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Classification of LT-properties 152.5-1

safety properties

“nothing bad will happen”

liveness properties

“something good will happen”
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Classification of LT-properties 152.5-1

safety properties
examples:
e mutual exclusion

e deadlock freedom

e ‘“every red phase is preceded by a yellow phase”

“nothing bad will happen”

liveness properties

“something good will happen”

150 /343



Classification of LT-properties 152.5-1

safety properties  “nothing bad will happen”
examples:
e mutual exclusion

e deadlock freedom
e ‘“every red phase is preceded by a yellow phase”

liveness properties  “something good will happen’

examples:

e ‘“each waiting process will eventually enter
its critical section”

e ‘“each philosopher will eat infinitely often”

7
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Classification of LT-properties 152.5-1

safety properties  “nothing bad will happen”

examples:

e mutual exclusion special case: invariants
e deadlock freedom “no bad state will be reached”

e ‘“every red phase is preceded by a yellow phase”

liveness properties  “something good will happen”
examples:

e ‘“each waiting process will eventually enter
its critical section”

e ‘“each philosopher will eat infinitely often”
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Propositional logic 152.5-2

¢ = true’ a|¢1/\¢2|—-¢’¢1V¢2‘¢1—>¢2‘...
T

atomic proposition, i.e., a € AP
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Propositional logic 152.5-2

¢ = true’ a|¢1/\¢2|—-¢’¢1V¢2‘¢1—>¢2‘...
T

atomic proposition, i.e., a € AP

semantics: interpretation over a subsets of AP
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Propositional logic

182.5-2

® m=tme’a|¢1A¢2|ﬂ¢’¢1v¢2‘¢yﬁd%‘u.

!

atomic proposition, i.e., a € AP

semantics: Let A C AP

A [ true
AlEa

Al -0

iff aeA

A|=¢1/\¢2 iff A|:¢1 andA|:<I>2

iff Ao
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Propositional logic 152.5-2

® m=tme’a|¢1A¢2|ﬂ¢’¢1v¢2‘¢yﬁd%‘u.
T

atomic proposition, i.e., a € AP

semantics: Let A C AP

A [ true

Ak a iff acA
A|=¢1/\¢2 iff A|:¢1andA|:¢2
Al -0 iff Ao

eg., {a,b} £ (a—-b)vec {ab} E avc
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Propositional logic

182.5-2

® m=tme’a|¢1A¢2|ﬂ¢’¢1v¢2‘¢yﬁd%‘u.

!

atomic proposition, i.e., a € AP

semantics: Let A C AP

A [ true
AlEa

Al -0

iff aeA

A|=¢1/\¢2 iff A|:¢1 andA|:<I>2

iff Ao

for state s of a TS over AP: s |= @ iff L(s) | ®
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I n Varia nt 182.5-DEF-INVARIANT

Let E be an LT property over AP.

E is called an invariant if there exists a propositional
formula ® over AP such that

E={AAA.. €2®) :Vi20.AEo}
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I n Varia nt 182.5-DEF-INVARIANT

Let E be an LT property over AP.

E is called an invariant if there exists a propositional
formula ® over AP such that

E={AAA.. €2®) :Vi20.AEo}

® is called the invariant condition of E.
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Examples for invariants 152.5-3

mutual exclusion (safety):
set of all infinite words Ag A1 As>... s.t.

MUTEX = Vi e N. crity € A; or crity € A;

here: AP = {crity, crity, ...}
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Examples for invariants 152.5-3

mutual exclusion (safety):
set of all infinite words Ag A1 As>... s.t.

MUTEX = Vi e N. crity € A; or crity € A;

invariant condition: ® = —crit; V —crity

here: AP = {crity, crity, ...}
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Examples for invariants 152.5-3

mutual exclusion (safety):
set of all infinite words Ag A1 As>... s.t.

MUTEX = Vi e N. crity € A; or crity € A;

invariant condition: ® = —crit; V —crity

deadlock freedom for 5 dining philosophers:

set of all infinite words Ag A1 A>. .. s.t.

DF = VieNdje {0, 1,2,3, 4}. waitj & A;

invariant condition:
& = —waitg V —wait; V waity V —waitz V —waity

here: AP = {wait; : 0 <j <4} uU{...}
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SatiSfaCtion Of invariants 152.5-SAT-INVARIANT

Let E be an LT property over AP. E is called an
invariant if there exists a propositional formula ® s.t.

E={AAA.. .€2®) :Vi>0AEo}
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SatiSfaCtion Of invariants 152.5-SAT-INVARIANT

Let E be an LT property over AP. E is called an
invariant if there exists a propositional formula ® s.t.

E={AAA.. .€2®) :Vi>0AEo}

Let 7 be a TS over AP without terminal states. Then:

T = E iff trace(w) € E for all w € Paths(T)
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SatiSfaCtion Of invariants 152.5-SAT-INVARIANT

Let E be an LT property over AP. E is called an
invariant if there exists a propositional formula ® s.t.

E={AAA.. .€2®) :Vi>0AEo}

Let 7 be a TS over AP without terminal states. Then:

T = E iff trace(w) € E for all w € Paths(T)
iff s = ® for all states s on a path of 7
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SatiSfaCtion Of invariants 152.5-SAT-INVARIANT

Let E be an LT property over AP. E is called an
invariant if there exists a propositional formula ® s.t.

E={AAA.. .€2®) :Vi>0AEo}

Let 7 be a TS over AP without terminal states. Then:

T = E iff trace(w) € E for all w € Paths(T)
iff s = ® for all states s on a path of 7
iff s = ® for all states s € Reach(T)

T

set of reachable states in T

171/343



SatiSfaCtion Of invariants 152.5-SAT-INVARIANT

Let E be an LT property over AP. E is called an
invariant if there exists a propositional formula ® s.t.

E={AAA.. .€2®) :Vi>0AEo}

Let 7 be a TS over AP without terminal states. Then:

T = E iff trace(w) € E for all w € Paths(T)
iff s = ® for all states s on a path of 7
iff s = ® for all states s € Reach(T)

i.e., ® holds in all initial states and
is invariant under all transitions
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Invariant checking LTPROP/152.5-6

finite transition
system T

invariant E

N\

model checker
does T |= E hold?

yes,Té n\o,\Tl#E
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Invariant checking LTPROP/152.5-6

finite transition invariant E with
system T invariant condition ®

N~

model checker
does T |= E hold?

yes,Té n\o,\Tl#E

perform a graph analysis (DFS or BFS) to check
whether s |= ® for all s € Reach(T)
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Invariant checking LTPROP/152.5-6

finite transition invariant E with
system T invariant condition @

N~

model checker
does T |= E hold?

error
yes, T 4 no, T £ E indication

perform a graph analysis (DFS or BFS) to check
whether s |= ® for all s € Reach(T)
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Invariant checking LTPROP/152.5-6

finite transition invariant E with
system T invariant condition @

N~

model checker
does T |= E hold?

error
yes, T 4 no, T £ E indication

error indication: initial path fragment sy s;...5,-15,
such that s; | ® for0 < i< nand s, £ ®

176 /343



DFS-based invariant checking UTPror/ 1257

input: finite transition system 7, invariant condition ®
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DFS-based invariant checking UTPror/ 1257

input: finite transition system 7, invariant condition ®

FOR ALL s € Sp DO
IF DFS(sp, ®) THEN

return “no”
FI
0D

return “yes”
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DFS-based invariant checking UTPror/ 1257

input: finite transition system 7, invariant condition ®

FOR ALL s € Sp DO
IF DFS(sp, ®) THEN

return “no”
FI
0D

return “yes”

DFS(sp, @) returns “true” iff depth-first search from
state sp leads to some state t with t [~ ®
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DFS-based invariant checking

LTPRroP/152.5-7

input: finite transition system 7, invariant condition ®

7 = & «—| stack for error indication
FOR ALL sy € Sp DO

IF DFS(sp, ®) THEN
return “no” and reverse()

FI
0D

return “yes”

DFS(sp, @) returns “true” iff depth-first search from
state sp leads to some state t with t £ &
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DFS-based invariant checking

LTPRroP/152.5-7

input: finite transition system 7, invariant condition ®

m := @& «—| stack for error indication
FOR ALL sy € Sp DO pam P
IF DFS(sp, ®) THEN
return “no” and reverse()
0D o 51
return “yes” %0

DFS(sp, @) returns “true” iff depth-first search from
state sp leads to some state t with t £ &
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DFS-based invariant checking UTPror/ 1257

input: finite transition system 7, invariant condition ®

U:

& «—| stores the “processed” states

T = & «—| stack for error indication

FOR ALL s5 € Sp DO

IF DFS(sp, ®) THEN

- return “no” and reverse()

0D
return “yes”

S1

So

Sp=

DFS(sp, @) returns “true” iff depth-first search from

state sp leads to some state t with t [~ ®
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Recursive algorithm DFS(s, @) 152.5-8

“searches” for a path fragment s ...t with t = ®
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Recursive algorithm DFS(s, @) 152.5-8

“searches” for a path fragment s...t with t £ ®

IF s ¢ U THEN
IF s [~ ® THEN return “true” FI
IF s |= ® THEN

FI FI

return “false”
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Recursive algorithm DFS(s, @) 152.5-8

“searches” for a path fragment s...t with t £ ®

IF s ¢ U THEN
IF s [~ ® THEN return “true” FI
IF s |= & THEN
insert s in U;

FI FI

return “false”
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Recursive algorithm DFS(s, @) 152.5-8

“searches” for a path fragment s...t with t £ ®

IF s ¢ U THEN
IF s [~ ® THEN return “true” FI
IF s |= ® THEN
insert s in U;
FOR ALL s’ € Post(s) DO

IF DFS(s’,®) THEN

. 0D return true FI
FI

return “false”
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Recursive algorithm DFS(s, @)

“searches” for a path fragment s...t with t £ ®

182.5-8

Push(m, s);
IF s ¢ U THEN

IF s [~ ® THEN return “true” FI
IF s |= ® THEN
insert s in U;

FOR

0D
FI FI

Pop(); return

ALL s’ € Post(s) DO
IF DFS(s’,®) THEN
return “true” FI

“false”
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Recursive algorithm DFS(s, @)

182.5-8

“searches” for a path fragment s...t with t £ ®

Push(m, s);
IF s ¢ U THEN
IF s [~ ® THEN return “true” FI
IF s |= & THEN
insert s in U;
FOR ALL s’ € Post(s) DO
IF DFS(s’,®) THEN

. 0D return true FI
FI

Pop(r); return “false”

So

initial
state
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Recursive algorithm DFS(s, @)

182.5-8

“searches” for a path fragment s...t with t £ ®

Push(m, s);
IF s ¢ U THEN

IF s [~ ® THEN return “true” FI

IF s |= & THEN
insert s in U;
FOR ALL s’ € Post(s) DO

IF

0D
FI FI

DFS(s', ®)

THEN

return “true” FI

Pop(r); return “false”

So

initial
state
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Recursive algorithm DFS(s, @)

182.5-8

“searches” for a path fragment s...t with t £ ®

Push(m, s);
IF s ¢ U THEN

IF s [~ ® THEN return “true” FI

IF s |= & THEN
insert s in U;
FOR ALL s’ € Post(s) DO

IF

0D
FI FI

DFS(s', ®)

THEN

return “true” FI

Pop(r); return “false”

So

initial

state

sE®
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Recursive algorithm DFS(s, @) 152.5-8

“searches” for a path fragment s...s’...t with t £ ®

Push(m, s);
IF s ¢ U THEN t |[tES
IF s [~ ® THEN return “true” FI :
IF s = ® THEN s |sE®
insert s in U; s

FOR ALL s’ € Post(s) DO
IF | DFS(s’, ®) | THEN

return “true” FI so

FI 0D initial

FI state
Pop(r); return “false”
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Example: invariant checking

invariant
condition a

50,51,52 = 4
tF a
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Example: invariant checking

invariant
condition a

50,51,52 = 4
tF a

stack

[0 ]
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Example: invariant checking

DFS(so, a)
DFS(sy, a)

invariant
condition a

50,51,52 = 4
tF a

stack

S1
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Example: invariant checking

DFS(so, a) stack
DFS(sy, a) /\)’(\
s
DFS(s, a) s(l)

invariant
condition a

50,51,52 = 4
tF a
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Example: invariant checking

DFS(so, a) stack m
DFS(sy, a) Né
DFS(sy, a) 25:

invariant
condition a

50,51,52 = 4
tF a

196 /343



Example: invariant checking

DFS(so, a)
DFS(sy, a)
DFS(sy, a)
DFS(s,, a)
invariant
condition a

50,51,52 = 4
tF a

stack

&I —&
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Example: invariant checking

DFS(so, a) stack ™
DFS(sy, a) X
DFS(sy, a) Zf:
DFS(s,, a)
DFS(t, a) :2
invariant
condition a %0

50,51,52 = 4
tF a
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Example: invariant checking

DFS(so, a)
DFS(sy, a)
DFS(sy, a)
DFS(s,, a)
DFS(t, a)
invariant
condition a

50,51,52 = 4
tF a

152.5-9

stack 7
e
e

/so\

t
52
S0
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Example: invariant checking

DFS(so, a)
DFS(sy, a)
DFS(sy, a)
DFS(s,, a)
DFS(t, a)
invariant
condition a

50,51,52 = 4
tF a

stack 7
e
e

/so\

t
52
S0
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Example: invariant checking

DFS(so, a)
DFS(sy, a)
DFS(sy, a)
DFS(s,, a)
DFS(t, a)
invariant
condition a

so,sl,si E 3 so £ “always a”

stack 7
e
e

/so\

t
52
S0
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Example: invariant checking

152.5-9

DFS(SOJ a) stack ™
DFS(s1, a) é
DFS(s, a) Zf:
DFS(s,, a)
DFS(t, a) stQ
invariant
condition a S0
S0, 51, a error
y 21, " " T .
r E 3 so F “always " indication:
SoS2t
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OverView OVERVIEW3.3

Introduction

Modelling parallel systems

Linear Time Properties
state-based and linear time view
definition of linear time properties
invariants and safety —
liveness and fairness

Regular Properties
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction
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Safety properties 152.5-10

state that “nothing bad will happen”
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Safety properties 152.5-10A

state that “nothing bad will happen”

Invariants:

e mutual exclusion: never crity A crity

e deadlock freedom: never A wait;
0<i<n

other safety properties:
e German traffic lights:
every red phase is preceded by a yellow phase
e beverage machine:

the total number of entered coins is never less
than the total number of released drinks
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Safety properties 152.5-10A

state that “nothing bad will happen”

invariants: «——| "“no bad state will be reached”

e mutual exclusion: never crity A crity

e deadlock freedom: never A wait;
0<i<n

other safety properties:
e German traffic lights:
every red phase is preceded by a yellow phase
e beverage machine:

the total number of entered coins is never less
than the total number of released drinks
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Safety properties 152.5-10A

state that “nothing bad will happen”

invariants: «——| "“no bad state will be reached”

e mutual exclusion: never crity A crity

e deadlock freedom: never A wait;
0<i<n

other safety properties: «—— “no bad prefix”
e German traffic lights:
every red phase is preceded by a yellow phase

e beverage machine:
the total number of entered coins is never less
than the total number of released drinks
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Bad prefixes of safety properties 152.5-108

e traffic lights:
every red phase is preceded by a yellow phase
T

bad prefix: finite trace fragment where a red phase
appears without being preceded by a yellow phase

eg., ... {0}{®}

13/174



Bad prefixes of safety properties 152.5-108

e traffic lights:
every red phase is preceded by a yellow phase
T

bad prefix: finite trace fragment where a red phase
appears without being preceded by a yellow phase

eg., ... {0}{®}

e beverage machine:

the total number of entered coins is never less
than the total number of released drinks

T
bad prefix, e.g., {pay} {drink} {drink}
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 Bn+3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 Bn+3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 Bn+3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.

E = set of all infinite words that
do not have a bad prefix
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 B,,.|.3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.

BadPrefg % set of bad prefixes for E
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 B,,.|.3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.

BadPrefe def set of bad prefixes for E C (2AP )+
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 B,,.|.3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.

BadPrefe def set of bad prefixes for E C (2AP )+

T
briefly: BadPref
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 B,,.|.3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.

minimal bad prefixes: any word Ag ... A; ... A, € BadPref
s.t. no proper prefix Ag... A; is a bad prefix for E
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Safety property for a traffic light 192,512
AP = {red, }

red /yellow

%]
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Safety property for a traffic light 192,512

“every red phase is
preceded by a
yellow phase”

red /yellow

%]
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Safety property for a traffic light

182.5-12

red /yellow) & yellow phase”
Z hence: T E E

E =

set of all infinite words Ag A; A, .

over 2P such that for all i € N:
red € A, = i>1 and

€ Aia

“every red phase is
preceded by a
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Safety property for a traffic light

182.5-12

red /yellow) & yellow phase”
Z hence: T E E

E =

set of all infinite words Ag A; A, .

over 2P such that for all i € N:
red € A, = i>1 and

€ Aia

red /yellow

“every red phase is
preceded by a
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Safety property for a traffic light

red /yellow

%]

182.5-12

“every red phase is

preceded by a
yellow phase”

hence: T E E

E =

set of all infinite words Ay

over 24P such that for all i € N:

red e Ai — i>1 and

AA...

€ Aia

1%

red /yellow| &

by a yellow phase”

“there is a red phase
that is not preceded
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Safety property for a traffic light

182.5-12

red /yellow) & yellow phase”
Z hence: T E E

E =

set of all infinite words Ag A; A, .

over 2P such that for all i € N:
red € A, = i>1 and

€ Aia

1%

red /yellow| &

“every red phase is
preceded by a

“there is a red phase
that is not preceded
by a yellow phase”

hence: T £ E
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Safety property for a traffic light 192,512

“every red phase is
preceded by a

red /yellow| & yellow phase”
Z hence: T E E

E = set of all infinite words Ay A; A> ...
over 24P such that for all i € N:
red € A, = i>1 and € A

TWE

bad prefix, e.g.,
o {red} & { }

31/174
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Safety property for a traffic light 192,512

“every red phase is
preceded by a

red /yellow) & yellow phase”
Z hence: T E E

E = set of all infinite words Ay A; A> ...
over 24P such that for all i € N:
red € A, = i>1 and € A

TWE

minimal bad prefix:

& {red}

%]

red /yellow
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Safety property for a traffic light 152,512

“every red phase is
preceded by a

red /yellow) & yellow phase”
Z hence: T E E

E = set of all infinite words Ay A; A> ...
over 24P such that for all i € N:
red e A = i>1 and € A

is a safety property over AP = {red, } with

BadPref = set of all finite words AgA; ... A,
over 24P st for some i € {0,...,n}:
red € A; A (i=0 \Y ¢ A,'_l)
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Satisfaction of safety properties
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Satisfaction of safety properties

Let E C (24P)“ be a safety property, 7 a TS over AP.

T EE iff Traces(T)C E

Traces(T) = set of traces of T
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Satisfaction of safety properties

Let E C (24P)“ be a safety property, 7 a TS over AP.

T EE iff Traces(T)C E
iff  Tracesgn(7) N BadPref = &

BadPref = set of all bad prefixes of E
Traces(T) = set of traces of T
Tracesgn(T) = set of finite traces of 7

= { trace(T) : T is an initial, finite path fragment of 7'}
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Satisfaction of safety properties

Let E C (24P)“ be a safety property, 7 a TS over AP.

Traces(T) C E
Traces;,(T) N BadPref = &
Tracesgin(T) N MinBadPref = &

TEE iff
iff
iff

BadPref =
MinBadPref =
Traces(T) =
Tracesgn(T) =

set of all bad prefixes of E

set of all minimal bad prefixes of E
set of traces of T

set of finite traces of 7

= { trace(T) : T is an initial, finite path fragment of 7'}
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Correct or wrong? 192513

Every invariant is a safety property.
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Correct or wrong? 192513

Every invariant is a safety property.

correct.
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Correct or wrong? 192513

Every invariant is a safety property.

correct.

Let E be an invariant with invariant condition ®.
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Correct or wrong? 192513

Every invariant is a safety property.

correct.
Let E be an invariant with invariant condition ®.

e bad prefixes for E: finite words Ay ... A ... A, s.t.
A; £ @ for some i € {0,1,...,n}
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Correct or wrong? 192513

Every invariant is a safety property.

correct.
Let E be an invariant with invariant condition ®.
e bad prefixes for E: finite words Ay ... A ... A, s.t.
A; £ @ for some i € {0,1,...,n}

e minimal bad prefixes for E:
finite words Ag Ay ...A,—1 A, such that

A E®fori=0,1,....,n—1, and A, £ ®
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Correct or wrong? 152.5-36

J is a safety property
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Correct or wrong? 152.5-36

J is a safety property

correct
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Correct or wrong? 152.5-36

J is a safety property

correct
e all finite words Ay ... A, € (24P)* are bad prefixes

45/174



Correct or wrong? 152.5-36

J is a safety property

correct
e all finite words Ay ... A, € (24P)* are bad prefixes

e J is even an invariant (invariant condition false)
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Correct or wrong? 152.5-36

J is a safety property

correct
e all finite words Ay ... A, € (24P)* are bad prefixes

e J is even an invariant (invariant condition false)

(24P)« is a safety property
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Correct or wrong? 152.5-36

J is a safety property

correct
e all finite words Ay ... A, € (24P)* are bad prefixes

e J is even an invariant (invariant condition false)

(24P)« is a safety property

correct
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Correct or wrong? 152.5-36

J is a safety property

correct
e all finite words Ay ... A, € (24P)* are bad prefixes

e J is even an invariant (invariant condition false)

(24P)« is a safety property

correct

“For all words € £2AP)“’ \ (2AP)“:
=0
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P refix CIOSU re 182.5-PREFIX-CLOSURE
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Prefix closure

182.5-PREFIX-CLOSURE

For a given infinite word 0 = Ag A1 A .. ., let

def

pref(o) = set of all nonempty, finite prefixes of o

= {AoAl...An:nZO}
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P refix CIOSU re 182.5-PREFIX-CLOSURE

For a given infinite word 0 = Ag A1 A .. ., let

pref (o) % set of all nonempty, finite prefixes of o

= {AoAl...An:nZO}

For E C (24P)”, let pref(E) U pref(o)
oc€eE
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P refix CIOSU re 182.5-PREFIX-CLOSURE

For a given infinite word 0 = Ag A1 A .. ., let

pref (o) % set of all nonempty, finite prefixes of o

{AOA1 A,, : n20}

For E C (24P)”, let pref(E) U pref(o)
oc€eE

Given an LT property E, the prefix closure of E is:
cl(E) = {a € (24P) : pref (o) C pref(E)}
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P refi X C I OS U re a n d Sa fety 182.5-SAFETY-PREFIX-CLOSURE

w
|

For any infinite word o € (2AP) et

pref(o) = set of all nonempty, finite prefixes of o
For any LT property E C (2Ap)w, let

pref(E) = |J pref(o) and

o€k

cd(E) = {o € (2%P) : pref(c) C pref(E)}
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Prefix closure and safety S

w
|

For any infinite word o € (2AP) et

pref(o) = set of all nonempty, finite prefixes of o
For any LT property E C (2Ap)w, let
pref(E) = |J pref(o) and

o€k

cd(E) = {o € (2%P) : pref(c) C pref(E)}

Theorem:

E is a safety property iff cl(E)=E
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safety and finite trace inCIUSion 182.5-SAFETY-TRACEFIN

remind: LT properties and trace inclusion:

If 71 and 75 are TS over AP then:
Traces(Ty) C Traces(T)
iff for all LT properties E: b E = T EE
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safety and finite trace inCIUSion 182.5-SAFETY-TRACEFIN

remind: LT properties and trace inclusion:

If 71 and 75 are TS over AP then:
Traces(Ty) C Traces(T)
iff for all LT properties E: b E = T EE

safety properties and finite trace inclusion:

If 71 and 75 are TS over AP then:
Tracesin(T1) C Tracesgin(72)
iff for all safety properties E: ThEFE = T EE

59 /174



safety and finite trace inCIUSion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

60 /174



s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof “=": obvious, as for safety property E:
T | E iff Tracess,(T) N BadPref = &
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof “=": obvious, as for safety property E:
T | E iff Tracess,(T) N BadPref = &

Hence:
If T, = E and Tracesg,(T1) C Tracesg,(7T2) then:

62/174



s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof “=": obvious, as for safety property E:
T | E iff Tracess,(T) N BadPref = &

Hence:
If T, = E and Tracesg,(T1) C Tracesg,(7T2) then:

Tracesfin(7T1) N BadPref
C Tracessin(T2) N BadPref = &
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof “=": obvious, as for safety property E:
T | E iff Tracess,(T) N BadPref = &

Hence:
If T, = E and Tracesg,(T1) C Tracesg,(7T2) then:

Tracesfin(7T1) N BadPref
C Tracessin(T2) N BadPref = &

and therefore 71 = E
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(73))
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
1

for each transition system 7 :
pref (Traces(T)) = Tracessin(T)
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property
T

ascl(E)=E
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property
T

ascl(E)=E
set of bad prefixes: (24P )+\ Tracesgin(7T2)
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof "<="": consider the LT property

E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; = E
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof "<="": consider the LT property

E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; |= E and therefore Traces(7;) C E.
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof "<="": consider the LT property

E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; |= E and therefore Traces(7;) C E.
Hence: Tracesgn(71) = pref(Traces(Th))
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; |= E and therefore Traces(7;) C E.
Hence: Tracesgn(71) = pref(Traces(Th))
C pref(E)
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; |= E and therefore Traces(7;) C E.
Hence: Tracesgn(71) = pref(Traces(Th))
C pref(E) = pref(cl( Traces(712)))

76 /174



s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgin(732)
iff for all safety propertiess E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; |= E and therefore Traces(7;) C E.
Hence: Tracesgn(71) = pref(Traces(Th))
C pref(E) = pref(cl( Traces(712)))
= Tracesfn(T2)
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S afety a n d fi n ite t ra Ce eq U iva I en Ce 152.5-SAFETY-TRACEEQUIV
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s afety a n d fi n ite t ra Ce eq Uiva I ence 152.5-SAFETY-TRACEEQUIV

safety properties and finite trace inclusion:

If 71 and 75 are TS over AP then:
Tracessin(T1) C Tracesgin(72)
iff for all safety properties E: ThEFE = T EE
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s afety a nd fi n ite t ra Ce eq Uiva I ence 152.5-SAFETY-TRACEEQUIV

safety properties and finite trace inclusion:

If 71 and 75 are TS over AP then:
Tracessin(T1) C Tracesgin(72)
iff for all safety properties E: ThEFE = T EE

safety properties and finite trace equivalence:
If 7; and 75 are TS over AP then:

Tracessin(T1) = Tracesgn(72)
iff 73 and 75 satisfy the same safety properties
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Summary: trace relations and properties 152.5-30

trace inclusion
Traces(T) C Traces(T") iff
for all LT properties E: T'EE=T |EE

finite trace inclusion
Tracesgin(T) C Tracesg,(T") iff
for all safety properties E: T'"EE=T E E
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Summary: trace relations and properties 152.5-30

trace equivalence
Traces(T) = Traces(T") iff
T and 7' satisfy the same LT properties

finite trace equivalence
Tracesg,(T) = Tracesg,(T") iff
T and 77 satisfy the same safety properties
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correct or wrong? 152.5-31

If Traces(T) C Traces(T")
then Tracesfi,(T) C Tracessn(7").
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correct or wrong? 152.5-31

If Traces(T) C Traces(T")
then Tracesfi,(T) C Tracessn(7").

correct, since

Tracesg,(T) = set of all finite nonempty prefixes
of words in Traces(7T)

= pref(Traces(T))
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correct or wrong? 152.5-31

If Traces(T) C Traces(T")
then Tracesfi,(T) C Tracessn(7").

correct, since

Tracesg,(T) = set of all finite nonempty prefixes
of words in Traces(7T)

= pref(Traces(T))

Tracesin(T) = {{a}" : n>1}

Traces(T = ay¥
B{a} (7) {{a}}
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Finite trace relations versus trace relations 152.5-32

Is trace equivalence the same as
finite trace equivalence 7
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Finite trace relations versus trace relations 152.5-32

Is trace equivalence the same as
finite trace equivalence 7

answer: no
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Finite trace relations versus trace relations 152.5-32

T 0

TI

O =g @={b}

set of propositions

AP = {b}
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Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {o“}

O =g @={b}

set of propositions

AP = {b}
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Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {@“}
Tracesfin(T) = {@": n> 0}

O =g @={b}

set of propositions

AP = {b}
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Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {@“}
Tracesfin(T) = {@": n> 0}
Traces(T') = {@"{b}¥:n>2}

O =g @={b}

set of propositions

AP = {b}
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Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {@“}

Tracesfin(T) = {@": n> 0}

Traces(T') = {@"{b}*:n>2}

Traces,(T') = {@":n>0} U
{@"{b}™:n>2Am2>1}
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Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {@“}

Tracesfin(T) = {@": n> 0}

Traces(T') = {@"{b}*:n>2}

Traces,(T') = {@":n>0} U
{@"{b}™:n>2Am2>1}

Traces(T) € Traces(T"), but
Tracesgin(T) C Tracessi,(T")

93/174



Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {@“}

Tracesfin(T) = {@": n> 0}

Traces(T') = {@"{b}*:n>2}

Traces,(T') = {@":n>0} U
{@"{b}™:n>2Am2>1}

LT property
E = "“eventually b"

TWE TEE

Traces(T) € Traces(T"), but
Tracesgin(T) C Tracessi,(T")
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F i n ite trace a nd trace i nc I USi On 182.5-TRACE-VS-TRACEFIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states,

(2) T is finite.
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F i n ite trace a nd trace i nc I USi On 182.5-TRACE-VS-TRACEFIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states,
i.e., all paths of 7 are infinite

(2) T is finite.
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Finite trace and trace inclusion

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states,
i.e., all paths of 7 are infinite

(2) T'is finite.

Then: Traces(T) C Traces(T")
iff  Tracesgsn(7T) C Tracessn(7T")
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Finite trace and trace inclusion

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states,
i.e., all paths of 7 are infinite

(2) T is finite.

Then: Traces(T) C Traces(T")
iff  Tracesgsn(7T) C Tracessn(7T")

“=—=>": holds for all transition systems,
no matter whether (1) and (2) hold
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Finite trace and trace inclusion

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states,
i.e., all paths of 7 are infinite

(2) T'is finite.

Then: Traces(T) C Traces(T")
iff  Tracesgsn(7T) C Tracessn(7T")

“=": holds for all transition systems
“«=": suppose that (1) and (2) hold and that
(3) Tracessin(T) C Tracessi,(T")
Show that Traces(7) C Traces(7T")
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Finite trace and trace inclusion

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T'is finite
(3) Tracesgin(T) C Tracessi,(T")

Then Traces(T) C Traces(T")

Proof:
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Finite trace and trace inclusion

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T'is finite
(3) Tracesgin(T) C Tracessi,(T")

Then Traces(T) C Traces(T")

Proof: Pick some path m =598 5 ... in 7 and show
that there exists a path

7 =tyty ty... in T’
such that trace(w) = trace(n’)
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Tracesfin versus traces 152.5-33

finite TS 77

paths from state tg
(unfolded into a tree)
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Tracesfin versus traces

finite TS 77

paths from state tg
(unfolded into a tree)

ATRRTAIRA

182.5-33

finite until
depth < n



Tracesfin versus traces 152.5-33

finite TS 77 contains all path fragments

paths from state t, with trace Ag A; ... A,

(unfolded into a tree)

finite until
depth < n

Pl
KYARS AT R
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Tracesfin versus traces 152.5-33

finite TS 77 contains all path fragments
paths from state t with trace Ag A; ... A,

(unfolded into a tree) . in particular: oty ... t,

finite until
depth < n

f(:‘r /?'I':‘t\? 4(?3! :}\
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Tracesfin versus traces 152.5-33

finite TS 77 contains all path fragments
paths from state tg with trace Ag A; ... A,
(unfolded into a tree) in particular: toty...t,

/6 }\ finite until
\ depth < n

M/ﬁ‘w ?\\}\

contains infinitely

many path fragments

m m
tn sn_|_1 eee Sm
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Tracesfin versus traces 152.5-33

finite TS 77 contains all path fragments
paths from state t with trace Ag A; ... A,
(unfolded into a tree) in particular: oty ... t,

1)

}t\ finite until
I LY. }\ depth < n

A

contains infinitely _
many path fragments there exists t,.1 € Post(t,)
m s.t. thy1 = 55y, for

thSpq--- S,
n ol o infinitely many m
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Finite trace and trace inclusion

152.5-TRACE-IM-FIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T is finite —
(3) Tracessin(T) C Tracesgn(T")
Then Traces(T) C Traces(T")

image-finiteness
is sufficient
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Finite trace and trace inclusion

152.5-TRACE-IM-FIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T is finite —
(3) Tracessin(T) C Tracesgn(T")
Then Traces(T) C Traces(T")

image-finiteness
is sufficient

image-finiteness of T = (§', Act, —, Sy, AP, L):
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Finite trace and trace inclusion

152.5-TRACE-IM-FIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T is finite —
(3) Tracessin(T) C Tracesgn(T")
Then Traces(T) C Traces(T")

image-finiteness
is sufficient

image-finiteness of T = (§', Act, —, Sy, AP, L):
e for each A € 24P and state s € S":
{t € Post(s) : L'(t) = A} is finite
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Finite trace and trace inclusion

152.5-TRACE-IM-FIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T is finite —
(3) Tracessin(T) C Tracesgn(T")
Then Traces(T) C Traces(T")

image-finiteness
is sufficient

image-finiteness of T = (§', Act, —, Sy, AP, L):
e for each A € 24P and state s € S":
{t € Post(s) : L'(t) = A} is finite
e for each A € 2%: {5y € S} : L'(s0) = A} is finite
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Trace equivalence vs. finite trace equivalence 253

Whenever Traces(7) = Traces(7") then
Tracessin(T) = Tracessn(T")
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Trace equivalence vs. finite trace equivalence 253

Whenever Traces(7) = Traces(7") then
Tracessin(T) = Tracessn(T")

while the reverse direction does not hold in general
(even not for finite transition systems)
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Trace equivalence vs. finite trace equivalence 253

Whenever Traces(7) = Traces(7") then
Tracessin(T) = Tracessn(T")

while the reverse direction does not hold in general
(even not for finite transition systems)
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Trace equivalence vs. finite trace equivalence 253

Whenever Traces(7) = Traces(7") then
Tracessin(T) = Tracessn(T")

while the reverse direction does not hold in general
(even not for finite transition systems)

finite trace equivalent,

but not trace equivalent
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Trace equivalence vs. finite trace equivalence 2531,

Whenever Traces(7) = Traces(7") then
Tracessin(T) = Tracessn(T")

The reverse implication holds under additional
assumptions, e.g.,

e if T and 77 are finite and have no terminal states

e or, if T and 7' are AP-deterministic
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