
Overview overview3.3

Introduction

Modelling parallel systems

Linear Time Properties
state-based and linear time view
definition of linear time properties
invariants and safety ←−←−←−
liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction
148 / 343

Classification of LT-properties is2.5-1

safety properties “nothing bad will happen”

liveness properties “something good will happen”

149 / 343

Classification of LT-properties is2.5-1

safety properties “nothing bad will happen”

examples:

• mutual exclusion

• deadlock freedom
• “every red phase is preceded by a yellow phase”

liveness properties “something good will happen”

150 / 343

Classification of LT-properties is2.5-1

safety properties “nothing bad will happen”

examples:

• mutual exclusion

• deadlock freedom
• “every red phase is preceded by a yellow phase”

liveness properties “something good will happen”

examples:

• “each waiting process will eventually enter
its critical section”

• “each philosopher will eat infinitely often”

151 / 343

Classification of LT-properties is2.5-1

safety properties “nothing bad will happen”

examples:

• mutual exclusion

• deadlock freedom

}
special case: invariants
“no bad state will be reached”

• “every red phase is preceded by a yellow phase”

liveness properties “something good will happen”

examples:

• “each waiting process will eventually enter
its critical section”

• “each philosopher will eat infinitely often”

152 / 343

Propositional logic is2.5-2

Φ ::= true
∣∣∣Φ ::= true
∣∣∣Φ ::= true
∣∣∣ aaa

∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ Φ1∨Φ2

∣∣∣ Φ1 → Φ2

∣∣∣ ...
∣∣∣ Φ1∨Φ2

∣∣∣ Φ1 → Φ2

∣∣∣ ...
∣∣∣ Φ1∨Φ2

∣∣∣ Φ1 → Φ2

∣∣∣ ...
↑↑↑

atomic proposition, i.e., a ∈ APa ∈ APa ∈ AP

155 / 343

Propositional logic is2.5-2

Φ ::= true
∣∣∣Φ ::= true
∣∣∣Φ ::= true
∣∣∣ aaa

∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ Φ1∨Φ2

∣∣∣ Φ1 → Φ2

∣∣∣ ...
∣∣∣ Φ1∨Φ2

∣∣∣ Φ1 → Φ2

∣∣∣ ...
∣∣∣ Φ1∨Φ2

∣∣∣ Φ1 → Φ2

∣∣∣ ...
↑↑↑

atomic proposition, i.e., a ∈ APa ∈ APa ∈ AP

semantics: interpretation over a subsets of APAPAP

156 / 343

Propositional logic is2.5-2

Φ ::= true
∣∣∣Φ ::= true
∣∣∣Φ ::= true
∣∣∣ aaa

∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ Φ1∨Φ2

∣∣∣ Φ1 → Φ2

∣∣∣ ...
∣∣∣ Φ1∨Φ2

∣∣∣ Φ1 → Φ2

∣∣∣ ...
∣∣∣ Φ1∨Φ2

∣∣∣ Φ1 → Φ2

∣∣∣ ...
↑↑↑

atomic proposition, i.e., a ∈ APa ∈ APa ∈ AP

semantics: Let A ⊆ APA ⊆ APA ⊆ AP

AAA |= true|= true|= true
AAA |= a|= a|= a iff a ∈ Aa ∈ Aa ∈ A
AAA |= Φ1∧Φ2|= Φ1∧Φ2|= Φ1∧Φ2 iff AAA |= Φ1|= Φ1|= Φ1 and AAA |= Φ2|= Φ2|= Φ2

AAA |= ¬Φ|= ¬Φ|= ¬Φ iff AAA ̸|= Φ̸|= Φ̸|= Φ

157 / 343

Propositional logic is2.5-2

Φ ::= true
∣∣∣Φ ::= true
∣∣∣Φ ::= true
∣∣∣ aaa

∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ Φ1∨Φ2

∣∣∣ Φ1 → Φ2

∣∣∣ ...
∣∣∣ Φ1∨Φ2

∣∣∣ Φ1 → Φ2

∣∣∣ ...
∣∣∣ Φ1∨Φ2

∣∣∣ Φ1 → Φ2

∣∣∣ ...
↑↑↑

atomic proposition, i.e., a ∈ APa ∈ APa ∈ AP

semantics: Let A ⊆ APA ⊆ APA ⊆ AP

AAA |= true|= true|= true
AAA |= a|= a|= a iff a ∈ Aa ∈ Aa ∈ A
AAA |= Φ1∧Φ2|= Φ1∧Φ2|= Φ1∧Φ2 iff AAA |= Φ1|= Φ1|= Φ1 and AAA |= Φ2|= Φ2|= Φ2

AAA |= ¬Φ|= ¬Φ|= ¬Φ iff AAA ̸|= Φ̸|= Φ̸|= Φ

e.g., {a, b}{a, b}{a, b} ̸|≠|≠|= (a→ ¬ b)∨c(a→ ¬ b)∨c(a→ ¬ b)∨c {a, b}{a, b}{a, b} |=|=|= a∨ca∨ca∨c

158 / 343

Propositional logic is2.5-2

Φ ::= true
∣∣∣Φ ::= true
∣∣∣Φ ::= true
∣∣∣ aaa

∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ Φ1∨Φ2

∣∣∣ Φ1 → Φ2

∣∣∣ ...
∣∣∣ Φ1∨Φ2

∣∣∣ Φ1 → Φ2

∣∣∣ ...
∣∣∣ Φ1∨Φ2

∣∣∣ Φ1 → Φ2

∣∣∣ ...
↑↑↑

atomic proposition, i.e., a ∈ APa ∈ APa ∈ AP

semantics: Let A ⊆ APA ⊆ APA ⊆ AP

AAA |= true|= true|= true
AAA |= a|= a|= a iff a ∈ Aa ∈ Aa ∈ A
AAA |= Φ1∧Φ2|= Φ1∧Φ2|= Φ1∧Φ2 iff AAA |= Φ1|= Φ1|= Φ1 and AAA |= Φ2|= Φ2|= Φ2

AAA |= ¬Φ|= ¬Φ|= ¬Φ iff AAA ̸|= Φ̸|= Φ̸|= Φ

for state sss of a TS over APAPAP : s |= Φs |= Φs |= Φ iff L(s) |= ΦL(s) |= ΦL(s) |= Φ

159 / 343

Invariant is2.5-def-invariant

Let EEE be an LT property over APAPAP.

EEE is called an invariant if there exists a propositional
formula ΦΦΦ over APAPAP such that

E =
{

A0 A1 A2 . . . ∈
(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}

161 / 343

Invariant is2.5-def-invariant

Let EEE be an LT property over APAPAP.

EEE is called an invariant if there exists a propositional
formula ΦΦΦ over APAPAP such that

E =
{

A0 A1 A2 . . . ∈
(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}

ΦΦΦ is called the invariant condition of EEE .

162 / 343

Examples for invariants is2.5-3

mutual exclusion (safety):

MUTEXMUTEXMUTEX ===
set of all infinite words A0 A1 A2 . . .A0 A1 A2 . . .A0 A1 A2 . . . s.t.
∀i ∈ N.∀i ∈ N.∀i ∈ N. crit1 ̸∈ Aicrit1 ̸∈ Aicrit1 ̸∈ Ai or crit2 ̸∈ Aicrit2 ̸∈ Aicrit2 ̸∈ Ai

here: AP = {crit1, crit2, . . .}AP = {crit1, crit2, . . .}AP = {crit1, crit2, . . .}

163 / 343

Examples for invariants is2.5-3

mutual exclusion (safety):

MUTEXMUTEXMUTEX ===
set of all infinite words A0 A1 A2 . . .A0 A1 A2 . . .A0 A1 A2 . . . s.t.
∀i ∈ N.∀i ∈ N.∀i ∈ N. crit1 ̸∈ Aicrit1 ̸∈ Aicrit1 ̸∈ Ai or crit2 ̸∈ Aicrit2 ̸∈ Aicrit2 ̸∈ Ai

invariant condition: Φ = ¬ crit1∨¬ crit2Φ = ¬ crit1∨¬ crit2Φ = ¬ crit1∨¬ crit2

here: AP = {crit1, crit2, . . .}AP = {crit1, crit2, . . .}AP = {crit1, crit2, . . .}

164 / 343

Examples for invariants is2.5-3

mutual exclusion (safety):

MUTEXMUTEXMUTEX ===
set of all infinite words A0 A1 A2 . . .A0 A1 A2 . . .A0 A1 A2 . . . s.t.
∀i ∈ N.∀i ∈ N.∀i ∈ N. crit1 ̸∈ Aicrit1 ̸∈ Aicrit1 ̸∈ Ai or crit2 ̸∈ Aicrit2 ̸∈ Aicrit2 ̸∈ Ai

invariant condition: Φ = ¬ crit1∨¬ crit2Φ = ¬ crit1∨¬ crit2Φ = ¬ crit1∨¬ crit2

deadlock freedom for 5 dining philosophers:

DFDFDF ===
set of all infinite words A0 A1 A2 . . .A0 A1 A2 . . .A0 A1 A2 . . . s.t.
∀i ∈ N ∃j ∈ {0, 1, 2, 3, 4}. waitj ̸∈ Ai∀i ∈ N ∃j ∈ {0, 1, 2, 3, 4}. waitj ̸∈ Ai∀i ∈ N ∃j ∈ {0, 1, 2, 3, 4}. waitj ̸∈ Ai

invariant condition:
Φ = ¬wait0∨¬wait1∨¬wait2∨¬wait3∨¬wait4Φ = ¬wait0∨¬wait1∨¬wait2∨¬wait3∨¬wait4Φ = ¬wait0∨¬wait1∨¬wait2∨¬wait3∨¬wait4

here: AP = {waitj : 0 ≤ j ≤ 4} ∪ {. . .}AP = {waitj : 0 ≤ j ≤ 4} ∪ {. . .}AP = {waitj : 0 ≤ j ≤ 4} ∪ {. . .}
167 / 343

Satisfaction of invariants is2.5-sat-invariant

Let EEE be an LT property over APAPAP . EEE is called an
invariant if there exists a propositional formula ΦΦΦ s.t.

E =
{

A0 A1 A2 . . . ∈
(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}

168 / 343

Satisfaction of invariants is2.5-sat-invariant

Let EEE be an LT property over APAPAP . EEE is called an
invariant if there exists a propositional formula ΦΦΦ s.t.

E =
{

A0 A1 A2 . . . ∈
(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}

Let TTT be a TS over APAPAP without terminal states. Then:

T |= ET |= ET |= E iff trace(π) ∈ Etrace(π) ∈ Etrace(π) ∈ E for all π ∈ Paths(T)π ∈ Paths(T)π ∈ Paths(T)

169 / 343

Satisfaction of invariants is2.5-sat-invariant

Let EEE be an LT property over APAPAP . EEE is called an
invariant if there exists a propositional formula ΦΦΦ s.t.

E =
{

A0 A1 A2 . . . ∈
(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}

Let TTT be a TS over APAPAP without terminal states. Then:

T |= ET |= ET |= E iff trace(π) ∈ Etrace(π) ∈ Etrace(π) ∈ E for all π ∈ Paths(T)π ∈ Paths(T)π ∈ Paths(T)

iff s |= Φs |= Φs |= Φ for all states sss on a path of TTT

170 / 343

Satisfaction of invariants is2.5-sat-invariant

Let EEE be an LT property over APAPAP . EEE is called an
invariant if there exists a propositional formula ΦΦΦ s.t.

E =
{

A0 A1 A2 . . . ∈
(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}

Let TTT be a TS over APAPAP without terminal states. Then:

T |= ET |= ET |= E iff trace(π) ∈ Etrace(π) ∈ Etrace(π) ∈ E for all π ∈ Paths(T)π ∈ Paths(T)π ∈ Paths(T)

iff s |= Φs |= Φs |= Φ for all states sss on a path of TTT
iff s |= Φs |= Φs |= Φ for all states s ∈ Reach(T)s ∈ Reach(T)s ∈ Reach(T)

↑↑↑
set of reachable states in TTT

171 / 343

Satisfaction of invariants is2.5-sat-invariant

Let EEE be an LT property over APAPAP . EEE is called an
invariant if there exists a propositional formula ΦΦΦ s.t.

E =
{

A0 A1 A2 . . . ∈
(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}

Let TTT be a TS over APAPAP without terminal states. Then:

T |= ET |= ET |= E iff trace(π) ∈ Etrace(π) ∈ Etrace(π) ∈ E for all π ∈ Paths(T)π ∈ Paths(T)π ∈ Paths(T)

iff s |= Φs |= Φs |= Φ for all states sss on a path of TTT
iff s |= Φs |= Φs |= Φ for all states s ∈ Reach(T)s ∈ Reach(T)s ∈ Reach(T)

i.e., ΦΦΦ holds in all initial states and
is invariant under all transitions

172 / 343

Invariant checking LTProp/is2.5-6

finite transition
system TTT invariant EEE

model checker

does T |= ET |= ET |= E hold?

no, T ̸|= ET ̸|= ET ̸|= Eyes, T |= ET |= ET |= E

173 / 343

Invariant checking LTProp/is2.5-6

finite transition
system TTT

invariant EEE with
invariant condition ΦΦΦ

model checker

does T |= ET |= ET |= E hold?

no, T ̸|= ET ̸|= ET ̸|= Eyes, T |= ET |= ET |= E

perform a graph analysis (DFS or BFS) to check
whether s |= Φs |= Φs |= Φ for all s ∈ Reach(T)s ∈ Reach(T)s ∈ Reach(T)

174 / 343

Invariant checking LTProp/is2.5-6

finite transition
system TTT

invariant EEE with
invariant condition ΦΦΦ

model checker

does T |= ET |= ET |= E hold?

no, T ̸|= ET ̸|= ET ̸|= Eyes, T |= ET |= ET |= E ←←← error
indication

perform a graph analysis (DFS or BFS) to check
whether s |= Φs |= Φs |= Φ for all s ∈ Reach(T)s ∈ Reach(T)s ∈ Reach(T)

175 / 343

Invariant checking LTProp/is2.5-6

finite transition
system TTT

invariant EEE with
invariant condition ΦΦΦ

model checker

does T |= ET |= ET |= E hold?

no, T ̸|= ET ̸|= ET ̸|= Eyes, T |= ET |= ET |= E ←←← error
indication

error indication: initial path fragment s0 s1 . . . sn−1sns0 s1 . . . sn−1sns0 s1 . . . sn−1sn

such that si |= Φsi |= Φsi |= Φ for 0 ≤ i < n0 ≤ i < n0 ≤ i < n and sn ̸|= Φsn ̸|= Φsn ̸|= Φ
176 / 343

DFS-based invariant checking LTProp/is2.5-7

input: finite transition system TTT , invariant condition ΦΦΦ

177 / 343

DFS-based invariant checking LTProp/is2.5-7

input: finite transition system TTT , invariant condition ΦΦΦ

FOR ALL s0 ∈ S0s0 ∈ S0s0 ∈ S0 DO

IF DFS(s0, Φ)DFS(s0, Φ)DFS(s0, Φ) THEN
return “no”

FI
OD

return “yes”

178 / 343

DFS-based invariant checking LTProp/is2.5-7

input: finite transition system TTT , invariant condition ΦΦΦ

FOR ALL s0 ∈ S0s0 ∈ S0s0 ∈ S0 DO

IF DFS(s0, Φ)DFS(s0, Φ)DFS(s0, Φ) THEN
return “no”

FI
OD

return “yes”

DFS(s0, Φ)DFS(s0, Φ)DFS(s0, Φ) returns “true” iff depth-first search from
state s0s0s0 leads to some state ttt with t ̸|= Φt ̸|= Φt ̸|= Φ

179 / 343

DFS-based invariant checking LTProp/is2.5-7

input: finite transition system TTT , invariant condition ΦΦΦ

πππ :=:=:= ∅∅∅ ←−←−←− stack for error indication

FOR ALL s0 ∈ S0s0 ∈ S0s0 ∈ S0 DO

IF DFS(s0, Φ)DFS(s0, Φ)DFS(s0, Φ) THEN
return “no” and reverse(π)reverse(π)reverse(π)

FI
OD

return “yes”

DFS(s0, Φ)DFS(s0, Φ)DFS(s0, Φ) returns “true” iff depth-first search from
state s0s0s0 leads to some state ttt with t ̸|= Φt ̸|= Φt ̸|= Φ

180 / 343

DFS-based invariant checking LTProp/is2.5-7

input: finite transition system TTT , invariant condition ΦΦΦ

πππ :=:=:= ∅∅∅ ←−←−←− stack for error indication

FOR ALL s0 ∈ S0s0 ∈ S0s0 ∈ S0 DO

IF DFS(s0, Φ)DFS(s0, Φ)DFS(s0, Φ) THEN
return “no” and reverse(π)reverse(π)reverse(π)

FI
OD

return “yes”

sn sn=t
...

s1

s0

sn sn=t
...

s1

s0

sn sn=t
...

s1

s0

DFS(s0, Φ)DFS(s0, Φ)DFS(s0, Φ) returns “true” iff depth-first search from
state s0s0s0 leads to some state ttt with t ̸|= Φt ̸|= Φt ̸|= Φ

181 / 343

DFS-based invariant checking LTProp/is2.5-7

input: finite transition system TTT , invariant condition ΦΦΦ

UUU :=:=:= ∅∅∅ ←−←−←− stores the “processed” states

πππ :=:=:= ∅∅∅ ←−←−←− stack for error indication

FOR ALL s0 ∈ S0s0 ∈ S0s0 ∈ S0 DO

IF DFS(s0, Φ)DFS(s0, Φ)DFS(s0, Φ) THEN
return “no” and reverse(π)reverse(π)reverse(π)

FI
OD

return “yes”

sn sn=t
...

s1

s0

sn sn=t
...

s1

s0

sn sn=t
...

s1

s0

DFS(s0, Φ)DFS(s0, Φ)DFS(s0, Φ) returns “true” iff depth-first search from
state s0s0s0 leads to some state ttt with t ̸|= Φt ̸|= Φt ̸|= Φ

182 / 343

Recursive algorithm DFS(s , Φ)DFS(s , Φ)DFS(s, Φ) is2.5-8

“searches” for a path fragment s . . . ts . . . ts . . . t with t ̸|= Φt ̸|= Φt ̸|= Φ

183 / 343

Recursive algorithm DFS(s , Φ)DFS(s , Φ)DFS(s, Φ) is2.5-8

“searches” for a path fragment s . . . ts . . . ts . . . t with t ̸|= Φt ̸|= Φt ̸|= Φ

IF s /∈ Us /∈ Us /∈ U THEN

IF s ̸|= Φs ̸|= Φs ̸|= Φ THEN return “true” FI

IF s |= Φs |= Φs |= Φ THEN

...

......

FI
FI

return “false”

184 / 343

Recursive algorithm DFS(s , Φ)DFS(s , Φ)DFS(s, Φ) is2.5-8

“searches” for a path fragment s . . . ts . . . ts . . . t with t ̸|= Φt ̸|= Φt ̸|= Φ

IF s /∈ Us /∈ Us /∈ U THEN

IF s ̸|= Φs ̸|= Φs ̸|= Φ THEN return “true” FI

IF s |= Φs |= Φs |= Φ THEN

insert sss in U ;U ;U;

FI
FI

return “false”

185 / 343

Recursive algorithm DFS(s , Φ)DFS(s , Φ)DFS(s, Φ) is2.5-8

“searches” for a path fragment s . . . ts . . . ts . . . t with t ̸|= Φt ̸|= Φt ̸|= Φ

IF s /∈ Us /∈ Us /∈ U THEN

IF s ̸|= Φs ̸|= Φs ̸|= Φ THEN return “true” FI

IF s |= Φs |= Φs |= Φ THEN

insert sss in U ;U ;U;
FOR ALL s ′ ∈ Post(s)s ′ ∈ Post(s)s ′ ∈ Post(s) DO

IF DFS(s ′, Φ)DFS(s ′, Φ)DFS(s ′, Φ) THEN

return “true” FI
OD

FI
FI

return “false”

186 / 343

Recursive algorithm DFS(s , Φ)DFS(s , Φ)DFS(s, Φ) is2.5-8

“searches” for a path fragment s . . . ts . . . ts . . . t with t ̸|= Φt ̸|= Φt ̸|= Φ

Push(π, s);Push(π, s);Push(π, s);
IF s /∈ Us /∈ Us /∈ U THEN

IF s ̸|= Φs ̸|= Φs ̸|= Φ THEN return “true” FI

IF s |= Φs |= Φs |= Φ THEN

insert sss in U ;U ;U;
FOR ALL s ′ ∈ Post(s)s ′ ∈ Post(s)s ′ ∈ Post(s) DO

IF DFS(s ′, Φ)DFS(s ′, Φ)DFS(s ′, Φ) THEN

return “true” FI
OD

FI
FI

Pop(π);Pop(π);Pop(π); return “false”

187 / 343

Recursive algorithm DFS(s , Φ)DFS(s , Φ)DFS(s, Φ) is2.5-8

“searches” for a path fragment s . . . ts . . . ts . . . t with t ̸|= Φt ̸|= Φt ̸|= Φ

Push(π, s);Push(π, s);Push(π, s);
IF s /∈ Us /∈ Us /∈ U THEN

IF s ̸|= Φs ̸|= Φs ̸|= Φ THEN return “true” FI

IF s |= Φs |= Φs |= Φ THEN

insert sss in U ;U ;U;
FOR ALL s ′ ∈ Post(s)s ′ ∈ Post(s)s ′ ∈ Post(s) DO

IF DFS(s ′, Φ)DFS(s ′, Φ)DFS(s ′, Φ) THEN

return “true” FI
OD

FI
FI

Pop(π);Pop(π);Pop(π); return “false”

s
...

s0

s
...

s0

s
...

s0

initial
state

188 / 343

Recursive algorithm DFS(s , Φ)DFS(s , Φ)DFS(s, Φ) is2.5-8

“searches” for a path fragment s . . . ts . . . ts . . . t with t ̸|= Φt ̸|= Φt ̸|= Φ

Push(π, s);Push(π, s);Push(π, s);
IF s /∈ Us /∈ Us /∈ U THEN

IF s ̸|= Φs ̸|= Φs ̸|= Φ THEN return “true” FI

IF s |= Φs |= Φs |= Φ THEN

insert sss in U ;U ;U;
FOR ALL s ′ ∈ Post(s)s ′ ∈ Post(s)s ′ ∈ Post(s) DO

IF DFS(s ′, Φ)DFS(s ′, Φ)DFS(s ′, Φ) THEN

return “true” FI
OD

FI
FI

Pop(π);Pop(π);Pop(π); return “false”

s ′

s
...

s0

s ′

s
...

s0

s ′

s
...

s0

initial
state

189 / 343

Recursive algorithm DFS(s , Φ)DFS(s , Φ)DFS(s, Φ) is2.5-8

“searches” for a path fragment s . . . ts . . . ts . . . t with t ̸|= Φt ̸|= Φt ̸|= Φ

Push(π, s);Push(π, s);Push(π, s);
IF s /∈ Us /∈ Us /∈ U THEN

IF s ̸|= Φs ̸|= Φs ̸|= Φ THEN return “true” FI

IF s |= Φs |= Φs |= Φ THEN

insert sss in U ;U ;U;
FOR ALL s ′ ∈ Post(s)s ′ ∈ Post(s)s ′ ∈ Post(s) DO

IF DFS(s ′, Φ)DFS(s ′, Φ)DFS(s ′, Φ) THEN

return “true” FI
OD

FI
FI

Pop(π);Pop(π);Pop(π); return “false”

s ′ s ′ |= Φ
s
...

s0

s ′ s ′ |= Φ
s
...

s0

s ′ s ′ |= Φ
s
...

s0

initial
state

190 / 343

Recursive algorithm DFS(s , Φ)DFS(s , Φ)DFS(s, Φ) is2.5-8

“searches” for a path fragment s . . . s ′. . . ts . . . s ′. . . ts . . . s ′. . . t with t ̸|= Φt ̸|= Φt ̸|= Φ

Push(π, s);Push(π, s);Push(π, s);
IF s /∈ Us /∈ Us /∈ U THEN

IF s ̸|= Φs ̸|= Φs ̸|= Φ THEN return “true” FI

IF s |= Φs |= Φs |= Φ THEN

insert sss in U ;U ;U;
FOR ALL s ′ ∈ Post(s)s ′ ∈ Post(s)s ′ ∈ Post(s) DO

IF DFS(s ′, Φ)DFS(s ′, Φ)DFS(s ′, Φ) THEN

return “true” FI
OD

FI
FI

Pop(π);Pop(π);Pop(π); return “false”

t t ̸|= Φ
...
s ′ s ′ |= Φ
s
...

s0

t t ̸|= Φ
...
s ′ s ′ |= Φ
s
...

s0

t t ̸|= Φ
...
s ′ s ′ |= Φ
s
...

s0

initial
state

191 / 343

Example: invariant checking is2.5-9

s0s0s0

s1s1s1 s2s2s2

ttt

{a}{a}{a}
{a}{a}{a}

{a}{a}{a}

∅∅∅

.

invariant
condition aaa

s0, s1, s2s0, s1, s2s0, s1, s2 |=|=|= aaa
ttt ̸|≠|≠|= aaa

.........

192 / 343

Example: invariant checking is2.5-9

s0s0s0

s1s1s1 s2s2s2

ttt

{a}{a}{a}
{a}{a}{a}

{a}{a}{a}

∅∅∅

.

invariant
condition aaa

s0, s1, s2s0, s1, s2s0, s1, s2 |=|=|= aaa
ttt ̸|≠|≠|= aaa

......... DFS(s0, a)DFS(s0, a)DFS(s0, a)
stack πππ

s0s0s0

193 / 343

Example: invariant checking is2.5-9

s0s0s0

s1s1s1 s2s2s2

ttt

{a}{a}{a}
{a}{a}{a}

{a}{a}{a}

∅∅∅

.

invariant
condition aaa

s0, s1, s2s0, s1, s2s0, s1, s2 |=|=|= aaa
ttt ̸|≠|≠|= aaa

......... DFS(s0, a)DFS(s0, a)DFS(s0, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

stack πππ

s1s1s1

s0s0s0

194 / 343

Example: invariant checking is2.5-9

s0s0s0

s1s1s1 s2s2s2

ttt

{a}{a}{a}
{a}{a}{a}

{a}{a}{a}

∅∅∅

.

invariant
condition aaa

s0, s1, s2s0, s1, s2s0, s1, s2 |=|=|= aaa
ttt ̸|≠|≠|= aaa

......... DFS(s0, a)DFS(s0, a)DFS(s0, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

stack πππ

%
%%❅
❅❅
s1%
%%❅
❅❅
s1%
%%❅
❅❅
s1
s1s1s1

s0s0s0

195 / 343

Example: invariant checking is2.5-9

s0s0s0

s1s1s1 s2s2s2

ttt

{a}{a}{a}
{a}{a}{a}

{a}{a}{a}

∅∅∅

.

invariant
condition aaa

s0, s1, s2s0, s1, s2s0, s1, s2 |=|=|= aaa
ttt ̸|≠|≠|= aaa

......... DFS(s0, a)DFS(s0, a)DFS(s0, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

stack πππ

%
%%❅
❅❅
s1%
%%❅
❅❅
s1%
%%❅
❅❅
s1

%
%%❅
❅❅
s1%
%%❅
❅❅
s1%
%%❅
❅❅
s1
s0s0s0

196 / 343

Example: invariant checking is2.5-9

s0s0s0

s1s1s1 s2s2s2

ttt

{a}{a}{a}
{a}{a}{a}

{a}{a}{a}

∅∅∅

.

invariant
condition aaa

s0, s1, s2s0, s1, s2s0, s1, s2 |=|=|= aaa
ttt ̸|≠|≠|= aaa

......... DFS(s0, a)DFS(s0, a)DFS(s0, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

DFS(s2, a)DFS(s2, a)DFS(s2, a)

stack πππ

%
%%❅
❅❅
s1%
%%❅
❅❅
s1%
%%❅
❅❅
s1

%
%%❅
❅❅
s1%
%%❅
❅❅
s1%
%%❅
❅❅
s1
s0s0s0

s2s2s2

s0s0s0

197 / 343

Example: invariant checking is2.5-9

s0s0s0

s1s1s1 s2s2s2

ttt

{a}{a}{a}
{a}{a}{a}

{a}{a}{a}

∅∅∅

.

invariant
condition aaa

s0, s1, s2s0, s1, s2s0, s1, s2 |=|=|= aaa
ttt ̸|≠|≠|= aaa

......... DFS(s0, a)DFS(s0, a)DFS(s0, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

DFS(s2, a)DFS(s2, a)DFS(s2, a)

DFS(t, a)DFS(t, a)DFS(t, a)

stack πππ

%
%%❅
❅❅
s1%
%%❅
❅❅
s1%
%%❅
❅❅
s1

%
%%❅
❅❅
s1%
%%❅
❅❅
s1%
%%❅
❅❅
s1
s0s0s0

ttt
s2s2s2

s0s0s0

198 / 343

Example: invariant checking is2.5-9

s0s0s0

s1s1s1 s2s2s2

ttt

{a}{a}{a}
{a}{a}{a}

{a}{a}{a}

∅∅∅

.

invariant
condition aaa

s0, s1, s2s0, s1, s2s0, s1, s2 |=|=|= aaa
ttt ̸|≠|≠|= aaa

......... DFS(s0, a)DFS(s0, a)DFS(s0, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

DFS(s2, a)DFS(s2, a)DFS(s2, a)

DFS(t, a)DFS(t, a)DFS(t, a)

stack πππ

%
%%❅
❅❅
s1%
%%❅
❅❅
s1%
%%❅
❅❅
s1

%
%%❅
❅❅
s1%
%%❅
❅❅
s1%
%%❅
❅❅
s1
s0s0s0

ttt
s2s2s2

s0s0s0

199 / 343

Example: invariant checking is2.5-9

s0s0s0

s1s1s1 s2s2s2

ttt

{a}{a}{a}
{a}{a}{a}

{a}{a}{a}

∅∅∅

.

invariant
condition aaa

s0, s1, s2s0, s1, s2s0, s1, s2 |=|=|= aaa
ttt ̸|≠|≠|= aaa

......... DFS(s0, a)DFS(s0, a)DFS(s0, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

DFS(s2, a)DFS(s2, a)DFS(s2, a)

DFS(t, a)DFS(t, a)DFS(t, a)

stack πππ

%
%%❅
❅❅
s1%
%%❅
❅❅
s1%
%%❅
❅❅
s1

%
%%❅
❅❅
s1%
%%❅
❅❅
s1%
%%❅
❅❅
s1
s0s0s0

ttt
s2s2s2

s0s0s0

200 / 343

Example: invariant checking is2.5-9

s0s0s0

s1s1s1 s2s2s2

ttt

{a}{a}{a}
{a}{a}{a}

{a}{a}{a}

∅∅∅

.

invariant
condition aaa

s0, s1, s2s0, s1, s2s0, s1, s2 |=|=|= aaa
ttt ̸|≠|≠|= aaa

......... DFS(s0, a)DFS(s0, a)DFS(s0, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

DFS(s2, a)DFS(s2, a)DFS(s2, a)

DFS(t, a)DFS(t, a)DFS(t, a)

s0 ̸|=s0 ̸|=s0 ̸|= “always aaa”

stack πππ

%
%%❅
❅❅
s1%
%%❅
❅❅
s1%
%%❅
❅❅
s1

%
%%❅
❅❅
s1%
%%❅
❅❅
s1%
%%❅
❅❅
s1
s0s0s0

ttt
s2s2s2

s0s0s0

201 / 343

Example: invariant checking is2.5-9

s0s0s0

s1s1s1 s2s2s2

ttt

{a}{a}{a}
{a}{a}{a}

{a}{a}{a}

∅∅∅

.

invariant
condition aaa

s0, s1, s2s0, s1, s2s0, s1, s2 |=|=|= aaa
ttt ̸|≠|≠|= aaa

......... DFS(s0, a)DFS(s0, a)DFS(s0, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

DFS(s1, a)DFS(s1, a)DFS(s1, a)

DFS(s2, a)DFS(s2, a)DFS(s2, a)

DFS(t, a)DFS(t, a)DFS(t, a)

s0 ̸|=s0 ̸|=s0 ̸|= “always aaa” ←←←
error

indication:
s0 s2 ts0 s2 ts0 s2 t

stack πππ

%
%%❅
❅❅
s1%
%%❅
❅❅
s1%
%%❅
❅❅
s1

%
%%❅
❅❅
s1%
%%❅
❅❅
s1%
%%❅
❅❅
s1
s0s0s0

ttt
s2s2s2

s0s0s0

202 / 343

Overview overview3.3

Introduction

Modelling parallel systems

Linear Time Properties
state-based and linear time view
definition of linear time properties
invariants and safety ←−←−←−
liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction
1 / 174

Safety properties is2.5-10

state that “nothing bad will happen”

5 / 174

Safety properties is2.5-10a

state that “nothing bad will happen”

invariants:

• mutual exclusion: never crit1 ∧crit2crit1 ∧crit2crit1 ∧crit2
• deadlock freedom: never

∧
0≤i<n

waiti
∧

0≤i<n
waiti

∧
0≤i<n

waiti

other safety properties:
• German traffic lights:

every red phase is preceded by a yellow phase

• beverage machine:
the total number of entered coins is never less

than the total number of released drinks
9 / 174

Safety properties is2.5-10a

state that “nothing bad will happen”

invariants: ←−←−←− “no bad state will be reached”

• mutual exclusion: never crit1 ∧crit2crit1 ∧crit2crit1 ∧crit2
• deadlock freedom: never

∧
0≤i<n

waiti
∧

0≤i<n
waiti

∧
0≤i<n

waiti

other safety properties:
• German traffic lights:

every red phase is preceded by a yellow phase

• beverage machine:
the total number of entered coins is never less

than the total number of released drinks
10 / 174

Safety properties is2.5-10a

state that “nothing bad will happen”

invariants: ←−←−←− “no bad state will be reached”

• mutual exclusion: never crit1 ∧crit2crit1 ∧crit2crit1 ∧crit2
• deadlock freedom: never

∧
0≤i<n

waiti
∧

0≤i<n
waiti

∧
0≤i<n

waiti

other safety properties: ←−←−←− “no bad prefix”
• German traffic lights:

every red phase is preceded by a yellow phase

• beverage machine:
the total number of entered coins is never less

than the total number of released drinks
11 / 174

Bad prefixes of safety properties is2.5-10b

• traffic lights:

every red phase is preceded by a yellow phase
↑↑↑

bad prefix: finite trace fragment where a red phase
appears without being preceded by a yellow phase

e.g., . . . {•} {•}. . . {•} {•}. . . {•} {•}

13 / 174

Bad prefixes of safety properties is2.5-10b

• traffic lights:

every red phase is preceded by a yellow phase
↑↑↑

bad prefix: finite trace fragment where a red phase
appears without being preceded by a yellow phase

e.g., . . . {•} {•}. . . {•} {•}. . . {•} {•}
• beverage machine:

the total number of entered coins is never less
than the total number of released drinks

↑↑↑
bad prefix, e.g., {pay} {drink} {drink}{pay} {drink} {drink}{pay} {drink} {drink}

15 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

16 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

EEE is called a safety property if for all words

σ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ E

there exists a finite prefix A0 A1... AnA0 A1... AnA0 A1... An of σσσ such that
none of the words A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...
belongs to EEE , i.e.,

E ∩
{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... An is a prefix of σ′

}
= ∅σ′

}
= ∅σ′

}
= ∅

18 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

EEE is called a safety property if for all words

σ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ E

there exists a finite prefix A0 A1... AnA0 A1... AnA0 A1... An of σσσ such that
none of the words A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...
belongs to EEE , i.e.,

E ∩
{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... An is a prefix of σ′

}
= ∅σ′

}
= ∅σ′

}
= ∅

Such words A0 A1 ... AnA0 A1 ... AnA0 A1 ... An are called bad prefixes for EEE .

19 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

EEE is called a safety property if for all words

σ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ E

there exists a finite prefix A0 A1... AnA0 A1... AnA0 A1... An of σσσ such that
none of the words A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...
belongs to EEE , i.e.,

E ∩
{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... An is a prefix of σ′

}
= ∅σ′

}
= ∅σ′

}
= ∅

Such words A0 A1 ... AnA0 A1 ... AnA0 A1 ... An are called bad prefixes for EEE .

E =E =E = set of all infinite words that
do not have a bad prefix

20 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

EEE is called a safety property if for all words

σ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ E

there exists a finite prefix A0 A1... AnA0 A1... AnA0 A1... An of σσσ such that
none of the words A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...
belongs to EEE , i.e.,

E ∩
{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... An is a prefix of σ′

}
= ∅σ′

}
= ∅σ′

}
= ∅

Such words A0 A1 ... AnA0 A1 ... AnA0 A1 ... An are called bad prefixes for EEE .

BadPrefE
def
=BadPrefE
def
=BadPrefE
def
= set of bad prefixes for EEE

21 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

EEE is called a safety property if for all words

σ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ E

there exists a finite prefix A0 A1... AnA0 A1... AnA0 A1... An of σσσ such that
none of the words A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...
belongs to EEE , i.e.,

E ∩
{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... An is a prefix of σ′

}
= ∅σ′

}
= ∅σ′

}
= ∅

Such words A0 A1 ... AnA0 A1 ... AnA0 A1 ... An are called bad prefixes for EEE .

BadPrefE
def
=BadPrefE
def
=BadPrefE
def
= set of bad prefixes for EEE ⊆

(
2AP

)+⊆
(
2AP

)+⊆
(
2AP

)+

22 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

EEE is called a safety property if for all words

σ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ E

there exists a finite prefix A0 A1... AnA0 A1... AnA0 A1... An of σσσ such that
none of the words A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...
belongs to EEE , i.e.,

E ∩
{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... An is a prefix of σ′

}
= ∅σ′

}
= ∅σ′

}
= ∅

Such words A0 A1 ... AnA0 A1 ... AnA0 A1 ... An are called bad prefixes for EEE .

BadPrefE
def
=BadPrefE
def
=BadPrefE
def
= set of bad prefixes for EEE ⊆

(
2AP

)+⊆
(
2AP

)+⊆
(
2AP

)+

↑↑↑
briefly: BadPrefBadPrefBadPref

23 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

EEE is called a safety property if for all words

σ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ E

there exists a finite prefix A0 A1... AnA0 A1... AnA0 A1... An of σσσ such that
none of the words A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...
belongs to EEE , i.e.,

E ∩
{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... An is a prefix of σ′

}
= ∅σ′

}
= ∅σ′

}
= ∅

Such words A0 A1 ... AnA0 A1 ... AnA0 A1 ... An are called bad prefixes for EEE .

minimal bad prefixes: any word A0 ... Ai ... An ∈BadPrefA0 ... Ai ... An ∈BadPrefA0 ... Ai ... An ∈BadPref
s.t. no proper prefix A0 ... AiA0 ... AiA0 ... Ai is a bad prefix for EEE

24 / 174

Safety property for a traffic light is2.5-12

red

yellow

green

red/yellow ∅∅∅

∅∅∅

AP = {red , yellow}AP = {red , yellow}AP = {red , yellow}

25 / 174

Safety property for a traffic light is2.5-12

red

yellow

green

red/yellow ∅∅∅

∅∅∅

“every red phase is
preceded by a
yellow phase”

26 / 174

Safety property for a traffic light is2.5-12

red

yellow

green

red/yellow ∅∅∅

∅∅∅

“every red phase is
preceded by a
yellow phase”

hence: T |= ET |= ET |= E

E =E =E = set of all infinite words A0 A1 A2 ...A0 A1 A2 ...A0 A1 A2 ...
over 2AP2AP2AP such that for all i ∈Ni ∈Ni ∈N:
red ∈Ai =⇒ i ≥ 1red ∈Ai =⇒ i ≥ 1red ∈Ai =⇒ i ≥ 1 and yellow ∈Ai−1yellow ∈Ai−1yellow ∈Ai−1

27 / 174

Safety property for a traffic light is2.5-12

red

yellow

green

red/yellow ∅∅∅

∅∅∅

“every red phase is
preceded by a
yellow phase”

hence: T |= ET |= ET |= E

E =E =E = set of all infinite words A0 A1 A2 ...A0 A1 A2 ...A0 A1 A2 ...
over 2AP2AP2AP such that for all i ∈Ni ∈Ni ∈N:
red ∈Ai =⇒ i ≥ 1red ∈Ai =⇒ i ≥ 1red ∈Ai =⇒ i ≥ 1 and yellow ∈Ai−1yellow ∈Ai−1yellow ∈Ai−1

red

yellow

green red/yellow ∅∅∅
∅∅∅

28 / 174

Safety property for a traffic light is2.5-12

red

yellow

green

red/yellow ∅∅∅

∅∅∅

“every red phase is
preceded by a
yellow phase”

hence: T |= ET |= ET |= E

E =E =E = set of all infinite words A0 A1 A2 ...A0 A1 A2 ...A0 A1 A2 ...
over 2AP2AP2AP such that for all i ∈Ni ∈Ni ∈N:
red ∈Ai =⇒ i ≥ 1red ∈Ai =⇒ i ≥ 1red ∈Ai =⇒ i ≥ 1 and yellow ∈Ai−1yellow ∈Ai−1yellow ∈Ai−1

red

yellow

green red/yellow ∅∅∅
∅∅∅

“there is a red phase
that is not preceded
by a yellow phase”

29 / 174

Safety property for a traffic light is2.5-12

red

yellow

green

red/yellow ∅∅∅

∅∅∅

“every red phase is
preceded by a
yellow phase”

hence: T |= ET |= ET |= E

E =E =E = set of all infinite words A0 A1 A2 ...A0 A1 A2 ...A0 A1 A2 ...
over 2AP2AP2AP such that for all i ∈Ni ∈Ni ∈N:
red ∈Ai =⇒ i ≥ 1red ∈Ai =⇒ i ≥ 1red ∈Ai =⇒ i ≥ 1 and yellow ∈Ai−1yellow ∈Ai−1yellow ∈Ai−1

red

yellow

green red/yellow ∅∅∅
∅∅∅

“there is a red phase
that is not preceded
by a yellow phase”

hence: T ̸|= ET ̸|= ET ̸|= E
30 / 174

Safety property for a traffic light is2.5-12

red

yellow

green

red/yellow ∅∅∅

∅∅∅

“every red phase is
preceded by a
yellow phase”

hence: T |= ET |= ET |= E

E =E =E = set of all infinite words A0 A1 A2 ...A0 A1 A2 ...A0 A1 A2 ...
over 2AP2AP2AP such that for all i ∈Ni ∈Ni ∈N:
red ∈Ai =⇒ i ≥ 1red ∈Ai =⇒ i ≥ 1red ∈Ai =⇒ i ≥ 1 and yellow ∈Ai−1yellow ∈Ai−1yellow ∈Ai−1

red

yellow

green red/yellow ∅∅∅
∅∅∅

T ̸|= ET ̸|= ET ̸|= E

bad prefix, e.g.,
∅ {red}∅ {yellow}∅ {red}∅ {yellow}∅ {red}∅ {yellow}

31 / 174

Safety property for a traffic light is2.5-12

red

yellow

green

red/yellow ∅∅∅

∅∅∅

“every red phase is
preceded by a
yellow phase”

hence: T |= ET |= ET |= E

E =E =E = set of all infinite words A0 A1 A2 ...A0 A1 A2 ...A0 A1 A2 ...
over 2AP2AP2AP such that for all i ∈Ni ∈Ni ∈N:
red ∈Ai =⇒ i ≥ 1red ∈Ai =⇒ i ≥ 1red ∈Ai =⇒ i ≥ 1 and yellow ∈Ai−1yellow ∈Ai−1yellow ∈Ai−1

red

yellow

green red/yellow ∅∅∅
∅∅∅

T ̸|= ET ̸|= ET ̸|= E

minimal bad prefix:
∅ {red}∅ {red}∅ {red}

32 / 174

Safety property for a traffic light is2.5-12a

red

yellow

green

red/yellow ∅∅∅

∅∅∅

“every red phase is
preceded by a
yellow phase”

hence: T |= ET |= ET |= E

E =E =E = set of all infinite words A0 A1 A2 ...A0 A1 A2 ...A0 A1 A2 ...
over 2AP2AP2AP such that for all i ∈Ni ∈Ni ∈N:
red ∈Ai =⇒ i ≥ 1red ∈Ai =⇒ i ≥ 1red ∈Ai =⇒ i ≥ 1 and yellow ∈Ai−1yellow ∈Ai−1yellow ∈Ai−1

is a safety property over AP = {red , yellow}AP = {red , yellow}AP = {red , yellow} with

BadPref =BadPref =BadPref = set of all finite words A0 A1 . . . AnA0 A1 . . . AnA0 A1 . . . An

over 2AP2AP2AP s.t. for some i ∈ {0, . . . , n}i ∈ {0, . . . , n}i ∈ {0, . . . , n}:
red ∈Aired ∈Aired ∈Ai ∧∧∧ (i=0 ∨ yellow /∈Ai−1)(i=0 ∨ yellow /∈Ai−1)(i=0 ∨ yellow /∈Ai−1)

33 / 174

Satisfaction of safety properties is2.5-11a

34 / 174

Satisfaction of safety properties is2.5-11a

Let E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω be a safety property, TTT a TS over APAPAP .

T |= ET |= ET |= E iff Traces(T) ⊆ ETraces(T) ⊆ ETraces(T) ⊆ E

Traces(T)Traces(T)Traces(T) === set of traces of TTT

35 / 174

Satisfaction of safety properties is2.5-11a

Let E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω be a safety property, TTT a TS over APAPAP .

T |= ET |= ET |= E iff Traces(T) ⊆ ETraces(T) ⊆ ETraces(T) ⊆ E

iff Tracesfin(T)∩BadPref = ∅Tracesfin(T)∩BadPref = ∅Tracesfin(T)∩BadPref = ∅

BadPrefBadPrefBadPref === set of all bad prefixes of EEE

Traces(T)Traces(T)Traces(T) === set of traces of TTT
Tracesfin(T)Tracesfin(T)Tracesfin(T) === set of finite traces of TTT
=

{
trace(π̂) : π̂=

{
trace(π̂) : π̂=

{
trace(π̂) : π̂ is an initial, finite path fragment of T

}
T

}
T

}
36 / 174

Satisfaction of safety properties is2.5-11a

Let E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω be a safety property, TTT a TS over APAPAP .

T |= ET |= ET |= E iff Traces(T) ⊆ ETraces(T) ⊆ ETraces(T) ⊆ E

iff Tracesfin(T)∩BadPref = ∅Tracesfin(T)∩BadPref = ∅Tracesfin(T)∩BadPref = ∅
iff Tracesfin(T)∩MinBadPref = ∅Tracesfin(T)∩MinBadPref = ∅Tracesfin(T)∩MinBadPref = ∅

BadPrefBadPrefBadPref === set of all bad prefixes of EEE
MinBadPrefMinBadPrefMinBadPref === set of all minimal bad prefixes of EEE
Traces(T)Traces(T)Traces(T) === set of traces of TTT
Tracesfin(T)Tracesfin(T)Tracesfin(T) === set of finite traces of TTT
=

{
trace(π̂) : π̂=

{
trace(π̂) : π̂=

{
trace(π̂) : π̂ is an initial, finite path fragment of T

}
T

}
T

}
37 / 174

Correct or wrong? is2.5-13

Every invariant is a safety property.

38 / 174

Correct or wrong? is2.5-13

Every invariant is a safety property.

correct.

39 / 174

Correct or wrong? is2.5-13

Every invariant is a safety property.

correct.

Let EEE be an invariant with invariant condition ΦΦΦ.

40 / 174

Correct or wrong? is2.5-13

Every invariant is a safety property.

correct.

Let EEE be an invariant with invariant condition ΦΦΦ.

• bad prefixes for EEE : finite words A0 ...Ai ... AnA0 ...Ai ... AnA0 ...Ai ... An s.t.

Ai ̸|= ΦAi ̸|= ΦAi ̸|= Φ for some i ∈ {0, 1, ..., n}i ∈ {0, 1, ..., n}i ∈ {0, 1, ..., n}

41 / 174

Correct or wrong? is2.5-13

Every invariant is a safety property.

correct.

Let EEE be an invariant with invariant condition ΦΦΦ.

• bad prefixes for EEE : finite words A0 ...Ai ... AnA0 ...Ai ... AnA0 ...Ai ... An s.t.

Ai ̸|= ΦAi ̸|= ΦAi ̸|= Φ for some i ∈ {0, 1, ..., n}i ∈ {0, 1, ..., n}i ∈ {0, 1, ..., n}

• minimal bad prefixes for EEE :
finite words A0 A1 ...An−1 AnA0 A1 ...An−1 AnA0 A1 ...An−1 An such that

Ai |= ΦAi |= ΦAi |= Φ for i = 0, 1, ..., n−1i = 0, 1, ..., n−1i = 0, 1, ..., n−1, and An ̸|= ΦAn ̸|= ΦAn ̸|= Φ

42 / 174

Correct or wrong? is2.5-36

∅∅∅ is a safety property

43 / 174

Correct or wrong? is2.5-36

∅∅∅ is a safety property

correct

44/174

Correct or wrong? is2.5-36

∅∅∅ is a safety property

correct

• all finite words A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+ are bad prefixes

45 / 174

Correct or wrong? is2.5-36

∅∅∅ is a safety property

correct

• all finite words A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+ are bad prefixes

• ∅∅∅ is even an invariant (invariant condition falsefalsefalse)

46 / 174

Correct or wrong? is2.5-36

∅∅∅ is a safety property

correct

• all finite words A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+ are bad prefixes

• ∅∅∅ is even an invariant (invariant condition falsefalsefalse)

(2AP)ω(2AP)ω(2AP)ω is a safety property

47 / 174

Correct or wrong? is2.5-36

∅∅∅ is a safety property

correct

• all finite words A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+ are bad prefixes

• ∅∅∅ is even an invariant (invariant condition falsefalsefalse)

(2AP)ω(2AP)ω(2AP)ω is a safety property

correct

48/174

Correct or wrong? is2.5-36

∅∅∅ is a safety property

correct

• all finite words A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+ are bad prefixes

• ∅∅∅ is even an invariant (invariant condition falsefalsefalse)

(2AP)ω(2AP)ω(2AP)ω is a safety property

correct

“For all words ∈ (2AP)ω \ (2AP)ω

︸ ︷︷ ︸
= ∅

∈ (2AP)ω \ (2AP)ω

︸ ︷︷ ︸
= ∅

∈ (2AP)ω \ (2AP)ω

︸ ︷︷ ︸
= ∅

.........”

49 / 174

Prefix closure is2.5-prefix-closure

50 / 174

Prefix closure is2.5-prefix-closure

For a given infinite word σ = A0 A1 A2 . . .σ = A0 A1 A2 . . .σ = A0 A1 A2 . . ., let

pref (σ)pref (σ)pref (σ)
def
=
def
=
def
= set of all nonempty, finite prefixes of σσσ

===
{

A0 A1 . . .An : n ≥ 0
}{

A0 A1 . . .An : n ≥ 0
}{

A0 A1 . . .An : n ≥ 0
}

52 / 174

Prefix closure is2.5-prefix-closure

For a given infinite word σ = A0 A1 A2 . . .σ = A0 A1 A2 . . .σ = A0 A1 A2 . . ., let

pref (σ)pref (σ)pref (σ)
def
=
def
=
def
= set of all nonempty, finite prefixes of σσσ

===
{

A0 A1 . . .An : n ≥ 0
}{

A0 A1 . . .An : n ≥ 0
}{

A0 A1 . . .An : n ≥ 0
}

For E ⊆
(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
, let pref (E)

def
=
def
=def
=

⋃

σ ∈E
pref (σ)pref (E)

def
=
def
=def
=

⋃

σ ∈E
pref (σ)pref (E)

def
=
def
=def
=

⋃

σ ∈E
pref (σ)

54 / 174

Prefix closure is2.5-prefix-closure

For a given infinite word σ = A0 A1 A2 . . .σ = A0 A1 A2 . . .σ = A0 A1 A2 . . ., let

pref (σ)pref (σ)pref (σ)
def
=
def
=
def
= set of all nonempty, finite prefixes of σσσ

===
{

A0 A1 . . .An : n ≥ 0
}{

A0 A1 . . .An : n ≥ 0
}{

A0 A1 . . .An : n ≥ 0
}

For E ⊆
(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
, let pref (E)

def
=
def
=def
=

⋃

σ ∈E
pref (σ)pref (E)

def
=
def
=def
=

⋃

σ ∈E
pref (σ)pref (E)

def
=
def
=def
=

⋃

σ ∈E
pref (σ)

Given an LT property EEE , the prefix closure of EEE is:

cl(E)
def
=
def
=def
=

{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}
cl(E)

def
=
def
=def
=

{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}
cl(E)

def
=
def
=def
=

{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}

55 / 174

Prefix closure and safety is2.5-safety-prefix-closure

For any infinite word σ ∈
(
2AP

)ω
σ ∈

(
2AP

)ω
σ ∈

(
2AP

)ω
, let

pref (σ)pref (σ)pref (σ) === set of all nonempty, finite prefixes of σσσ

For any LT property E ⊆
(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
, let

pref (E)pref (E)pref (E) ===
⋃

σ∈E
pref (σ)

⋃
σ∈E

pref (σ)
⋃

σ∈E
pref (σ) and

cl(E)cl(E)cl(E) ===
{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}

56 / 174

Prefix closure and safety is2.5-safety-prefix-closure

For any infinite word σ ∈
(
2AP

)ω
σ ∈

(
2AP

)ω
σ ∈

(
2AP

)ω
, let

pref (σ)pref (σ)pref (σ) === set of all nonempty, finite prefixes of σσσ

For any LT property E ⊆
(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
, let

pref (E)pref (E)pref (E) ===
⋃

σ∈E
pref (σ)

⋃
σ∈E

pref (σ)
⋃

σ∈E
pref (σ) and

cl(E)cl(E)cl(E) ===
{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}

Theorem:

EEE is a safety property iff cl(E) = Ecl(E) = Ecl(E) = E

57 / 174

Safety and finite trace inclusion is2.5-safety-tracefin

remind: LT properties and trace inclusion:

If T1T1T1 and T2T2T2 are TS over APAPAP then:

Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)

iff for all LT properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

58 / 174

Safety and finite trace inclusion is2.5-safety-tracefin

remind: LT properties and trace inclusion:

If T1T1T1 and T2T2T2 are TS over APAPAP then:

Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)

iff for all LT properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

safety properties and finite trace inclusion:

If T1T1T1 and T2T2T2 are TS over APAPAP then:

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

59 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

60 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “=⇒=⇒=⇒”: obvious, as for safety property EEE :

T |= ET |= ET |= E iff Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅

61 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “=⇒=⇒=⇒”: obvious, as for safety property EEE :

T |= ET |= ET |= E iff Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅
Hence:

If T2 |= ET2 |= ET2 |= E and Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2) then:

62 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “=⇒=⇒=⇒”: obvious, as for safety property EEE :

T |= ET |= ET |= E iff Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅
Hence:

If T2 |= ET2 |= ET2 |= E and Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2) then:

Tracesfin(T1) ∩ BadPref

⊆ Tracesfin(T2) ∩ BadPref = ∅
Tracesfin(T1) ∩ BadPref

⊆ Tracesfin(T2) ∩ BadPref = ∅
Tracesfin(T1) ∩ BadPref

⊆ Tracesfin(T2) ∩ BadPref = ∅

63 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “=⇒=⇒=⇒”: obvious, as for safety property EEE :

T |= ET |= ET |= E iff Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅
Hence:

If T2 |= ET2 |= ET2 |= E and Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2) then:

Tracesfin(T1) ∩ BadPref

⊆ Tracesfin(T2) ∩ BadPref = ∅
Tracesfin(T1) ∩ BadPref

⊆ Tracesfin(T2) ∩ BadPref = ∅
Tracesfin(T1) ∩ BadPref

⊆ Tracesfin(T2) ∩ BadPref = ∅

and therefore T1 |= ET1 |= ET1 |= E
64 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2))E = cl(Traces(T2))E = cl(Traces(T2))

65 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

66 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

↑↑↑
for each transition system TTT :

pref
(
Traces(T)

)
= Tracesfin(T)pref

(
Traces(T)

)
= Tracesfin(T)pref

(
Traces(T)

)
= Tracesfin(T)

67 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property

68 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property
↑↑↑

as cl(E) = Ecl(E) = Ecl(E) = E

69 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property
↑↑↑

as cl(E) = Ecl(E) = Ecl(E) = E

set of bad prefixes:
(
2AP

)+ \ Tracesfin(T2)
(
2AP

)+ \ Tracesfin(T2)
(
2AP

)+ \ Tracesfin(T2)

70 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property and T2 |= ET2 |= ET2 |= E .

71 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property and T2 |= ET2 |= ET2 |= E .

By assumption: T1 |= ET1 |= ET1 |= E

72 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property and T2 |= ET2 |= ET2 |= E .

By assumption: T1 |= ET1 |= ET1 |= E and therefore Traces(T1) ⊆ ETraces(T1) ⊆ ETraces(T1) ⊆ E .

73 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property and T2 |= ET2 |= ET2 |= E .

By assumption: T1 |= ET1 |= ET1 |= E and therefore Traces(T1) ⊆ ETraces(T1) ⊆ ETraces(T1) ⊆ E .

Hence: Tracesfin(T1)Tracesfin(T1)Tracesfin(T1) === pref (Traces(T1))pref (Traces(T1))pref (Traces(T1))

74 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property and T2 |= ET2 |= ET2 |= E .

By assumption: T1 |= ET1 |= ET1 |= E and therefore Traces(T1) ⊆ ETraces(T1) ⊆ ETraces(T1) ⊆ E .

Hence: Tracesfin(T1)Tracesfin(T1)Tracesfin(T1) === pref (Traces(T1))pref (Traces(T1))pref (Traces(T1))

⊆⊆⊆ pref (E)pref (E)pref (E)

75 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property and T2 |= ET2 |= ET2 |= E .

By assumption: T1 |= ET1 |= ET1 |= E and therefore Traces(T1) ⊆ ETraces(T1) ⊆ ETraces(T1) ⊆ E .

Hence: Tracesfin(T1)Tracesfin(T1)Tracesfin(T1) === pref (Traces(T1))pref (Traces(T1))pref (Traces(T1))

⊆⊆⊆ pref (E)pref (E)pref (E) === pref (cl(Traces(T2)))pref (cl(Traces(T2)))pref (cl(Traces(T2)))

76 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property and T2 |= ET2 |= ET2 |= E .

By assumption: T1 |= ET1 |= ET1 |= E and therefore Traces(T1) ⊆ ETraces(T1) ⊆ ETraces(T1) ⊆ E .

Hence: Tracesfin(T1)Tracesfin(T1)Tracesfin(T1) === pref (Traces(T1))pref (Traces(T1))pref (Traces(T1))

⊆⊆⊆ pref (E)pref (E)pref (E) === pref (cl(Traces(T2)))pref (cl(Traces(T2)))pref (cl(Traces(T2)))

=== Tracesfin(T2)Tracesfin(T2)Tracesfin(T2)
77 / 174

Safety and finite trace equivalence is2.5-safety-traceequiv

78 / 174

Safety and finite trace equivalence is2.5-safety-traceequiv

safety properties and finite trace inclusion:

If T1T1T1 and T2T2T2 are TS over APAPAP then:

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

79 / 174

Safety and finite trace equivalence is2.5-safety-traceequiv

safety properties and finite trace inclusion:

If T1T1T1 and T2T2T2 are TS over APAPAP then:

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

safety properties and finite trace equivalence:

If T1T1T1 and T2T2T2 are TS over APAPAP then:

Tracesfin(T1) = Tracesfin(T2)Tracesfin(T1) = Tracesfin(T2)Tracesfin(T1) = Tracesfin(T2)

iff T1T1T1 and T2T2T2 satisfy the same safety properties

80 / 174

Summary: trace relations and properties is2.5-30

trace inclusion

Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′) iff

for all LT properties EEE : T ′ |= E =⇒ T |= ET ′ |= E =⇒ T |= ET ′ |= E =⇒ T |= E

finite trace inclusion

Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′) iff

for all safety properties EEE : T ′ |= E =⇒ T |= ET ′ |= E =⇒ T |= ET ′ |= E =⇒ T |= E

81 / 174

Summary: trace relations and properties is2.5-30

trace equivalence

Traces(T) = Traces(T ′)Traces(T) = Traces(T ′)Traces(T) = Traces(T ′) iff

TTT and TTT ′ satisfy the same LT properties

finite trace equivalence

Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′) iff

TTT and T ′T ′T ′ satisfy the same safety properties

82 / 174

correct or wrong? is2.5-31

If Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)
then Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′).

83 / 174

correct or wrong? is2.5-31

If Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)
then Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′).

correct, since

Tracesfin(T)Tracesfin(T)Tracesfin(T) === set of all finite nonempty prefixes
of words in Traces(T)Traces(T)Traces(T)

=== pref (Traces(T))pref (Traces(T))pref (Traces(T))

84 / 174

correct or wrong? is2.5-31

If Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)
then Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′).

correct, since

Tracesfin(T)Tracesfin(T)Tracesfin(T) === set of all finite nonempty prefixes
of words in Traces(T)Traces(T)Traces(T)

=== pref (Traces(T))pref (Traces(T))pref (Traces(T))

{a}{a}{a}
Traces(T)Traces(T)Traces(T) ===

{
{a}ω

}{
{a}ω

}{
{a}ω

}

Tracesfin(T)Tracesfin(T)Tracesfin(T) ===
{
{a}n : n ≥ 1

}{
{a}n : n ≥ 1

}{
{a}n : n ≥ 1

}

85 / 174

Finite trace relations versus trace relations is2.5-32

is trace equivalence the same as
finite trace equivalence ?

86/174

Finite trace relations versus trace relations is2.5-32

is trace equivalence the same as
finite trace equivalence ?

answer: no

87/174

Finite trace relations versus trace relations is2.5-32

set of propositions
AP = {b}AP = {b}AP = {b}

=̂ ∅=̂ ∅=̂ ∅ =̂ {b}=̂ {b}=̂ {b}

TTT T ′T ′T ′
...

88/ 174

Finite trace relations versus trace relations is2.5-32

set of propositions
AP = {b}AP = {b}AP = {b}

=̂ ∅=̂ ∅=̂ ∅ =̂ {b}=̂ {b}=̂ {b}

TTT T ′T ′T ′
...

Traces(T)Traces(T)Traces(T) === {∅ω}{∅ω}{∅ω}

89 / 174

Finite trace relations versus trace relations is2.5-32

set of propositions
AP = {b}AP = {b}AP = {b}

=̂ ∅=̂ ∅=̂ ∅ =̂ {b}=̂ {b}=̂ {b}

TTT T ′T ′T ′
...

Traces(T)Traces(T)Traces(T) === {∅ω}{∅ω}{∅ω}
Tracesfin(T)Tracesfin(T)Tracesfin(T) === {∅n : n ≥ 0}{∅n : n ≥ 0}{∅n : n ≥ 0}

90 / 174

Finite trace relations versus trace relations is2.5-32

set of propositions
AP = {b}AP = {b}AP = {b}

=̂ ∅=̂ ∅=̂ ∅ =̂ {b}=̂ {b}=̂ {b}

TTT T ′T ′T ′
...

Traces(T)Traces(T)Traces(T) === {∅ω}{∅ω}{∅ω}
Tracesfin(T)Tracesfin(T)Tracesfin(T) === {∅n : n ≥ 0}{∅n : n ≥ 0}{∅n : n ≥ 0}
Traces(T ′)Traces(T ′)Traces(T ′) === {∅n{b}ω : n ≥ 2}{∅n{b}ω : n ≥ 2}{∅n{b}ω : n ≥ 2}

91 / 174

Finite trace relations versus trace relations is2.5-32

TTT T ′T ′T ′
...

Traces(T)Traces(T)Traces(T) === {∅ω}{∅ω}{∅ω}
Tracesfin(T)Tracesfin(T)Tracesfin(T) === {∅n : n ≥ 0}{∅n : n ≥ 0}{∅n : n ≥ 0}
Traces(T ′)Traces(T ′)Traces(T ′) === {∅n{b}ω : n ≥ 2}{∅n{b}ω : n ≥ 2}{∅n{b}ω : n ≥ 2}
Tracesfin(T ′)Tracesfin(T ′)Tracesfin(T ′) === {∅n : n ≥ 0} ∪{∅n : n ≥ 0} ∪{∅n : n ≥ 0} ∪

{∅n{b}m : n ≥ 2∧m ≥ 1}{∅n{b}m : n ≥ 2∧m ≥ 1}{∅n{b}m : n ≥ 2∧m ≥ 1}

92 / 174

Finite trace relations versus trace relations is2.5-32

TTT T ′T ′T ′
...

Traces(T)Traces(T)Traces(T) === {∅ω}{∅ω}{∅ω}
Tracesfin(T)Tracesfin(T)Tracesfin(T) === {∅n : n ≥ 0}{∅n : n ≥ 0}{∅n : n ≥ 0}
Traces(T ′)Traces(T ′)Traces(T ′) === {∅n{b}ω : n ≥ 2}{∅n{b}ω : n ≥ 2}{∅n{b}ω : n ≥ 2}
Tracesfin(T ′)Tracesfin(T ′)Tracesfin(T ′) === {∅n : n ≥ 0} ∪{∅n : n ≥ 0} ∪{∅n : n ≥ 0} ∪

{∅n{b}m : n ≥ 2∧m ≥ 1}{∅n{b}m : n ≥ 2∧m ≥ 1}{∅n{b}m : n ≥ 2∧m ≥ 1}

Traces(T) ̸⊆ Traces(T ′)Traces(T) ̸⊆ Traces(T ′)Traces(T) ̸⊆ Traces(T ′), but

Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)
93 / 174

Finite trace relations versus trace relations is2.5-32

TTT T ′T ′T ′
...

Traces(T)Traces(T)Traces(T) === {∅ω}{∅ω}{∅ω}
Tracesfin(T)Tracesfin(T)Tracesfin(T) === {∅n : n ≥ 0}{∅n : n ≥ 0}{∅n : n ≥ 0}
Traces(T ′)Traces(T ′)Traces(T ′) === {∅n{b}ω : n ≥ 2}{∅n{b}ω : n ≥ 2}{∅n{b}ω : n ≥ 2}
Tracesfin(T ′)Tracesfin(T ′)Tracesfin(T ′) === {∅n : n ≥ 0} ∪{∅n : n ≥ 0} ∪{∅n : n ≥ 0} ∪

{∅n{b}m : n ≥ 2∧m ≥ 1}{∅n{b}m : n ≥ 2∧m ≥ 1}{∅n{b}m : n ≥ 2∧m ≥ 1}

Traces(T) ̸⊆ Traces(T ′)Traces(T) ̸⊆ Traces(T ′)Traces(T) ̸⊆ Traces(T ′), but

Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)

LT property
EEE =̂̂=̂= “eventually bbb”

T ̸|= ET ̸|= ET ̸|= E , T ′ |= ET ′ |= ET ′ |= E
94 / 174

Finite trace and trace inclusion is2.5-trace-vs-tracefin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states,

(2) T ′T ′T ′ is finite.

95 / 174

Finite trace and trace inclusion is2.5-trace-vs-tracefin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states,
i.e., all paths of TTT are infinite

(2) T ′T ′T ′ is finite.

96 / 174

Finite trace and trace inclusion is2.5-trace-vs-tracefin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states,
i.e., all paths of TTT are infinite

(2) T ′T ′T ′ is finite.

Then: Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)
iff Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)

97 / 174

Finite trace and trace inclusion is2.5-trace-vs-tracefin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states,
i.e., all paths of TTT are infinite

(2) T ′T ′T ′ is finite.

Then: Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)
iff Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)

“=⇒=⇒=⇒”: holds for all transition systems,

no matter whether (1) and (2) hold

98 / 174

Finite trace and trace inclusion is2.5-trace-vs-tracefin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states,
i.e., all paths of TTT are infinite

(2) T ′T ′T ′ is finite.

Then: Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)
iff Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)

“=⇒=⇒=⇒”: holds for all transition systems

“⇐=⇐=⇐=”: suppose that (1) and (2) hold and that

(3) Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)
Show that Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)

99 / 174

Finite trace and trace inclusion is2.5-trace-vs-tracefin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states

(2) T ′T ′T ′ is finite

(3) Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)

Then Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)

Proof:

100 / 174

Finite trace and trace inclusion is2.5-trace-vs-tracefin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states

(2) T ′T ′T ′ is finite

(3) Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)

Then Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)

Proof: Pick some path π = s0 s1 s2 ...π = s0 s1 s2 ...π = s0 s1 s2 ... in TTT and show
that there exists a path

π′ = t0 t1 t2...π′ = t0 t1 t2...π′ = t0 t1 t2... in T ′T ′T ′

such that trace(π) = trace(π′)trace(π) = trace(π′)trace(π) = trace(π′)

101 / 174

Tracesfin versus traces is2.5-33

finite TS T ′T ′T ′
paths from state t0t0t0

(unfolded into a tree)

...
...

...
...

102 / 174

Tracesfin versus traces is2.5-33

finite TS T ′T ′T ′
paths from state t0t0t0

(unfolded into a tree)

...
...

...
...

finite until
depth ≤ n≤ n≤ n

103 / 174

Tracesfin versus traces is2.5-33

finite TS T ′T ′T ′ contains all path fragments
with trace A0 A1 ... AnA0 A1 ... AnA0 A1 ... Anpaths from state t0t0t0

(unfolded into a tree)

...
...

...
...

finite until
depth ≤ n≤ n≤ n

104 / 174

Tracesfin versus traces is2.5-33

finite TS T ′T ′T ′ contains all path fragments
with trace A0 A1 ... AnA0 A1 ... AnA0 A1 ... An

in particular: t0 t1 . . . tnt0 t1 . . . tnt0 t1 . . . tn
paths from state t0t0t0

(unfolded into a tree)

...
...

...
...

finite until
depth ≤ n≤ n≤ n

t0t0t0

105 / 174

Tracesfin versus traces is2.5-33

finite TS T ′T ′T ′ contains all path fragments
with trace A0 A1 ... AnA0 A1 ... AnA0 A1 ... An

in particular: t0 t1 . . . tnt0 t1 . . . tnt0 t1 . . . tn
paths from state t0t0t0

(unfolded into a tree)

...
...

...
...

finite until
depth ≤ n≤ n≤ n

contains infinitely
many path fragments

tn sm
n+1 ... sm

mtn sm
n+1 ... sm

mtn sm
n+1 ... sm

m

t0t0t0

106 / 174

Tracesfin versus traces is2.5-33

finite TS T ′T ′T ′ contains all path fragments
with trace A0 A1 ... AnA0 A1 ... AnA0 A1 ... An

in particular: t0 t1 . . . tnt0 t1 . . . tnt0 t1 . . . tn
paths from state t0t0t0

(unfolded into a tree)

...

......
...
......

...
...

...

finite until
depth ≤ n≤ n≤ n

contains infinitely
many path fragments

tn sm
n+1 ... sm

mtn sm
n+1 ... sm

mtn sm
n+1 ... sm

m

there exists tn+1 ∈Post(tn)tn+1 ∈Post(tn)tn+1 ∈Post(tn)
s.t. tn+1 = sm

n+1tn+1 = sm
n+1tn+1 = sm
n+1 for

infinitely many mmm

t0t0t0

107 / 174

Finite trace and trace inclusion is2.5-trace-im-fin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states

(2) T ′T ′T ′ is finite ←−←−←− image-finiteness
is sufficient

(3) Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)
Then Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)

108 / 174

Finite trace and trace inclusion is2.5-trace-im-fin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states

(2) T ′T ′T ′ is finite ←−←−←− image-finiteness
is sufficient

(3) Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)
Then Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)

image-finiteness of T ′ = (S ′, Act,→, S ′0, AP, L′)T ′ = (S ′, Act,→, S ′0, AP, L′)T ′ = (S ′, Act,→, S ′0, AP , L′):

109 / 174

Finite trace and trace inclusion is2.5-trace-im-fin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states

(2) T ′T ′T ′ is finite ←−←−←− image-finiteness
is sufficient

(3) Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)
Then Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)

image-finiteness of T ′ = (S ′, Act,→, S ′0, AP, L′)T ′ = (S ′, Act,→, S ′0, AP, L′)T ′ = (S ′, Act,→, S ′0, AP , L′):

• for each A ∈ 2APA ∈ 2APA ∈ 2AP and state s ∈ S ′s ∈ S ′s ∈ S ′:

{t ∈Post(s) : L′(t) = A}{t ∈Post(s) : L′(t) = A}{t ∈Post(s) : L′(t) = A} is finite

110 / 174

Finite trace and trace inclusion is2.5-trace-im-fin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states

(2) T ′T ′T ′ is finite ←−←−←− image-finiteness
is sufficient

(3) Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)
Then Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)

image-finiteness of T ′ = (S ′, Act,→, S ′0, AP, L′)T ′ = (S ′, Act,→, S ′0, AP, L′)T ′ = (S ′, Act,→, S ′0, AP , L′):

• for each A ∈ 2APA ∈ 2APA ∈ 2AP and state s ∈ S ′s ∈ S ′s ∈ S ′:

{t ∈Post(s) : L′(t) = A}{t ∈Post(s) : L′(t) = A}{t ∈Post(s) : L′(t) = A} is finite

• for each A ∈ 2APA ∈ 2APA ∈ 2AP : {s0 ∈ S ′0 : L′(s0) = A}{s0 ∈ S ′0 : L′(s0) = A}{s0 ∈ S ′0 : L′(s0) = A} is finite
111 / 174

Trace equivalence vs. finite trace equivalence is2.5-34

Whenever Traces(T) = Traces(T ′)Traces(T) = Traces(T ′)Traces(T) = Traces(T ′) then

Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)

112 / 174

Trace equivalence vs. finite trace equivalence is2.5-34

Whenever Traces(T) = Traces(T ′)Traces(T) = Traces(T ′)Traces(T) = Traces(T ′) then

Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)

while the reverse direction does not hold in general
(even not for finite transition systems)

113 / 174

Trace equivalence vs. finite trace equivalence is2.5-34

Whenever Traces(T) = Traces(T ′)Traces(T) = Traces(T ′)Traces(T) = Traces(T ′) then

Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)

while the reverse direction does not hold in general
(even not for finite transition systems)

114 / 174

Trace equivalence vs. finite trace equivalence is2.5-34

Whenever Traces(T) = Traces(T ′)Traces(T) = Traces(T ′)Traces(T) = Traces(T ′) then

Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)

while the reverse direction does not hold in general
(even not for finite transition systems)

finite trace equivalent,

but not trace equivalent

115 / 174

Trace equivalence vs. finite trace equivalence is2.5-34a

Whenever Traces(T) = Traces(T ′)Traces(T) = Traces(T ′)Traces(T) = Traces(T ′) then

Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)

The reverse implication holds under additional
assumptions, e.g.,

• if TTT and T ′T ′T ′ are finite and have no terminal states

• or, if TTT and T ′T ′T ′ are APAPAP-deterministic

116 / 174

