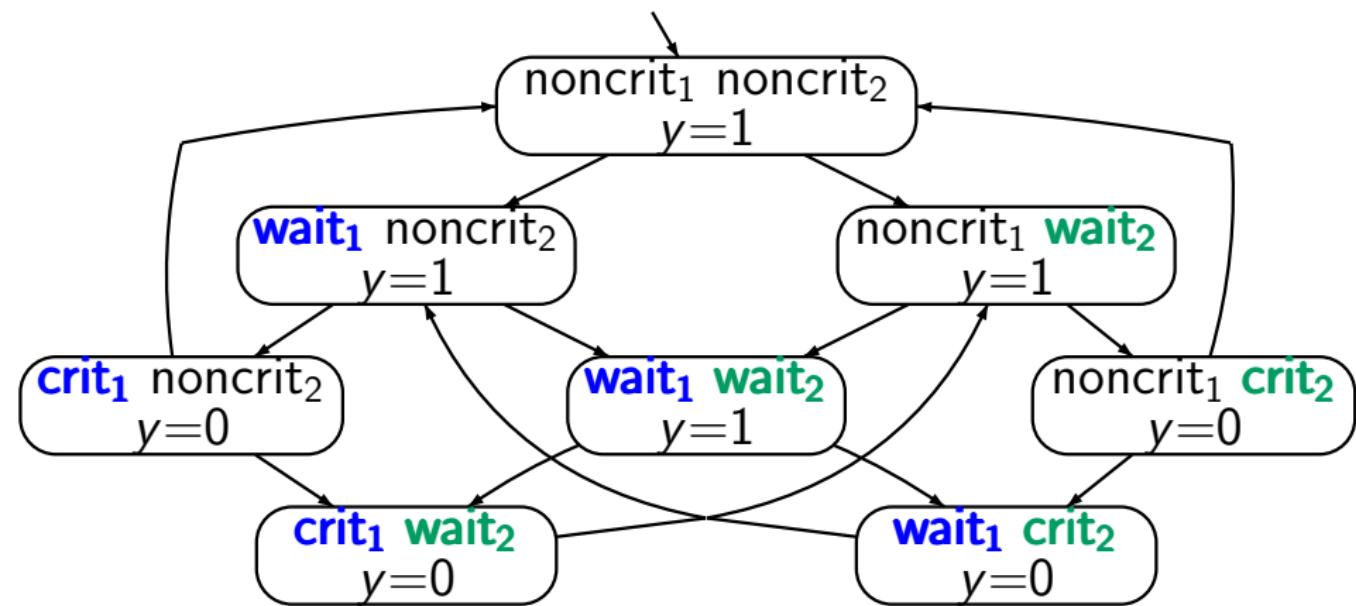
LTB2.4-16



$\mathcal{T}_{Sem} \models \text{MUTEX}$

Mutual exclusion with semaphore

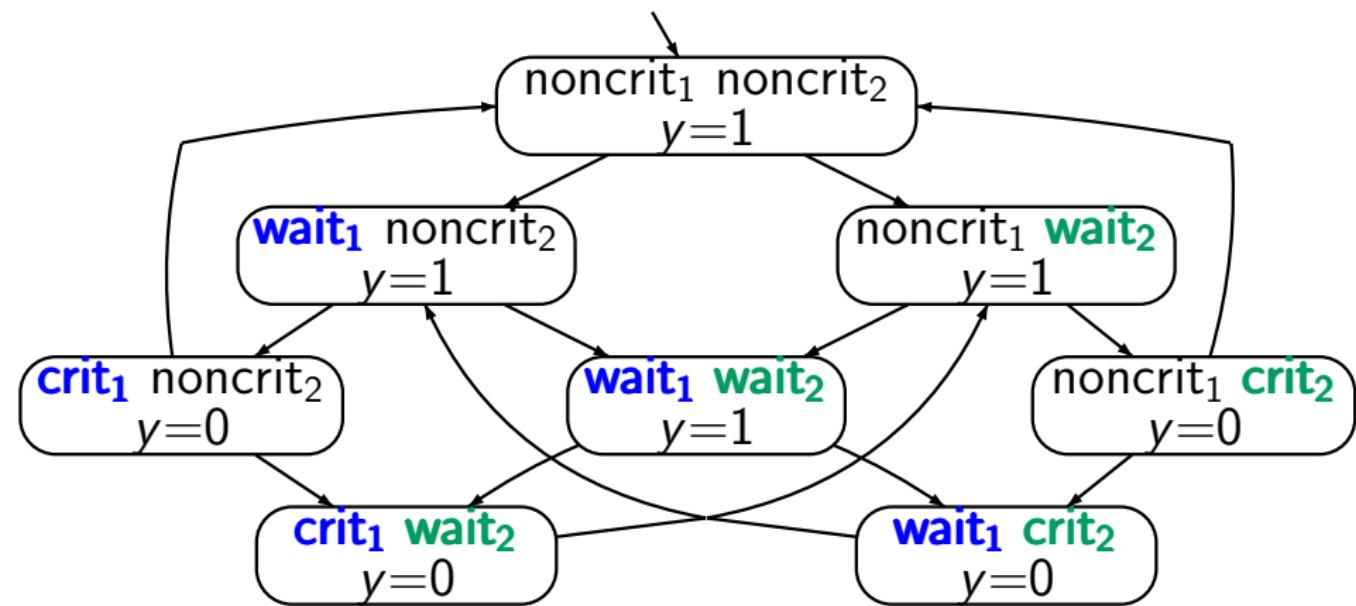
LTB2.4-16



$T_{Sem} \models \text{MUTEX}$, $T_{Sem} \models \text{LIVE}$?

Mutual exclusion with semaphore

LTB2.4-16

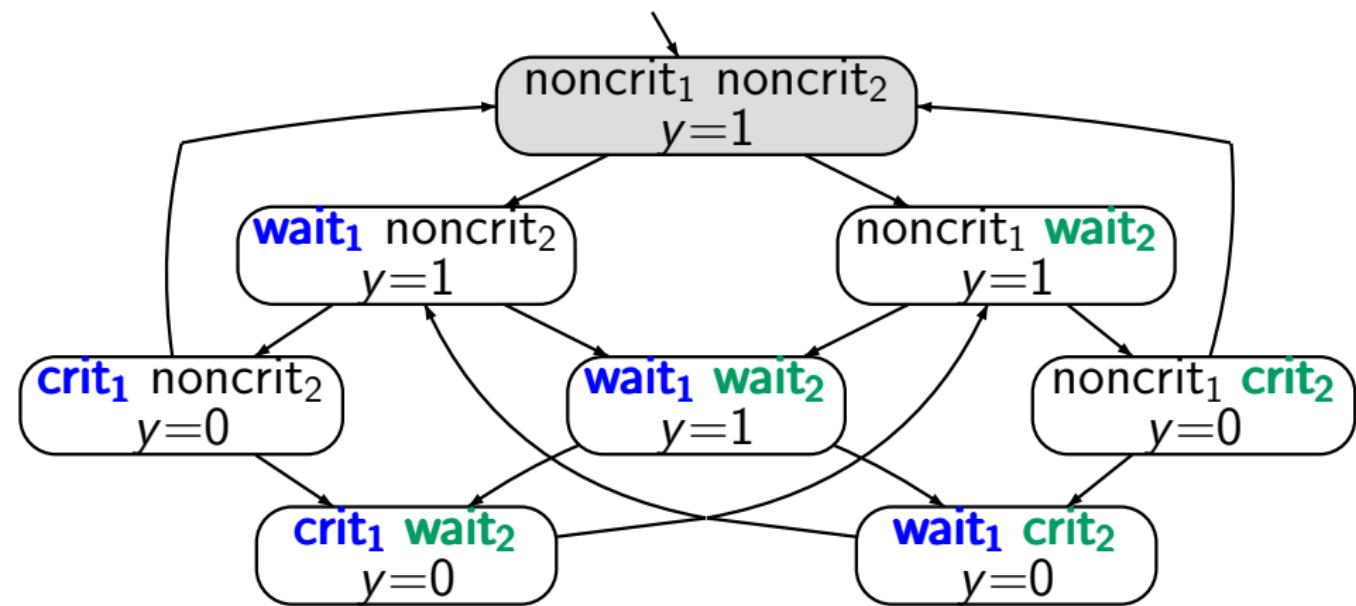


$T_{Sem} \models \text{MUTEX}$, $T_{Sem} \not\models \text{LIVE}$

$\emptyset \{ \text{wait}_1 \} (\{ \text{wait}_1, \text{wait}_2 \} \{ \text{crit}_1, \text{wait}_2 \} \{ \text{wait}_2 \})^\omega \notin \text{LIVE}$

Mutual exclusion with semaphore

LTB2.4-16

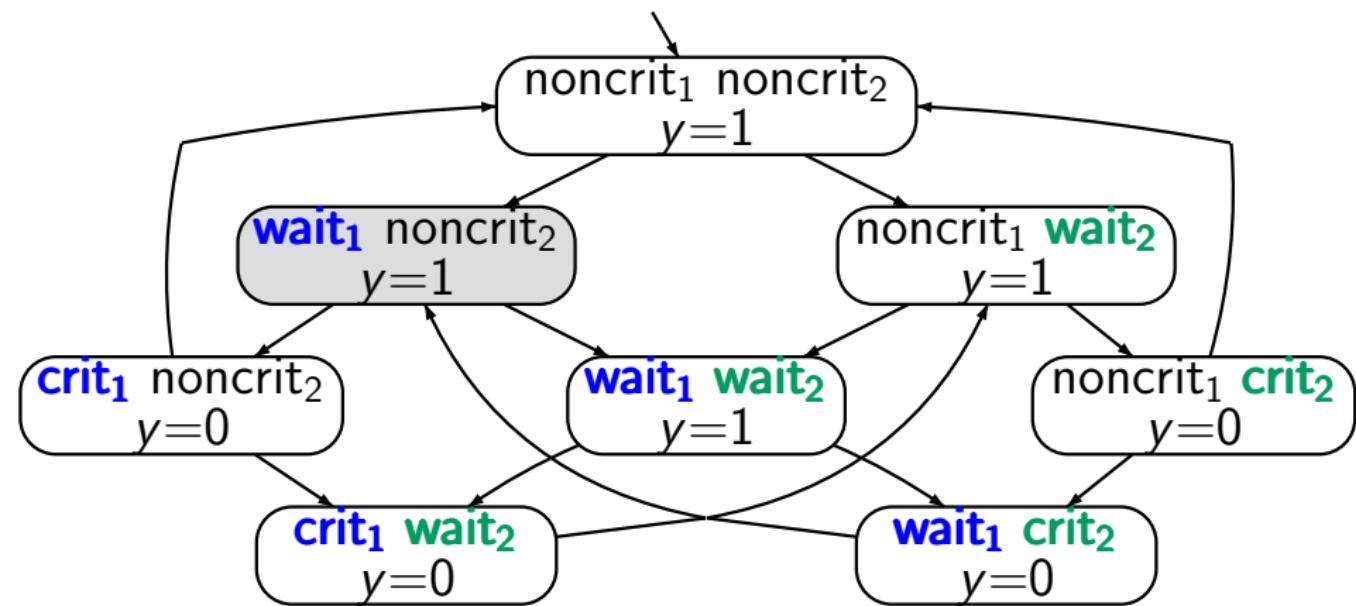


$T_{Sem} \models \text{MUTEX}, \quad T_{Sem} \not\models \text{LIVE}$

$\emptyset \{ \text{wait}_1 \} (\{ \text{wait}_1, \text{wait}_2 \} \{ \text{crit}_1, \text{wait}_2 \} \{ \text{wait}_2 \})^\omega \notin \text{LIVE}$

Mutual exclusion with semaphore

LTB2.4-16



$T_{Sem} \models \text{MUTEX}, \quad T_{Sem} \not\models \text{LIVE}$

$\emptyset \{ \text{wait}_1 \} (\{ \text{wait}_1, \text{wait}_2 \} \{ \text{crit}_1, \text{wait}_2 \} \{ \text{wait}_2 \})^\omega \notin \text{LIVE}$

Mutual exclusion with semaphore

LTB2.4-16

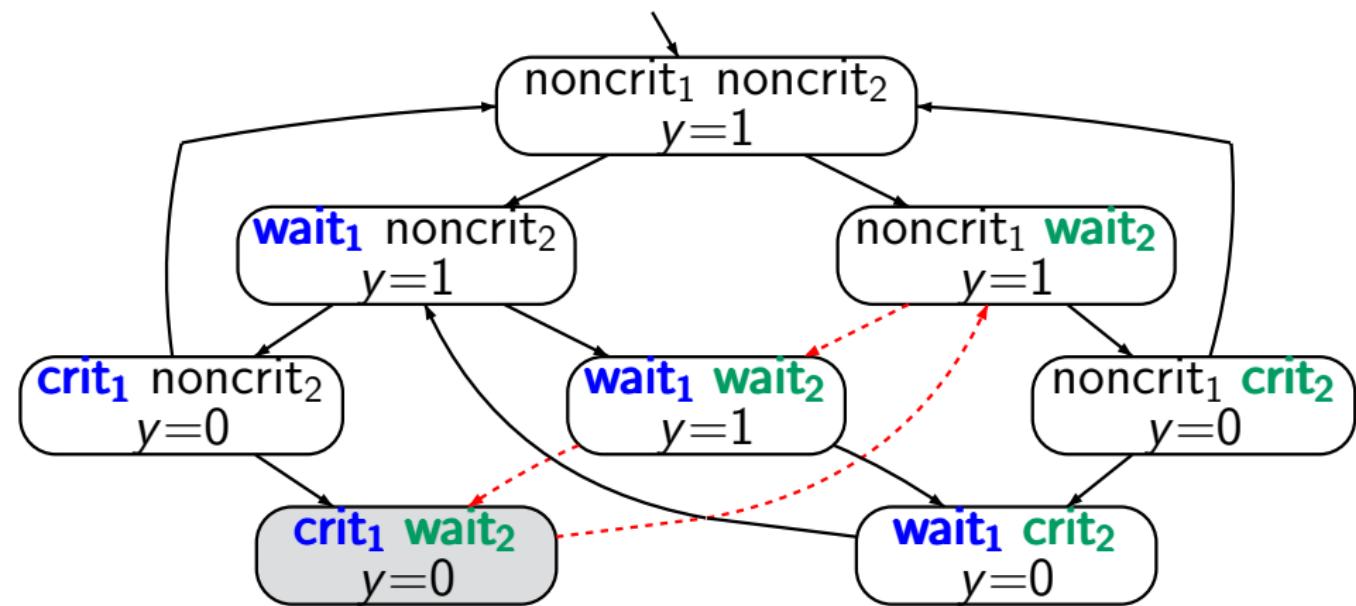


$T_{Sem} \models \text{MUTEX}$, $T_{Sem} \not\models \text{LIVE}$

$\emptyset \{ \text{wait}_1 \} (\{ \text{wait}_1, \text{wait}_2 \} \{ \text{crit}_1, \text{wait}_2 \} \{ \text{wait}_2 \})^\omega \notin \text{LIVE}$

Mutual exclusion with semaphore

LTB2.4-16

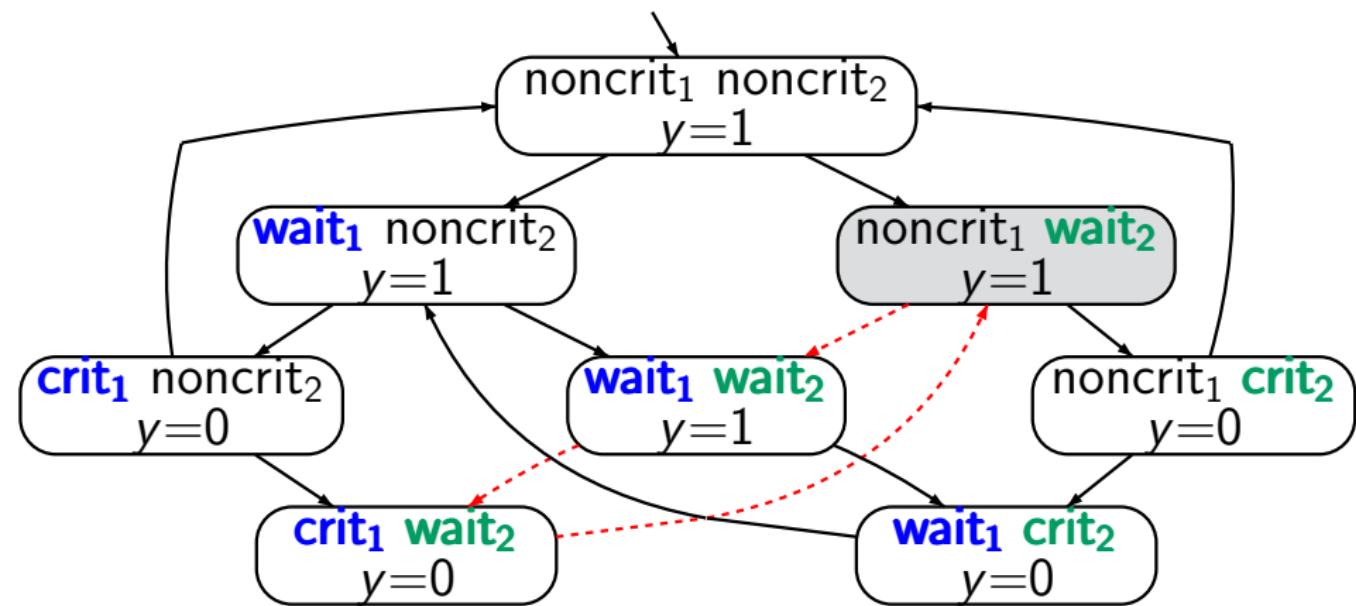


$T_{Sem} \models \text{MUTEX}$, $T_{Sem} \not\models \text{LIVE}$

$\emptyset \{ \text{wait}_1 \} (\{ \text{wait}_1, \text{wait}_2 \} \{ \text{crit}_1, \text{wait}_2 \} \{ \text{wait}_2 \})^\omega \notin \text{LIVE}$

Mutual exclusion with semaphore

LTB2.4-16

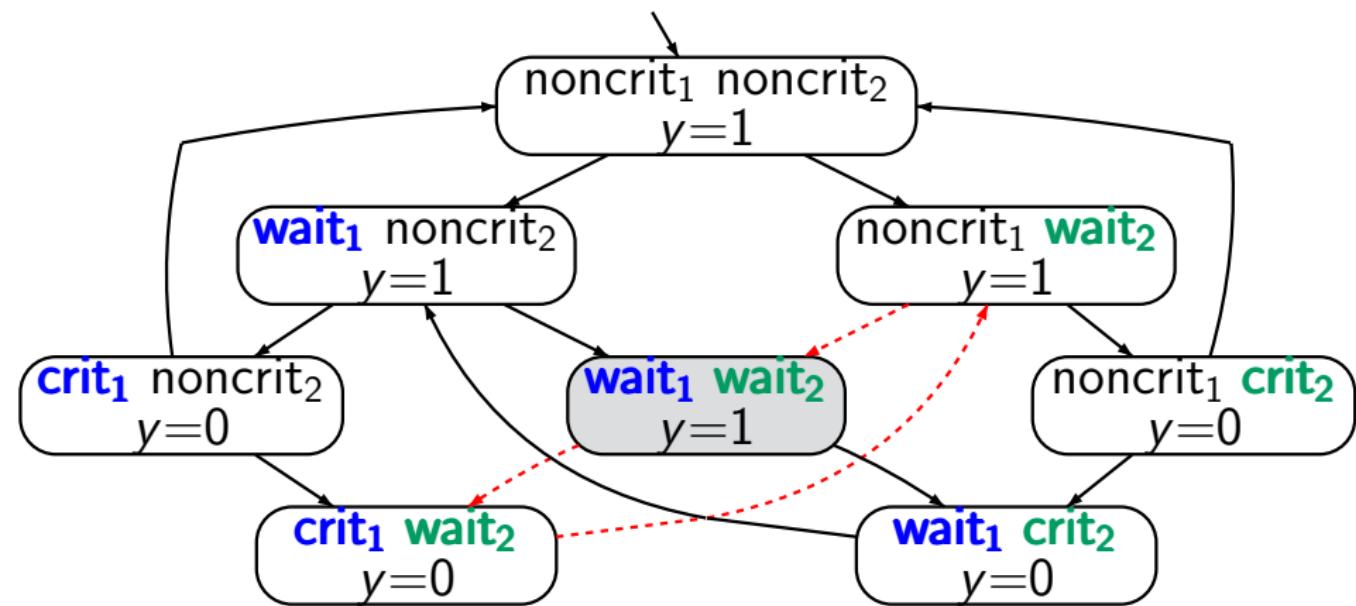


$T_{Sem} \models \text{MUTEX}$, $T_{Sem} \not\models \text{LIVE}$

$\emptyset \{ \text{wait}_1 \} (\{ \text{wait}_1, \text{wait}_2 \} \{ \text{crit}_1, \text{wait}_2 \} \{ \text{wait}_2 \})^\omega \notin \text{LIVE}$

Mutual exclusion with semaphore

LTB2.4-16



$T_{Sem} \models \text{MUTEX}$, $T_{Sem} \not\models \text{LIVE}$

$\emptyset \{ \text{wait}_1 \} (\{ \text{wait}_1, \text{wait}_2 \} \{ \text{crit}_1, \text{wait}_2 \} \{ \text{wait}_2 \})^\omega \notin \text{LIVE}$

Peterson's mutual exclusion algorithm

LTB2.4-17

Peterson's mutual exclusion algorithm

LTB2.4-17

for competing processes \mathcal{P}_1 and \mathcal{P}_2 ,

using three additional shared variables

$$b_1, b_2 \in \{0, 1\}, x \in \{1, 2\}$$

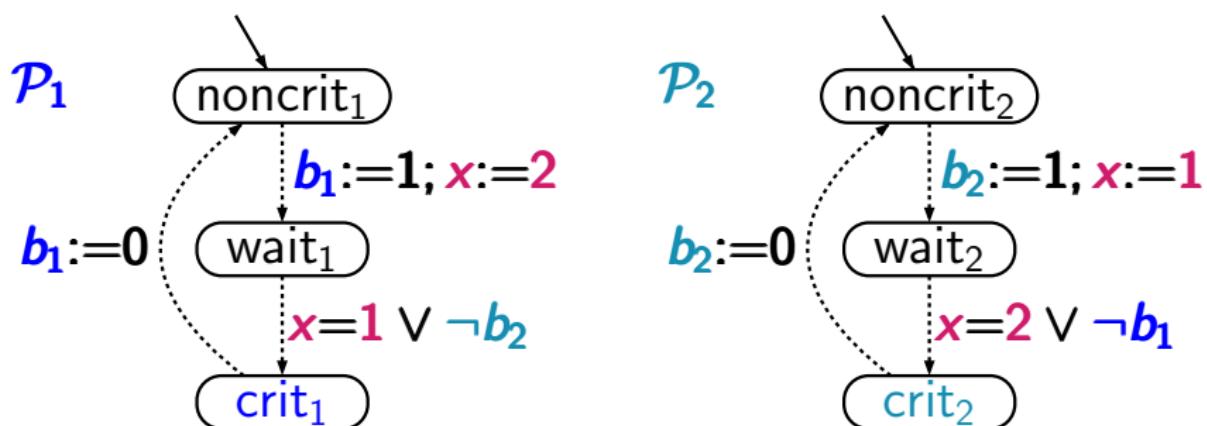
Peterson's mutual exclusion algorithm

LTB2.4-17

for competing processes \mathcal{P}_1 and \mathcal{P}_2 ,

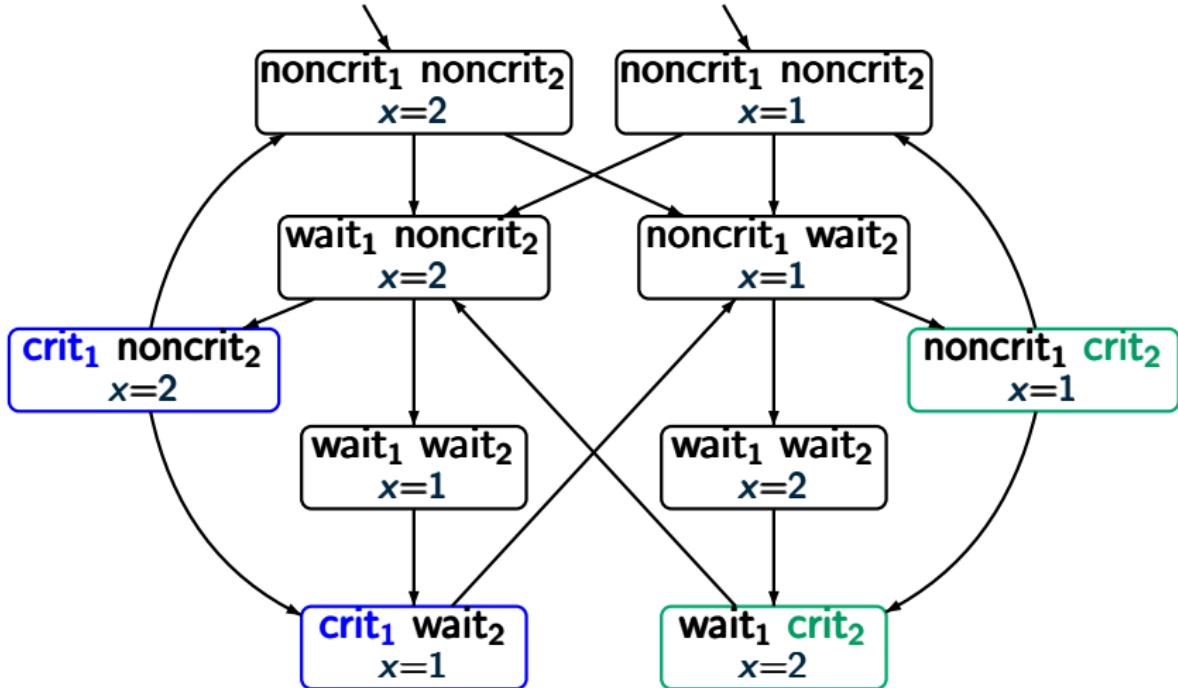
using three additional shared variables

$$b_1, b_2 \in \{0, 1\}, x \in \{1, 2\}$$



Peterson's mutual exclusion algorithm

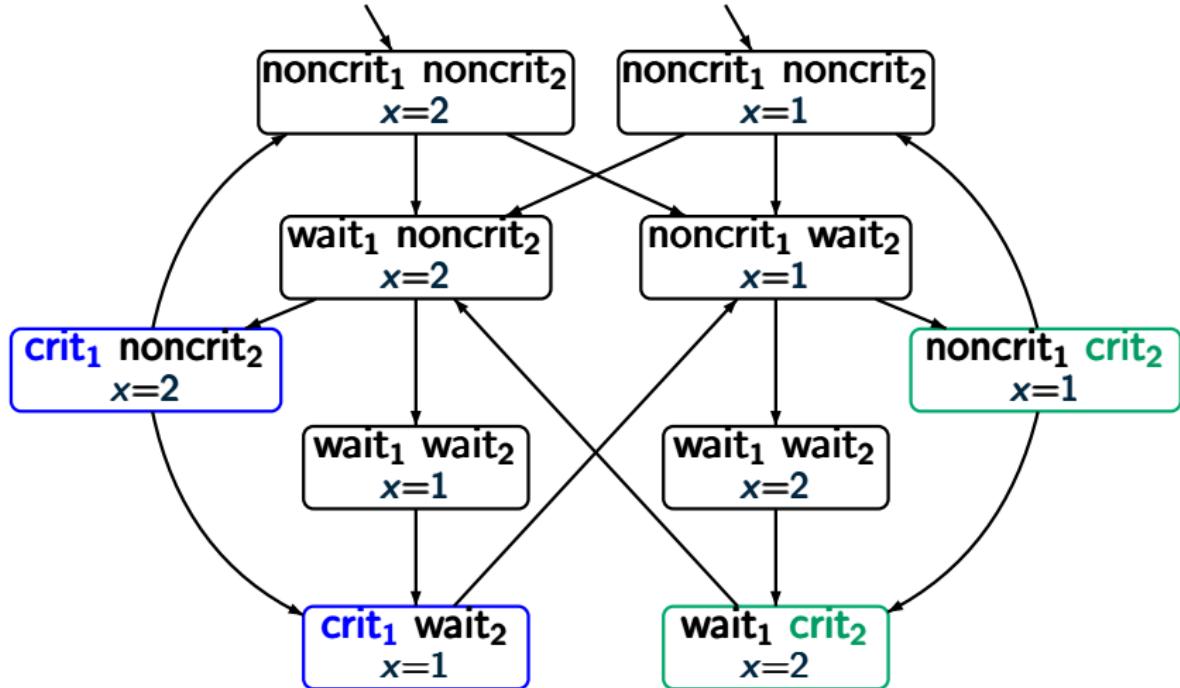
LTB2.4-17



$T_{Pet} \models \text{MUTEX}$

Peterson's mutual exclusion algorithm

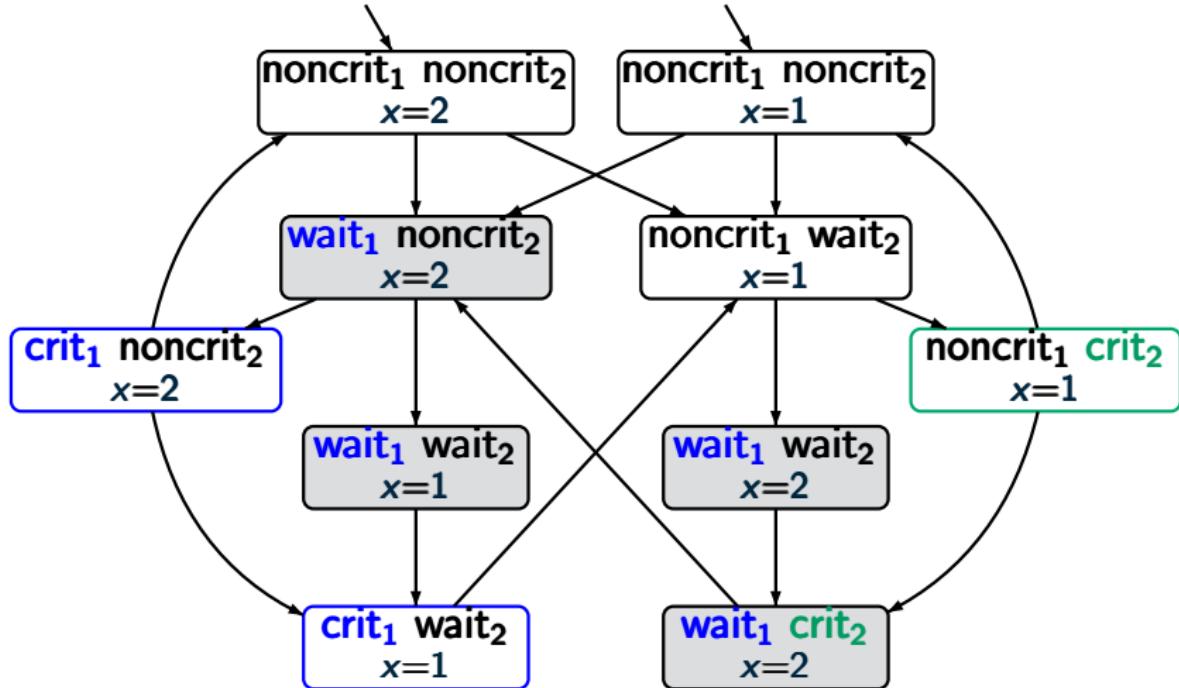
LTB2.4-17



T_{Pet} \models **MUTEX** and T_{Pet} \models **LIVE**

Peterson's mutual exclusion algorithm

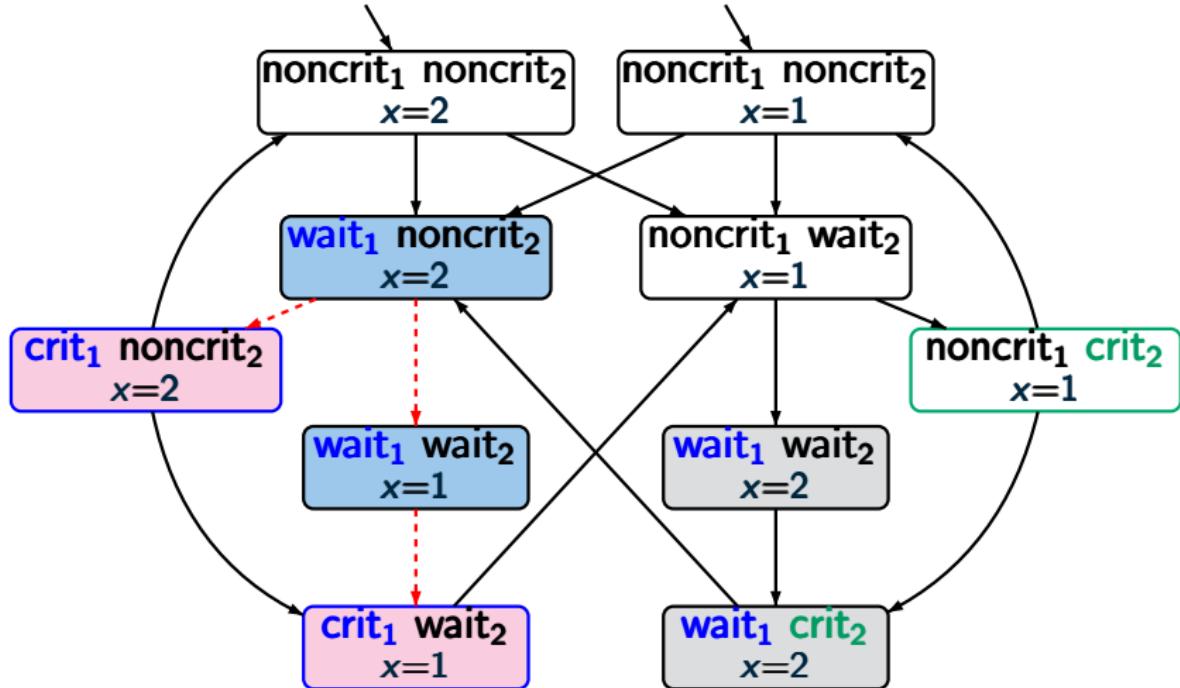
LTB2.4-17



$T_{Pet} \models \text{MUTEX}$ and $T_{Pet} \models \text{LIVE}$

Peterson's mutual exclusion algorithm

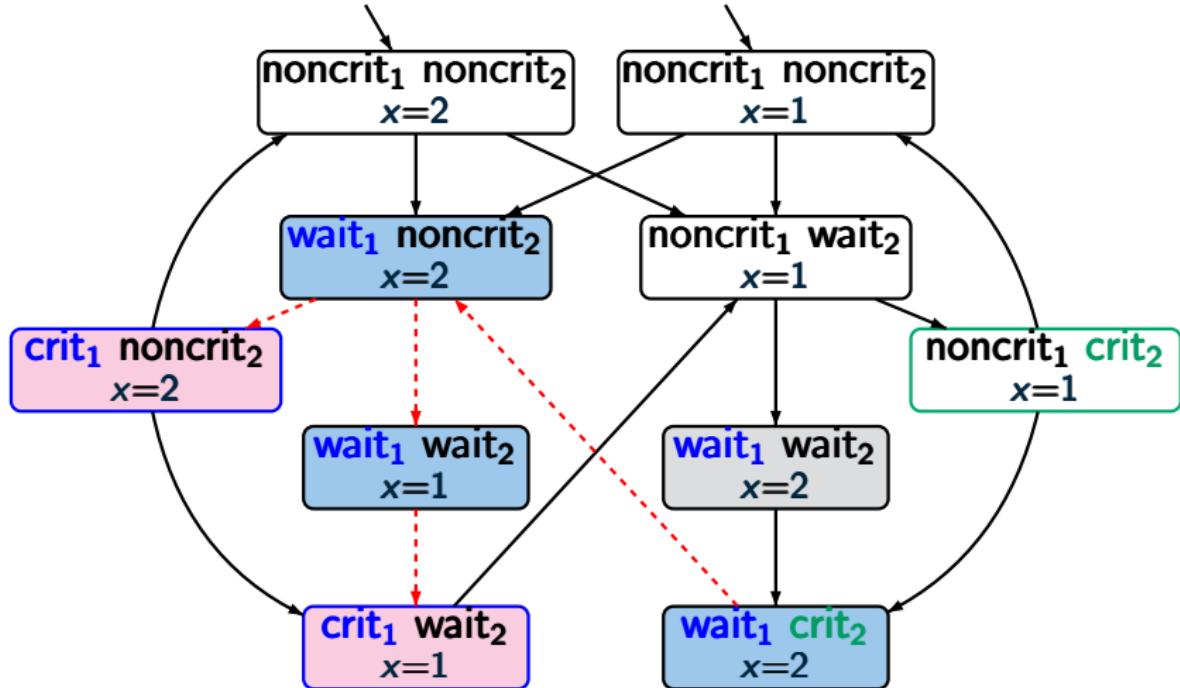
LTB2.4-17



T_{Pet} \models **MUTEX** and T_{Pet} \models **LIVE**

Peterson's mutual exclusion algorithm

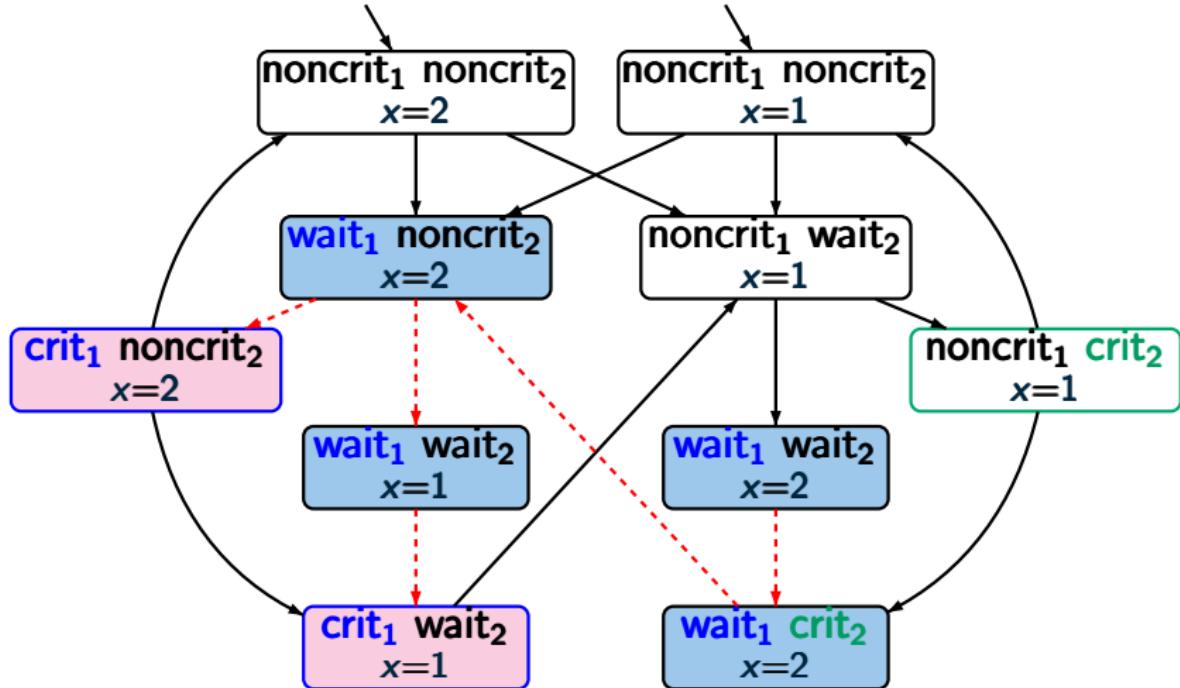
LTB2.4-17



$T_{Pet} \models \text{MUTEX}$ and $T_{Pet} \models \text{LIVE}$

Peterson's mutual exclusion algorithm

LTB2.4-17



$T_{Pet} \models \text{MUTEX}$ and $T_{Pet} \models \text{LIVE}$

LT properties and trace inclusion

LTB2.4-LT-TRACE

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^\omega$.

If \mathcal{T} is a TS over AP then $\mathcal{T} \models E$ iff $Traces(\mathcal{T}) \subseteq E$.

LT properties and trace inclusion

LTB2.4-LT-TRACE

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^\omega$.

If \mathcal{T} is a TS over AP then $\mathcal{T} \models E$ iff $Traces(\mathcal{T}) \subseteq E$.

Consequence of these definitions:

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then for all LT properties E over AP :

$$Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2) \wedge \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$$

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^\omega$.

If \mathcal{T} is a TS over AP then $\mathcal{T} \models E$ iff $Traces(\mathcal{T}) \subseteq E$.

Consequence of these definitions:

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then for all LT properties E over AP :

$$Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2) \wedge \mathcal{T}_2 \models E \Rightarrow \mathcal{T}_1 \models E$$

note: $Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2) \subseteq E$

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^\omega$.

If \mathcal{T} is a TS over AP then $\mathcal{T} \models E$ iff $Traces(\mathcal{T}) \subseteq E$.

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then the following statements are equivalent:

- (1) $Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2)$
- (2) for all LT-properties E over AP : whenever $\mathcal{T}_2 \models E$ then $\mathcal{T}_1 \models E$

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^\omega$.

If \mathcal{T} is a TS over AP then $\mathcal{T} \models E$ iff $Traces(\mathcal{T}) \subseteq E$.

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then the following statements are equivalent:

- (1) $Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2)$
- (2) for all LT-properties E over AP : whenever $\mathcal{T}_2 \models E$ then $\mathcal{T}_1 \models E$

(1) \implies (2): \checkmark

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^\omega$.

If \mathcal{T} is a TS over AP then $\mathcal{T} \models E$ iff $Traces(\mathcal{T}) \subseteq E$.

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then the following statements are equivalent:

- (1) $Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2)$
- (2) for all LT-properties E over AP : whenever $\mathcal{T}_2 \models E$ then $\mathcal{T}_1 \models E$

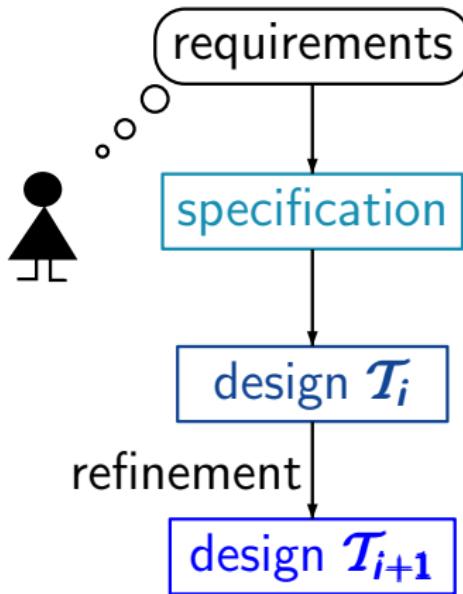
(2) \implies (1): consider $E = Traces(\mathcal{T}_2)$

Trace inclusion appears naturally

- as an implementation/refinement relation
- when resolving nondeterminism
- in the context of abstractions

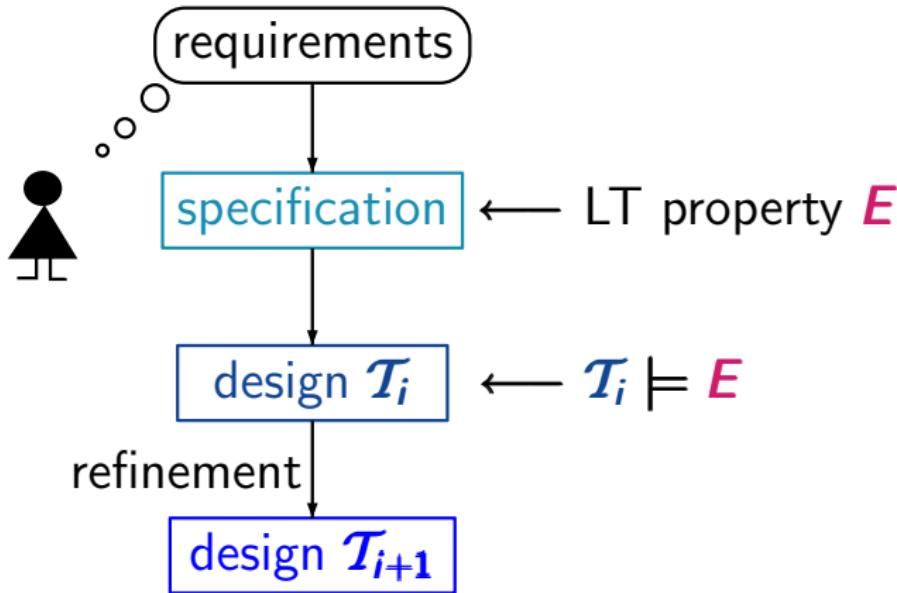
Software design cycle

LTB2.4-19



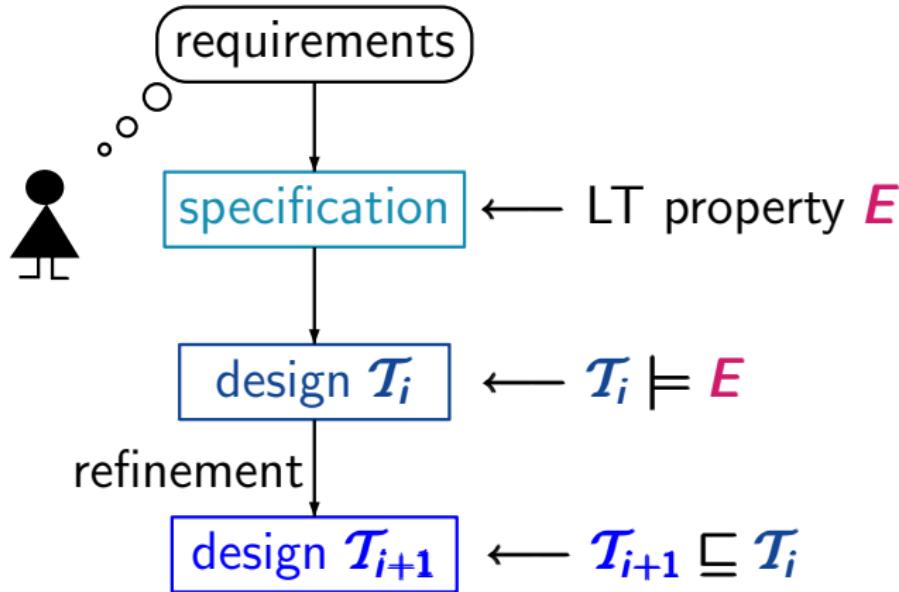
Software design cycle

LTB2.4-19



Software design cycle

LTB2.4-19

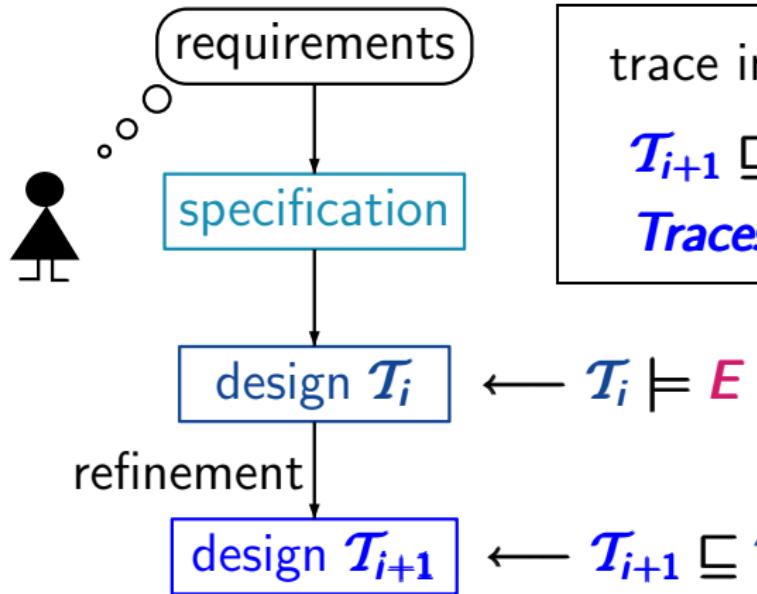


implementation/refinement relation \sqsubseteq :

$T_{i+1} \sqsubseteq T_i$ iff “ T_{i+1} correctly implements T_i ”

Trace inclusion as an implementation relation

LTB2.4-19

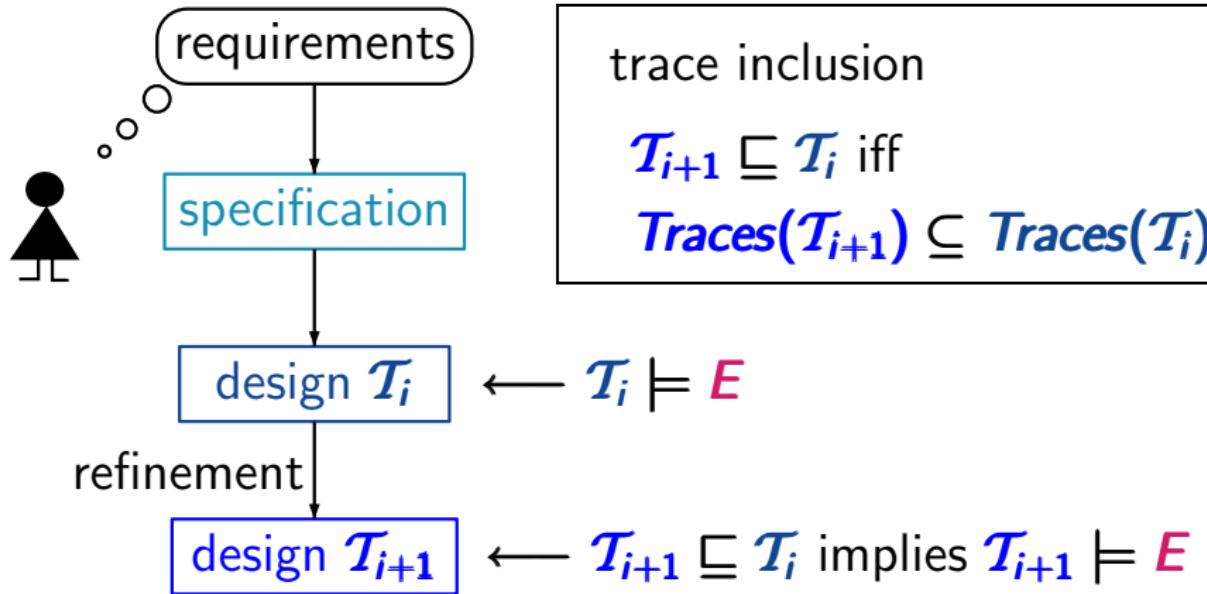


implementation/refinement relation \sqsubseteq :

$T_{i+1} \sqsubseteq T_i$ iff “ T_{i+1} correctly implements T_i ”

Trace inclusion as an implementation relation

LTB2.4-19

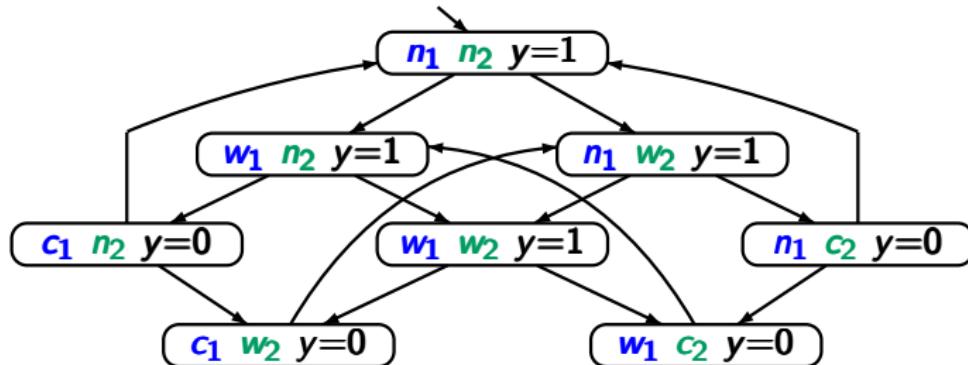


implementation/refinement relation \sqsubseteq :

$T_{i+1} \sqsubseteq T_i$ iff “ T_{i+1} correctly implements T_i ”

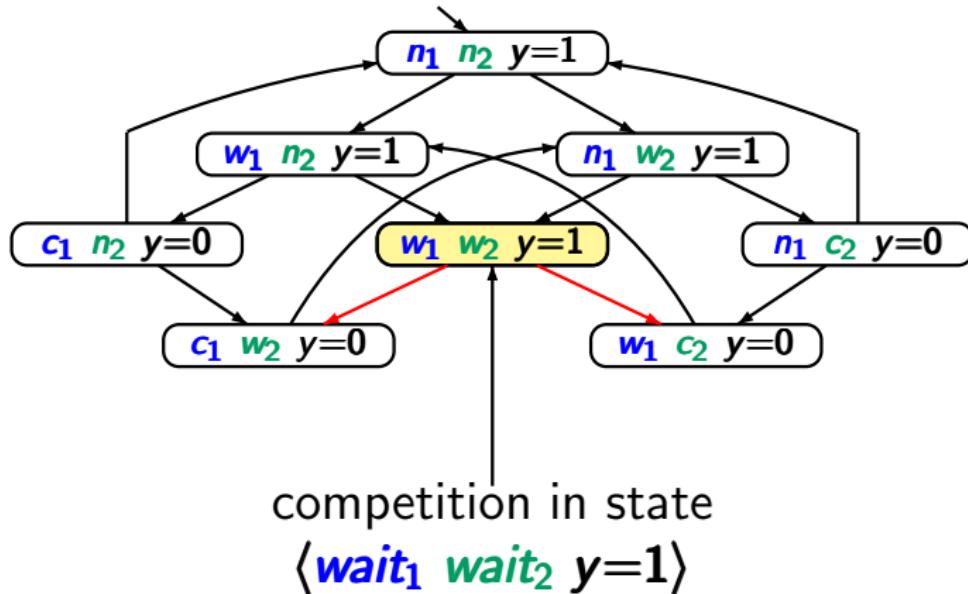
Mutual exclusion with semaphore

LTB2.4-20



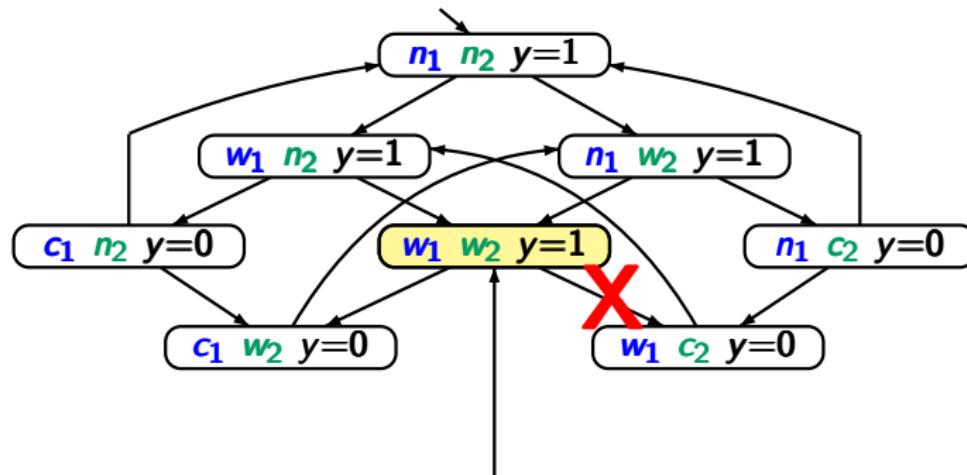
Mutual exclusion with semaphore

LTB2.4-20



Mutual exclusion with semaphore

LTB2.4-20



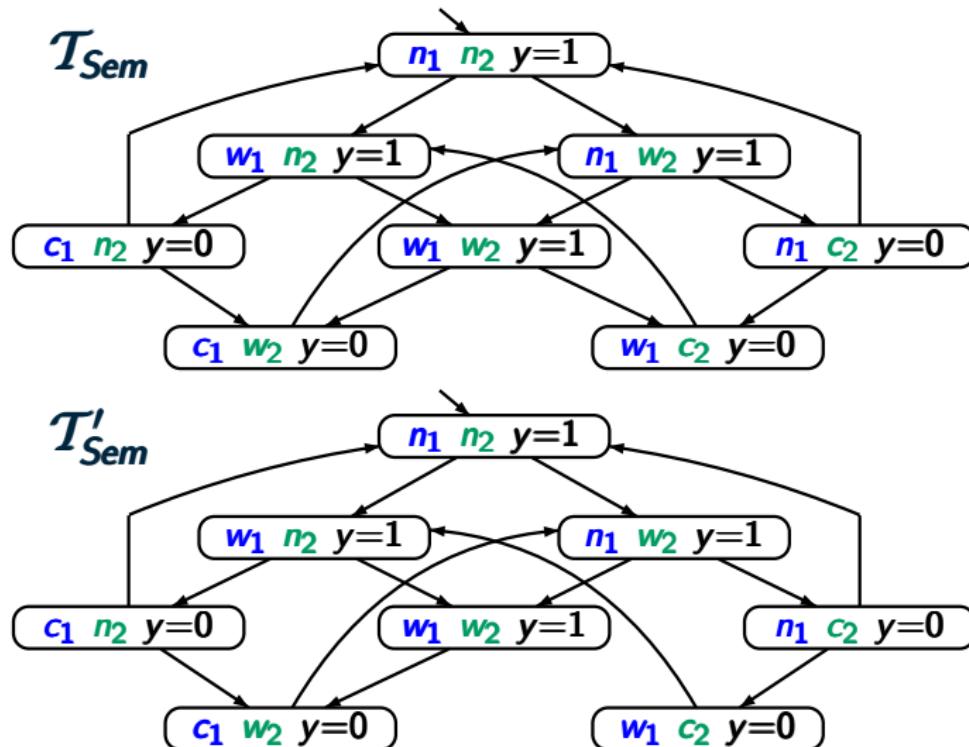
competition in state

$\langle \text{wait}_1 \ \text{wait}_2 \ y=1 \rangle$

resolve the **nondeterminism** by giving priority to process P_1

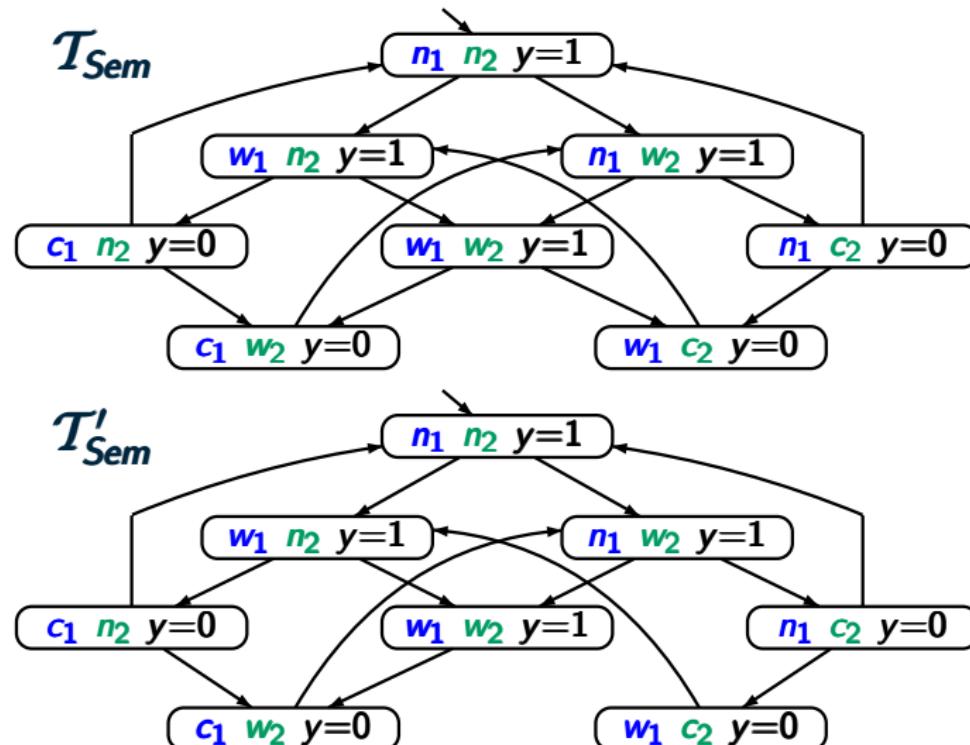
Mutual exclusion with semaphore

LTB2.4-20



Mutual exclusion with semaphore

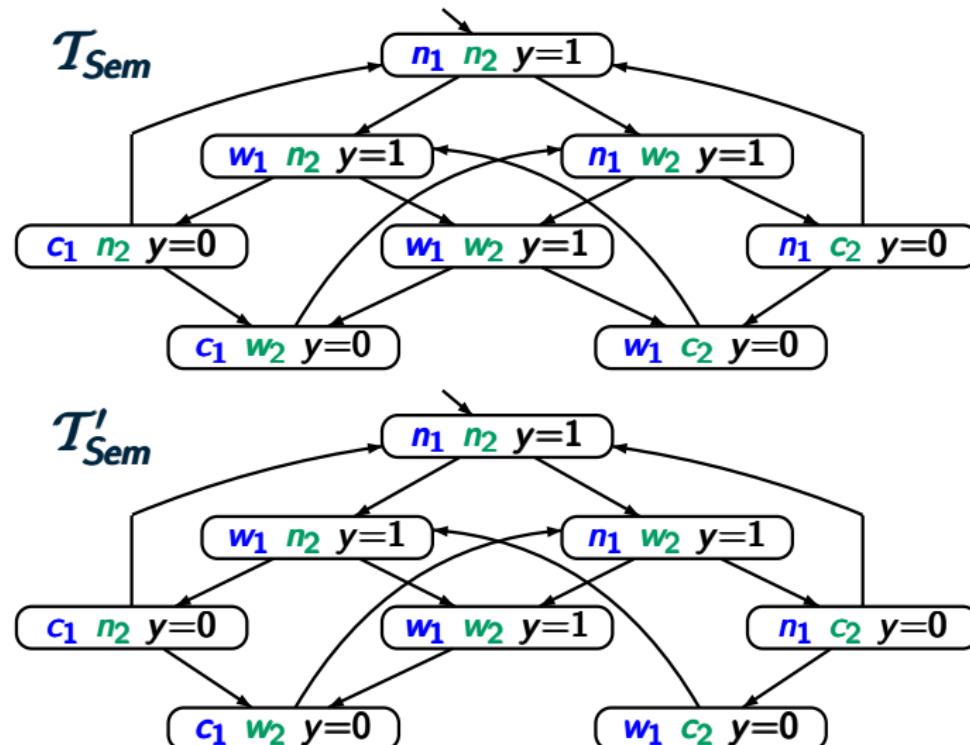
LTB2.4-20



$$Paths(T'_{Sem}) \subseteq Paths(T_{Sem})$$

Mutual exclusion with semaphore

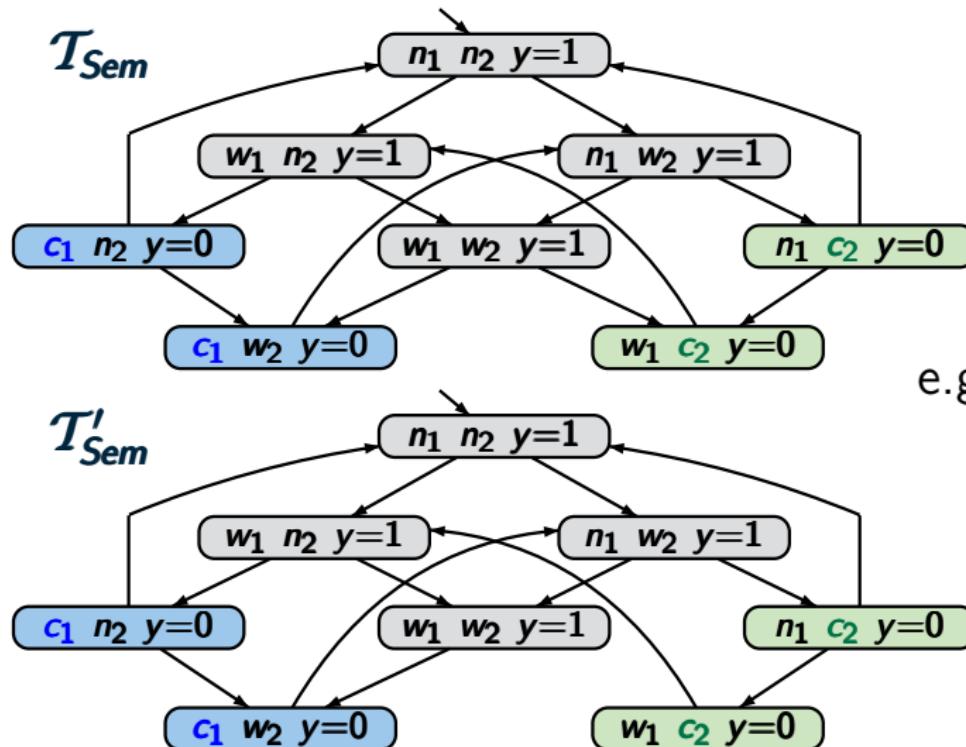
LTB2.4-20



$Traces(T'_{Sem}) \subseteq Traces(T_{Sem})$ for any AP

Mutual exclusion with semaphore

LTB2.4-20



$Traces(T_{Sem}) \models E$ implies $Traces(T'_{Sem}) \models E$ for any E

Trace inclusion appears naturally

- as an implementation/refinement relation
- when resolving nondeterminism

e.g., $\text{Traces}(\mathcal{T}'_{\text{Sem}}) \subseteq \text{Traces}(\mathcal{T}_{\text{Sem}})$

- in the context of abstractions

Trace inclusion appears naturally

- as an implementation/refinement relation
- when resolving nondeterminism

whenever \mathcal{T}' results from \mathcal{T} by a scheduling policy for resolving nondeterministic choices in \mathcal{T} then

$$\text{Traces}(\mathcal{T}') \subseteq \text{Traces}(\mathcal{T})$$

- in the context of abstractions

Trace inclusion appears naturally

- as an implementation/refinement relation
- when resolving nondeterminism
- in the context of abstractions

Trace inclusion and data abstraction

LTB2.4-21

```
:
x:=7; y:=5;
WHILE x>0 DO
    x:=x-1;
    y:=y+1
OD
:
```

Trace inclusion and data abstraction

LTB2.4-21

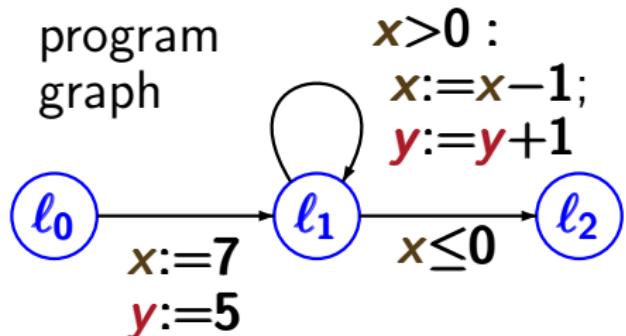
```
⋮  
 $\ell_0$   $x := 7; y := 5;$   
 $\ell_1$  WHILE  $x > 0$  DO  
     $x := x - 1;$   
     $y := y + 1$   
OD  
 $\ell_2$  ⋮
```

does $\ell_2 \wedge \text{odd}(y)$
never hold ?

Trace inclusion and data abstraction

LTB2.4-21

```
⋮  
 $l_0$   $x := 7; y := 5;$   
 $l_1$  WHILE  $x > 0$  DO  
     $x := x - 1;$   
     $y := y + 1$   
OD  
 $l_2$  ⋮
```

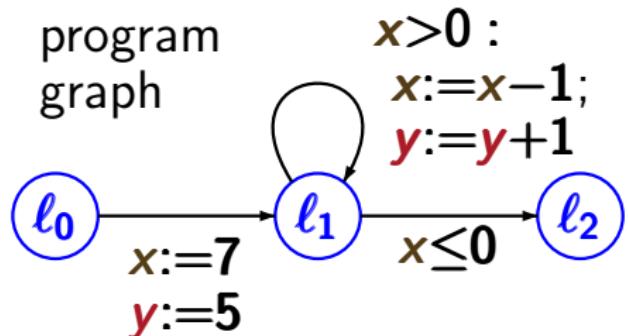


does $l_2 \wedge \text{odd}(y)$
never hold ?

Trace inclusion and data abstraction

LTB2.4-21

```
⋮  
l0 x:=7; y:=5;  
l1 WHILE x>0 DO  
      x:=x-1;  
      y:=y+1  
  OD  
l2 ⋮
```



let \mathcal{T} be the associated TS

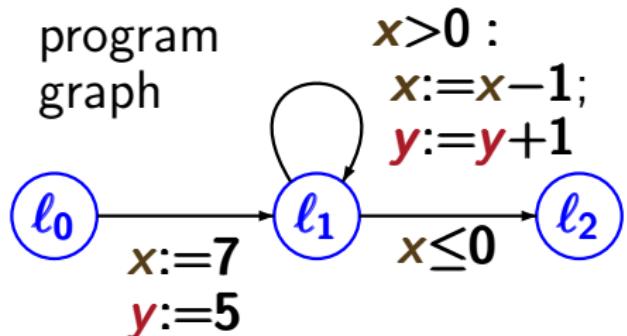
does $l_2 \wedge \text{odd}(y)$
never hold ?

← $\mathcal{T} \models \text{"never } l_2 \wedge \text{odd}(y) \text{" ?}$

Trace inclusion and data abstraction

LTB2.4-21

```
⋮  
l0 x:=7; y:=5;  
l1 WHILE x>0 DO  
      x:=x-1;  
      y:=y+1  
  OD  
l2 ⋮
```



let \mathcal{T} be the associated TS

does $l_2 \wedge \text{odd}(y)$
never hold ?

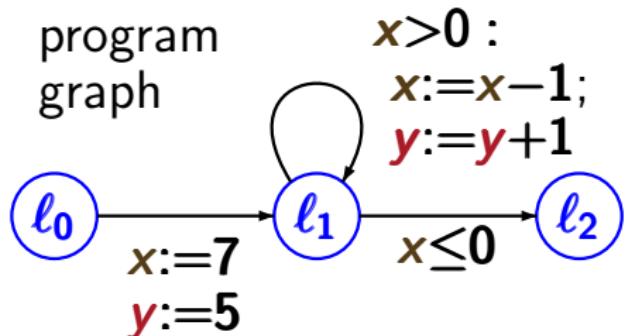
← $\mathcal{T} \models \text{"never } l_2 \wedge \text{odd}(y)"$?

data abstraction w.r.t.
the predicates
 $x>0, x=0, x \equiv_2 y$

Trace inclusion and data abstraction

LTB2.4-21

```
⋮  
l0 x:=7; y:=5;  
l1 WHILE x>0 DO  
      x:=x-1;  
      y:=y+1  
  OD  
l2 ⋮
```



let \mathcal{T} be the associated TS

does $l_2 \wedge \text{odd}(y)$
never hold ?

← $\mathcal{T} \models \text{"never } l_2 \wedge \text{odd}(y)"$?

data abstraction w.r.t.
the predicates

$x>0, x=0, x \equiv_2 y$ ← i.e., $x-y$ is even

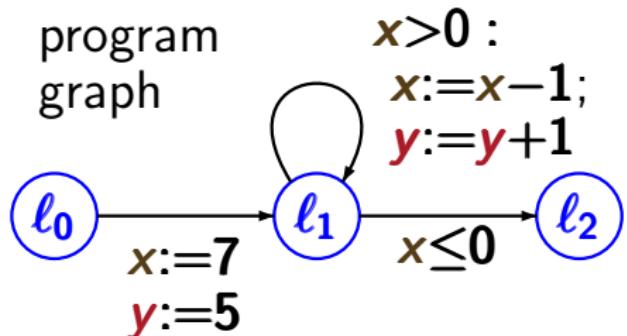
Trace inclusion and data abstraction

LTB2.4-21

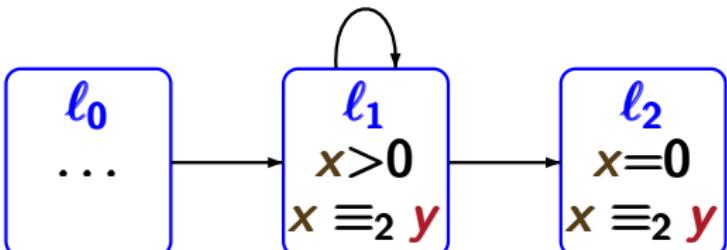
```
l0 :  
    x:=7; y:=5;  
l1 WHILE x>0 DO  
    x:=x-1;  
    y:=y+1  
OD  
l2 :  
    ...
```

does $l_2 \wedge \text{odd}(y)$
never hold ?

data abstraction w.r.t.
the predicates
 $x>0$, $x=0$, $x \equiv_2 y$



let \mathcal{T} be the associated TS



abstract transition system \mathcal{T}'

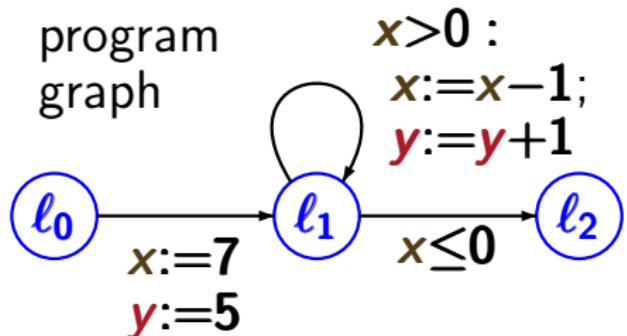
Trace inclusion and data abstraction

LTB2.4-21

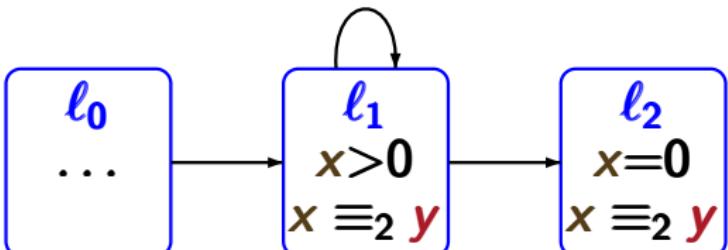
```
l0 :  
    x:=7; y:=5;  
l1 WHILE x>0 DO  
    x:=x-1;  
    y:=y+1  
OD  
l2 :  
    ...
```

does $l_2 \wedge \text{odd}(y)$
never hold ?

data abstraction w.r.t.
the predicates
 $x>0$, $x=0$, $x \equiv_2 y$



let \mathcal{T} be the associated TS



$\mathcal{T}' \models \text{"never } l_2 \wedge \text{odd}(y)"$

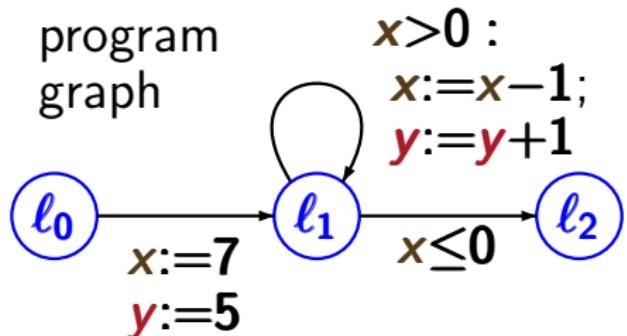
Trace inclusion and data abstraction

LTB2.4-21

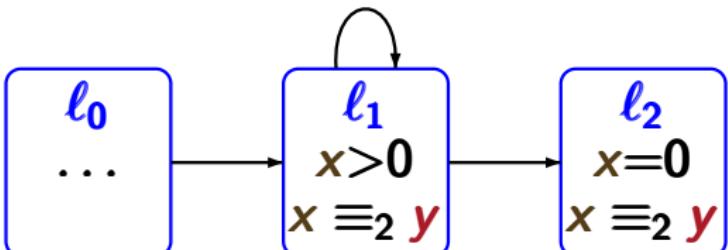
```
l0   :  
       x:=7; y:=5;  
l1   WHILE x>0 DO  
           x:=x-1;  
           y:=y+1  
       OD  
l2   :
```

does $l_2 \wedge \text{odd}(y)$
never hold ?

data abstraction w.r.t.
the predicates
 $x>0$, $x=0$, $x \equiv_2 y$



let \mathcal{T} be the associated TS



$\mathcal{T}' \models \text{"never } l_2 \wedge \text{odd}(y)"$

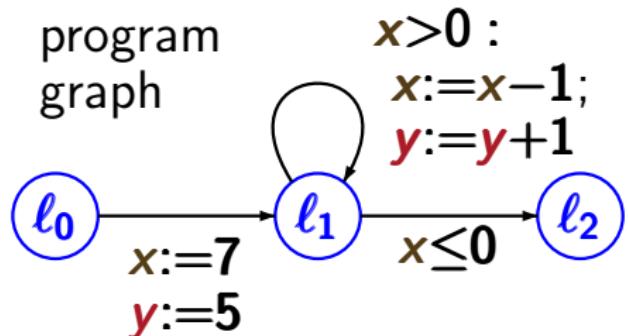
$\text{Traces}(\mathcal{T}) \subseteq \text{Traces}(\mathcal{T}')$

Trace inclusion and data abstraction

LTB2.4-21

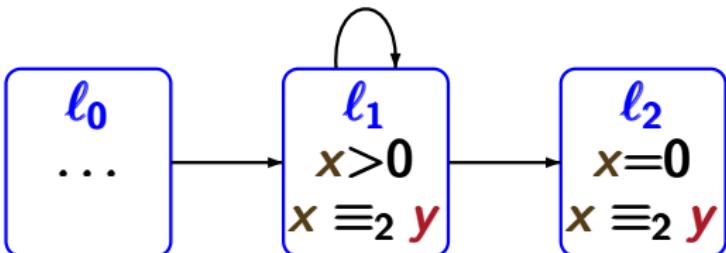
```

    :
 $l_0$   $x := 7; y := 5;$ 
 $l_1$  WHILE  $x > 0$  DO
     $x := x - 1;$ 
     $y := y + 1$ 
OD
 $l_2$  :
  
```



let \mathcal{T} be the associated TS

does $l_2 \wedge \text{odd}(y)$
never hold ?



$\mathcal{T} \models \text{"never } l_2 \wedge \text{odd}(y)" \quad \left\{ \begin{array}{l} \mathcal{T}' \models \text{"never } l_2 \wedge \text{odd}(y)" \\ \text{Traces}(\mathcal{T}) \subseteq \text{Traces}(\mathcal{T}') \end{array} \right.$

Transition systems \mathcal{T}_1 and \mathcal{T}_2 over the same set AP of atomic propositions are called **trace equivalent** iff

$$Traces(\mathcal{T}_1) = Traces(\mathcal{T}_2)$$

i.e., trace equivalence requires trace inclusion in both directions

Trace equivalent TS satisfy the **same LT properties**

Let \mathcal{T}_1 and \mathcal{T}_2 be TS over AP .

The following statements are equivalent:

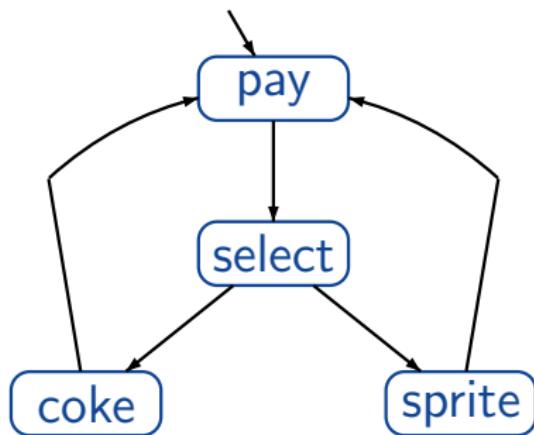
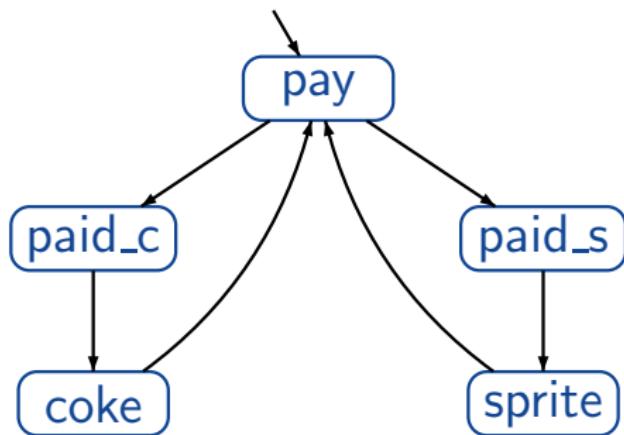
- (1) $Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2)$
- (2) for all LT-properties E : $\mathcal{T}_2 \models E \Rightarrow \mathcal{T}_1 \models E$

The following statements are equivalent:

- (1) $Traces(\mathcal{T}_1) = Traces(\mathcal{T}_2)$
- (2) for all LT-properties E : $\mathcal{T}_1 \models E$ iff $\mathcal{T}_2 \models E$

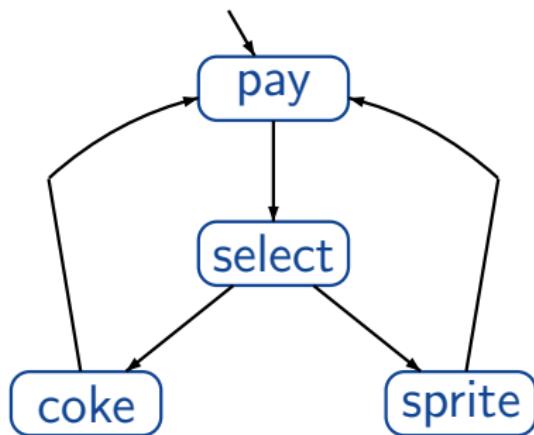
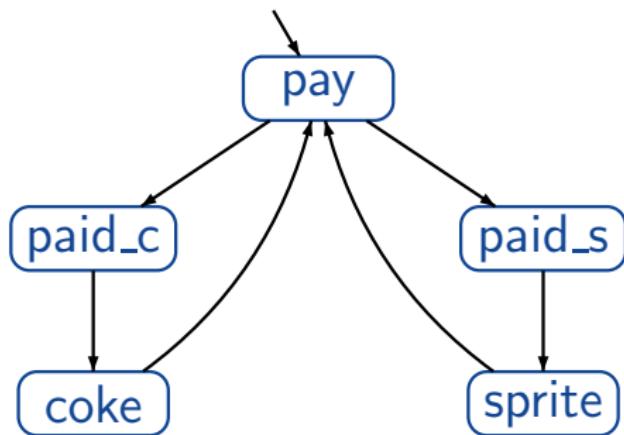
Trace equivalent beverage machines

LTB2.4-22



Trace equivalent beverage machines

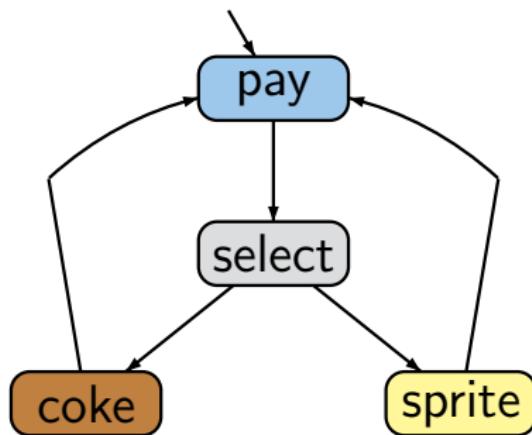
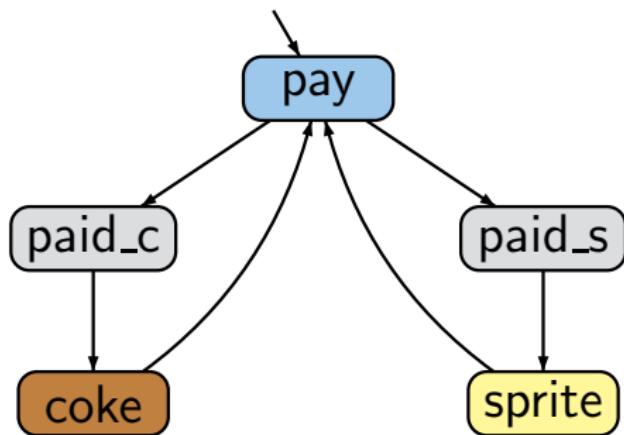
LTB2.4-22



set of atomic propositions $AP = \{ \text{pay}, \text{coke}, \text{sprite} \}$

Trace equivalent beverage machines

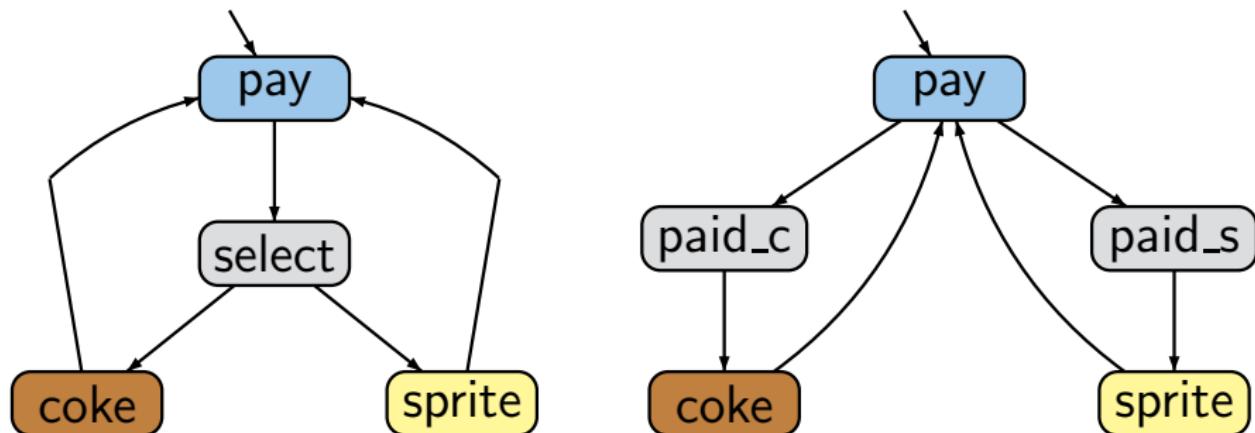
LTB2.4-22



set of atomic propositions $AP = \{ \text{pay}, \text{coke}, \text{sprite} \}$

Trace equivalent beverage machines

LTB2.4-22



set of atomic propositions $AP = \{ \text{pay}, \text{coke}, \text{sprite} \}$

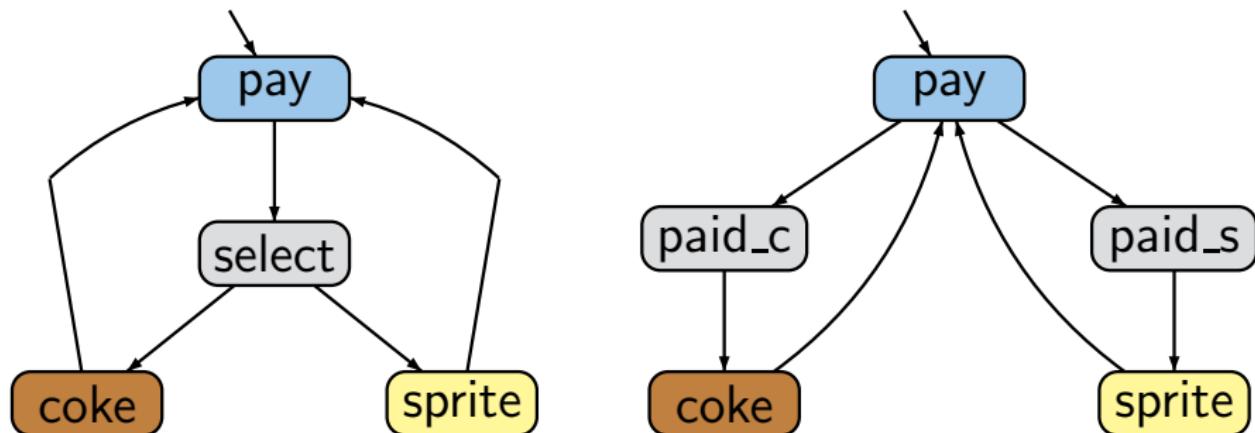
$\text{Traces}(\mathcal{T}_1) = \text{Traces}(\mathcal{T}_2) = \text{set of all infinite words}$

$\{\text{pay}\} \oslash \{\text{drink}_1\} \{\text{pay}\} \oslash \{\text{drink}_2\} \dots$

where $\text{drink}_1, \text{drink}_2, \dots \in \{\text{coke}, \text{sprite}\}$

Trace equivalent beverage machines

LTB2.4-22



set of atomic propositions $AP = \{pay, coke, sprite\}$

$Traces(\mathcal{T}_1) = Traces(\mathcal{T}_2) =$ set of all infinite words

$\{pay\} \oslash \{drink_1\} \{pay\} \oslash \{drink_2\} \dots$

\mathcal{T}_1 and \mathcal{T}_2 satisfy the same LT-properties over AP