

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view

definition of linear time properties

invariants and safety

liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

safety properties *“nothing bad will happen”*

liveness properties *“something good will happen”*

safety properties *“nothing bad will happen”*

examples:

- mutual exclusion
- deadlock freedom
- “every red phase is preceded by a yellow phase”

liveness properties *“something good will happen”*

safety properties *“nothing bad will happen”*

examples:

- mutual exclusion
- deadlock freedom
- “every red phase is preceded by a yellow phase”

liveness properties *“something good will happen”*

examples:

- “each waiting process will eventually enter its critical section”
- “each philosopher will eat infinitely often”

safety properties *"nothing bad will happen"*

examples:

- mutual exclusion
- deadlock freedom
- "every red phase is preceded by a yellow phase"

} special case: **invariants**
"no bad state will be reached"

liveness properties *"something good will happen"*

examples:

- "each waiting process will eventually enter its critical section"
- "each philosopher will eat infinitely often"

Propositional logic

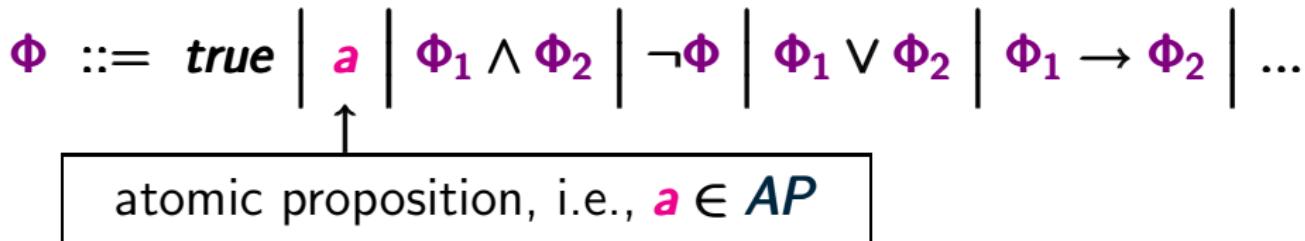
IS2.5-2

$\Phi ::= \text{true} \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \Phi_1 \vee \Phi_2 \mid \Phi_1 \rightarrow \Phi_2 \mid \dots$

atomic proposition, i.e., $a \in AP$

Propositional logic

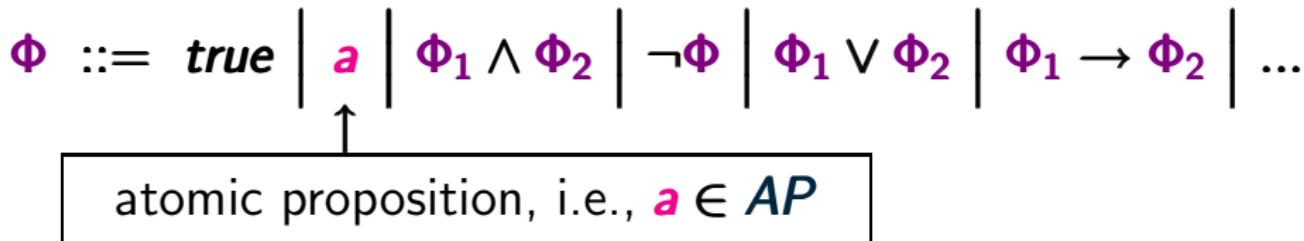
IS2.5-2



semantics: interpretation over a subsets of AP

Propositional logic

IS2.5-2



semantics: Let $A \subseteq AP$

$A \models \text{true}$

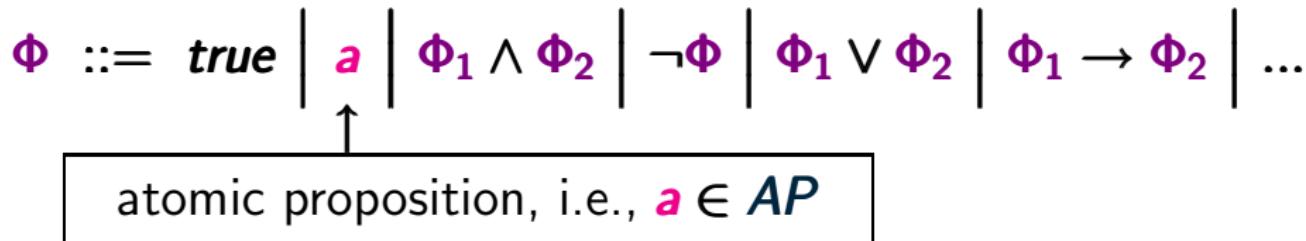
$A \models a$ iff $a \in A$

$A \models \Phi_1 \wedge \Phi_2$ iff $A \models \Phi_1$ and $A \models \Phi_2$

$A \models \neg \Phi$ iff $A \not\models \Phi$

Propositional logic

IS2.5-2



semantics: Let $A \subseteq AP$

$A \models \text{true}$

$A \models a$ iff $a \in A$

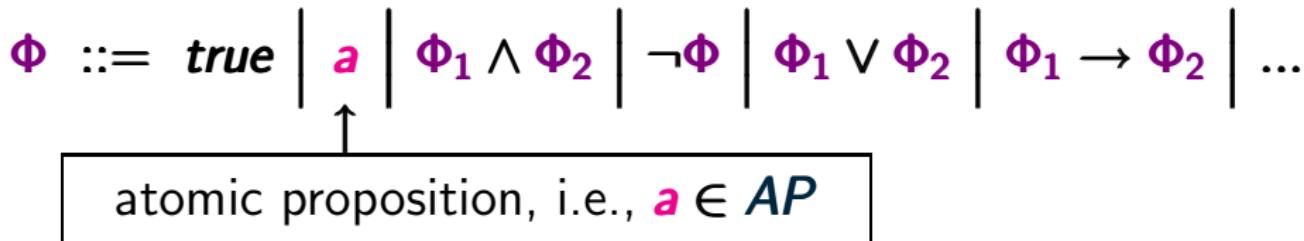
$A \models \Phi_1 \wedge \Phi_2$ iff $A \models \Phi_1$ and $A \models \Phi_2$

$A \models \neg \Phi$ iff $A \not\models \Phi$

e.g., $\{a, b\} \not\models (a \rightarrow \neg b) \vee c$ $\{a, b\} \models a \vee c$

Propositional logic

IS2.5-2



semantics: Let $A \subseteq AP$

$A \models \text{true}$

$A \models a$ iff $a \in A$

$A \models \Phi_1 \wedge \Phi_2$ iff $A \models \Phi_1$ and $A \models \Phi_2$

$A \models \neg \Phi$ iff $A \not\models \Phi$

for state s of a TS over AP : $s \models \Phi$ iff $L(s) \models \Phi$

Let E be an LT property over AP .

E is called an **invariant** if there exists a propositional formula Φ over AP such that

$$E = \{ A_0 A_1 A_2 \dots \in (2^{AP})^\omega : \forall i \geq 0. A_i \models \Phi \}$$

Let E be an LT property over AP .

E is called an **invariant** if there exists a propositional formula Φ over AP such that

$$E = \{ A_0 A_1 A_2 \dots \in (2^{AP})^\omega : \forall i \geq 0. A_i \models \Phi \}$$

Φ is called the **invariant condition** of E .

mutual exclusion (safety):

$MUTEX = \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$
 $\forall i \in \mathbb{N}. \text{ crit}_1 \notin A_i \text{ or } \text{crit}_2 \notin A_i$

here: $AP = \{\text{crit}_1, \text{crit}_2, \dots\}$

mutual exclusion (safety):

$\text{MUTEX} = \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$
 $\forall i \in \mathbb{N}. \text{ crit}_1 \notin A_i \text{ or } \text{crit}_2 \notin A_i$

invariant condition: $\Phi = \neg \text{crit}_1 \vee \neg \text{crit}_2$

here: $AP = \{\text{crit}_1, \text{crit}_2, \dots\}$

Examples for invariants

IS2.5-3

mutual exclusion (safety):

$MUTEX = \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$
 $\forall i \in \mathbb{N}. \ crit_1 \notin A_i \text{ or } crit_2 \notin A_i$

invariant condition: $\Phi = \neg crit_1 \vee \neg crit_2$

deadlock freedom for 5 dining philosophers:

$DF = \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$
 $\forall i \in \mathbb{N} \ \exists j \in \{0, 1, 2, 3, 4\}. \ wait_j \notin A_i$

invariant condition:

$\Phi = \neg wait_0 \vee \neg wait_1 \vee \neg wait_2 \vee \neg wait_3 \vee \neg wait_4$

here: $AP = \{wait_j : 0 \leq j \leq 4\} \cup \{\dots\}$

Satisfaction of invariants

IS2.5-SAT-INVARIANT

Let E be an LT property over AP . E is called an invariant if there exists a propositional formula Φ s.t.

$$E = \{ A_0 A_1 A_2 \dots \in (2^{AP})^\omega : \forall i \geq 0. A_i \models \Phi \}$$

Satisfaction of invariants

IS2.5-SAT-INVARIANT

Let E be an LT property over AP . E is called an invariant if there exists a propositional formula Φ s.t.

$$E = \{ A_0 A_1 A_2 \dots \in (2^{AP})^\omega : \forall i \geq 0. A_i \models \Phi \}$$

Let T be a TS over AP without terminal states. Then:

$$T \models E \text{ iff } \text{trace}(\pi) \in E \text{ for all } \pi \in \text{Paths}(T)$$

Satisfaction of invariants

IS2.5-SAT-INVARIANT

Let E be an LT property over AP . E is called an invariant if there exists a propositional formula Φ s.t.

$$E = \{ A_0 A_1 A_2 \dots \in (2^{AP})^\omega : \forall i \geq 0. A_i \models \Phi \}$$

Let T be a TS over AP without terminal states. Then:

$T \models E$ iff $trace(\pi) \in E$ for all $\pi \in Paths(T)$

iff $s \models \Phi$ for all states s on a path of T

Satisfaction of invariants

IS2.5-SAT-INVARIANT

Let E be an LT property over AP . E is called an invariant if there exists a propositional formula Φ s.t.

$$E = \{ A_0 A_1 A_2 \dots \in (2^{AP})^\omega : \forall i \geq 0. A_i \models \Phi \}$$

Let T be a TS over AP without terminal states. Then:

$T \models E$ iff $trace(\pi) \in E$ for all $\pi \in Paths(T)$

iff $s \models \Phi$ for all states s on a path of T

iff $s \models \Phi$ for all states $s \in Reach(T)$

set of reachable states in T

Satisfaction of invariants

IS2.5-SAT-INVARIANT

Let E be an LT property over AP . E is called an invariant if there exists a propositional formula Φ s.t.

$$E = \{ A_0 A_1 A_2 \dots \in (2^{AP})^\omega : \forall i \geq 0. A_i \models \Phi \}$$

Let T be a TS over AP without terminal states. Then:

$T \models E$ iff $trace(\pi) \in E$ for all $\pi \in Paths(T)$

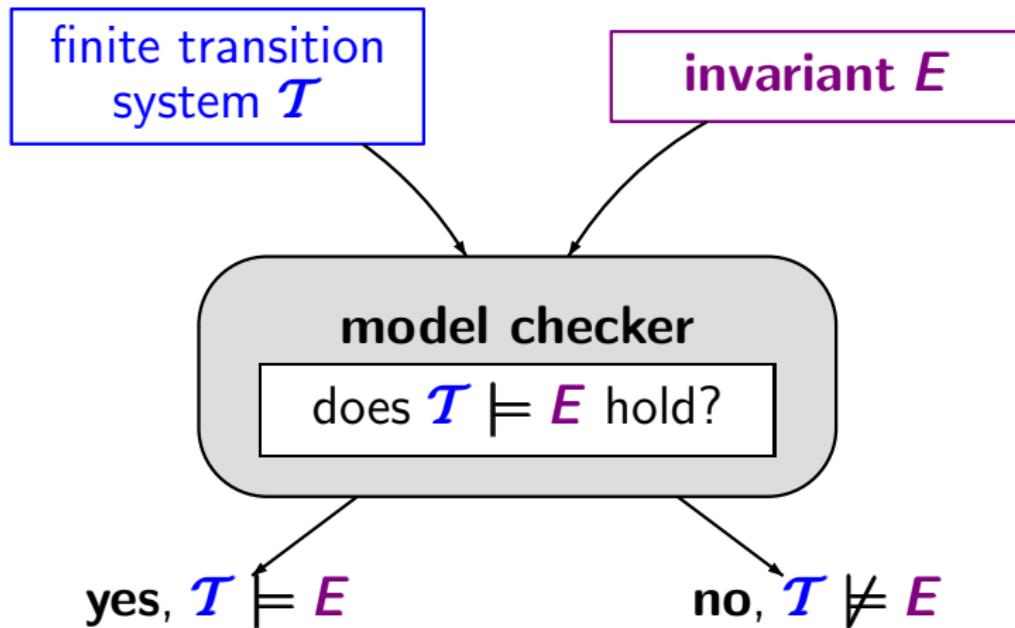
iff $s \models \Phi$ for all states s on a path of T

iff $s \models \Phi$ for all states $s \in Reach(T)$

i.e., Φ holds in all initial states and is **invariant** under all transitions

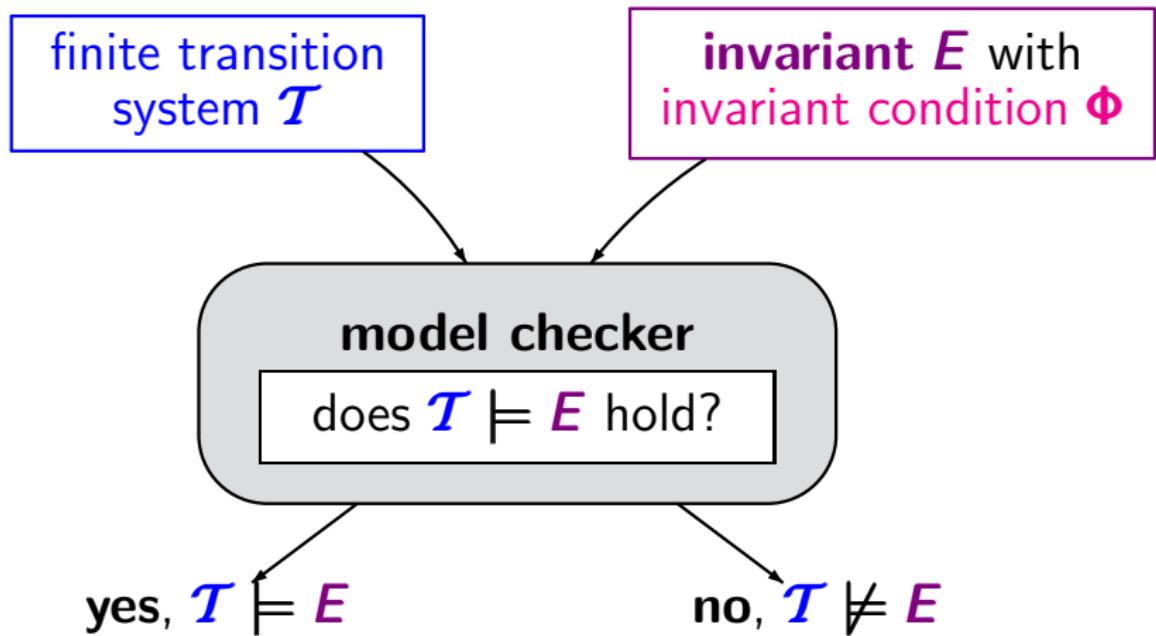
Invariant checking

LTPROP/IS2.5-6



Invariant checking

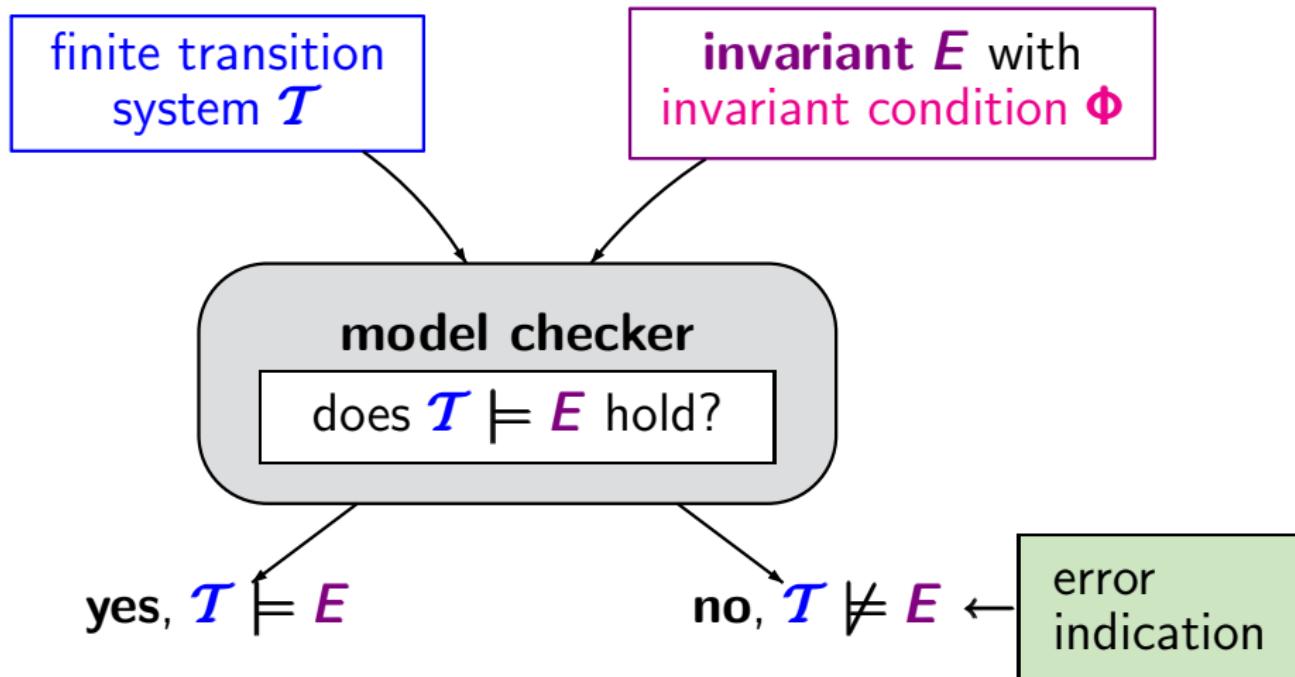
LTPROP/IS2.5-6



perform a graph analysis (**DFS** or **BFS**) to check whether $s \models \Phi$ for all $s \in \text{Reach}(\mathcal{T})$

Invariant checking

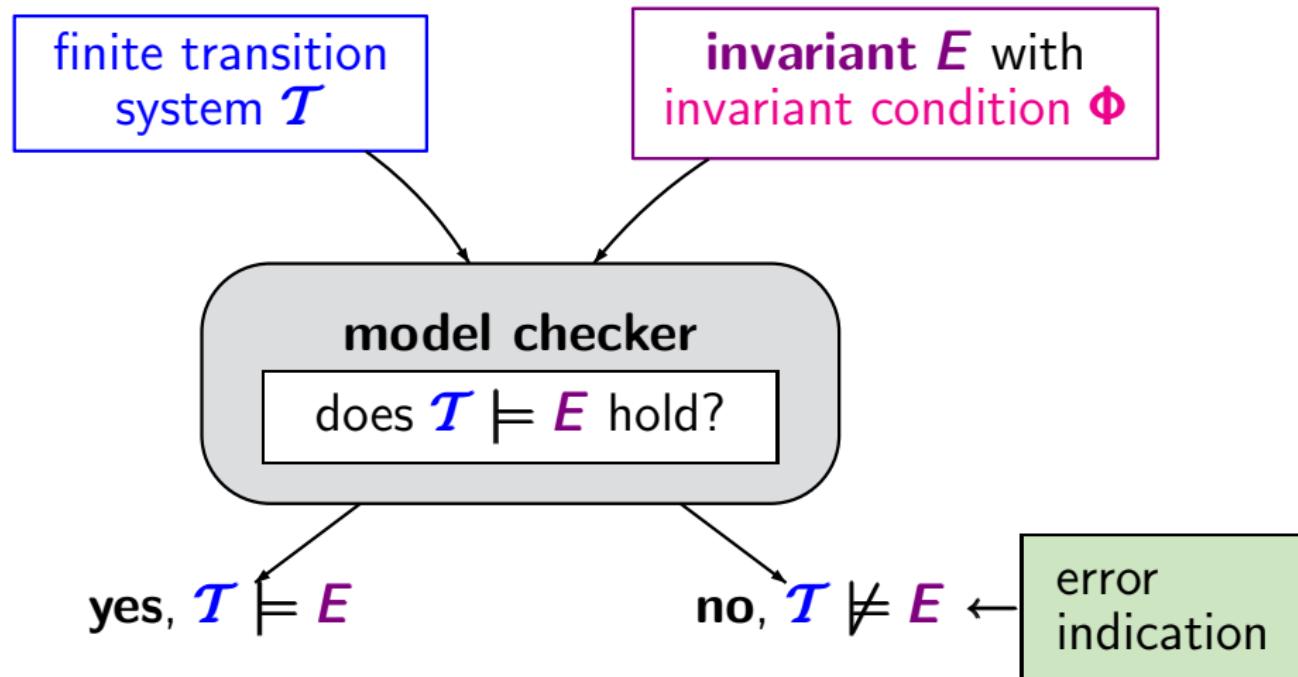
LTPROP/IS2.5-6



perform a graph analysis (**DFS** or **BFS**) to check whether $s \models \Phi$ for all $s \in \text{Reach}(\mathcal{T})$

Invariant checking

LTPROP/IS2.5-6



error indication: initial path fragment $s_0 s_1 \dots s_{n-1} s_n$
such that $s_i \models \Phi$ for $0 \leq i < n$ and $s_n \not\models \Phi$

DFS-based invariant checking

LTPROP/is2.5-7

input: finite transition system \mathcal{T} , invariant condition Φ

DFS-based invariant checking

LTPROP/is2.5-7

input: finite transition system \mathcal{T} , invariant condition Φ

```
FOR ALL  $s_0 \in S_0$  DO
    IF  $DFS(s_0, \Phi)$  THEN
        return "no"
    FI
OD
return "yes"
```

DFS-based invariant checking

LTPROP/is2.5-7

input: finite transition system \mathcal{T} , invariant condition Φ

```
FOR ALL  $s_0 \in S_0$  DO
    IF  $DFS(s_0, \Phi)$  THEN
        return "no"
    FI
OD
return "yes"
```

$DFS(s_0, \Phi)$ returns “true” iff depth-first search from state s_0 leads to some state t with $t \not\models \Phi$

DFS-based invariant checking

LTPROP/is2.5-7

input: finite transition system \mathcal{T} , invariant condition Φ

```
 $\pi := \emptyset \leftarrow$  stack for error indication
FOR ALL  $s_0 \in S_0$  DO
    IF  $DFS(s_0, \Phi)$  THEN
        return "no" and  $reverse(\pi)$ 
    FI
OD
return "yes"
```

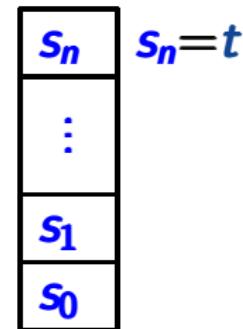
$DFS(s_0, \Phi)$ returns "true" iff depth-first search from state s_0 leads to some state t with $t \not\models \Phi$

DFS-based invariant checking

LTPROP/is2.5-7

input: finite transition system \mathcal{T} , invariant condition Φ

```
 $\pi := \emptyset \leftarrow$  stack for error indication
FOR ALL  $s_0 \in S_0$  DO
    IF  $DFS(s_0, \Phi)$  THEN
        return "no" and  $reverse(\pi)$ 
    FI
OD
return "yes"
```



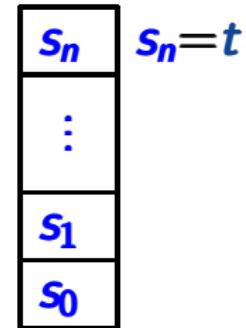
$DFS(s_0, \Phi)$ returns "true" iff depth-first search from state s_0 leads to some state t with $t \not\models \Phi$

DFS-based invariant checking

LTPROP/is2.5-7

input: finite transition system \mathcal{T} , invariant condition Φ

```
U :=  $\emptyset$  ← stores the “processed” states
π :=  $\emptyset$  ← stack for error indication
FOR ALL  $s_0 \in S_0$  DO
    IF  $DFS(s_0, \Phi)$  THEN
        return “no” and  $reverse(\pi)$ 
    FI
OD
return “yes”
```



$DFS(s_0, \Phi)$ returns “true” iff depth-first search from state s_0 leads to some state t with $t \not\models \Phi$

Recursive algorithm $DFS(s, \Phi)$

is2.5-8

“searches” for a path fragment $s \dots t$ with $t \not\models \Phi$

Recursive algorithm $DFS(s, \Phi)$

IS2.5-8

“searches” for a path fragment $s \dots t$ with $t \not\models \Phi$

```
IF  $s \notin U$  THEN
  IF  $s \not\models \Phi$  THEN return “true” FI
  IF  $s \models \Phi$  THEN
    :
  FI  FI
return “false”
```

Recursive algorithm $DFS(s, \Phi)$

IS2.5-8

“searches” for a path fragment $s \dots t$ with $t \not\models \Phi$

```
IF  $s \notin U$  THEN
    IF  $s \not\models \Phi$  THEN return “true” FI
    IF  $s \models \Phi$  THEN
        insert  $s$  in  $U$ ;
```

```
FI    FI
return “false”
```

Recursive algorithm $DFS(s, \Phi)$

IS2.5-8

“searches” for a path fragment $s \dots t$ with $t \not\models \Phi$

```
IF  $s \notin U$  THEN
    IF  $s \not\models \Phi$  THEN return “true” FI
    IF  $s \models \Phi$  THEN
        insert  $s$  in  $U$ ;
        FOR ALL  $s' \in Post(s)$  DO
            IF  $DFS(s', \Phi)$  THEN
                return “true” FI
        OD
    FI
return “false”
```

Recursive algorithm $DFS(s, \Phi)$

IS2.5-8

“searches” for a path fragment $s \dots t$ with $t \not\models \Phi$

```
Push( $\pi, s$ );  
IF  $s \notin U$  THEN  
  IF  $s \not\models \Phi$  THEN return “true” FI  
  IF  $s \models \Phi$  THEN  
    insert  $s$  in  $U$ ;  
    FOR ALL  $s' \in Post(s)$  DO  
      IF  $DFS(s', \Phi)$  THEN  
        return “true” FI  
    OD  
  FI  
FI  
 $Pop(\pi)$ ; return “false”
```

Recursive algorithm $DFS(s, \Phi)$

is2.5-8

“searches” for a path fragment $s \dots t$ with $t \not\models \Phi$

$Push(\pi, s);$

IF $s \notin U$ THEN

 IF $s \not\models \Phi$ THEN return “true” FI

 IF $s \models \Phi$ THEN

 insert s in U ;

 FOR ALL $s' \in Post(s)$ DO

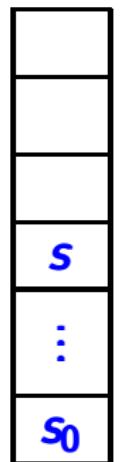
 IF $DFS(s', \Phi)$ THEN

 return “true” FI

 OD

 FI

$Pop(\pi);$ return “false”



initial state

Recursive algorithm $DFS(s, \Phi)$

is2.5-8

“searches” for a path fragment $s \dots t$ with $t \not\models \Phi$

$Push(\pi, s);$

IF $s \notin U$ THEN

 IF $s \not\models \Phi$ THEN return “true” FI

 IF $s \models \Phi$ THEN

 insert s in U ;

 FOR ALL $s' \in Post(s)$ DO

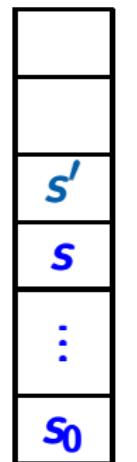
 IF $DFS(s', \Phi)$ THEN

 return “true” FI

 OD

 FI

$Pop(\pi)$; return “false”



initial state

Recursive algorithm $DFS(s, \Phi)$

is2.5-8

“searches” for a path fragment $s \dots t$ with $t \not\models \Phi$

$Push(\pi, s);$

IF $s \notin U$ THEN

IF $s \not\models \Phi$ THEN return “true” FI

IF $s \models \Phi$ THEN

insert s in U ;

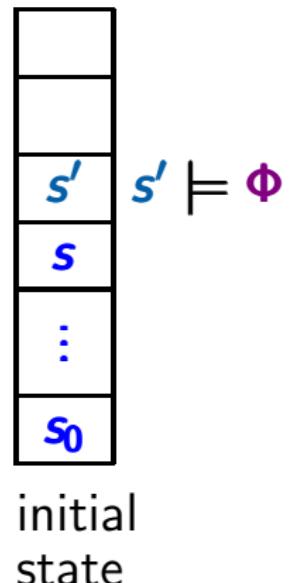
FOR ALL $s' \in Post(s)$ DO

IF $DFS(s', \Phi)$ THEN

return “true” FI

FI FI OD

$Pop(\pi)$; return “false”



Recursive algorithm $DFS(s, \Phi)$

is2.5-8

“searches” for a path fragment $s \dots s' \dots t$ with $t \not\models \Phi$

$Push(\pi, s);$

IF $s \notin U$ THEN

 IF $s \not\models \Phi$ THEN return “true” FI

 IF $s \models \Phi$ THEN

 insert s in U ;

 FOR ALL $s' \in Post(s)$ DO

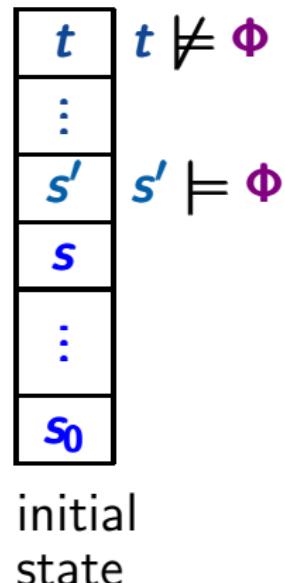
 IF $DFS(s', \Phi)$ THEN

 return “true” FI

 OD

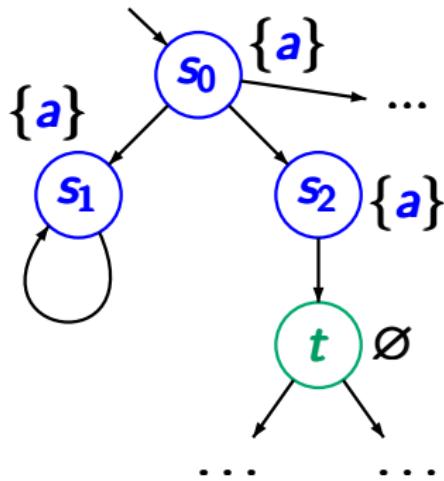
 FI

$Pop(\pi)$; return “false”



Example: invariant checking

is2.5-9

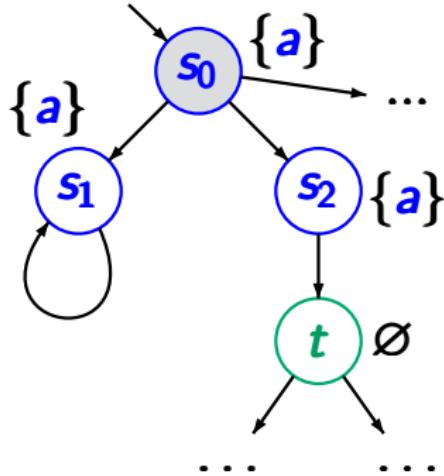


invariant
condition **a**

$$\begin{array}{c} s_0, s_1, s_2 \models a \\ t \not\models a \end{array}$$

Example: invariant checking

is2.5-9



$DFS(s_0, a)$

stack π

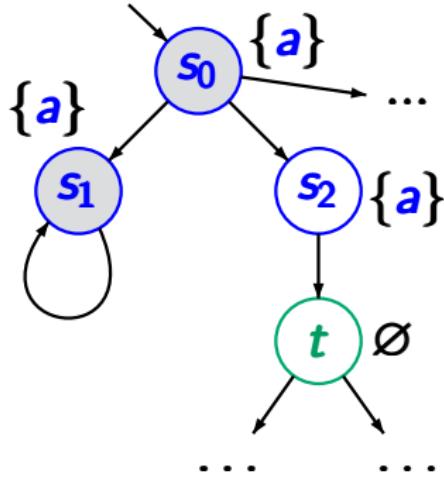
s_0

invariant
condition a

$$\begin{array}{c} s_0, s_1, s_2 \models a \\ t \not\models a \end{array}$$

Example: invariant checking

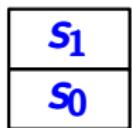
is2.5-9



$DFS(s_0, a)$

$DFS(s_1, a)$

stack π

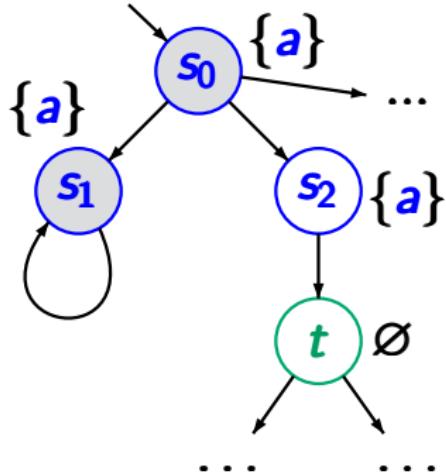


invariant
condition a

$$\begin{array}{c} s_0, s_1, s_2 \models a \\ t \not\models a \end{array}$$

Example: invariant checking

IS2.5-9

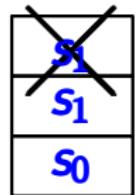


$DFS(s_0, a)$

$DFS(s_1, a)$

$DFS(s_1, a)$

stack π

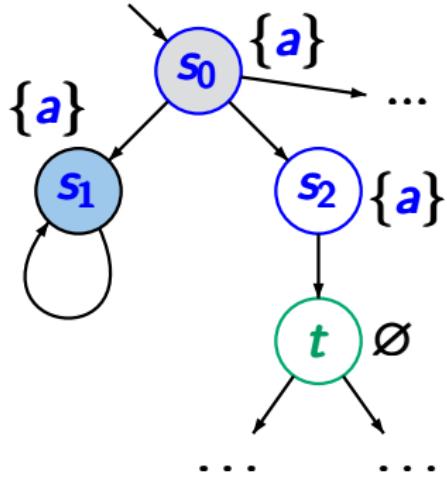


invariant
condition a

$$\begin{array}{c} s_0, s_1, s_2 \models a \\ t \not\models a \end{array}$$

Example: invariant checking

is2.5-9

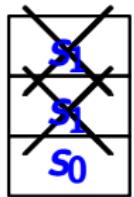


$DFS(s_0, a)$

$DFS(s_1, a)$

$DFS(s_1, a)$

stack π

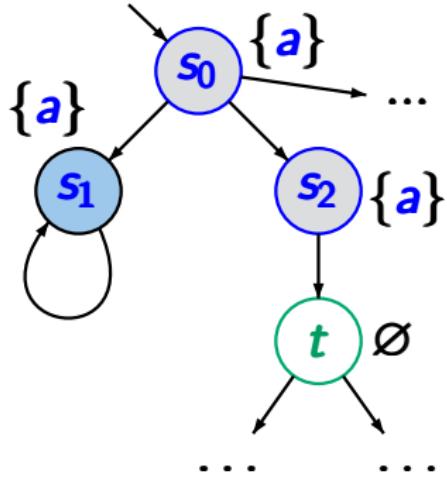


invariant
condition a

$$\begin{array}{c} s_0, s_1, s_2 \models a \\ t \not\models a \end{array}$$

Example: invariant checking

is2.5-9



invariant
condition a

$$\begin{array}{c} s_0, s_1, s_2 \models a \\ t \not\models a \end{array}$$

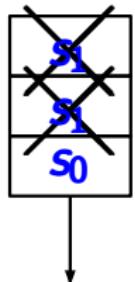
$DFS(s_0, a)$

$DFS(s_1, a)$

$DFS(s_1, a)$

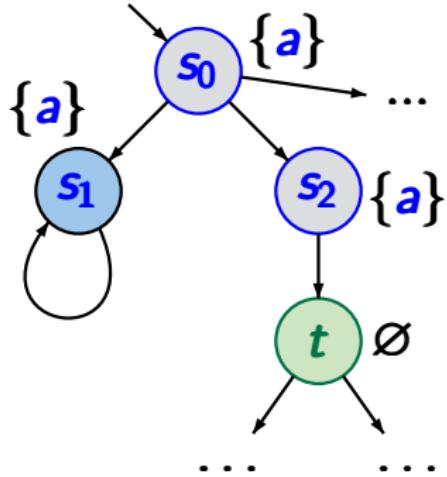
$DFS(s_2, a)$

stack π



Example: invariant checking

is2.5-9



invariant
condition a

$$\begin{array}{c} s_0, s_1, s_2 \models a \\ t \not\models a \end{array}$$

$DFS(s_0, a)$

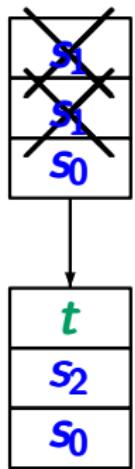
$DFS(s_1, a)$

$DFS(s_1, a)$

$DFS(s_2, a)$

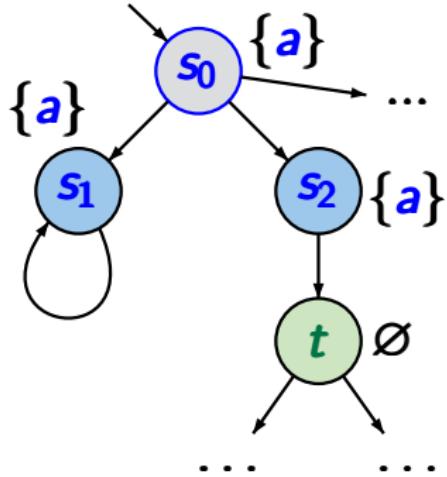
$DFS(t, a)$

stack π



Example: invariant checking

is2.5-9



invariant
condition a

$$\begin{array}{c} s_0, s_1, s_2 \models a \\ t \not\models a \end{array}$$

$DFS(s_0, a)$

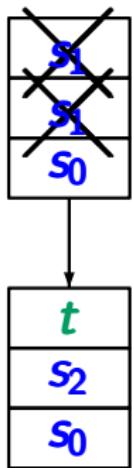
$DFS(s_1, a)$

$DFS(s_1, a)$

$DFS(s_2, a)$

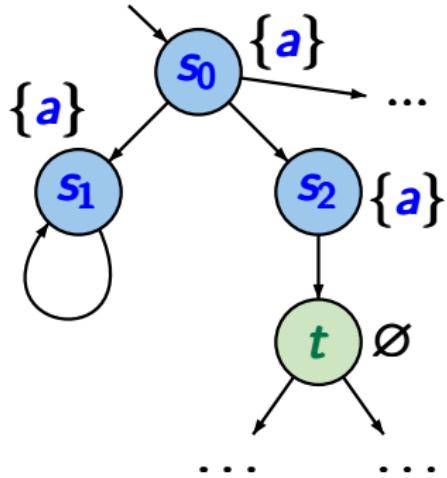
$DFS(t, a)$

stack π



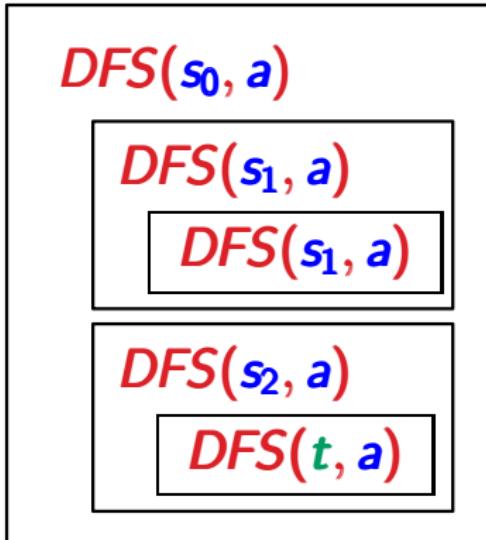
Example: invariant checking

is2.5-9

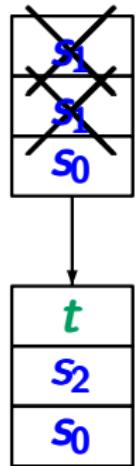


invariant
condition a

$$\begin{array}{c} s_0, s_1, s_2 \models a \\ t \not\models a \end{array}$$

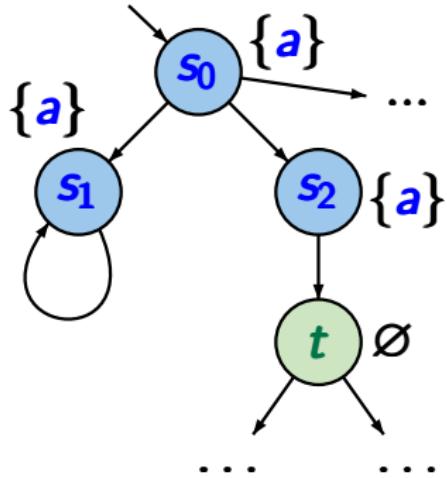


stack π



Example: invariant checking

is2.5-9



invariant
condition a

$$\begin{array}{c} s_0, s_1, s_2 \models a \\ t \not\models a \end{array}$$

$s_0 \not\models \text{"always } a\text{"}$

$DFS(s_0, a)$

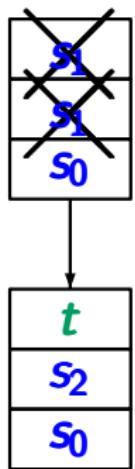
$DFS(s_1, a)$

$DFS(s_1, a)$

$DFS(s_2, a)$

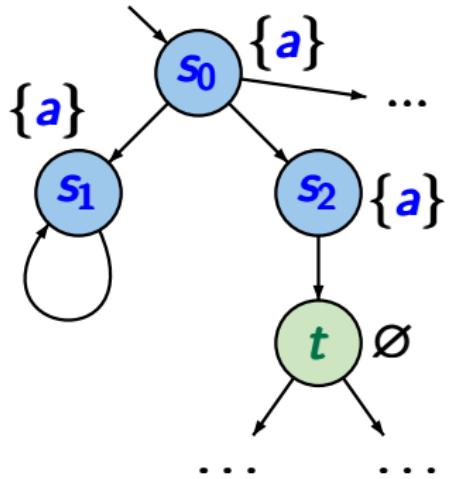
$DFS(t, a)$

stack π

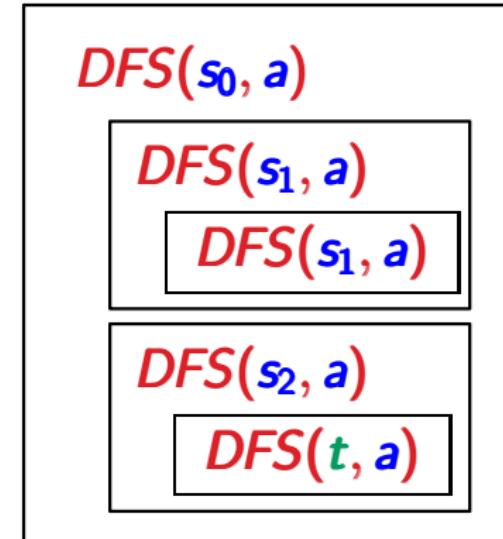


Example: invariant checking

is2.5-9

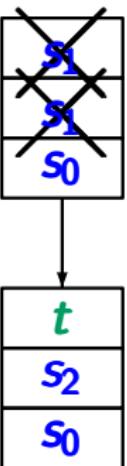


$$\begin{array}{c} s_0, s_1, s_2 \models a \\ t \not\models a \end{array}$$



$s_0 \not\models \text{"always } a\text{"}$ \leftarrow

error indication:
 $s_0 \ s_2 \ t$



Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view

definition of linear time properties

invariants and safety

liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

state that “nothing bad will happen”

state that “nothing bad will happen”

invariants:

- mutual exclusion: *never* $\text{crit}_1 \wedge \text{crit}_2$
- deadlock freedom: *never* $\bigwedge_{0 \leq i < n} \text{wait}_i$

other safety properties:

- German traffic lights:
every red phase is preceded by a yellow phase
- beverage machine:
the total number of entered coins is never less than the total number of released drinks

state that “nothing bad will happen”

invariants: \leftarrow “no **bad state** will be reached”

- mutual exclusion: $\text{never } crit_1 \wedge crit_2$
- deadlock freedom: $\text{never } \bigwedge_{0 \leq i < n} \text{wait};$

other safety properties:

- German traffic lights:
every red phase is preceded by a yellow phase
- beverage machine:
the total number of entered coins is never less than the total number of released drinks

state that “nothing bad will happen”

invariants: \leftarrow “no **bad state** will be reached”

- mutual exclusion: $\text{never } crit_1 \wedge crit_2$
- deadlock freedom: $\text{never } \bigwedge_{0 \leq i < n} \text{wait};$

other safety properties: \leftarrow “no **bad prefix**”

- German traffic lights:
every red phase is preceded by a yellow phase
- beverage machine:
the total number of entered coins is never less than the total number of released drinks

Bad prefixes of safety properties

IS2.5-10B

- traffic lights:

every red phase is preceded by a yellow phase

bad prefix: finite trace fragment where a red phase appears without being preceded by a yellow phase

e.g., ... {●} {●}

Bad prefixes of safety properties

IS2.5-10B

- traffic lights:

every red phase is preceded by a yellow phase

bad prefix: finite trace fragment where a red phase appears without being preceded by a yellow phase

e.g., ... {} {}

- beverage machine:

the total number of entered coins is never less than the total number of released drinks

bad prefix, e.g., {} {} {}

Definition of safety properties

IS2.5-11

Let E be a LT property over AP , i.e., $E \subseteq (2^{AP})^\omega$.

Definition of safety properties

IS2.5-11

Let E be a LT property over AP , i.e., $E \subseteq (2^{AP})^\omega$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^\omega \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that
none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$
belongs to E , i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Definition of safety properties

IS2.5-11

Let E be a LT property over AP , i.e., $E \subseteq (2^{AP})^\omega$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^\omega \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that
none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$
belongs to E , i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called **bad prefixes** for E .

Definition of safety properties

IS2.5-11

Let E be a LT property over AP , i.e., $E \subseteq (2^{AP})^\omega$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^\omega \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that
none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$
belongs to E , i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called **bad prefixes** for E .

$E =$ set of all infinite words that
do *not* have a **bad prefix**

Definition of safety properties

IS2.5-11

Let E be a LT property over AP , i.e., $E \subseteq (2^{AP})^\omega$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^\omega \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that
none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$
belongs to E , i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called **bad prefixes** for E .

$BadPref_E \stackrel{\text{def}}{=} \text{set of bad prefixes for } E$

Definition of safety properties

IS2.5-11

Let E be a LT property over AP , i.e., $E \subseteq (2^{AP})^\omega$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^\omega \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that
none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$
belongs to E , i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called **bad prefixes** for E .

$$\text{BadPref}_E \stackrel{\text{def}}{=} \text{set of bad prefixes for } E \subseteq (2^{AP})^+$$

Definition of safety properties

IS2.5-11

Let E be a LT property over AP , i.e., $E \subseteq (2^{AP})^\omega$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^\omega \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that
none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$
belongs to E , i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called **bad prefixes** for E .

$BadPref_E \stackrel{\text{def}}{=} \text{set of bad prefixes for } E \subseteq (2^{AP})^+$
↑
briefly: **BadPref**

Definition of safety properties

IS2.5-11

Let E be a LT property over AP , i.e., $E \subseteq (2^{AP})^\omega$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^\omega \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that
none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$
belongs to E , i.e.,

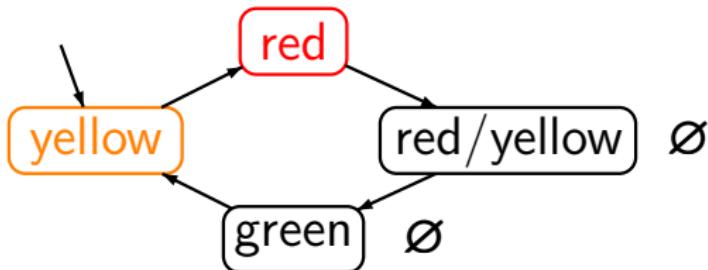
$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called **bad prefixes** for E .

minimal bad prefixes: any word $A_0 \dots A_i \dots A_n \in \text{BadPref}$
s.t. no proper prefix $A_0 \dots A_i$ is a bad prefix for E

Safety property for a traffic light

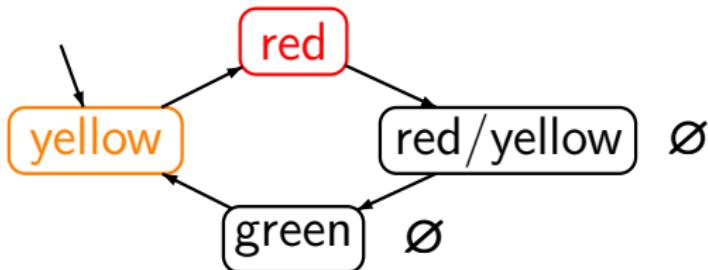
is2.5-12



$$AP = \{\text{red, yellow}\}$$

Safety property for a traffic light

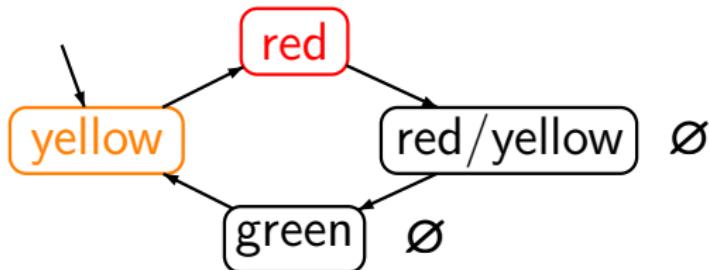
is2.5-12



“every red phase is preceded by a yellow phase”

Safety property for a traffic light

is2.5-12



“every red phase is preceded by a yellow phase”

hence: $\mathcal{T} \models \mathcal{E}$

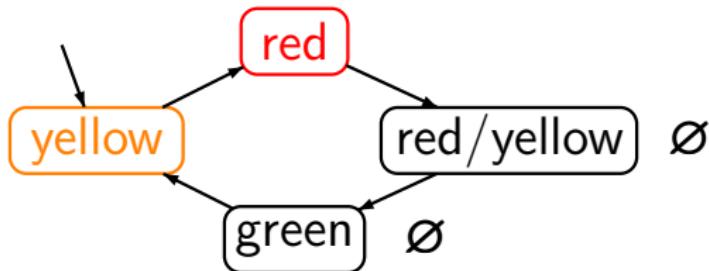
\mathcal{E} = set of all infinite words $A_0 A_1 A_2 \dots$

over 2^{AP} such that for all $i \in \mathbb{N}$:

$\text{red} \in A_i \implies i \geq 1$ and $\text{yellow} \in A_{i-1}$

Safety property for a traffic light

is2.5-12



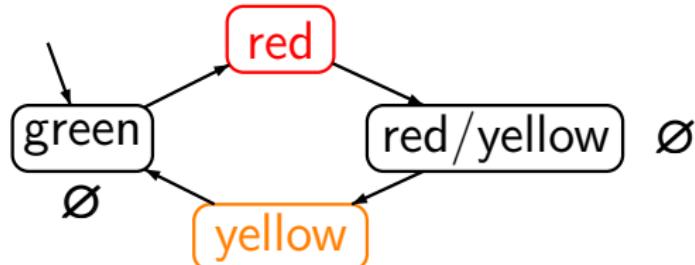
“every red phase is preceded by a yellow phase”

hence: $\mathcal{T} \models \mathcal{E}$

\mathcal{E} = set of all infinite words $A_0 A_1 A_2 \dots$

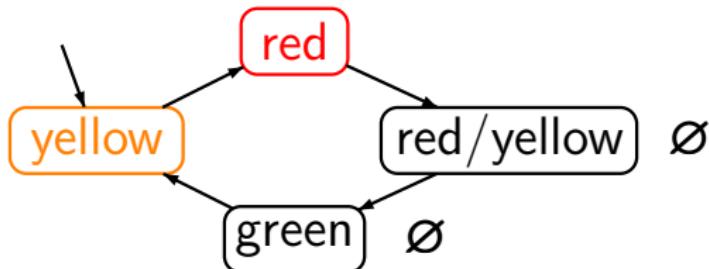
over 2^{AP} such that for all $i \in \mathbb{N}$:

$\text{red} \in A_i \implies i \geq 1 \text{ and } \text{yellow} \in A_{i-1}$



Safety property for a traffic light

is2.5-12

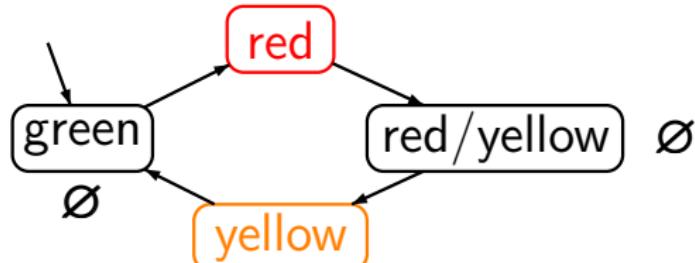


“every red phase is preceded by a yellow phase”

hence: $\mathcal{T} \models \mathcal{E}$

\mathcal{E} = set of all infinite words $A_0 A_1 A_2 \dots$
over 2^{AP} such that for all $i \in \mathbb{N}$:

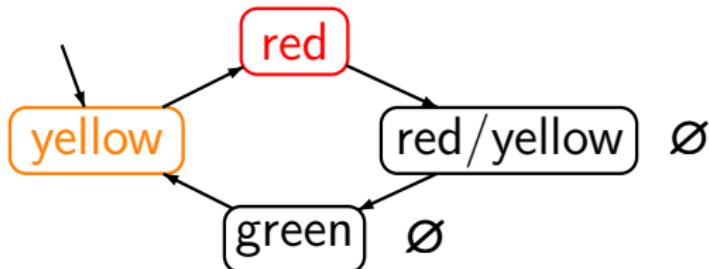
$\text{red} \in A_i \implies i \geq 1 \text{ and } \text{yellow} \in A_{i-1}$



“there is a red phase that is not preceded by a yellow phase”

Safety property for a traffic light

JS2.5-12



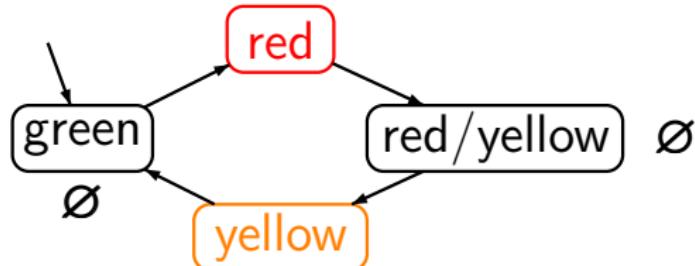
“every red phase is preceded by a yellow phase”

hence: $\mathcal{T} \models E$

E = set of all infinite words $A_0 A_1 A_2 \dots$

over 2^{AP} such that for all $i \in \mathbb{N}$:

red $\in A_i \implies i \geq 1$ and *yellow* $\in A_{i-1}$

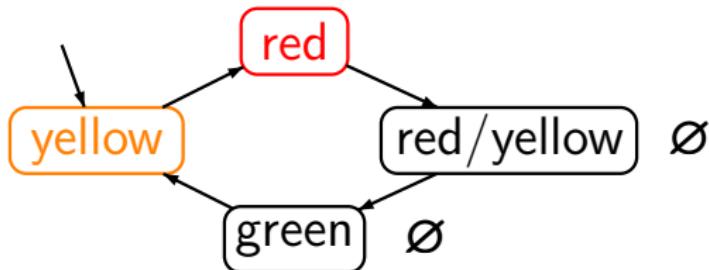


“there is a red phase that is not preceded by a yellow phase”

hence: $T \not\models E$

Safety property for a traffic light

is2.5-12



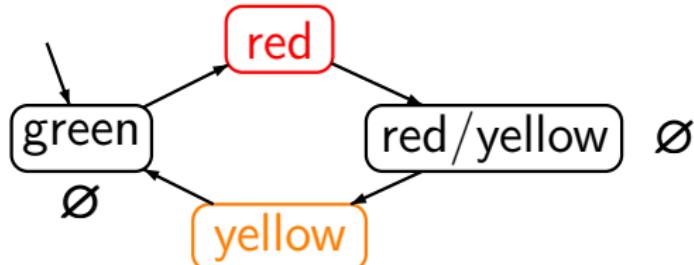
“every red phase is preceded by a yellow phase”

hence: $T \models E$

E = set of all infinite words $A_0 A_1 A_2 \dots$

over 2^{AP} such that for all $i \in \mathbb{N}$:

$\text{red} \in A_i \implies i \geq 1 \text{ and } \text{yellow} \in A_{i-1}$



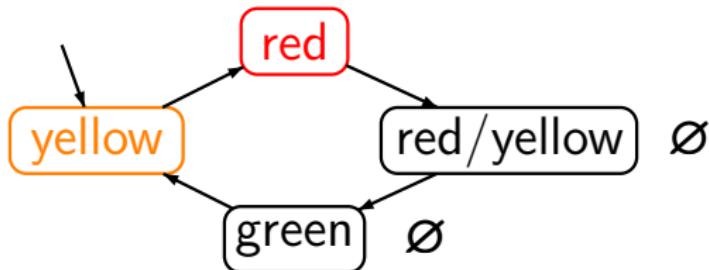
$T \not\models E$

bad prefix, e.g.,

$\emptyset \{ \text{red} \} \emptyset \{ \text{yellow} \}$

Safety property for a traffic light

is2.5-12



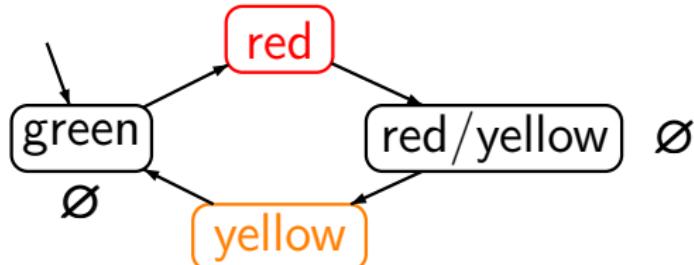
“every red phase is preceded by a yellow phase”

hence: $T \models E$

E = set of all infinite words $A_0 A_1 A_2 \dots$

over 2^{AP} such that for all $i \in \mathbb{N}$:

$\text{red} \in A_i \implies i \geq 1 \text{ and } \text{yellow} \in A_{i-1}$

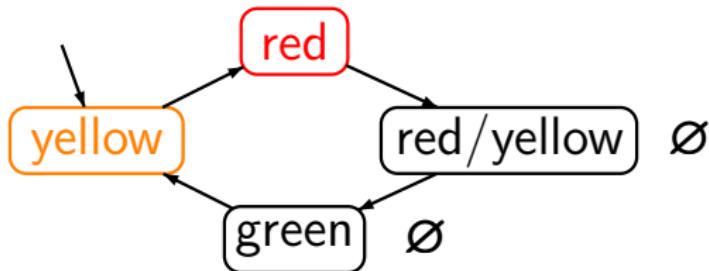


$T \not\models E$

minimal bad prefix:
 $\emptyset \{ \text{red} \}$

Safety property for a traffic light

IS2.5-12A



“every red phase is preceded by a yellow phase”

hence: $\mathcal{T} \models \mathcal{E}$

\mathcal{E} = set of all infinite words $A_0 A_1 A_2 \dots$ over 2^{AP} such that for all $i \in \mathbb{N}$:

$$\text{red} \in A_i \implies i \geq 1 \text{ and } \text{yellow} \in A_{i-1}$$

is a safety property over $\text{AP} = \{\text{red}, \text{yellow}\}$ with

BadPref = set of all finite words $A_0 A_1 \dots A_n$ over 2^{AP} s.t. for some $i \in \{0, \dots, n\}$:

$$\text{red} \in A_i \wedge (i=0 \vee \text{yellow} \notin A_{i-1})$$

Satisfaction of safety properties

IS2.5-11A

Satisfaction of safety properties

is2.5-11A

Let $E \subseteq (2^{AP})^\omega$ be a safety property, \mathcal{T} a TS over AP .

$$\mathcal{T} \models E \text{ iff } \text{Traces}(\mathcal{T}) \subseteq E$$

$\text{Traces}(\mathcal{T})$ = set of traces of \mathcal{T}

Satisfaction of safety properties

IS2.5-11A

Let $E \subseteq (2^{AP})^\omega$ be a safety property, \mathcal{T} a TS over AP .

$\mathcal{T} \models E$ iff $Traces(\mathcal{T}) \subseteq E$
iff $Traces_{fin}(\mathcal{T}) \cap BadPref = \emptyset$

$BadPref$ = set of all bad prefixes of E

$Traces(\mathcal{T})$ = set of traces of \mathcal{T}

$Traces_{fin}(\mathcal{T})$ = set of finite traces of \mathcal{T}

$= \{ trace(\hat{\pi}) : \hat{\pi} \text{ is an initial, finite path fragment of } \mathcal{T} \}$

Satisfaction of safety properties

IS2.5-11A

Let $E \subseteq (2^{AP})^\omega$ be a safety property, \mathcal{T} a TS over AP .

$\mathcal{T} \models E$ iff $Traces(\mathcal{T}) \subseteq E$
iff $Traces_{fin}(\mathcal{T}) \cap BadPref = \emptyset$
iff $Traces_{fin}(\mathcal{T}) \cap MinBadPref = \emptyset$

$BadPref$ = set of all bad prefixes of E
 $MinBadPref$ = set of all minimal bad prefixes of E
 $Traces(\mathcal{T})$ = set of traces of \mathcal{T}
 $Traces_{fin}(\mathcal{T})$ = set of finite traces of \mathcal{T}
 $= \{ trace(\hat{\pi}) : \hat{\pi} \text{ is an initial, finite path fragment of } \mathcal{T} \}$

Correct or wrong?

IS2.5-13

Every **invariant** is a **safety property**.

Correct or wrong?

IS2.5-13

Every **invariant** is a **safety property**.

correct.

Correct or wrong?

IS2.5-13

Every **invariant** is a **safety property**.

correct.

Let E be an invariant with invariant condition Φ .

Correct or wrong?

IS2.5-13

Every invariant is a safety property.

correct.

Let E be an invariant with invariant condition Φ .

- bad prefixes for E : finite words $A_0 \dots A_i \dots A_n$ s.t.
 $A_i \not\models \Phi$ for some $i \in \{0, 1, \dots, n\}$

Every invariant is a safety property.

correct.

Let E be an invariant with invariant condition Φ .

- bad prefixes for E : finite words $A_0 \dots A_i \dots A_n$ s.t.
 $A_i \not\models \Phi$ for some $i \in \{0, 1, \dots, n\}$
- minimal bad prefixes for E :
finite words $A_0 A_1 \dots A_{n-1} A_n$ such that
 $A_i \models \Phi$ for $i = 0, 1, \dots, n-1$, and $A_n \not\models \Phi$

Correct or wrong?

IS2.5-36

\emptyset is a safety property

Correct or wrong?

IS2.5-36

\emptyset is a safety property

correct

Correct or wrong?

IS2.5-36

\emptyset is a safety property

correct

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes

Correct or wrong?

IS2.5-36

\emptyset is a safety property

correct

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes
- \emptyset is even an **invariant** (invariant condition **false**)

Correct or wrong?

IS2.5-36

\emptyset is a safety property

correct

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes
- \emptyset is even an **invariant** (invariant condition **false**)

$(2^{AP})^\omega$ is a safety property

Correct or wrong?

IS2.5-36

\emptyset is a safety property

correct

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes
- \emptyset is even an **invariant** (invariant condition **false**)

$(2^{AP})^\omega$ is a safety property

correct

Correct or wrong?

IS2.5-36

\emptyset is a safety property

correct

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes
- \emptyset is even an **invariant** (invariant condition **false**)

$(2^{AP})^\omega$ is a safety property

correct

“For all words $\in \underbrace{(2^{AP})^\omega \setminus (2^{AP})^\omega}_{= \emptyset} \dots”$

Prefix closure

IS2.5-PREFIX-CLOSURE

Prefix closure

IS2.5-PREFIX-CLOSURE

For a given infinite word $\sigma = A_0 A_1 A_2 \dots$, let

$\text{pref}(\sigma)$ $\stackrel{\text{def}}{=}$ set of all nonempty, finite prefixes of σ
 $= \{ A_0 A_1 \dots A_n : n \geq 0 \}$

Prefix closure

IS2.5-PREFIX-CLOSURE

For a given infinite word $\sigma = A_0 A_1 A_2 \dots$, let

$$\begin{aligned} \text{pref}(\sigma) &\stackrel{\text{def}}{=} \text{set of all nonempty, finite prefixes of } \sigma \\ &= \{ A_0 A_1 \dots A_n : n \geq 0 \} \end{aligned}$$

$$\text{For } E \subseteq (2^{\text{AP}})^\omega, \text{ let } \text{pref}(E) \stackrel{\text{def}}{=} \bigcup_{\sigma \in E} \text{pref}(\sigma)$$

Prefix closure

IS2.5-PREFIX-CLOSURE

For a given infinite word $\sigma = A_0 A_1 A_2 \dots$, let

$$\begin{aligned} \text{pref}(\sigma) &\stackrel{\text{def}}{=} \text{set of all nonempty, finite prefixes of } \sigma \\ &= \{A_0 A_1 \dots A_n : n \geq 0\} \end{aligned}$$

$$\text{For } E \subseteq (2^{\text{AP}})^\omega, \text{ let } \text{pref}(E) \stackrel{\text{def}}{=} \bigcup_{\sigma \in E} \text{pref}(\sigma)$$

Given an LT property E , the **prefix closure** of E is:

$$\text{cl}(E) \stackrel{\text{def}}{=} \{\sigma \in (2^{\text{AP}})^\omega : \text{pref}(\sigma) \subseteq \text{pref}(E)\}$$

Prefix closure and safety

IS2.5-SAFETY-PREFIX-CLOSURE

For any infinite word $\sigma \in (2^{AP})^\omega$, let

$\text{pref}(\sigma) = \text{set of all nonempty, finite prefixes of } \sigma$

For any LT property $E \subseteq (2^{AP})^\omega$, let

$\text{pref}(E) = \bigcup_{\sigma \in E} \text{pref}(\sigma) \text{ and}$

$\text{cl}(E) = \{\sigma \in (2^{AP})^\omega : \text{pref}(\sigma) \subseteq \text{pref}(E)\}$

Prefix closure and safety

IS2.5-SAFETY-PREFIX-CLOSURE

For any infinite word $\sigma \in (2^{AP})^\omega$, let

$\text{pref}(\sigma) = \text{set of all nonempty, finite prefixes of } \sigma$

For any LT property $E \subseteq (2^{AP})^\omega$, let

$\text{pref}(E) = \bigcup_{\sigma \in E} \text{pref}(\sigma) \text{ and}$

$\text{cl}(E) = \{\sigma \in (2^{AP})^\omega : \text{pref}(\sigma) \subseteq \text{pref}(E)\}$

Theorem:

E is a safety property iff $\text{cl}(E) = E$

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN

remind: LT properties and trace inclusion:

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then:

$$Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2)$$

iff for all LT properties E : $\mathcal{T}_2 \models E \Rightarrow \mathcal{T}_1 \models E$

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN

remind: LT properties and trace inclusion:

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then:

$$Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2)$$

iff for all LT properties E : $\mathcal{T}_2 \models E \Rightarrow \mathcal{T}_1 \models E$

safety properties and finite trace inclusion:

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then:

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \Rightarrow \mathcal{T}_1 \models E$

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{fin}(\mathcal{T}_1) \subseteq \text{Traces}_{fin}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof "implies": obvious, as for safety property E :

$$\mathcal{T} \models E \text{ iff } \text{Traces}_{fin}(\mathcal{T}) \cap \text{BadPref} = \emptyset$$

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof "implies": obvious, as for safety property E :

$$\mathcal{T} \models E \text{ iff } \text{Traces}_{\text{fin}}(\mathcal{T}) \cap \text{BadPref} = \emptyset$$

Hence:

If $\mathcal{T}_2 \models E$ and $\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$ then:

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof "implies": obvious, as for safety property E :

$$\mathcal{T} \models E \text{ iff } \text{Traces}_{\text{fin}}(\mathcal{T}) \cap \text{BadPref} = \emptyset$$

Hence:

If $\mathcal{T}_2 \models E$ and $\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$ then:

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \cap \text{BadPref}$$

$$\subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2) \cap \text{BadPref} = \emptyset$$

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof "implies": obvious, as for safety property E :

$$\mathcal{T} \models E \text{ iff } \text{Traces}_{\text{fin}}(\mathcal{T}) \cap \text{BadPref} = \emptyset$$

Hence:

If $\mathcal{T}_2 \models E$ and $\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$ then:

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \cap \text{BadPref}$$

$$\subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2) \cap \text{BadPref} = \emptyset$$

and therefore $\mathcal{T}_1 \models E$

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof “ \Leftarrow ”: consider the LT property

$$E = \text{cl}(\text{Traces}(\mathcal{T}_2))$$

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{fin}(\mathcal{T}_1) \subseteq \text{Traces}_{fin}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof "≤": consider the LT property

$$E = \text{cl}(\text{Traces}(\mathcal{T}_2)) = \{\sigma : \text{pref}(\sigma) \subseteq \text{Traces}_{fin}(\mathcal{T}_2)\}$$

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{fin}(\mathcal{T}_1) \subseteq \text{Traces}_{fin}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof " \Leftarrow ": consider the LT property

$$E = \text{cl}(\text{Traces}(\mathcal{T}_2)) = \{\sigma : \text{pref}(\sigma) \subseteq \text{Traces}_{fin}(\mathcal{T}_2)\}$$

for each transition system \mathcal{T} :

$$\text{pref}(\text{Traces}(\mathcal{T})) = \text{Traces}_{fin}(\mathcal{T})$$

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof "≤": consider the LT property

$$E = \text{cl}(\text{Traces}(\mathcal{T}_2)) = \{\sigma : \text{pref}(\sigma) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)\}$$

Then, E is a safety property

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof "≤": consider the LT property

$$E = \text{cl}(\text{Traces}(\mathcal{T}_2)) = \{\sigma : \text{pref}(\sigma) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)\}$$

Then, E is a safety property

as $\text{cl}(E) = E$

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof " \Leftarrow ": consider the LT property

$$E = \text{cl}(\text{Traces}(\mathcal{T}_2)) = \{\sigma : \text{pref}(\sigma) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)\}$$

Then, E is a safety property

$$\text{as } \text{cl}(E) = E$$

set of bad prefixes: $(2^{\text{AP}})^+ \setminus \text{Traces}_{\text{fin}}(\mathcal{T}_2)$

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof "≤": consider the LT property

$$E = \text{cl}(\text{Traces}(\mathcal{T}_2)) = \{\sigma : \text{pref}(\sigma) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)\}$$

Then, E is a safety property and $\mathcal{T}_2 \models E$.

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof “ \Leftarrow ”: consider the LT property

$$E = \text{cl}(\text{Traces}(\mathcal{T}_2)) = \{\sigma : \text{pref}(\sigma) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)\}$$

Then, E is a safety property and $\mathcal{T}_2 \models E$.

By assumption: $\mathcal{T}_1 \models E$

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof "≤": consider the LT property

$$E = \text{cl}(\text{Traces}(\mathcal{T}_2)) = \{\sigma : \text{pref}(\sigma) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)\}$$

Then, E is a safety property and $\mathcal{T}_2 \models E$.

By assumption: $\mathcal{T}_1 \models E$ and therefore $\text{Traces}(\mathcal{T}_1) \subseteq E$.

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof "≤": consider the LT property

$$E = \text{cl}(\text{Traces}(\mathcal{T}_2)) = \{\sigma : \text{pref}(\sigma) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)\}$$

Then, E is a safety property and $\mathcal{T}_2 \models E$.

By assumption: $\mathcal{T}_1 \models E$ and therefore $\text{Traces}(\mathcal{T}_1) \subseteq E$.

Hence: $\text{Traces}_{\text{fin}}(\mathcal{T}_1) = \text{pref}(\text{Traces}(\mathcal{T}_1))$

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof "≤": consider the LT property

$$E = \text{cl}(\text{Traces}(\mathcal{T}_2)) = \{\sigma : \text{pref}(\sigma) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)\}$$

Then, E is a safety property and $\mathcal{T}_2 \models E$.

By assumption: $\mathcal{T}_1 \models E$ and therefore $\text{Traces}(\mathcal{T}_1) \subseteq E$.

Hence: $\text{Traces}_{\text{fin}}(\mathcal{T}_1) = \text{pref}(\text{Traces}(\mathcal{T}_1))$

$$\subseteq \text{pref}(E)$$

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof "≤": consider the LT property

$$E = \text{cl}(\text{Traces}(\mathcal{T}_2)) = \{\sigma : \text{pref}(\sigma) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)\}$$

Then, E is a safety property and $\mathcal{T}_2 \models E$.

By assumption: $\mathcal{T}_1 \models E$ and therefore $\text{Traces}(\mathcal{T}_1) \subseteq E$.

Hence: $\text{Traces}_{\text{fin}}(\mathcal{T}_1) = \text{pref}(\text{Traces}(\mathcal{T}_1))$

$$\subseteq \text{pref}(E) = \text{pref}(\text{cl}(\text{Traces}(\mathcal{T}_2)))$$

Safety and finite trace inclusion

IS2.5-SAFETY-TRACEFIN-PROOF

$$\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof "≤": consider the LT property

$$E = \text{cl}(\text{Traces}(\mathcal{T}_2)) = \{\sigma : \text{pref}(\sigma) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)\}$$

Then, E is a safety property and $\mathcal{T}_2 \models E$.

By assumption: $\mathcal{T}_1 \models E$ and therefore $\text{Traces}(\mathcal{T}_1) \subseteq E$.

Hence: $\text{Traces}_{\text{fin}}(\mathcal{T}_1) = \text{pref}(\text{Traces}(\mathcal{T}_1))$

$$\subseteq \text{pref}(E) = \text{pref}(\text{cl}(\text{Traces}(\mathcal{T}_2)))$$

$$= \text{Traces}_{\text{fin}}(\mathcal{T}_2)$$

Safety and finite trace equivalence

IS2.5-SAFETY-TRACEEQUIV

Safety and finite trace equivalence

IS2.5-SAFETY-TRACEEQUIV

safety properties and finite trace inclusion:

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then:

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Safety and finite trace equivalence

IS2.5-SAFETY-TRACEEQUIV

safety properties and finite trace inclusion:

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then:

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

iff for all safety properties E : $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

safety properties and finite trace equivalence:

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then:

$$Traces_{fin}(\mathcal{T}_1) = Traces_{fin}(\mathcal{T}_2)$$

iff \mathcal{T}_1 and \mathcal{T}_2 satisfy the same safety properties

trace inclusion

$\text{Traces}(\mathcal{T}) \subseteq \text{Traces}(\mathcal{T}')$ iff

for all LT properties E : $\mathcal{T}' \models E \Rightarrow \mathcal{T} \models E$

finite trace inclusion

$\text{Traces}_{\text{fin}}(\mathcal{T}) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}')$ iff

for all safety properties E : $\mathcal{T}' \models E \Rightarrow \mathcal{T} \models E$

trace equivalence

$\text{Traces}(\mathcal{T}) = \text{Traces}(\mathcal{T}')$ iff

\mathcal{T} and \mathcal{T}' satisfy the **same** LT properties

finite trace equivalence

$\text{Traces}_{fin}(\mathcal{T}) = \text{Traces}_{fin}(\mathcal{T}')$ iff

\mathcal{T} and \mathcal{T}' satisfy the **same** safety properties

If $\text{Traces}(T) \subseteq \text{Traces}(T')$
then $\text{Traces}_{\text{fin}}(T) \subseteq \text{Traces}_{\text{fin}}(T')$.

If $\text{Traces}(\mathcal{T}) \subseteq \text{Traces}(\mathcal{T}')$
then $\text{Traces}_{fin}(\mathcal{T}) \subseteq \text{Traces}_{fin}(\mathcal{T}')$.

correct, since

$\text{Traces}_{fin}(\mathcal{T})$ = set of all finite nonempty prefixes
of words in $\text{Traces}(\mathcal{T})$
= $\text{pref}(\text{Traces}(\mathcal{T}))$

If $\text{Traces}(\mathcal{T}) \subseteq \text{Traces}(\mathcal{T}')$
then $\text{Traces}_{\text{fin}}(\mathcal{T}) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}')$.

correct, since

$$\begin{aligned}\text{Traces}_{\text{fin}}(\mathcal{T}) &= \text{set of all finite nonempty prefixes} \\ &\quad \text{of words in } \text{Traces}(\mathcal{T}) \\ &= \text{pref}(\text{Traces}(\mathcal{T}))\end{aligned}$$



$$\begin{aligned}\text{Traces}(\mathcal{T}) &= \{ \{a\}^\omega \} \\ \text{Traces}_{\text{fin}}(\mathcal{T}) &= \{ \{a\}^n : n \geq 1 \}\end{aligned}$$

is trace equivalence the same as
finite trace equivalence ?

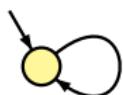
is trace equivalence the same as
finite trace equivalence ?

answer: **no**

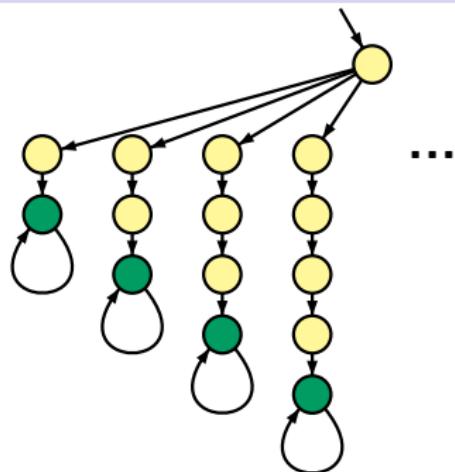
Finite trace relations versus trace relations

is2.5-32

\mathcal{T}



\mathcal{T}'



$$\text{○} \hat{=} \emptyset \quad \text{●} \hat{=} \{\textcolor{teal}{b}\}$$

set of propositions

$$AP = \{\textcolor{teal}{b}\}$$

Finite trace relations versus trace relations

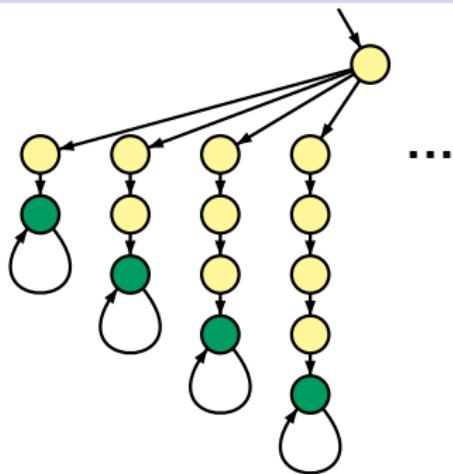
is2.5-32

\mathcal{T}



$$Traces(\mathcal{T}) = \{\emptyset^\omega\}$$

\mathcal{T}'



$$\text{○} \hat{=} \emptyset \quad \text{●} \hat{=} \{\textcolor{teal}{b}\}$$

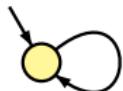
set of propositions

$$AP = \{\textcolor{teal}{b}\}$$

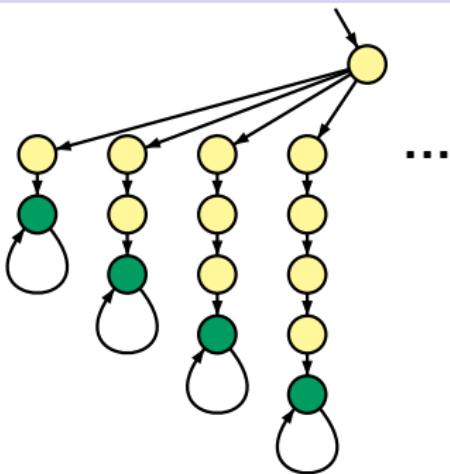
Finite trace relations versus trace relations

is2.5-32

\mathcal{T}



\mathcal{T}'



$$\text{Traces}(\mathcal{T}) = \{\emptyset^\omega\}$$

$$\text{Traces}_{\text{fin}}(\mathcal{T}) = \{\emptyset^n : n \geq 0\}$$

$$\text{○} \hat{=} \emptyset \quad \text{●} \hat{=} \{\text{b}\}$$

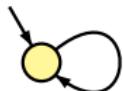
set of propositions

$$AP = \{\text{b}\}$$

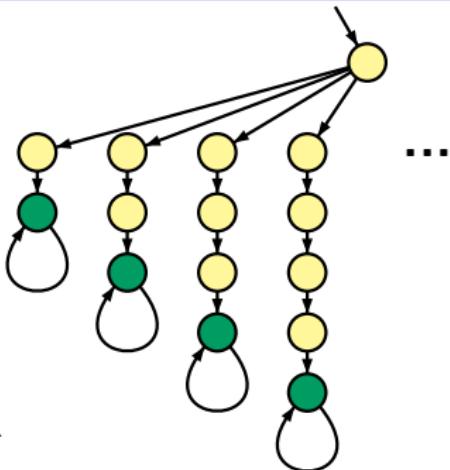
Finite trace relations versus trace relations

is2.5-32

\mathcal{T}



\mathcal{T}'



$$\text{Traces}(\mathcal{T}) = \{\emptyset^\omega\}$$

$$\text{Traces}_{\text{fin}}(\mathcal{T}) = \{\emptyset^n : n \geq 0\}$$

$$\text{Traces}(\mathcal{T}') = \{\emptyset^n \{b\}^\omega : n \geq 2\}$$

$$\text{○} \hat{=} \emptyset \quad \text{●} \hat{=} \{\text{b}\}$$

set of propositions

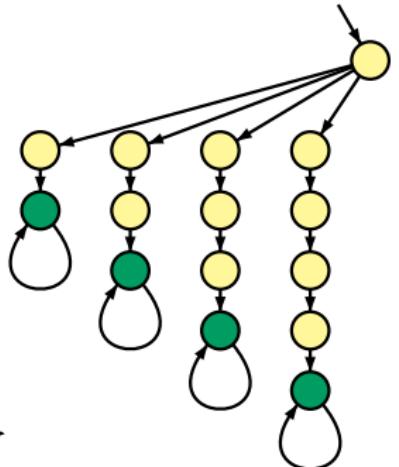
$$AP = \{\text{b}\}$$

Finite trace relations versus trace relations

is2.5-32

\mathcal{T}

\mathcal{T}'



$$\text{Traces}(\mathcal{T}) = \{\emptyset^\omega\}$$

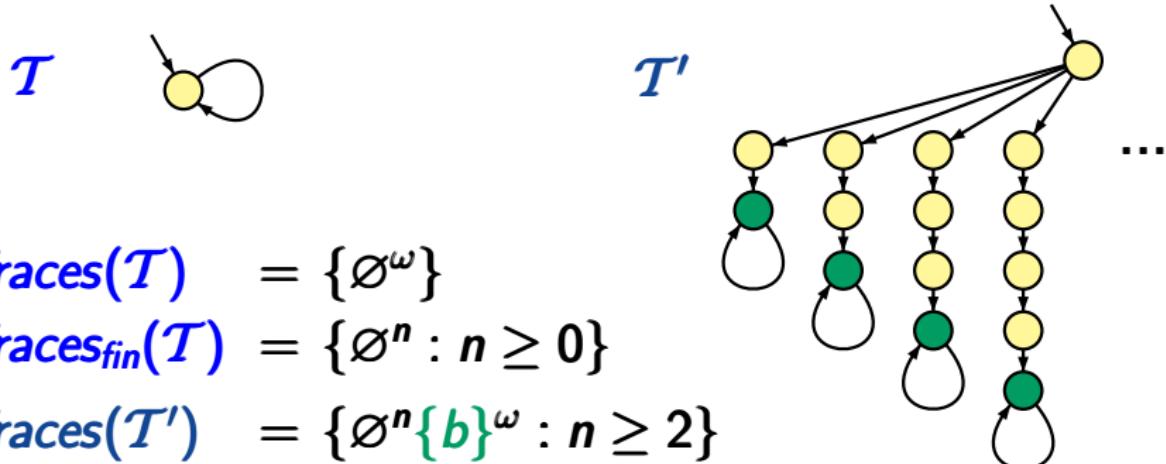
$$\text{Traces}_{\text{fin}}(\mathcal{T}) = \{\emptyset^n : n \geq 0\}$$

$$\text{Traces}(\mathcal{T}') = \{\emptyset^n \{b\}^\omega : n \geq 2\}$$

$$\begin{aligned} \text{Traces}_{\text{fin}}(\mathcal{T}') = \{\emptyset^n : n \geq 0\} \cup \\ \{\emptyset^n \{b\}^m : n \geq 2 \wedge m \geq 1\} \end{aligned}$$

Finite trace relations versus trace relations

IS2.5-32



$$Traces(\mathcal{T}) = \{\emptyset^\omega\}$$

$$Traces_{fin}(T) = \{\emptyset^n : n \geq 0\}$$

$$Traces(T') = \{\emptyset^n \{b\}^\omega : n \geq 2\}$$

$$\text{Traces}_{fin}(\mathcal{T}') = \{\emptyset^n : n \geq 0\} \cup \{\emptyset^n \{b\}^m : n \geq 2 \wedge m \geq 1\}$$

$\text{Traces}(T) \not\subseteq \text{Traces}(T')$, but

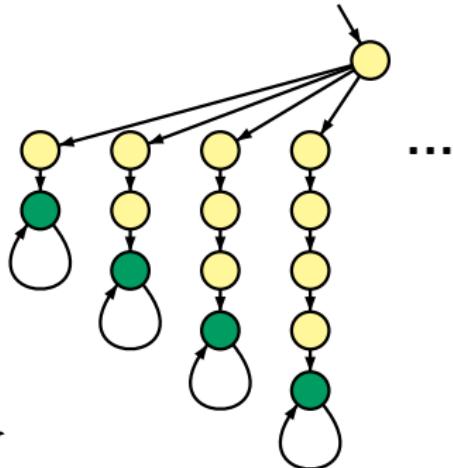
$$Traces_{fin}(T) \subseteq Traces_{fin}(T')$$

Finite trace relations versus trace relations

is2.5-32

\mathcal{T}

\mathcal{T}'



$$\text{Traces}(\mathcal{T}) = \{\emptyset^\omega\}$$

$$\text{Traces}_{\text{fin}}(\mathcal{T}) = \{\emptyset^n : n \geq 0\}$$

$$\text{Traces}(\mathcal{T}') = \{\emptyset^n \{b\}^\omega : n \geq 2\}$$

$$\begin{aligned}\text{Traces}_{\text{fin}}(\mathcal{T}') = \{\emptyset^n : n \geq 0\} \cup \\ \{\emptyset^n \{b\}^m : n \geq 2 \wedge m \geq 1\}\end{aligned}$$

$\text{Traces}(\mathcal{T}) \not\subseteq \text{Traces}(\mathcal{T}')$, but

$\text{Traces}_{\text{fin}}(\mathcal{T}) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}')$

LT property
 $E \hat{=} \text{"eventually } b\text{"}$
 $\mathcal{T} \not\models E, \quad \mathcal{T}' \models E$

Finite trace and trace inclusion

IS2.5-TRACE-VS-TRACEFIN

Suppose that \mathcal{T} and \mathcal{T}' are TS over AP such that

- (1) \mathcal{T} has no terminal states,
- (2) \mathcal{T}' is finite.

Finite trace and trace inclusion

IS2.5-TRACE-VS-TRACEFIN

Suppose that \mathcal{T} and \mathcal{T}' are TS over AP such that

- (1) \mathcal{T} has no terminal states,
i.e., all paths of \mathcal{T} are infinite
- (2) \mathcal{T}' is finite.

Finite trace and trace inclusion

IS2.5-TRACE-VS-TRACEFIN

Suppose that \mathcal{T} and \mathcal{T}' are TS over AP such that

- (1) \mathcal{T} has no terminal states,
i.e., all paths of \mathcal{T} are infinite
- (2) \mathcal{T}' is finite.

Then:

$$\begin{aligned}Traces(\mathcal{T}) &\subseteq Traces(\mathcal{T}') \\ \text{iff } Traces_{fin}(\mathcal{T}) &\subseteq Traces_{fin}(\mathcal{T}')\end{aligned}$$

Finite trace and trace inclusion

IS2.5-TRACE-VS-TRACEFIN

Suppose that \mathcal{T} and \mathcal{T}' are TS over AP such that

- (1) \mathcal{T} has no terminal states,
i.e., all paths of \mathcal{T} are infinite
- (2) \mathcal{T}' is finite.

Then:

$$\begin{aligned}Traces(\mathcal{T}) &\subseteq Traces(\mathcal{T}') \\ \text{iff } Traces_{fin}(\mathcal{T}) &\subseteq Traces_{fin}(\mathcal{T}')\end{aligned}$$

“ \implies ”: holds for all transition systems,
no matter whether (1) and (2) hold

Finite trace and trace inclusion

Suppose that \mathcal{T} and \mathcal{T}' are TS over AP such that

- (1) \mathcal{T} has no terminal states,
i.e., all paths of \mathcal{T} are infinite
- (2) \mathcal{T}' is finite.

Then:

$$\begin{aligned}Traces(\mathcal{T}) &\subseteq Traces(\mathcal{T}') \\ \text{iff } Traces_{fin}(\mathcal{T}) &\subseteq Traces_{fin}(\mathcal{T}')\end{aligned}$$

“ \Rightarrow ”: holds for all transition systems

“ \Leftarrow ”: suppose that (1) and (2) hold and that

$$(3) \quad Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$$

Show that $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$

Finite trace and trace inclusion

IS2.5-TRACE-VS-TRACEFIN

Suppose that \mathcal{T} and \mathcal{T}' are TS over AP such that

- (1) \mathcal{T} has no terminal states
- (2) \mathcal{T}' is finite
- (3) $Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$

Then $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$

Proof:

Finite trace and trace inclusion

IS2.5-TRACE-VS-TRACEFIN

Suppose that \mathcal{T} and \mathcal{T}' are TS over AP such that

- (1) \mathcal{T} has no terminal states
- (2) \mathcal{T}' is finite
- (3) $Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$

Then $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$

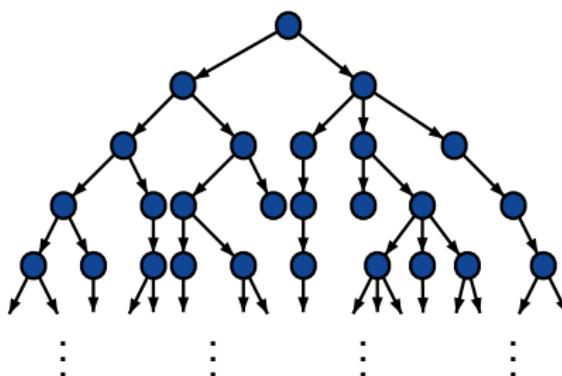
Proof: Pick some path $\pi = s_0 s_1 s_2 \dots$ in \mathcal{T} and show that there exists a path

$$\pi' = t_0 t_1 t_2 \dots \text{ in } \mathcal{T}'$$

such that $trace(\pi) = trace(\pi')$

finite TS \mathcal{T}'

paths from state t_0
(unfolded into a tree)

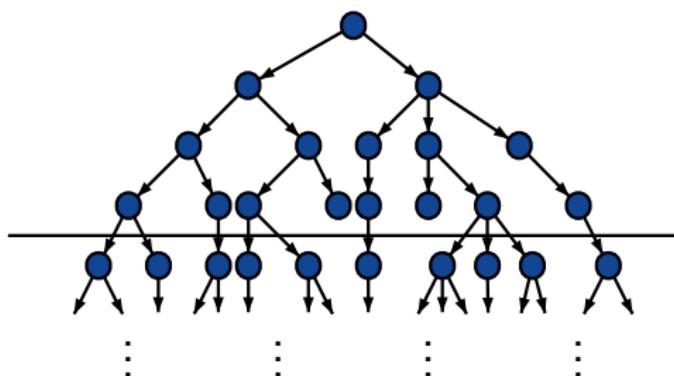


Tracesfin versus traces

IS2.5-33

finite TS \mathcal{T}'

paths from state t_0
(unfolded into a tree)



finite until
depth $\leq n$

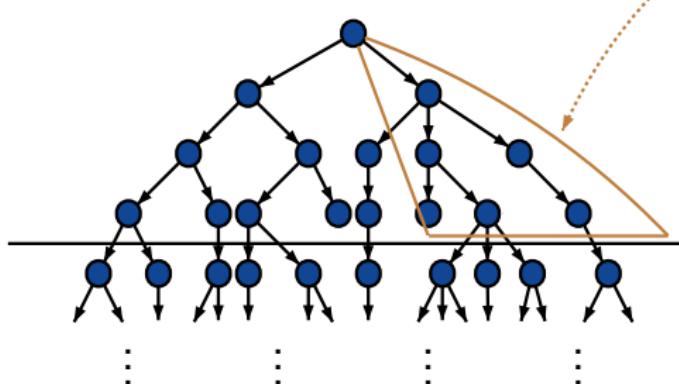
Tracesfin versus traces

IS2.5-33

finite TS \mathcal{T}'

paths from state t_0
(unfolded into a tree)

contains all path fragments
with trace $A_0 A_1 \dots A_n$



finite until
depth $\leq n$

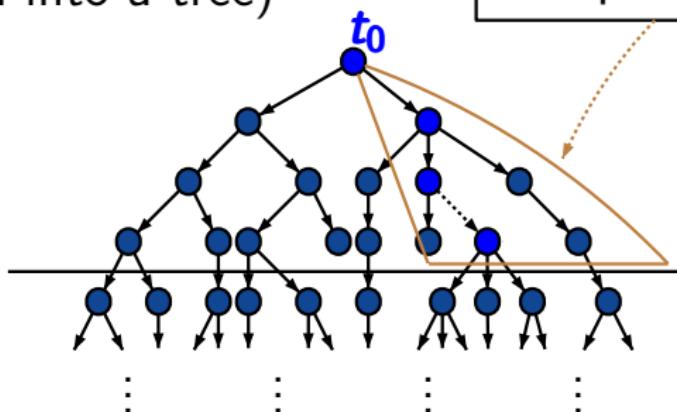
Tracesfin versus traces

is2.5-33

finite TS \mathcal{T}'

paths from state t_0
(unfolded into a tree)

contains all path fragments
with trace $A_0 A_1 \dots A_n$
in particular: $t_0 t_1 \dots t_n$



finite until
depth $\leq n$

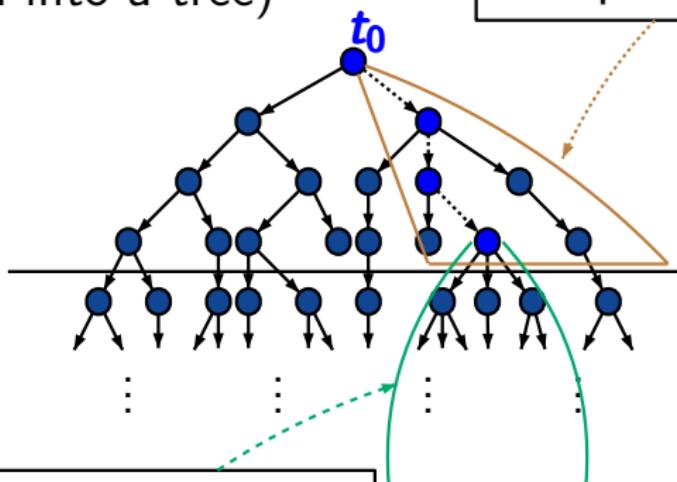
Tracesfin versus traces

is2.5-33

finite TS \mathcal{T}'

paths from state t_0
(unfolded into a tree)

contains all path fragments
with trace $A_0 A_1 \dots A_n$
in particular: $t_0 t_1 \dots t_n$



contains infinitely
many path fragments
 $t_n s_{n+1}^m \dots s_m^m$

finite until
depth $\leq n$

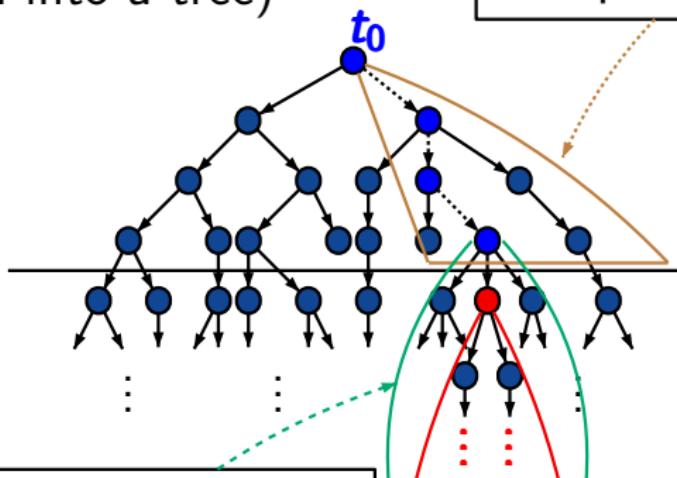
Tracesfin versus traces

is2.5-33

finite TS \mathcal{T}'

paths from state t_0
(unfolded into a tree)

contains all path fragments
with trace $A_0 A_1 \dots A_n$
in particular: $t_0 t_1 \dots t_n$



contains infinitely
many path fragments
 $t_n s_{n+1}^m \dots s_m^m$

finite until
depth $\leq n$

there exists $t_{n+1} \in Post(t_n)$
s.t. $t_{n+1} = s_{n+1}^m$ for
infinitely many m

Finite trace and trace inclusion

IS2.5-TRACE-IM-FIN

Suppose that \mathcal{T} and \mathcal{T}' are TS over AP such that

(1) \mathcal{T} has no terminal states

(2) \mathcal{T}' is finite

(3) $Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$

←
image-finiteness
is sufficient

Then $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$

Finite trace and trace inclusion

IS2.5-TRACE-IM-FIN

Suppose that \mathcal{T} and \mathcal{T}' are TS over AP such that

(1) \mathcal{T} has no terminal states

(2) \mathcal{T}' is finite

(3) $Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$

←
image-finiteness
is sufficient

Then $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$

image-finiteness of $\mathcal{T}' = (S', Act, \rightarrow, S'_0, AP, L')$:

Finite trace and trace inclusion

IS2.5-TRACE-IM-FIN

Suppose that \mathcal{T} and \mathcal{T}' are TS over AP such that

(1) \mathcal{T} has no terminal states

(2) \mathcal{T}' is finite

(3) $Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$

image-finiteness
is sufficient

Then $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$

image-finiteness of $\mathcal{T}' = (S', Act, \rightarrow, S'_0, AP, L')$:

- for each $A \in 2^{AP}$ and state $s \in S'$:

$\{t \in Post(s) : L'(t) = A\}$ is finite

Finite trace and trace inclusion

IS2.5-TRACE-IM-FIN

Suppose that \mathcal{T} and \mathcal{T}' are TS over AP such that

(1) \mathcal{T} has no terminal states

(2) \mathcal{T}' is finite

(3) $Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$

←
image-finiteness
is sufficient

Then $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$

image-finiteness of $\mathcal{T}' = (S', Act, \rightarrow, S'_0, AP, L')$:

- for each $A \in 2^{AP}$ and state $s \in S'$:

$\{t \in Post(s) : L'(t) = A\}$ is finite

- for each $A \in 2^{AP}$: $\{s_0 \in S'_0 : L'(s_0) = A\}$ is finite

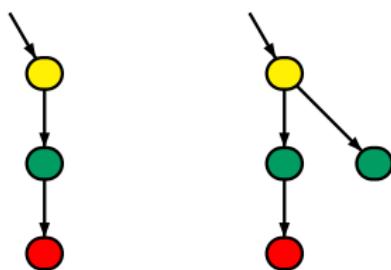
Whenever $\text{Traces}(\mathcal{T}) = \text{Traces}(\mathcal{T}')$ then
 $\text{Traces}_{fin}(\mathcal{T}) = \text{Traces}_{fin}(\mathcal{T}')$

Whenever $\text{Traces}(\mathcal{T}) = \text{Traces}(\mathcal{T}')$ then
 $\text{Traces}_{\text{fin}}(\mathcal{T}) = \text{Traces}_{\text{fin}}(\mathcal{T}')$

while the reverse direction does not hold in general
(even not for finite transition systems)

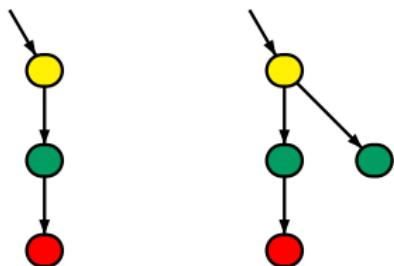
Whenever $\text{Traces}(\mathcal{T}) = \text{Traces}(\mathcal{T}')$ then
 $\text{Traces}_{\text{fin}}(\mathcal{T}) = \text{Traces}_{\text{fin}}(\mathcal{T}')$

while the reverse direction does not hold in general
(even not for finite transition systems)



Whenever $\text{Traces}(\mathcal{T}) = \text{Traces}(\mathcal{T}')$ then
 $\text{Traces}_{\text{fin}}(\mathcal{T}) = \text{Traces}_{\text{fin}}(\mathcal{T}')$

while the reverse direction does not hold in general
(even not for finite transition systems)



finite trace equivalent,
but *not* trace equivalent

Whenever $\text{Traces}(\mathcal{T}) = \text{Traces}(\mathcal{T}')$ then
 $\text{Traces}_{\text{fin}}(\mathcal{T}) = \text{Traces}_{\text{fin}}(\mathcal{T}')$

The reverse implication holds under additional assumptions, e.g.,

- if \mathcal{T} and \mathcal{T}' are finite and have no terminal states
- or, if \mathcal{T} and \mathcal{T}' are AP -deterministic