

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view

definition of linear time properties

invariants and safety

liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

“liveness: something good will happen.”

“liveness: something good will happen.”

“event *a* will occur *eventually*”

“liveness: something good will happen.”

“event **a** will occur **eventually**”

e.g., **termination** for sequential programs

“liveness: something good will happen.”

“event **a** will occur **eventually**”

e.g., **termination** for sequential programs

“event **a** will occur **infinitely many times**”

e.g., **starvation freedom** for dining philosophers

“liveness: something good will happen.”

“event **a** will occur **eventually**”

e.g., **termination** for sequential programs

“event **a** will occur **infinitely many times**”

e.g., **starvation freedom** for dining philosophers

“whenever **event b** occurs then **event a** will occur sometimes in the future”

“liveness: something good will happen.”

“event **a** will occur **eventually**”

e.g., **termination** for sequential programs

“event **a** will occur **infinitely many times**”

e.g., **starvation freedom** for dining philosophers

“whenever **event b** occurs then **event a**
will occur sometimes in the future”

e.g., every **waiting process** enters eventually
its **critical section**

which property type?

LF2.6-2

- Each philosopher thinks infinitely often.

which property type?

LF2.6-2

- Each philosopher thinks infinitely often.

liveness

which property type?

LF2.6-2

- Each philosopher thinks infinitely often. **liveness**
- Two philosophers next to each other never eat at the same time.

which property type?

LF2.6-2

- Each philosopher thinks infinitely often. **liveness**
- Two philosophers next to each other never eat at the same time. **invariant**

which property type?

LF2.6-2

- Each philosopher thinks infinitely often. **liveness**
- Two philosophers next to each other never eat at the same time. **invariant**
- Whenever a philosopher eats then he has been thinking at some time before.

which property type?

LF2.6-2

- Each philosopher thinks infinitely often. **liveness**
- Two philosophers next to each other never eat at the same time. **invariant**
- Whenever a philosopher eats then he has been thinking at some time before. **safety**

which property type?

LF2.6-2

- Each philosopher thinks infinitely often. **liveness**
- Two philosophers next to each other never eat at the same time. **invariant**
- Whenever a philosopher eats then he has been thinking at some time before. **safety**
- Whenever a philosopher eats then he will think some time afterwards.

which property type?

LF2.6-2

- Each philosopher thinks infinitely often. **liveness**
- Two philosophers next to each other never eat at the same time. **invariant**
- Whenever a philosopher eats then he has been thinking at some time before. **safety**
- Whenever a philosopher eats then he will think some time afterwards. **liveness**

which property type?

LF2.6-2

- Each philosopher thinks infinitely often. **liveness**
- Two philosophers next to each other never eat at the same time. **invariant**
- Whenever a philosopher eats then he has been thinking at some time before. **safety**
- Whenever a philosopher eats then he will think some time afterwards. **liveness**
- Between two eating phases of philosopher i lies at least one eating phase of philosopher $i+1$.

which property type?

LF2.6-2

- Each philosopher thinks infinitely often. **liveness**
- Two philosophers next to each other never eat at the same time. **invariant**
- Whenever a philosopher eats then he has been thinking at some time before. **safety**
- Whenever a philosopher eats then he will think some time afterwards. **liveness**
- Between two eating phases of philosopher i lies at least one eating phase of philosopher $i+1$. **safety**

many different **formal definitions** of **liveness**
have been suggested in the literature

many different **formal definitions** of **liveness**
have been suggested in the literature

here: one just example for a formal definition
of liveness

Definition of liveness properties

LF2.6-DEF-LIVENESS

Definition of liveness properties

LF2.6-DEF-LIVENESS

Let E be an LT property over AP , i.e., $E \subseteq (2^{AP})^\omega$.

E is called a **liveness property** if each finite word over AP can be extended to an infinite word in E

Definition of liveness properties

LF2.6-DEF-LIVENESS

Let E be an LT property over AP , i.e., $E \subseteq (2^{AP})^\omega$.

E is called a **liveness property** if each finite word over AP can be extended to an infinite word in E , i.e., if

$$\text{pref}(E) = (2^{AP})^+$$

recall: $\text{pref}(E) =$ set of all finite, nonempty prefixes of words in E

Definition of liveness properties

LF2.6-DEF-LIVENESS

Let E be an LT property over AP , i.e., $E \subseteq (2^{AP})^\omega$.

E is called a **liveness property** if each finite word over AP can be extended to an infinite word in E , i.e., if

$$\text{pref}(E) = (2^{AP})^+$$

Examples:

- each process will **eventually** enter its critical section
- each process will enter its critical section **infinitely often**
- whenever a process has requested its critical section then it will **eventually** enter its critical section

Examples for liveness properties

LF2.6-EX-LIVENESS

An LT property E over AP is called a liveness property if $\text{pref}(E) = (2^{AP})^+$

Examples for $AP = \{\text{crit}_i : i = 1, \dots, n\}$:

Examples for liveness properties

LF2.6-EX-LIVENESS

An LT property E over AP is called a liveness property if $\text{pref}(E) = (2^{AP})^+$

Examples for $AP = \{\text{crit}_i : i = 1, \dots, n\}$:

- each process will eventually enter its critical section

Examples for liveness properties

LF2.6-EX-LIVENESS

An LT property E over AP is called a liveness property if $\text{pref}(E) = (2^{AP})^+$

Examples for $AP = \{\text{crit}_i : i = 1, \dots, n\}$:

- each process will eventually enter its critical section

E = set of all infinite words $A_0 A_1 A_2 \dots$ s.t.

$\forall i \in \{1, \dots, n\} \exists k \geq 0. \text{crit}_i \in A_k$

Examples for liveness properties

LF2.6-EX-LIVENESS

An LT property E over AP is called a liveness property if $\text{pref}(E) = (2^{AP})^+$

Examples for $AP = \{\text{crit}_i : i = 1, \dots, n\}$:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often

Examples for liveness properties

LF2.6-EX-LIVENESS

An LT property E over AP is called a liveness property if $\text{pref}(E) = (2^{AP})^+$

Examples for $AP = \{\text{crit}_i : i = 1, \dots, n\}$:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often

E = set of all infinite words $A_0 A_1 A_2 \dots$ s.t.

$\forall i \in \{1, \dots, n\} \ \exists k \geq 0. \text{crit}_i \in A_k$

Examples for liveness properties

LF2.6-EX-LIVENESS

An LT property E over AP is called a liveness property if $\text{pref}(E) = (2^{AP})^+$

Examples for $AP = \{\text{wait}_i, \text{crit}_i : i = 1, \dots, n\}$:

- each process will eventually enter its critical section
- each process will enter its crit. section inf. often
- whenever a process is waiting then it will eventually enter its critical section

Examples for liveness properties

LF2.6-EX-LIVENESS

An LT property E over AP is called a liveness property if $\text{pref}(E) = (2^{AP})^+$

Examples for $AP = \{\text{wait}_i, \text{crit}_i : i = 1, \dots, n\}$:

- each process will eventually enter its critical section
- each process will enter its crit. section inf. often
- whenever a process is waiting then it will eventually enter its critical section

E = set of all infinite words $A_0 A_1 A_2 \dots$ s.t.

$$\forall i \in \{1, \dots, n\} \forall j \geq 0. \text{wait}_i \in A_j \rightarrow \exists k > j. \text{crit}_i \in A_k$$

Recall: safety properties, prefix closure

LF2.6-SAFETY

Let E be an LT-property, i.e., $E \subseteq (2^{AP})^\omega$

Recall: safety properties, prefix closure

LF2.6-SAFETY

Let E be an LT-property, i.e., $E \subseteq (2^{AP})^\omega$

E is a safety property

iff $\forall \sigma \in (2^{AP})^\omega \setminus E \ \exists A_0 A_1 \dots A_n \in \text{pref}(\sigma) \text{ s.t.}$
 $\{\sigma' \in E : A_0 A_1 \dots A_n \in \text{pref}(\sigma')\} = \emptyset$

Recall: safety properties, prefix closure

LF2.6-SAFETY

Let E be an LT-property, i.e., $E \subseteq (2^{AP})^\omega$

E is a safety property

iff $\forall \sigma \in (2^{AP})^\omega \setminus E \ \exists A_0 A_1 \dots A_n \in \text{pref}(\sigma) \text{ s.t.}$
 $\{\sigma' \in E : A_0 A_1 \dots A_n \in \text{pref}(\sigma')\} = \emptyset$

remind:

$\text{pref}(\sigma)$ = set of all finite, nonempty prefixes of σ

$\text{pref}(E) = \bigcup_{\sigma \in E} \text{pref}(\sigma)$

Recall: safety properties, prefix closure

LF2.6-SAFETY

Let E be an LT-property, i.e., $E \subseteq (2^{AP})^\omega$

E is a safety property

iff $\forall \sigma \in (2^{AP})^\omega \setminus E \ \exists A_0 A_1 \dots A_n \in \text{pref}(\sigma)$ s.t.

$\{\sigma' \in E : A_0 A_1 \dots A_n \in \text{pref}(\sigma')\} = \emptyset$

iff $\text{cl}(E) = E$

remind: $\text{cl}(E) = \{\sigma \in (2^{AP})^\omega : \text{pref}(\sigma) \subseteq \text{pref}(E)\}$

$\text{pref}(\sigma)$ = set of all finite, nonempty prefixes of σ

$\text{pref}(E) = \bigcup_{\sigma \in E} \text{pref}(\sigma)$

Decomposition theorem

LF2.6-DECOMP-THM

Decomposition theorem

LF2.6-DECOMP-THM

For each LT-property E , there exists a safety property $SAFE$ and a liveness property $LIVE$ s.t.

$$E = SAFE \cap LIVE$$

Decomposition theorem

LF2.6-DECOMP-THM

For each LT-property E , there exists a safety property $SAFE$ and a liveness property $LIVE$ s.t.

$$E = SAFE \cap LIVE$$

Proof:

Decomposition theorem

LF2.6-DECOMP-THM

For each LT-property E , there exists a safety property $SAFE$ and a liveness property $LIVE$ s.t.

$$E = SAFE \cap LIVE$$

Proof: Let $SAFE \stackrel{\text{def}}{=} cl(E)$

Decomposition theorem

LF2.6-DECOMP-THM

For each LT-property E , there exists a safety property $SAFE$ and a liveness property $LIVE$ s.t.

$$E = SAFE \cap LIVE$$

Proof: Let $SAFE \stackrel{\text{def}}{=} cl(E)$

remind: $cl(E) = \{\sigma \in (2^{AP})^\omega : pref(\sigma) \subseteq pref(E)\}$

$pref(\sigma)$ = set of all finite, nonempty prefixes of σ

$$pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$$

Decomposition theorem

LF2.6-DECOMP-THM

For each LT-property E , there exists a safety property $SAFE$ and a liveness property $LIVE$ s.t.

$$E = SAFE \cap LIVE$$

Proof: Let $SAFE \stackrel{\text{def}}{=} cl(E)$

$$LIVE \stackrel{\text{def}}{=} E \cup ((2^{AP})^\omega \setminus cl(E))$$

remind: $cl(E) = \{\sigma \in (2^{AP})^\omega : pref(\sigma) \subseteq pref(E)\}$

$pref(\sigma)$ = set of all finite, nonempty prefixes of σ

$$pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$$

Decomposition theorem

LF2.6-DECOMP-THM

For each LT-property E , there exists a safety property $SAFE$ and a liveness property $LIVE$ s.t.

$$E = SAFE \cap LIVE$$

Proof: Let $SAFE \stackrel{\text{def}}{=} cl(E)$

$LIVE \stackrel{\text{def}}{=} E \cup ((2^{AP})^\omega \setminus cl(E))$

Show that:

- $E = SAFE \cap LIVE$
- $SAFE$ is a safety property
- $LIVE$ is a liveness property

Decomposition theorem

LF2.6-DECOMP-THM

For each LT-property E , there exists a safety property $SAFE$ and a liveness property $LIVE$ s.t.

$$E = SAFE \cap LIVE$$

Proof: Let $SAFE \stackrel{\text{def}}{=} cl(E)$

$LIVE \stackrel{\text{def}}{=} E \cup ((2^{AP})^\omega \setminus cl(E))$

Show that:

- $E = SAFE \cap LIVE$ ✓
- $SAFE$ is a safety property
- $LIVE$ is a liveness property

Decomposition theorem

LF2.6-DECOMP-THM

For each LT-property E , there exists a safety property $SAFE$ and a liveness property $LIVE$ s.t.

$$E = SAFE \cap LIVE$$

Proof: Let $SAFE \stackrel{\text{def}}{=} cl(E)$

$LIVE \stackrel{\text{def}}{=} E \cup ((2^{AP})^\omega \setminus cl(E))$

Show that:

- $E = SAFE \cap LIVE \quad \checkmark$
- $SAFE$ is a safety property as $cl(SAFE) = SAFE$
- $LIVE$ is a liveness property

Decomposition theorem

LF2.6-DECOMP-THM

For each LT-property E , there exists a safety property $SAFE$ and a liveness property $LIVE$ s.t.

$$E = SAFE \cap LIVE$$

Proof: Let $SAFE \stackrel{\text{def}}{=} cl(E)$

$LIVE \stackrel{\text{def}}{=} E \cup ((2^{AP})^\omega \setminus cl(E))$

Show that:

- $E = SAFE \cap LIVE \quad \checkmark$
- $SAFE$ is a safety property as $cl(SAFE) = SAFE$
- $LIVE$ is a liveness property, i.e., $pref(LIVE) = (2^{AP})^+$

Being safe and live

LF2.6-SAFE-AND-LIVE

Which LT properties are both
a **safety** and a **liveness** property?

Which LT properties are both
a **safety** and a **liveness** property?

answer: The set $(2^{AP})^\omega$ is the only LT property which
is a **safety** property and a **liveness** property

Which LT properties are both
a **safety** and a **liveness** property?

answer: The set $(2^{AP})^\omega$ is the only LT property which
is a **safety** property and a **liveness** property

- $(2^{AP})^\omega$ is a **safety** and a **liveness** property: ✓

Which LT properties are both
a **safety** and a **liveness** property?

answer: The set $(2^{AP})^\omega$ is the only LT property which
is a **safety** property and a **liveness** property

- $(2^{AP})^\omega$ is a **safety** and a **liveness** property: ✓
- If E is a **liveness** property then

$$\text{pref}(E) = (2^{AP})^+$$

Which LT properties are both
a **safety** and a **liveness** property?

answer: The set $(2^{AP})^\omega$ is the only LT property which
is a **safety** property and a **liveness** property

- $(2^{AP})^\omega$ is a **safety** and a **liveness** property: ✓
- If E is a **liveness** property then

$$\text{pref}(E) = (2^{AP})^+$$

$$\implies \text{cl}(E) = (2^{AP})^\omega$$

Which LT properties are both
a **safety** and a **liveness** property?

answer: The set $(2^{AP})^\omega$ is the only LT property which
is a **safety** property and a **liveness** property

- $(2^{AP})^\omega$ is a **safety** and a **liveness** property: ✓
- If E is a **liveness** property then

$$\text{pref}(E) = (2^{AP})^+$$

$$\implies \text{cl}(E) = (2^{AP})^\omega$$

If E is a **safety** property too, then $\text{cl}(E) = E$.

Which LT properties are both
a **safety** and a **liveness** property?

answer: The set $(2^{AP})^\omega$ is the only LT property which
is a **safety** property and a **liveness** property

- $(2^{AP})^\omega$ is a **safety** and a **liveness** property: ✓
- If E is a **liveness** property then

$$\text{pref}(E) = (2^{AP})^+$$

$$\implies \text{cl}(E) = (2^{AP})^\omega$$

If E is a **safety** property too, then $\text{cl}(E) = E$.
Hence $E = \text{cl}(E) = (2^{AP})^\omega$.

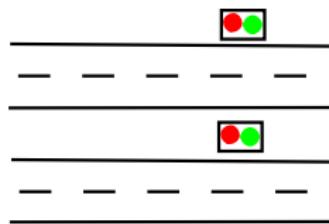
Observation

LF2.6-NEED-FOR-FAIRNESS

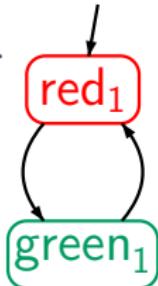
liveness properties are often violated
although we expect them to hold

Two independent traffic lights

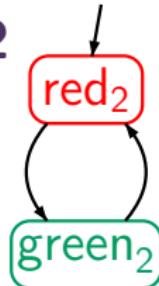
LF2.6-3



light 1

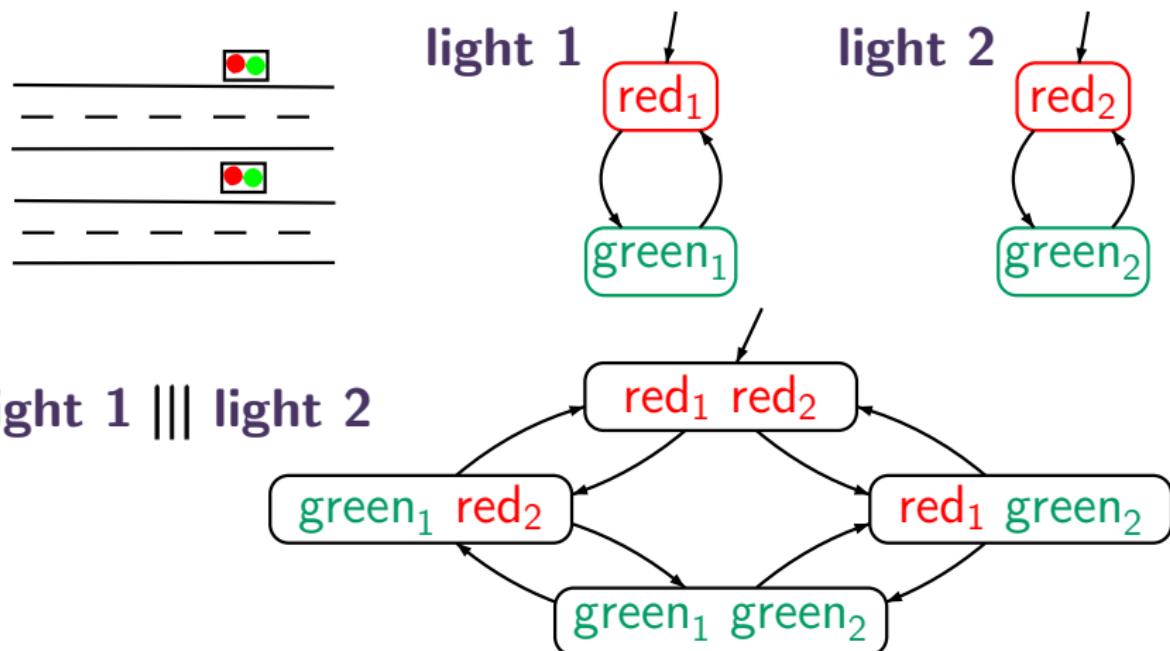


light 2



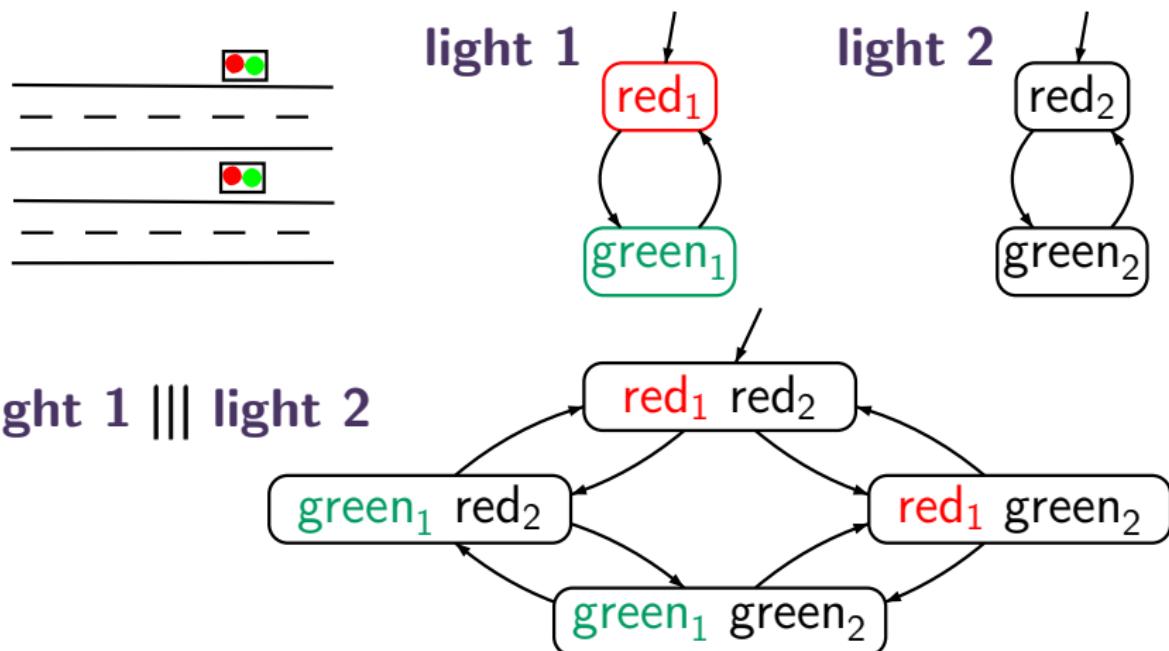
Two independent traffic lights

LF2.6-3



Two independent traffic lights

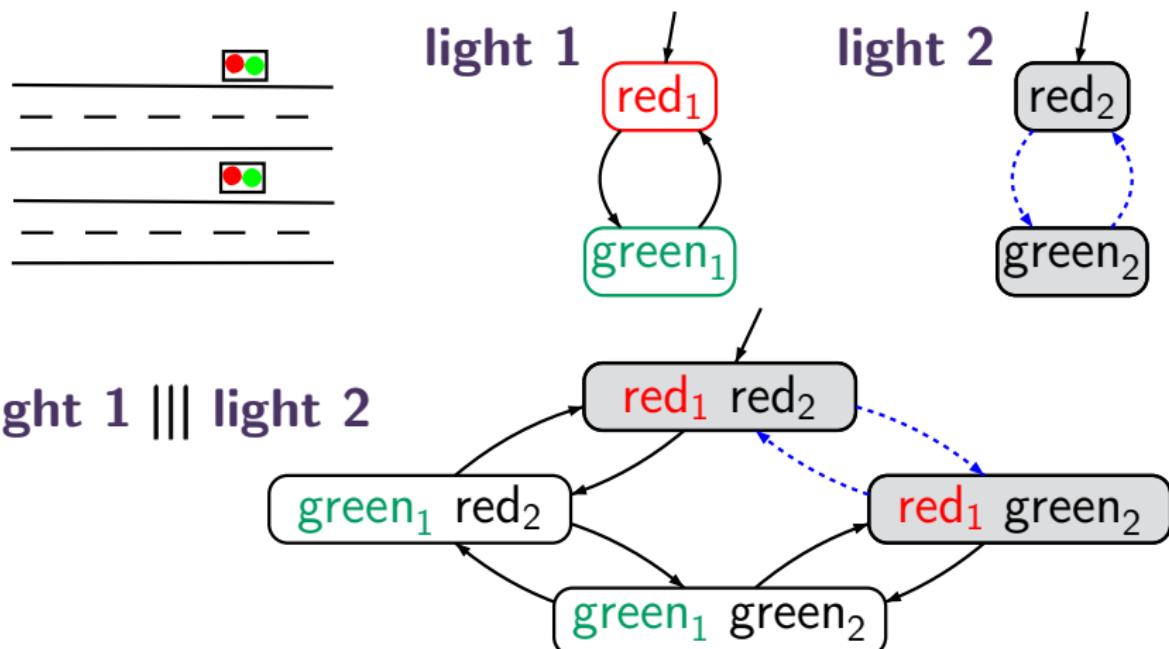
LF2.6-3



light 1 ||| light 2 $\not\models$ "infinitely often *green*₁"

Two independent traffic lights

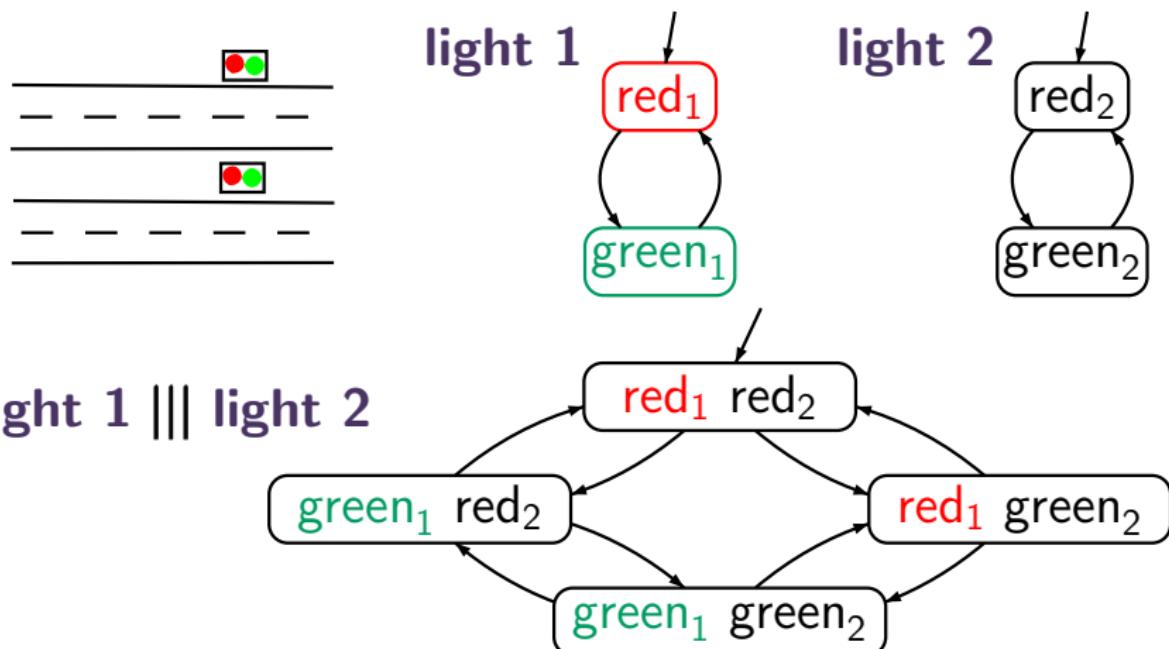
LF2.6-3



light 1 ||| light 2 $\not\models$ "infinitely often **green₁**"

Two independent traffic lights

LF2.6-3

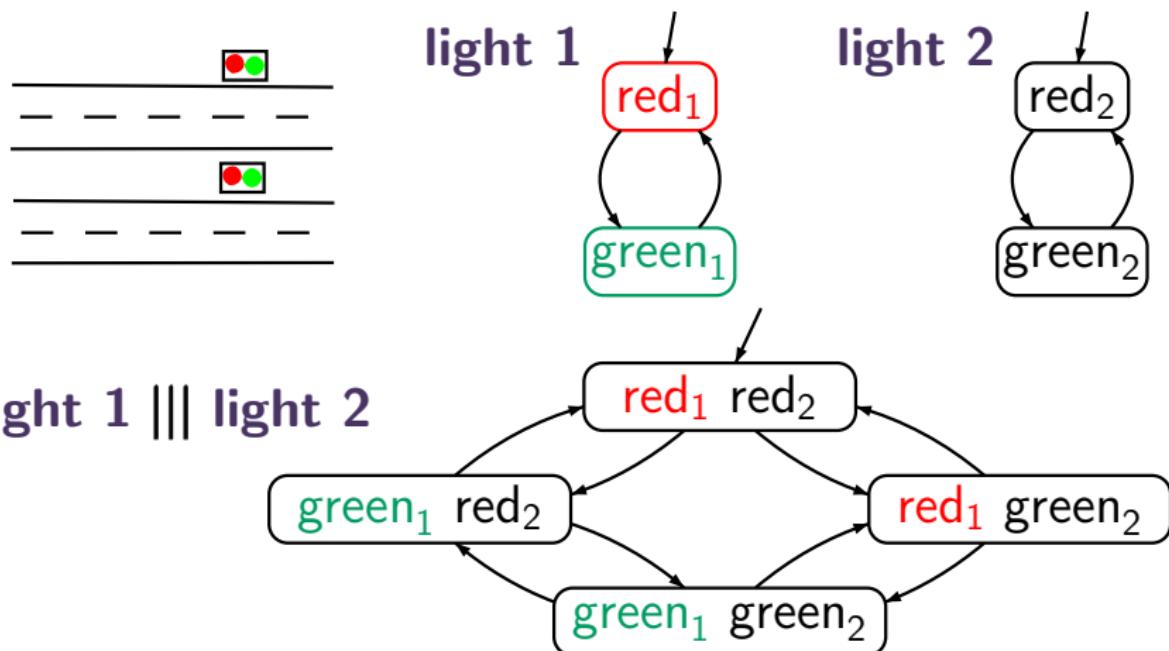


$light 1 ||| light 2 \not\models$ "infinitely often $green_1$ "

although $light 1 \models$ "infinitely often $green_1$ "

Two independent traffic lights

LF2.6-3



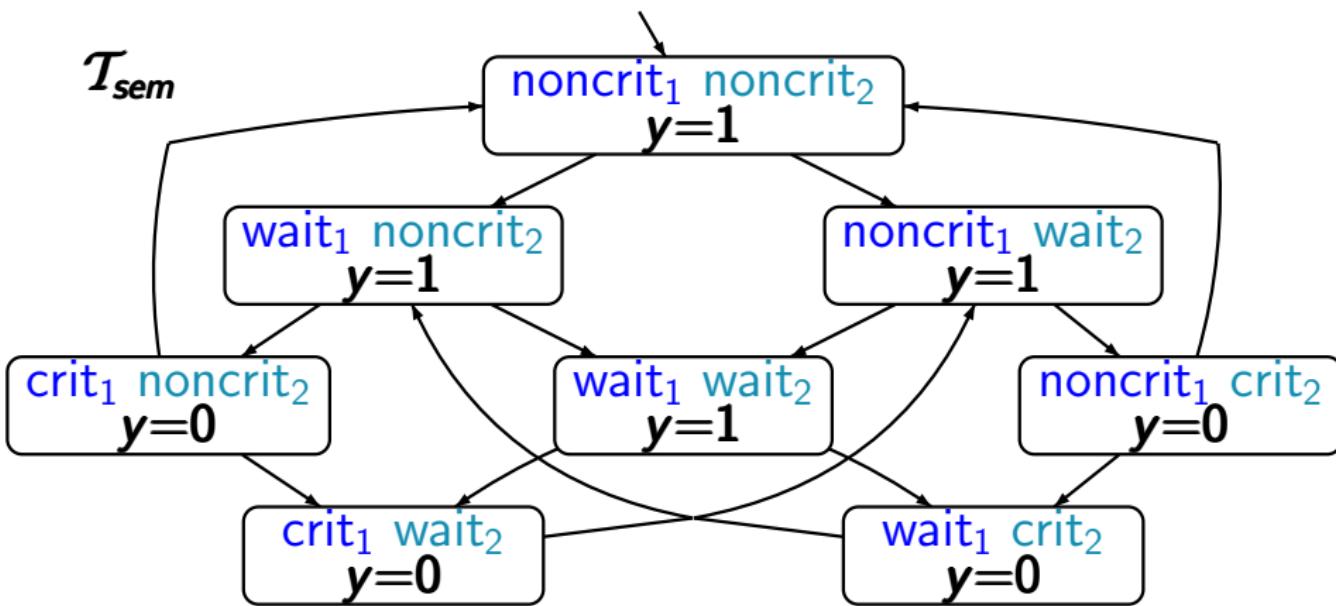
light 1 ||| light 2 $\not\models$ "infinitely often *green*₁"

interleaving is completely time abstract !

Mutual exclusion (semaphore)

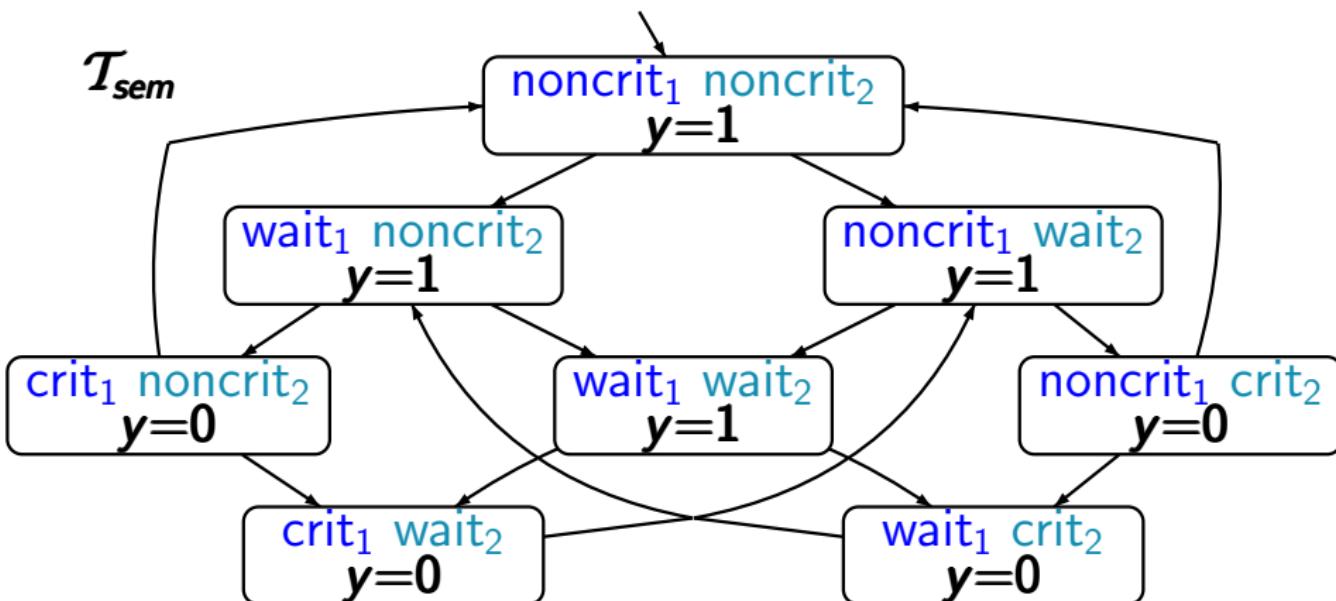
LF2.6-4

T_{sem}



Mutual exclusion (semaphore)

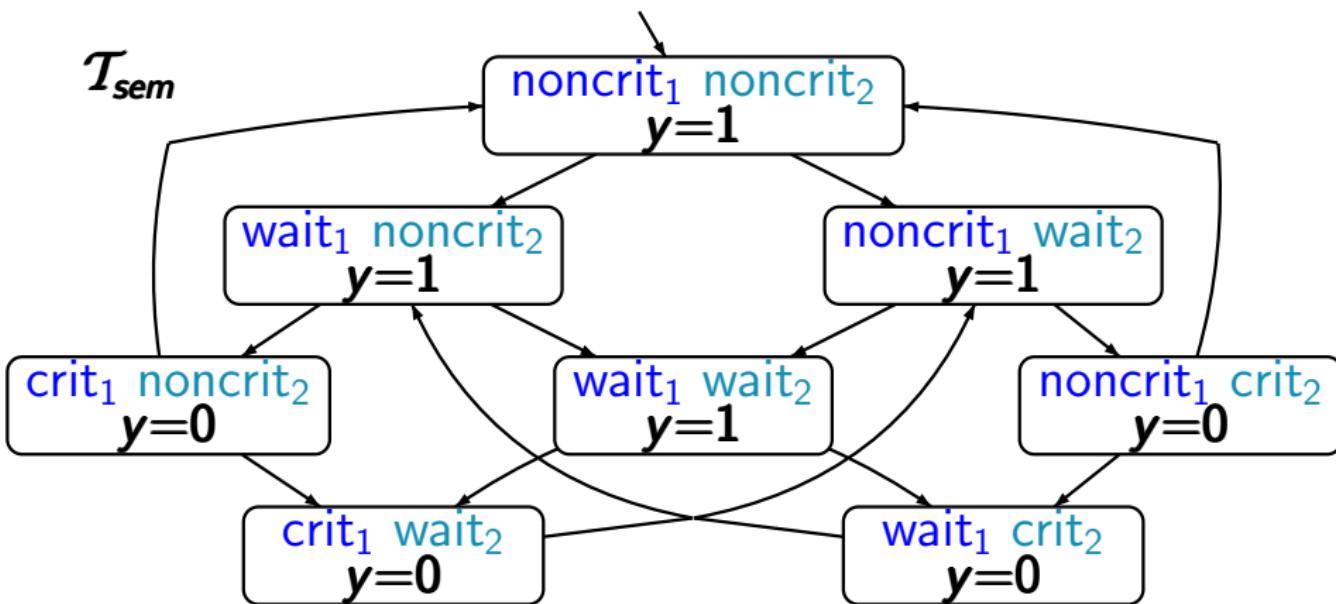
LF2.6-4



liveness
property $\hat{=}$ “each waiting process will eventually
enter its critical section”

Mutual exclusion (semaphore)

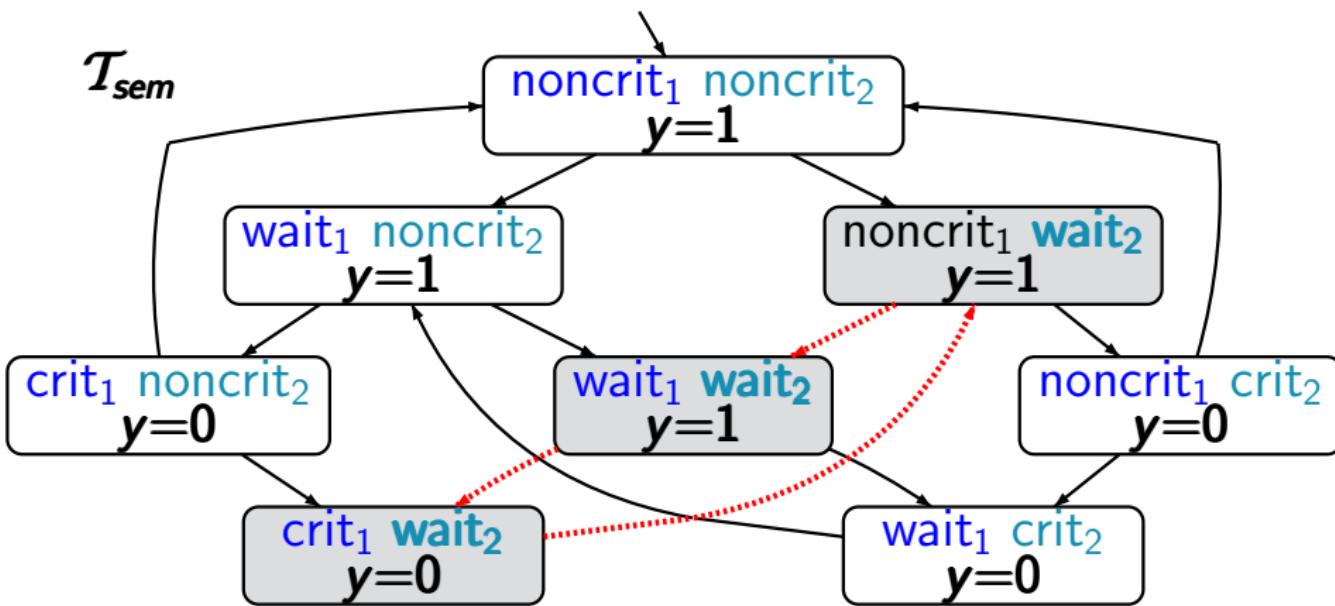
LF2.6-4



$T_{sem} \not\models$ “each waiting process will eventually enter its critical section”

Mutual exclusion (semaphore)

LF2.6-4

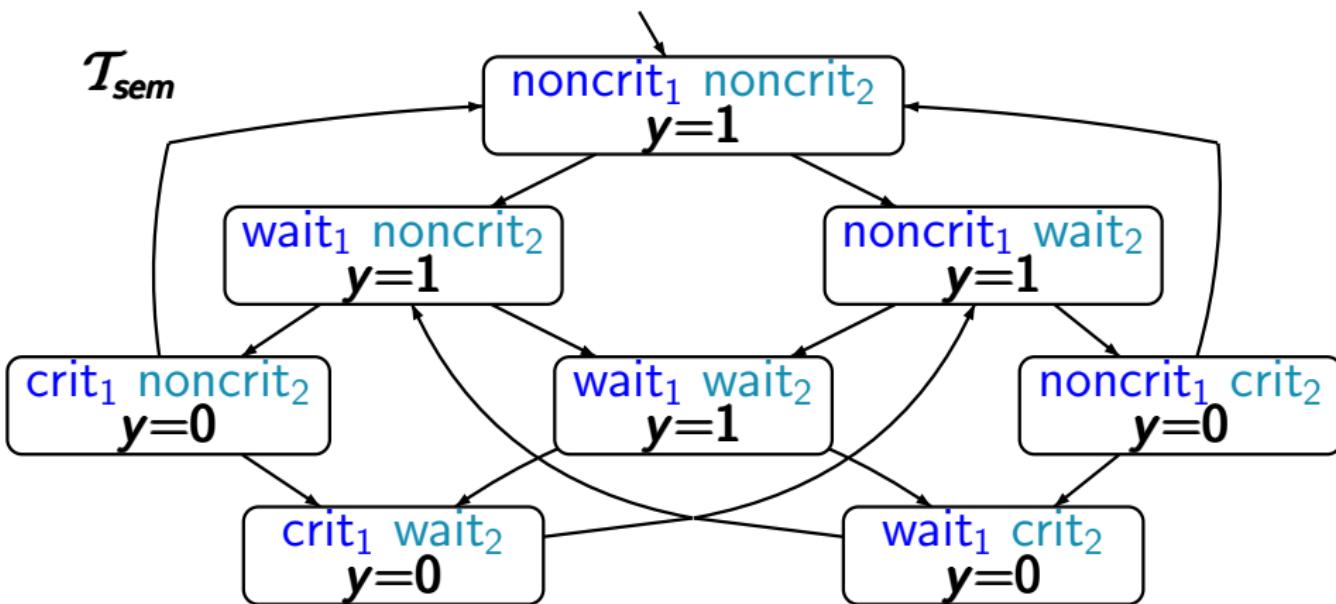


T_{sem} $\not\models$ "each waiting process will eventually enter its critical section"

Mutual exclusion (semaphore)

LF2.6-4

T_{sem}



T_{sem} $\not\models$ “each waiting process will eventually enter its critical section”

level of abstraction is **too coarse !**

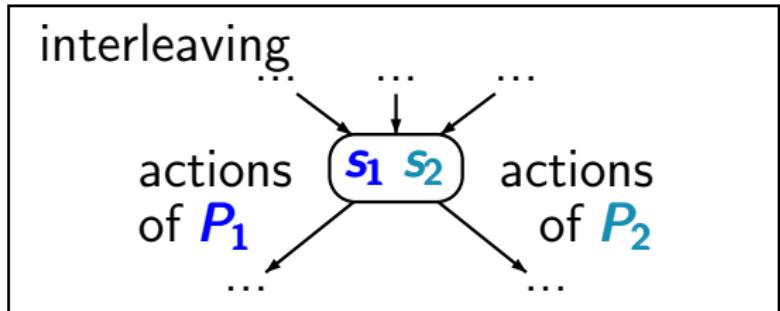
Process fairness

LF2.6-5

Process fairness

LF2.6-5

two independent
non-communicating
processes $P_1 \parallel P_2$



possible interleavings:

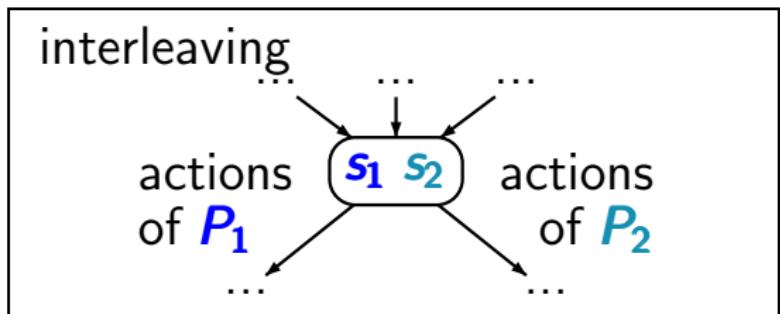
$P_1 \text{ } P_2 \text{ } P_2 \text{ } P_1 \text{ } P_1 \text{ } P_1 \text{ } P_2 \text{ } P_1 \text{ } P_2 \text{ } P_2 \text{ } P_2 \text{ } P_1 \text{ } P_1 \text{ } \dots$

$P_1 \text{ } P_1 \text{ } P_2 \text{ } P_1 \text{ } P_1 \text{ } P_2 \text{ } P_1 \text{ } P_1 \text{ } P_2 \text{ } P_1 \text{ } P_1 \text{ } P_2 \text{ } P_1 \text{ } \dots$

Process fairness

LF2.6-5

two independent
non-communicating
processes $P_1 \parallel P_2$



possible interleavings:

$P_1 \text{ } P_2 \text{ } P_2 \text{ } P_1 \text{ } P_1 \text{ } P_1 \text{ } P_2 \text{ } P_1 \text{ } P_2 \text{ } P_2 \text{ } P_2 \text{ } P_1 \text{ } P_1 \text{ } \dots$

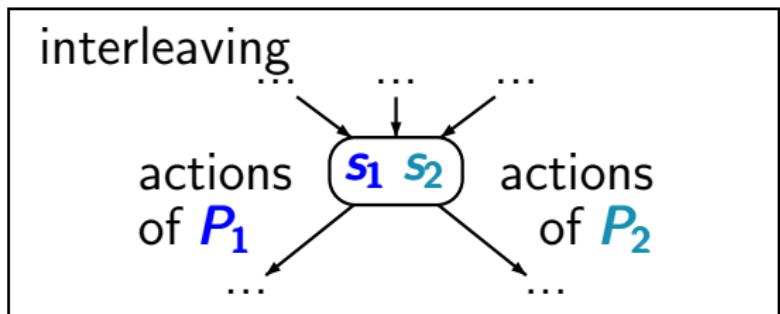
$P_1 \text{ } P_1 \text{ } P_2 \text{ } P_1 \text{ } P_1 \text{ } P_2 \text{ } P_1 \text{ } P_1 \text{ } P_2 \text{ } P_1 \text{ } P_1 \text{ } P_2 \text{ } P_1 \text{ } \dots$

$P_1 \text{ } P_1 \text{ } \dots$

Process fairness

LF2.6-5

two independent
non-communicating
processes $P_1 \parallel P_2$



possible interleavings:

$P_1 \text{ } P_2 \text{ } P_2 \text{ } P_1 \text{ } P_1 \text{ } P_1 \text{ } P_2 \text{ } P_1 \text{ } P_2 \text{ } P_2 \text{ } P_2 \text{ } P_1 \text{ } P_1 \dots$ fair

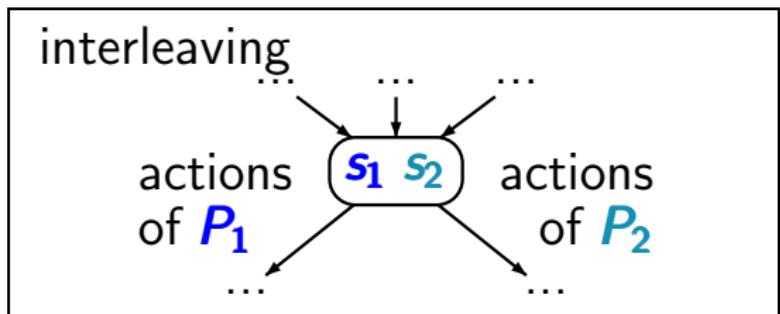
$P_1 \text{ } P_1 \text{ } P_2 \text{ } P_1 \text{ } P_1 \text{ } P_2 \text{ } P_1 \text{ } P_1 \text{ } P_2 \text{ } P_1 \text{ } P_1 \dots$ fair

$P_1 \text{ } P_1 \dots$ unfair

Process fairness

LF2.6-5

two independent
non-communicating
processes $P_1 \parallel P_2$



possible interleavings:

$P_1 \textcolor{teal}{P}_2 P_2 P_1 P_1 P_1 \textcolor{teal}{P}_2 P_1 P_2 P_2 P_2 P_1 P_1 \dots$ fair

$P_1 P_1 \textcolor{teal}{P}_2 P_1 P_1 \textcolor{teal}{P}_2 P_1 P_1 \textcolor{teal}{P}_2 P_1 P_1 \textcolor{teal}{P}_2 P_1 \dots$ fair

$P_1 P_1 \dots$ unfair

process fairness assumes an appropriate resolution
of the nondeterminism resulting from
interleaving and competitions

- unconditional fairness
- strong fairness
- weak fairness

- unconditional fairness, e.g.,
every process enters gets its turn **infinitely often**.
- strong fairness
- weak fairness

- unconditional fairness, e.g.,
every process enters gets its turn **infinitely often**.
- strong fairness, e.g.,
every process that is **enabled** infinitely often
gets its turn **infinitely often**.
- weak fairness

- **unconditional fairness**, e.g.,
every process enters gets its turn **infinitely often**.
- **strong fairness**, e.g.,
every process that is **enabled** infinitely often
gets its turn **infinitely often**.
- **weak fairness**, e.g.,
every process that is **continuously enabled**
from a certain time instance on,
gets its turn **infinitely often**.

Fairness for action-set

LF2.6-7

Fairness for action-set

LF2.6-7

Let \mathcal{T} be a TS with action-set $\textcolor{teal}{Act}$, $\textcolor{violet}{A} \subseteq \textcolor{teal}{Act}$ and
 $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

Let \mathcal{T} be a TS with action-set \mathbf{Act} , $\mathbf{A} \subseteq \mathbf{Act}$ and
 $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

we will provide conditions for

- unconditional \mathbf{A} -fairness of ρ
- strong \mathbf{A} -fairness of ρ
- weak \mathbf{A} -fairness of ρ

Let \mathcal{T} be a TS with action-set \mathbf{Act} , $\mathbf{A} \subseteq \mathbf{Act}$ and
 $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

we will provide conditions for

- unconditional \mathbf{A} -fairness of ρ
- strong \mathbf{A} -fairness of ρ
- weak \mathbf{A} -fairness of ρ

using the following notations:

$$\mathbf{Act}(s_i) = \{\beta \in \mathbf{Act} : \exists s' \text{ s.t. } s_i \xrightarrow{\beta} s'\}$$

Let \mathcal{T} be a TS with action-set \mathbf{Act} , $\mathbf{A} \subseteq \mathbf{Act}$ and
 $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

we will provide conditions for

- unconditional \mathbf{A} -fairness of ρ
- strong \mathbf{A} -fairness of ρ
- weak \mathbf{A} -fairness of ρ

using the following notations:

$$\mathbf{Act}(s_i) = \{\beta \in \mathbf{Act} : \exists s' \text{ s.t. } s_i \xrightarrow{\beta} s'\}$$
$$\exists^\infty \hat{=} \text{ "there exists infinitely many ..."} \quad$$

Let \mathcal{T} be a TS with action-set \mathbf{Act} , $\mathbf{A} \subseteq \mathbf{Act}$ and

$\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

we will provide conditions for

- unconditional \mathbf{A} -fairness of ρ
- strong \mathbf{A} -fairness of ρ
- weak \mathbf{A} -fairness of ρ

using the following notations:

$$\mathbf{Act}(s_i) = \{\beta \in \mathbf{Act} : \exists s' \text{ s.t. } s_i \xrightarrow{\beta} s'\}$$

$\exists^\infty \hat{=}$ “there exists infinitely many ...”

$\forall^\infty \hat{=}$ “for all, but finitely many ...”

Fairness for action-set

LF2.6-7A

Let \mathcal{T} be a TS with action-set \mathbf{Act} , $\mathbf{A} \subseteq \mathbf{Act}$ and
 $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

- ρ is unconditionally \mathbf{A} -fair, if

Fairness for action-set

LF2.6-7A

Let \mathcal{T} be a TS with action-set \mathbf{Act} , $\mathbf{A} \subseteq \mathbf{Act}$ and
 $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

- ρ is unconditionally \mathbf{A} -fair, if $\exists i \geq 0. \alpha_i \in \mathbf{A}$

“actions in \mathbf{A} will be taken
infinitely many times”

Fairness for action-set

LF2.6-7A

Let \mathcal{T} be a TS with action-set \mathbf{Act} , $\mathbf{A} \subseteq \mathbf{Act}$ and
 $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

- ρ is unconditionally \mathbf{A} -fair, if $\exists^{\infty} i \geq 0. \alpha_i \in \mathbf{A}$
- ρ is strongly \mathbf{A} -fair, if

Fairness for action-set

LF2.6-7A

Let \mathcal{T} be a TS with action-set \mathbf{Act} , $\mathbf{A} \subseteq \mathbf{Act}$ and
 $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

- ρ is unconditionally \mathbf{A} -fair, if $\exists^{\infty} i \geq 0. \alpha_i \in \mathbf{A}$
- ρ is strongly \mathbf{A} -fair, if

$$\exists^{\infty} i \geq 0. \mathbf{A} \cap \mathbf{Act}(s_i) \neq \emptyset \implies \exists^{\infty} i \geq 0. \alpha_i \in \mathbf{A}$$

“If infinitely many times some action in \mathbf{A} is enabled, then actions in \mathbf{A} will be taken infinitely many times.”

Let \mathcal{T} be a TS with action-set \mathbf{Act} , $\mathbf{A} \subseteq \mathbf{Act}$ and
 $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

- ρ is unconditionally \mathbf{A} -fair, if $\exists^{\infty} i \geq 0. \alpha_i \in \mathbf{A}$
- ρ is strongly \mathbf{A} -fair, if
$$\exists^{\infty} i \geq 0. \mathbf{A} \cap \mathbf{Act}(s_i) \neq \emptyset \implies \exists^{\infty} i \geq 0. \alpha_i \in \mathbf{A}$$
- ρ is weakly \mathbf{A} -fair, if

Let \mathcal{T} be a TS with action-set \mathbf{Act} , $\mathbf{A} \subseteq \mathbf{Act}$ and
 $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

- ρ is unconditionally \mathbf{A} -fair, if $\exists^{\infty} i \geq 0. \alpha_i \in \mathbf{A}$
- ρ is strongly \mathbf{A} -fair, if
 $\exists^{\infty} i \geq 0. \mathbf{A} \cap \mathbf{Act}(s_i) \neq \emptyset \implies \exists^{\infty} i \geq 0. \alpha_i \in \mathbf{A}$
- ρ is weakly \mathbf{A} -fair, if
 $\forall^{\infty} i \geq 0. \mathbf{A} \cap \mathbf{Act}(s_i) \neq \emptyset \implies \exists^{\infty} i \geq 0. \alpha_i \in \mathbf{A}$

“If from some moment, actions in \mathbf{A} are enabled, then actions in \mathbf{A} will be taken infinitely many times.”

Fairness for action-set

LF2.6-7A

Let \mathcal{T} be a TS with action-set \mathbf{Act} , $\mathbf{A} \subseteq \mathbf{Act}$ and
 $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

- ρ is unconditionally \mathbf{A} -fair, if $\exists^{\infty} i \geq 0. \alpha_i \in \mathbf{A}$
- ρ is strongly \mathbf{A} -fair, if
$$\exists^{\infty} i \geq 0. \mathbf{A} \cap \mathbf{Act}(s_i) \neq \emptyset \implies \exists^{\infty} i \geq 0. \alpha_i \in \mathbf{A}$$
- ρ is weakly \mathbf{A} -fair, if
$$\forall^{\infty} i \geq 0. \mathbf{A} \cap \mathbf{Act}(s_i) \neq \emptyset \implies \exists^{\infty} i \geq 0. \alpha_i \in \mathbf{A}$$

unconditionally \mathbf{A} -fair \implies strongly \mathbf{A} -fair
 \implies weakly \mathbf{A} -fair

Let \mathcal{T} be a TS with action-set \mathbf{Act} , $\mathbf{A} \subseteq \mathbf{Act}$ and

$\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ an infinite execution fragment

- ρ is unconditionally \mathbf{A} -fair, if $\exists^{\infty} i \geq 0. \alpha_i \in \mathbf{A}$
- ρ is strongly \mathbf{A} -fair, if

$$\exists^{\infty} i \geq 0. \mathbf{A} \cap \mathbf{Act}(s_i) \neq \emptyset \implies \exists^{\infty} i \geq 0. \alpha_i \in \mathbf{A}$$
- ρ is weakly \mathbf{A} -fair, if

$$\forall^{\infty} i \geq 0. \mathbf{A} \cap \mathbf{Act}(s_i) \neq \emptyset \implies \exists^{\infty} i \geq 0. \alpha_i \in \mathbf{A}$$

unconditionally \mathbf{A} -fair \implies strongly \mathbf{A} -fair
 \implies weakly \mathbf{A} -fair

Strong and weak action fairness

LF2.6-8

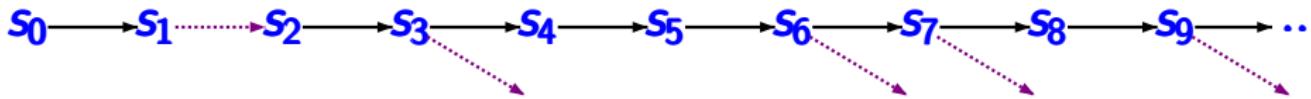
strong A -fairness is *violated* if

- no A -actions are executed from a certain moment
- A -actions are enabled infinitely many times

Strong and weak action fairness

LF2.6-8

strong **A**-fairness is *violated* if



- no **A**-actions are executed from a certain moment
- **A**-actions are **enabled infinitely many times**

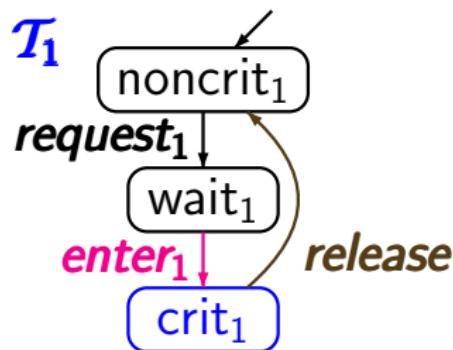
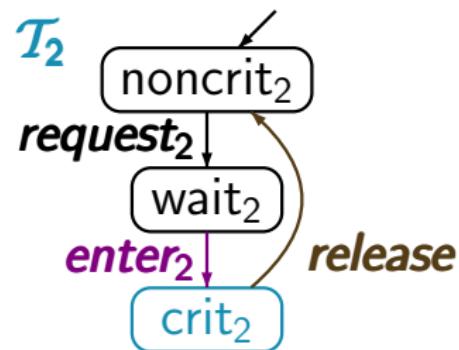
weak **A**-fairness is *violated* if



- no **A**-actions are executed from a certain moment
- **A**-actions are **continuously enabled** from some moment on

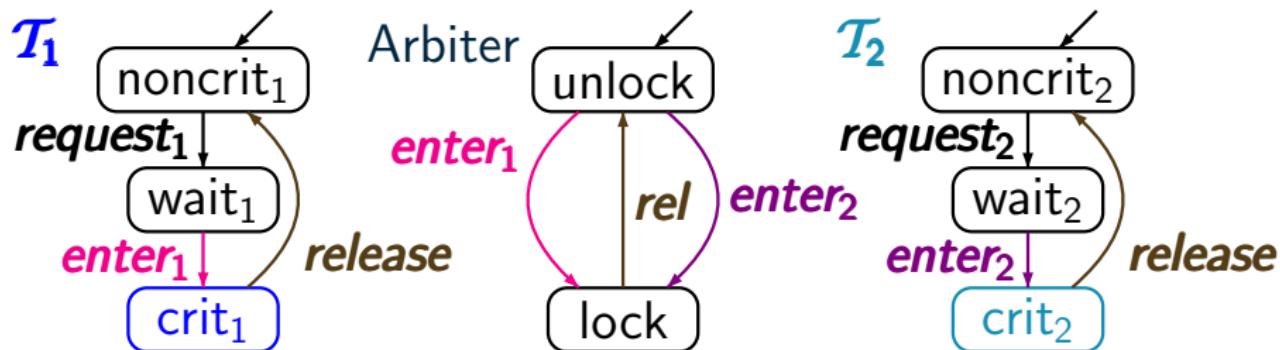
Mutual exclusion with arbiter

LF2.6-9



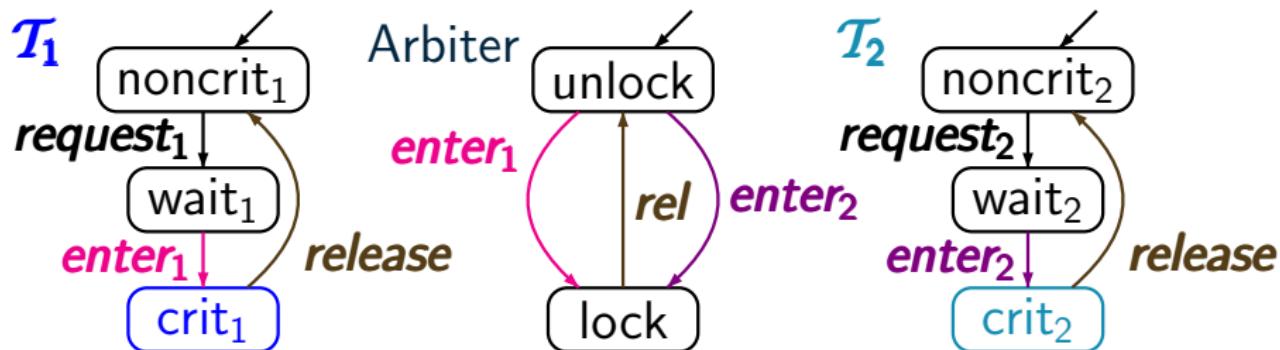
Mutual exclusion with arbiter

LF2.6-9

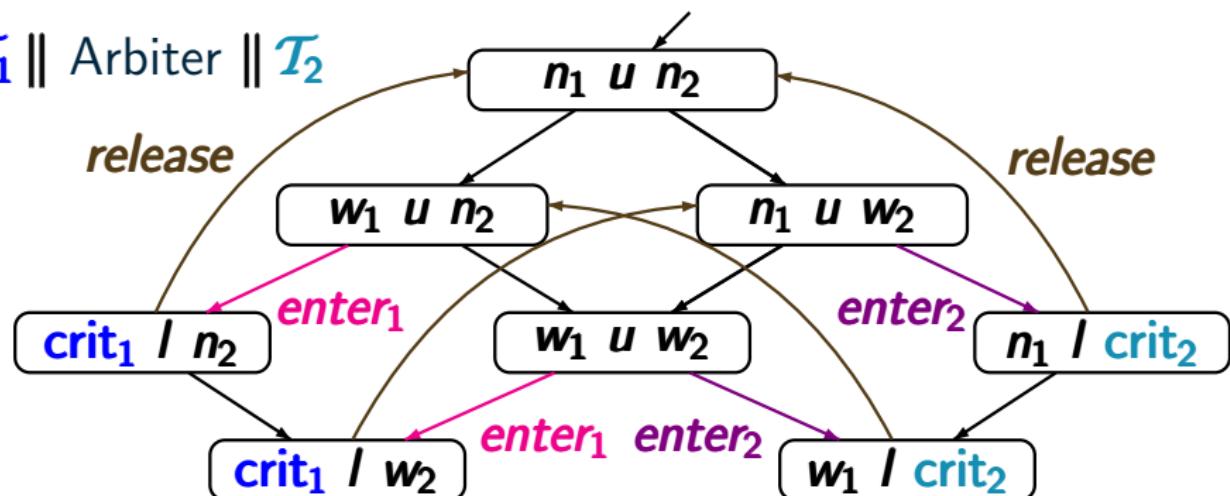


Mutual exclusion with arbiter

LF2.6-9



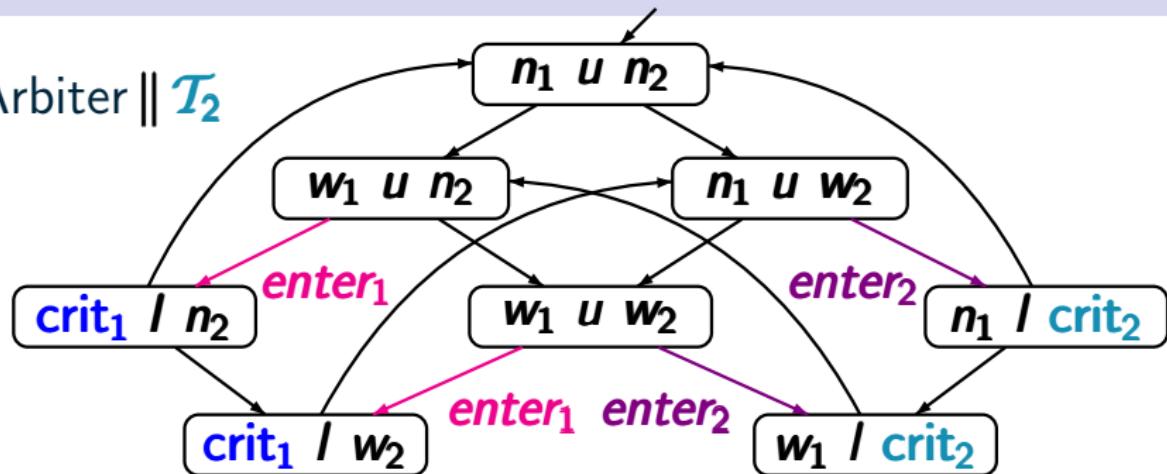
$T_1 \parallel \text{Arbiter} \parallel T_2$



Unconditional, strongly or weakly fair?

LF2.6-10

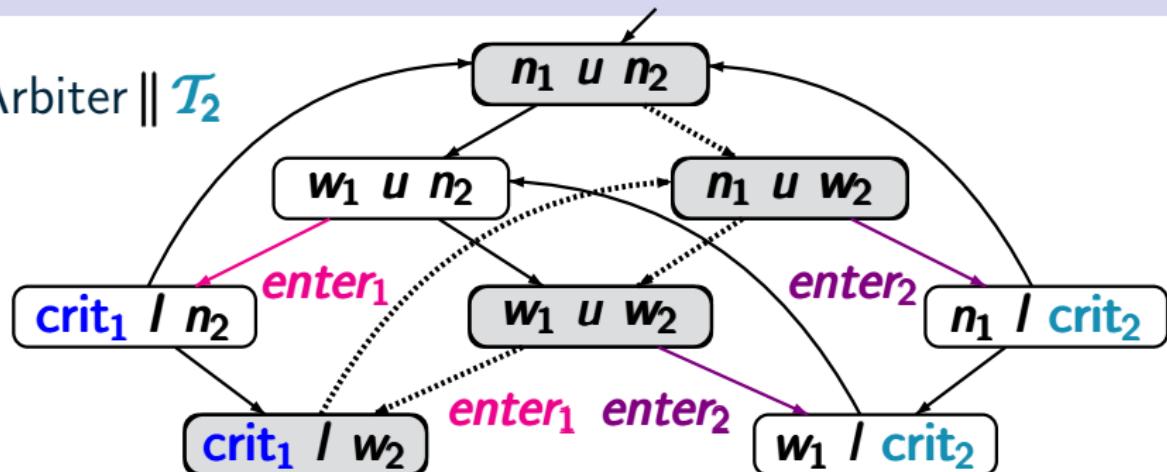
$T_1 \parallel \text{Arbiter} \parallel T_2$



Unconditional, strongly or weakly fair?

LF2.6-10

$T_1 \parallel \text{Arbiter} \parallel T_2$



fairness for action set $A = \{\text{enter}_1\}$:

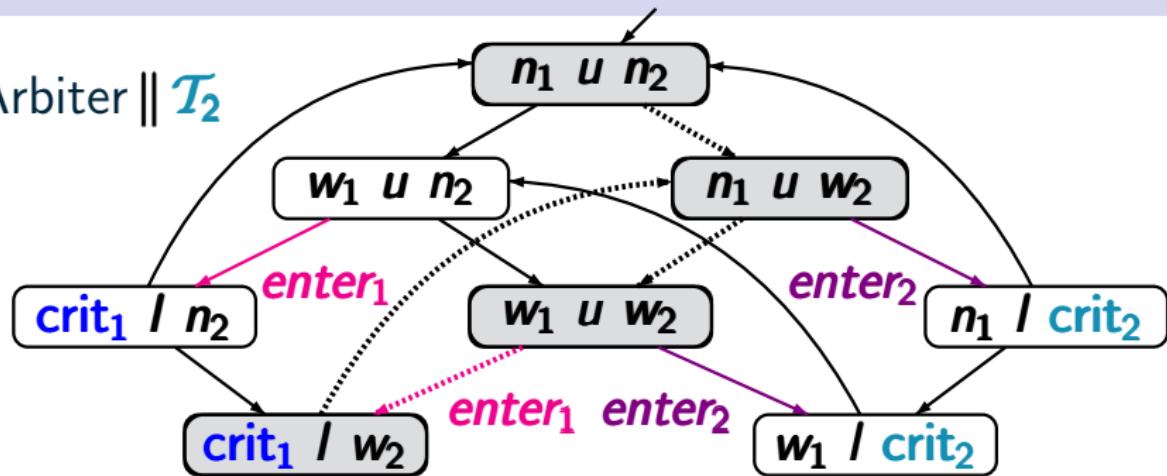
$$\langle n_1, u, n_2 \rangle \rightarrow \left(\langle n_1, u, w_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \xrightarrow{\text{enter}_1} \langle \text{crit}_1, /, w_2 \rangle \right)^\omega$$

- unconditional A -fairness:
- strong A -fairness:
- weak A -fairness:

Unconditional, strongly or weakly fair?

LF2.6-10

$T_1 \parallel \text{Arbiter} \parallel T_2$



fairness for action set $A = \{\text{enter}_1\}$:

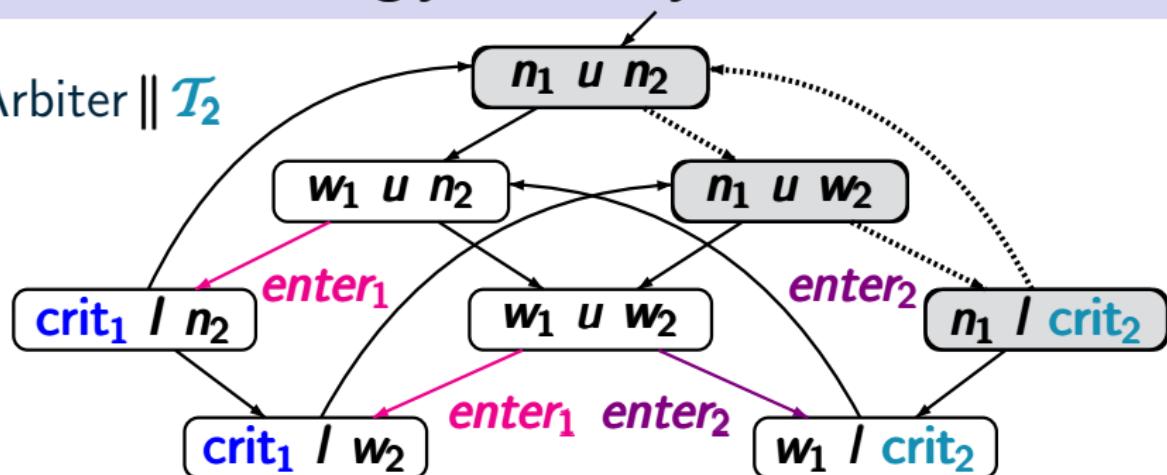
$$\langle n_1, u, n_2 \rangle \rightarrow \left(\langle n_1, u, w_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \xrightarrow{\text{enter}_1} \langle \text{crit}_1, /, w_2 \rangle \right)^\omega$$

- unconditional A -fairness: yes
- strong A -fairness: yes \leftarrow unconditionally fair
- weak A -fairness: yes \leftarrow unconditionally fair

Unconditional, strongly or weakly fair?

LF2.6-10

$\mathcal{T}_1 \parallel \text{Arbiter} \parallel \mathcal{T}_2$



fairness for action-set $A = \{\text{enter}_1\}$:

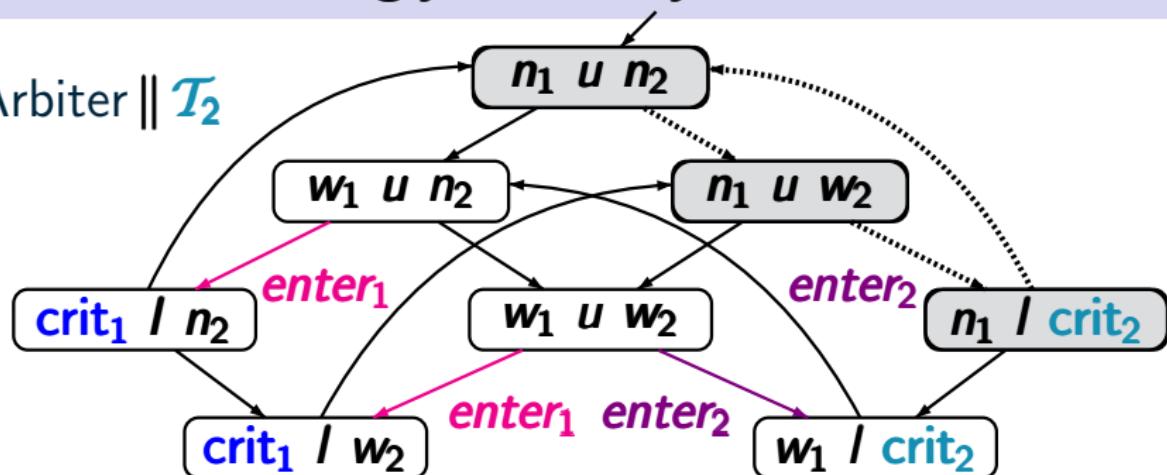
$$\left(\langle n_1, u, n_2 \rangle \rightarrow \langle n_1, u, w_2 \rangle \rightarrow \langle n_1, l, \text{crit}_2 \rangle \right)^\omega$$

- unconditional \mathbf{A} -fairness:
- strong \mathbf{A} -fairness:
- weak \mathbf{A} -fairness:

Unconditional, strongly or weakly fair?

LF2.6-10

$T_1 \parallel \text{Arbiter} \parallel T_2$



fairness for action-set $A = \{enter_1\}$:

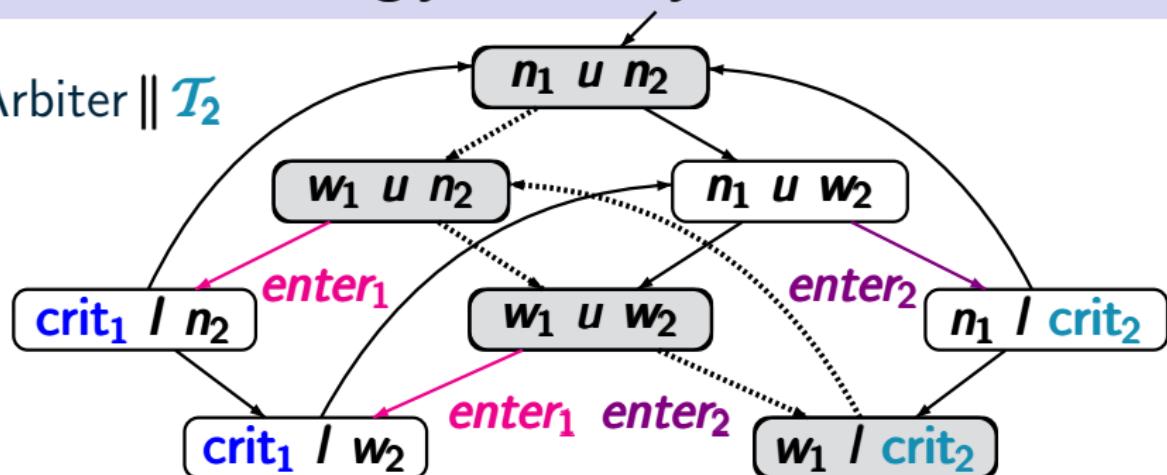
$$\left(\langle n_1, u, n_2 \rangle \xrightarrow{} \langle n_1, u, w_2 \rangle \xrightarrow{} \langle n_1, I, crit_2 \rangle \right)^\omega$$

- unconditional A -fairness: **no**
- strong A -fairness: **yes** $\leftarrow A$ never enabled
- weak A -fairness: **yes** \leftarrow strongly A -fair

Unconditional, strongly or weakly fair?

LF2.6-10

$T_1 \parallel \text{Arbiter} \parallel T_2$



fairness for action-set $A = \{\text{enter}_1\}$:

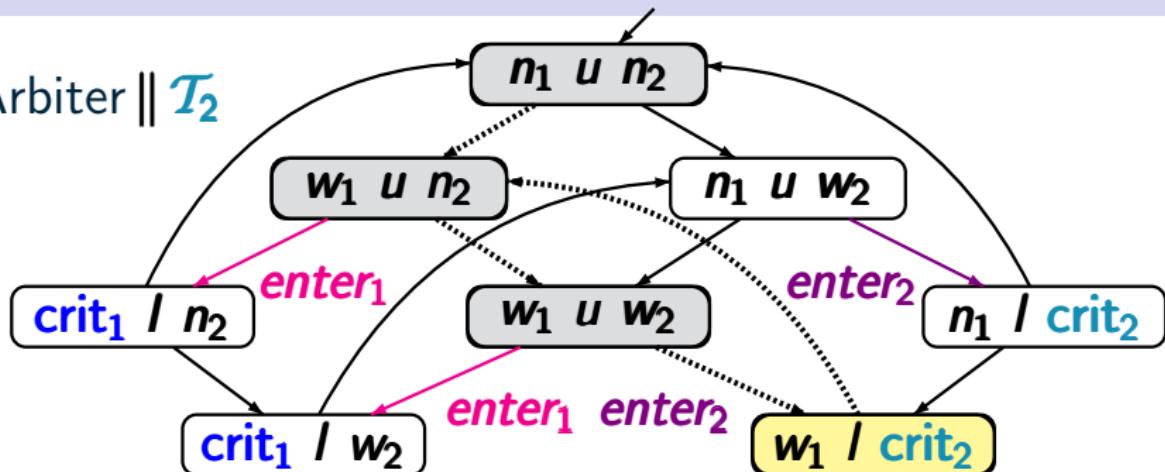
$$\langle n_1, u, n_2 \rangle \rightarrow \left(\langle w_1, u, n_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle n_1, I, \text{crit}_2 \rangle \right)^\omega$$

- unconditional A -fairness:
- strong A -fairness:
- weak A -fairness:

Unconditional, strongly or weakly fair?

LF2.6-10

$T_1 \parallel \text{Arbiter} \parallel T_2$



fairness for action-set $A = \{\text{enter}_1\}$:

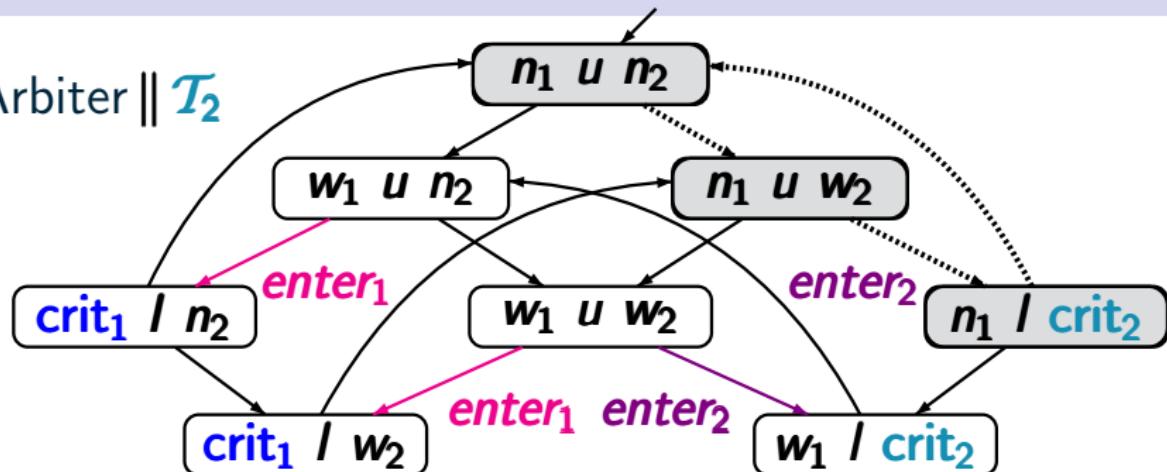
$$\langle n_1, u, n_2 \rangle \rightarrow \left(\langle w_1, u, n_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle n_1, I, \text{crit}_2 \rangle \right)^\omega$$

- unconditional A -fairness: **no**
- strong A -fairness: **no**
- weak A -fairness: **yes**

Unconditional, strongly or weakly fair?

LF2.6-10

$\mathcal{T}_1 \parallel \text{Arbiter} \parallel \mathcal{T}_2$



fairness for action set $A = \{\text{enter}_1, \text{enter}_2\}$:

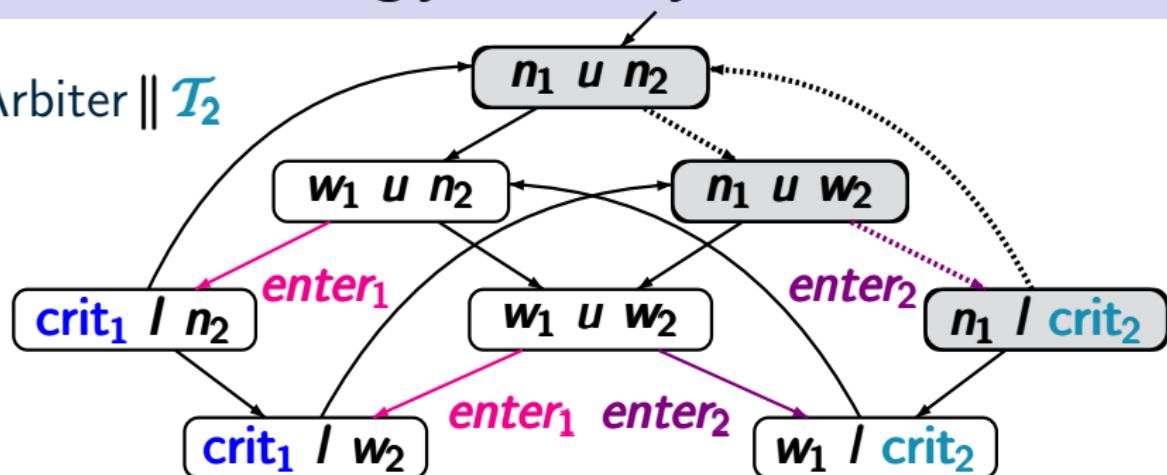
$$\left(\langle n_1, u, n_2 \rangle \xrightarrow{} \langle n_1, u, w_2 \rangle \xrightarrow{\text{enter}_1} \langle n_1, u, \text{crit}_2 \rangle \right)^\omega$$

- unconditional A -fairness:
- strong A -fairness:
- weak A -fairness:

Unconditional, strongly or weakly fair?

LF2.6-10

$T_1 \parallel \text{Arbiter} \parallel T_2$



fairness for action set $A = \{\text{enter}_1, \text{enter}_2\}$:

$$\left(\langle n_1, u, n_2 \rangle \xrightarrow{\text{enter}_1} \langle n_1, u, w_2 \rangle \xrightarrow{\text{enter}_2} \langle n_1, u, \text{crit}_2 \rangle \right)^\omega$$

- unconditional A -fairness: yes
- strong A -fairness: yes
- weak A -fairness: yes

Action-based fairness assumptions

LF2.6-DEF-FAIRNESS-ASSUMPTION

Action-based fairness assumptions

LF2.6-DEF-FAIRNESS-ASSUMPTION

Let \mathcal{T} be a transition system with action-set \mathbf{Act} .
A fairness assumption for \mathcal{T} is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

where $\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak} \subseteq 2^{\mathbf{Act}}$.

Action-based fairness assumptions

Let \mathcal{T} be a transition system with action-set \mathbf{Act} .
A fairness assumption for \mathcal{T} is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

where $\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak} \subseteq 2^{\mathbf{Act}}$.

An execution ρ is called \mathcal{F} -fair iff

- ρ is unconditionally \mathbf{A} -fair for all $\mathbf{A} \in \mathcal{F}_{ucond}$
- ρ is strongly \mathbf{A} -fair for all $\mathbf{A} \in \mathcal{F}_{strong}$
- ρ is weakly \mathbf{A} -fair for all $\mathbf{A} \in \mathcal{F}_{weak}$

Action-based fairness assumptions

LF2.6-DEF-FAIRNESS-ASSUMPTION

Let \mathcal{T} be a transition system with action-set \mathbf{Act} .
A fairness assumption for \mathcal{T} is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

where $\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak} \subseteq 2^{\mathbf{Act}}$.

An execution ρ is called \mathcal{F} -fair iff

- ρ is unconditionally \mathbf{A} -fair for all $\mathbf{A} \in \mathcal{F}_{ucond}$
- ρ is strongly \mathbf{A} -fair for all $\mathbf{A} \in \mathcal{F}_{strong}$
- ρ is weakly \mathbf{A} -fair for all $\mathbf{A} \in \mathcal{F}_{weak}$

$FairTraces_{\mathcal{F}}(\mathcal{T}) \stackrel{\text{def}}{=} \{trace(\rho) : \rho \text{ is a } \mathcal{F}\text{-fair execution of } \mathcal{T}\}$

Fair satisfaction relation

LF2.6-FAIR-SAT

A fairness assumption for \mathcal{T} is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

where $\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak} \subseteq 2^{\text{Act}}$.

An execution ρ is called \mathcal{F} -fair iff

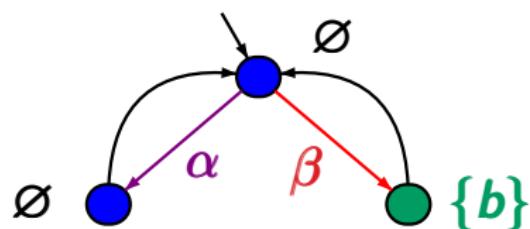
- ρ is unconditionally \mathbf{A} -fair for all $\mathbf{A} \in \mathcal{F}_{ucond}$
- ρ is strongly \mathbf{A} -fair for all $\mathbf{A} \in \mathcal{F}_{strong}$
- ρ is weakly \mathbf{A} -fair for all $\mathbf{A} \in \mathcal{F}_{weak}$

If \mathcal{T} is a TS and E a LT property over AP then:

$$\mathcal{T} \models_{\mathcal{F}} E \iff \text{FairTraces}_{\mathcal{F}}(\mathcal{T}) \subseteq E$$

Example: fair satisfaction relation

LF2.6-11

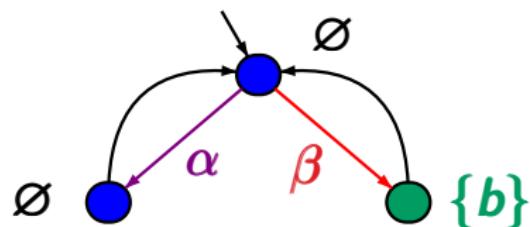


fairness assumption \mathcal{F}

- no unconditional fairness condition
- strong fairness for $\{\alpha, \beta\}$
- no weak fairness condition

Example: fair satisfaction relation

LF2.6-11

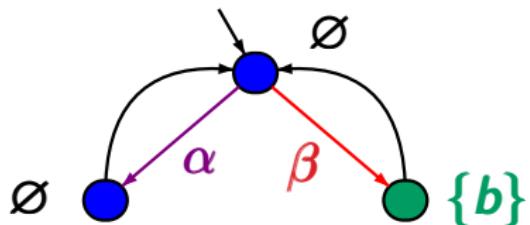


fairness assumption \mathcal{F}

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \emptyset$
- strong fairness for $\{\alpha, \beta\}$ $\leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition $\leftarrow \mathcal{F}_{weak} = \emptyset$

Example: fair satisfaction relation

LF2.6-11



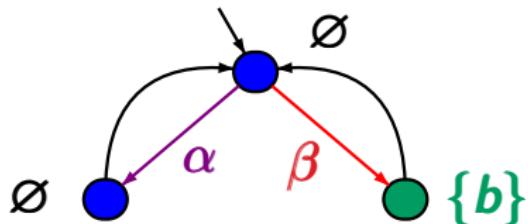
$\mathcal{T} \models_{\mathcal{F}}$ "infinitely often b " ?

fairness assumption \mathcal{F}

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \emptyset$
- strong fairness for $\{\alpha, \beta\}$ $\leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition $\leftarrow \mathcal{F}_{weak} = \emptyset$

Example: fair satisfaction relation

LF2.6-11



$T \models_{\mathcal{F}}$ "infinitely often b " ?

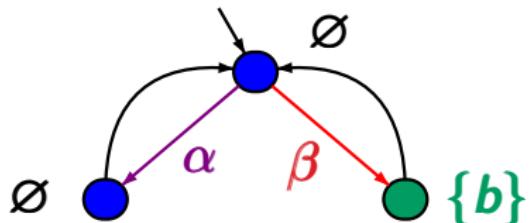
answer: **no**

fairness assumption \mathcal{F}

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \emptyset$
- strong fairness for $\{\alpha, \beta\}$ $\leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition $\leftarrow \mathcal{F}_{weak} = \emptyset$

Example: fair satisfaction relation

LF2.6-11

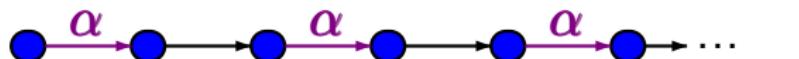


$T \models_{\mathcal{F}}$ "infinitely often b " ?

answer: **no**

fairness assumption \mathcal{F}

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \emptyset$
- strong fairness for $\{\alpha, \beta\}$ $\leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition $\leftarrow \mathcal{F}_{weak} = \emptyset$

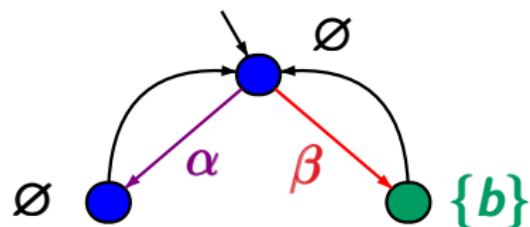


\mathcal{F} -fair

actions in $\{\alpha, \beta\}$ are executed infinitely many times

Example: fair satisfaction relation

LF2.6-12

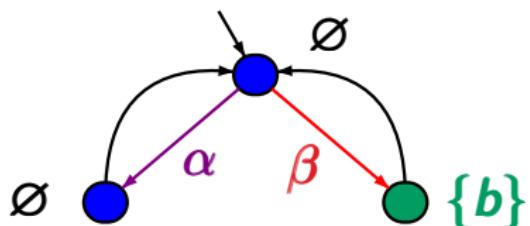


fairness assumption \mathcal{F}

- strong fairness for α $\leftarrow \mathcal{F}_{strong} = \{\{\alpha\}\}$
- weak fairness for β $\leftarrow \mathcal{F}_{weak} = \{\{\beta\}\}$
- no unconditional fairness assumption

Example: fair satisfaction relation

LF2.6-12



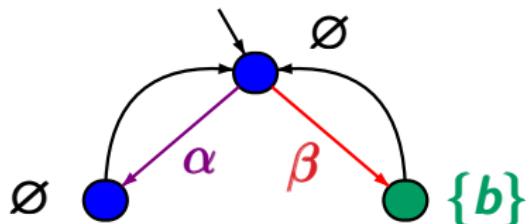
$\mathcal{T} \models_{\mathcal{F}}$ "infinitely often b " ?

fairness assumption \mathcal{F}

- strong fairness for α $\leftarrow \mathcal{F}_{strong} = \{\{\alpha\}\}$
- weak fairness for β $\leftarrow \mathcal{F}_{weak} = \{\{\beta\}\}$
- no unconditional fairness assumption

Example: fair satisfaction relation

LF2.6-12



$\mathcal{T} \models_{\mathcal{F}}$ "infinitely often b " ?

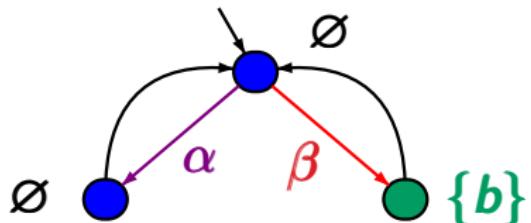
answer: **no**

fairness assumption \mathcal{F}

- strong fairness for α $\leftarrow \mathcal{F}_{strong} = \{\{\alpha\}\}$
- weak fairness for β $\leftarrow \mathcal{F}_{weak} = \{\{\beta\}\}$
- no unconditional fairness assumption

Example: fair satisfaction relation

LF2.6-12

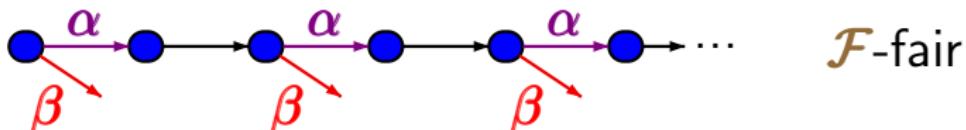


$\mathcal{T} \models_{\mathcal{F}}$ "infinitely often b " ?

answer: **no**

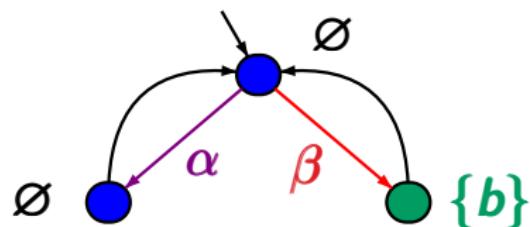
fairness assumption \mathcal{F}

- strong fairness for α $\leftarrow \mathcal{F}_{strong} = \{\{\alpha\}\}$
- weak fairness for β $\leftarrow \mathcal{F}_{weak} = \{\{\beta\}\}$
- no unconditional fairness assumption



Example: fair satisfaction relation

LF2.6-12A



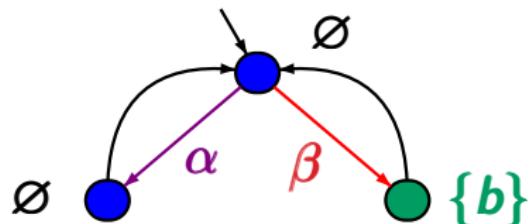
$\mathcal{T} \models_{\mathcal{F}}$ "infinitely often b "

fairness assumption \mathcal{F}

- strong fairness for β $\leftarrow \mathcal{F}_{strong} = \{\{\beta\}\}$
- no weak fairness assumption
- no unconditional fairness assumption

Example: fair satisfaction relation

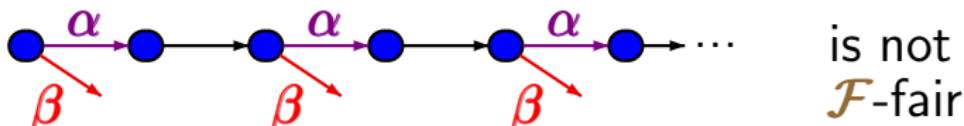
LF2.6-12A



$\mathcal{T} \models_{\mathcal{F}}$ "infinitely often b "

fairness assumption \mathcal{F}

- strong fairness for β $\leftarrow \mathcal{F}_{strong} = \{\{\beta\}\}$
- no weak fairness assumption
- no unconditional fairness assumption



Which type of fairness?

LF2.6-13A

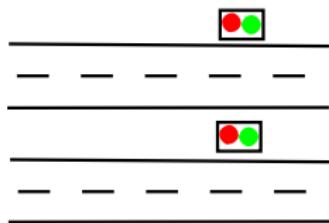
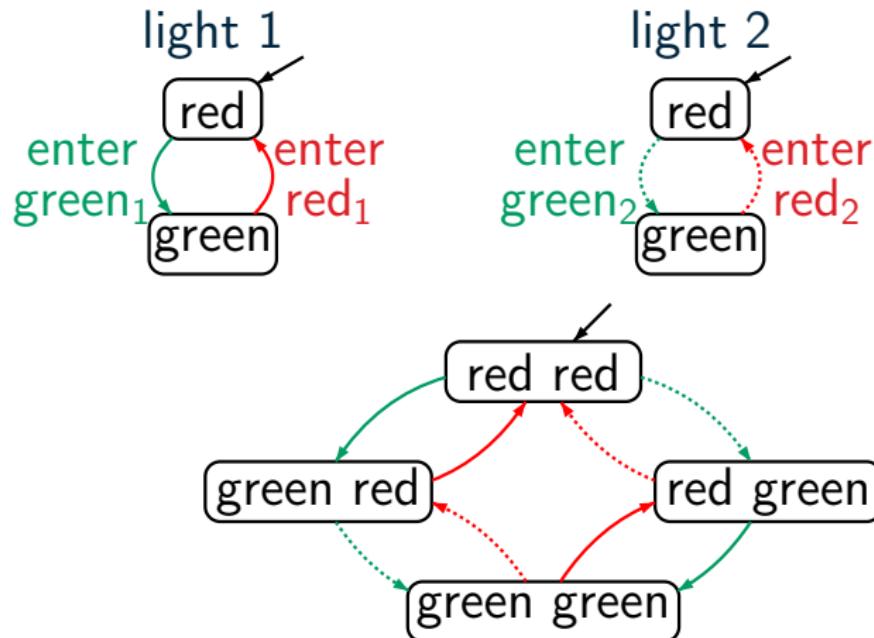
Which type of fairness?

LF2.6-13A

fairness assumptions should be
as weak as possible

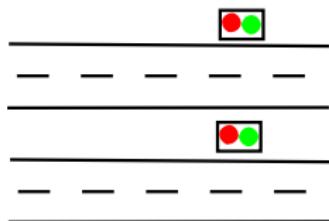
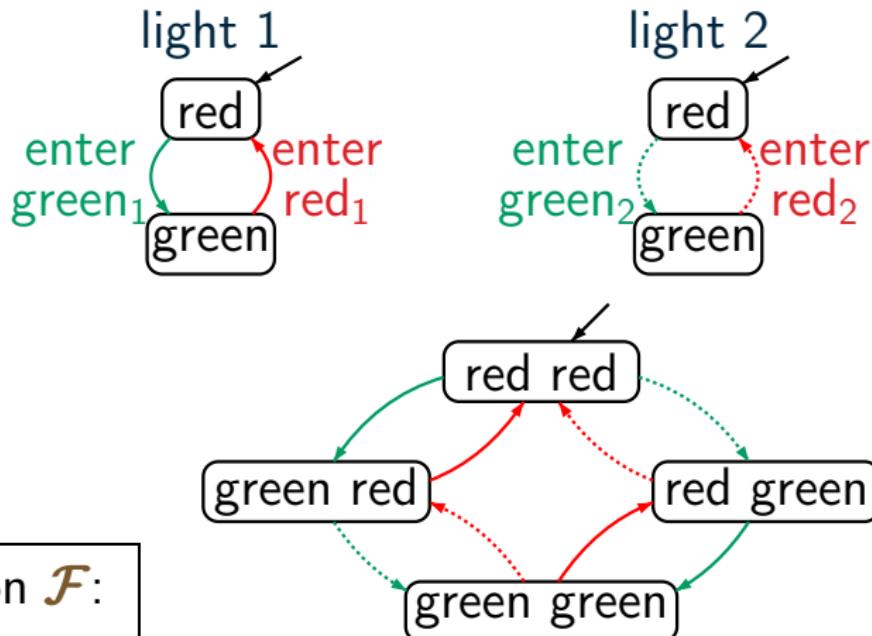
Two independent traffic lights

LF2.6-13



Two independent traffic lights

LF2.6-13



fairness assumption \mathcal{F} :

$\mathcal{F}_{ucond} = ?$

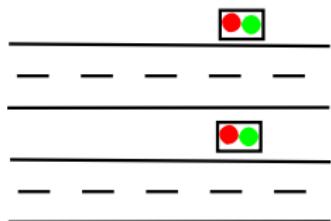
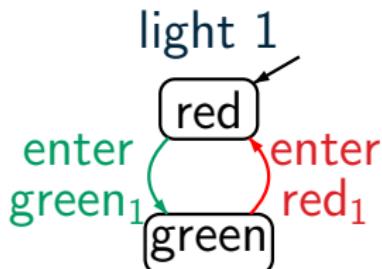
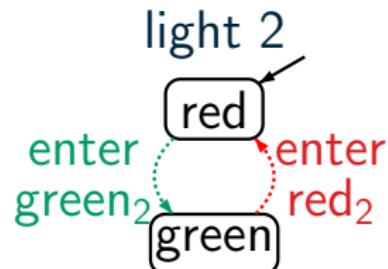
$\mathcal{F}_{strong} = ?$

$\mathcal{F}_{weak} = ?$

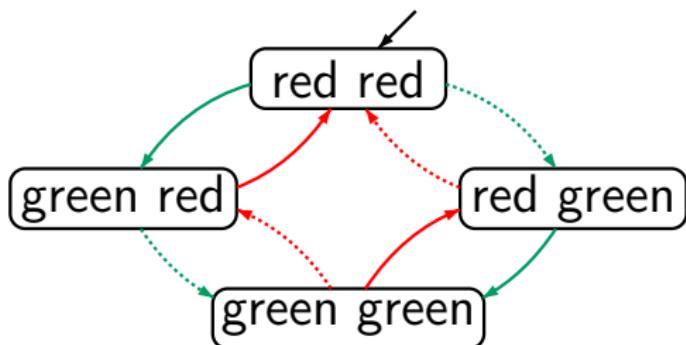
$light 1 \parallel light 2 \models_{\mathcal{F}} E$
 $E \triangleq "both lights are infinitely often green"$

Two independent traffic lights

LF2.6-13



A_1 = actions of light 1
 A_2 = actions of light 2



fairness assumption \mathcal{F} :

$\mathcal{F}_{ucond} = ?$

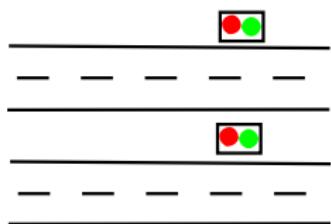
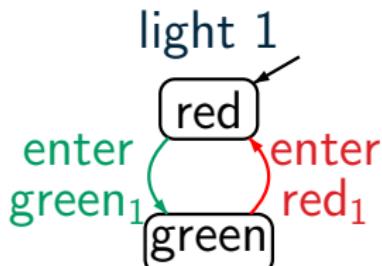
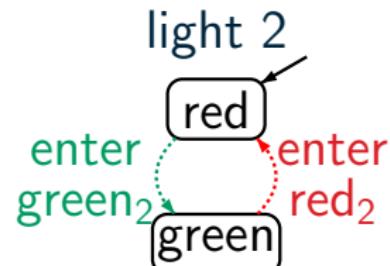
$\mathcal{F}_{strong} = ?$

$\mathcal{F}_{weak} = ?$

light 1 \parallel light 2 $\models_{\mathcal{F}} E$
 $E \triangleq$ "both lights are infinitely often green"

Two independent traffic lights

LF2.6-13



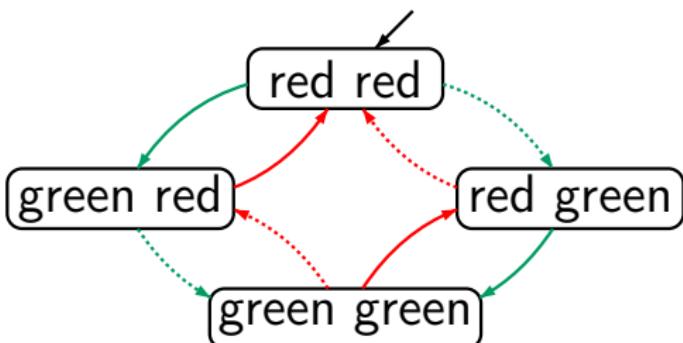
A_1 = actions of light 1
 A_2 = actions of light 2

fairness assumption \mathcal{F} :

$\mathcal{F}_{ucond} = \emptyset$

$\mathcal{F}_{strong} = \emptyset$

$\mathcal{F}_{weak} = \{A_1, A_2\}$



light 1 \parallel light 2 $\models_{\mathcal{F}} E$
 $E \triangleq$ "both lights are infinitely often green"

Example: MUTEX with fair arbiter

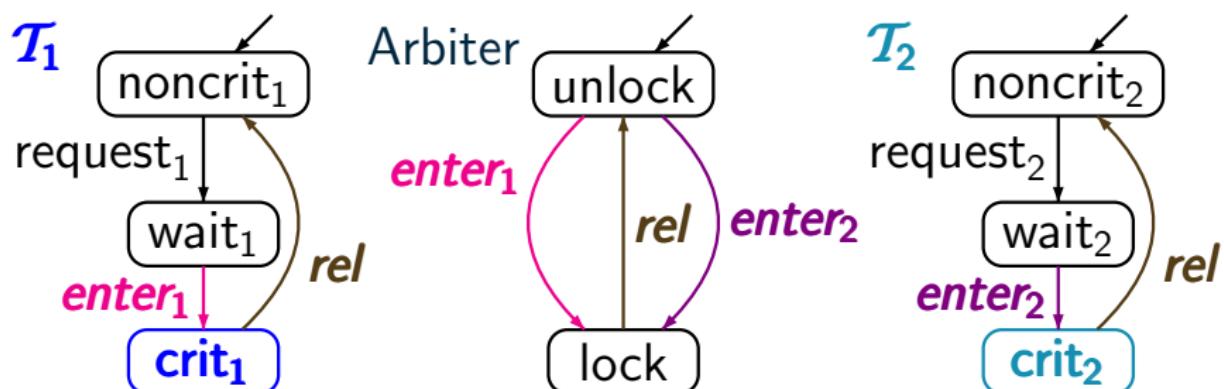
LF2.6-15

$\mathcal{T} = \mathcal{T}_1 \parallel \text{Arbiter} \parallel \mathcal{T}_2$

Example: MUTEX with fair arbiter

LF2.6-15

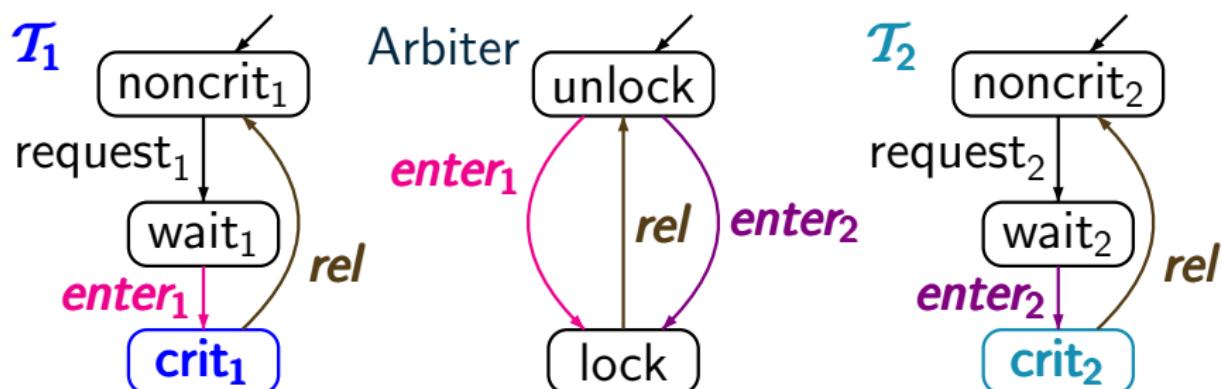
$$T = T_1 \parallel \text{Arbiter} \parallel T_2$$



Example: MUTEX with fair arbiter

LF2.6-15

$$\mathcal{T} = \mathcal{T}_1 \parallel \text{Arbiter} \parallel \mathcal{T}_2$$

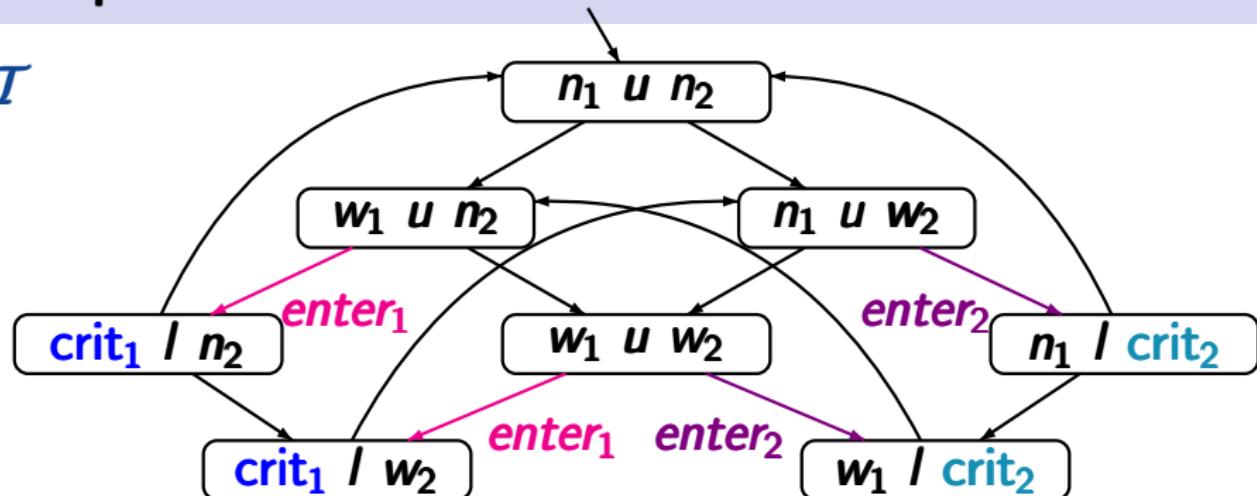


\mathcal{T}_1 and \mathcal{T}_2 compete to communicate with the arbiter by means of the actions **enter₁** and **enter₂**, respectively

Example: MUTEX with fair arbiter

LF2.6-15

\mathcal{T}



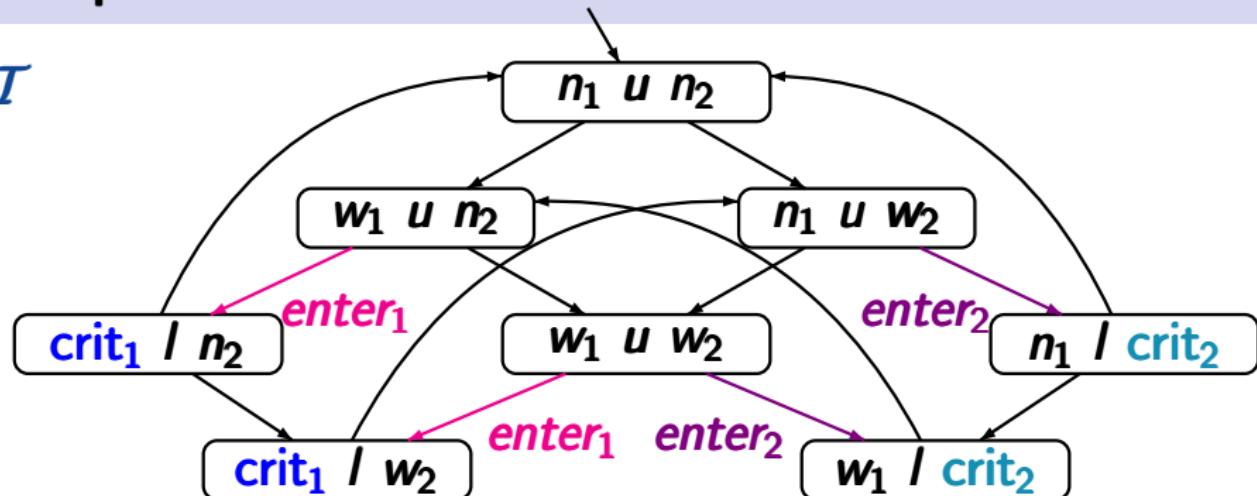
LT property E : each waiting process eventually enters its critical section

$\mathcal{T} \not\models E$

Example: MUTEX with fair arbiter

LF2.6-15

\mathcal{T}



LT property E : each waiting process eventually enters its critical section

fairness assumption \mathcal{F}

$$\mathcal{F}_{ucond} = \mathcal{F}_{strong} = \emptyset$$

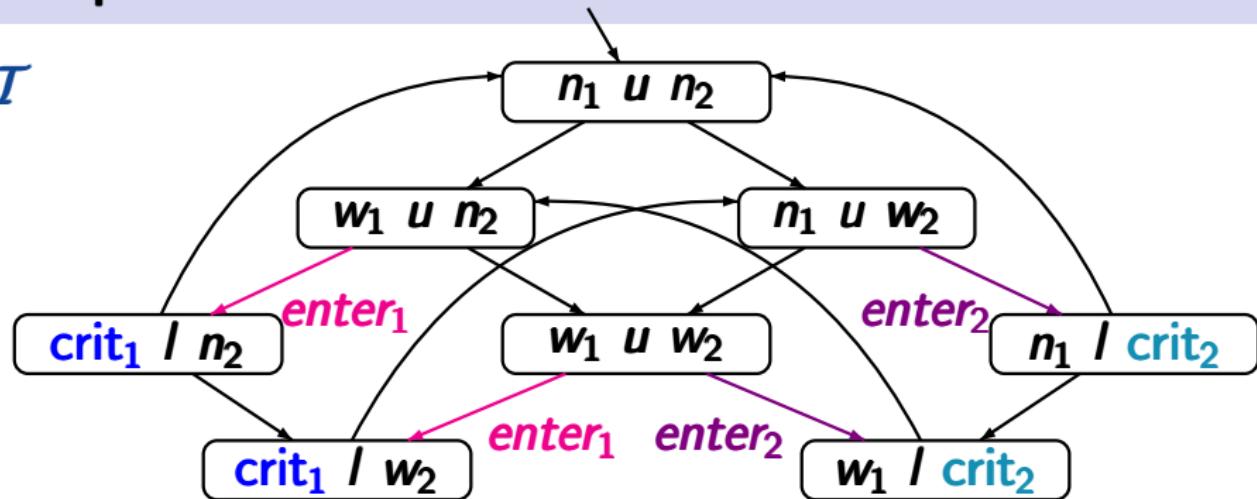
$$\mathcal{F}_{weak} = \{\{\text{enter}_1\}, \{\text{enter}_2\}\}$$

does $\mathcal{T} \models_{\mathcal{F}} E$ hold ?

Example: MUTEX with fair arbiter

LF2.6-15

\mathcal{T}



LT property E : each waiting process eventually enters its critical section

fairness assumption \mathcal{F}

$$\mathcal{F}_{ucond} = \mathcal{F}_{strong} = \emptyset$$

$$\mathcal{F}_{weak} = \{\{\text{enter}_1\}, \{\text{enter}_2\}\}$$

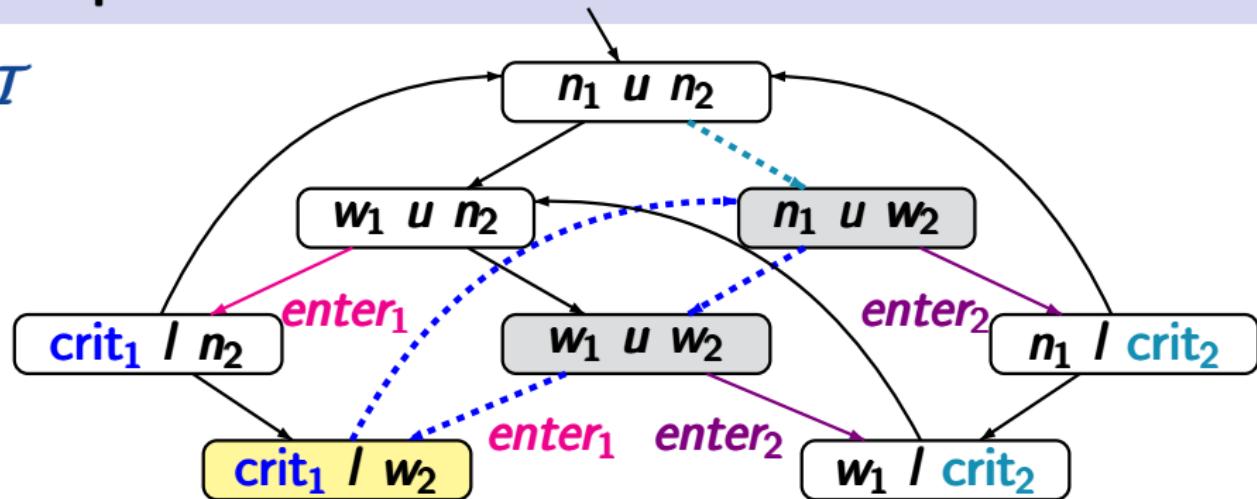
does $\mathcal{T} \models_{\mathcal{F}} E$ hold ?

answer: no

Example: MUTEX with fair arbiter

LF2.6-15

\mathcal{T}



LT property E : each waiting process eventually enters its critical section

fairness assumption \mathcal{F}

$$\mathcal{F}_{ucond} = \mathcal{F}_{strong} = \emptyset$$

$$\mathcal{F}_{weak} = \{\{\text{enter}_1\}, \{\text{enter}_2\}\}$$

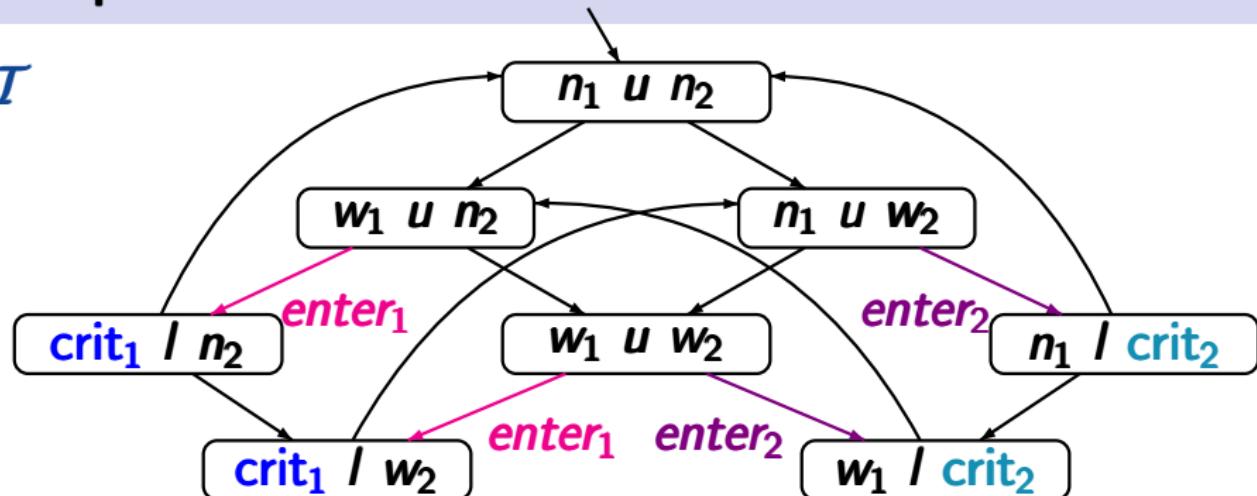
$$\mathcal{T} \not\models_{\mathcal{F}} E$$

as enter_2 is not enabled
in $\langle \text{crit}_1, /, \text{w}_2 \rangle$

Example: MUTEX with fair arbiter

LF2.6-16

\mathcal{T}



E : each waiting process eventually enters its crit. section

$$\mathcal{F}_{ucond} = ?$$

$$\mathcal{F}_{strong} = ?$$

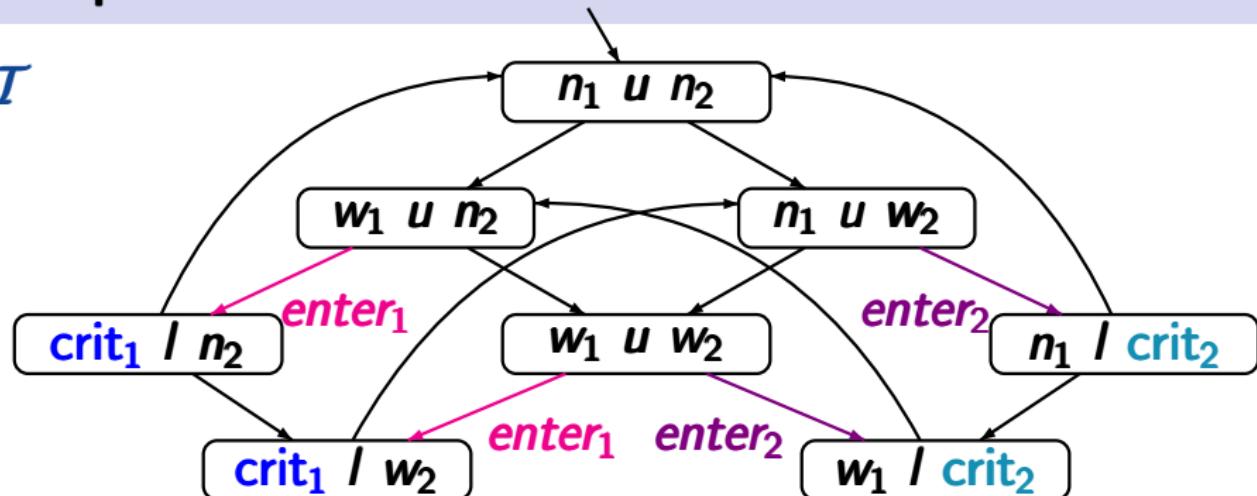
$$\mathcal{F}_{weak} = ?$$

$\mathcal{T} \not\models E$,
but $\mathcal{T} \models_{\mathcal{F}} E$

Example: MUTEX with fair arbiter

LF2.6-16

\mathcal{T}



E : each waiting process eventually enters its crit. section

$$\mathcal{F}_{ucond} = \emptyset$$

$$\mathcal{F}_{strong} = \{\{enter_1\}, \{enter_2\}\}$$

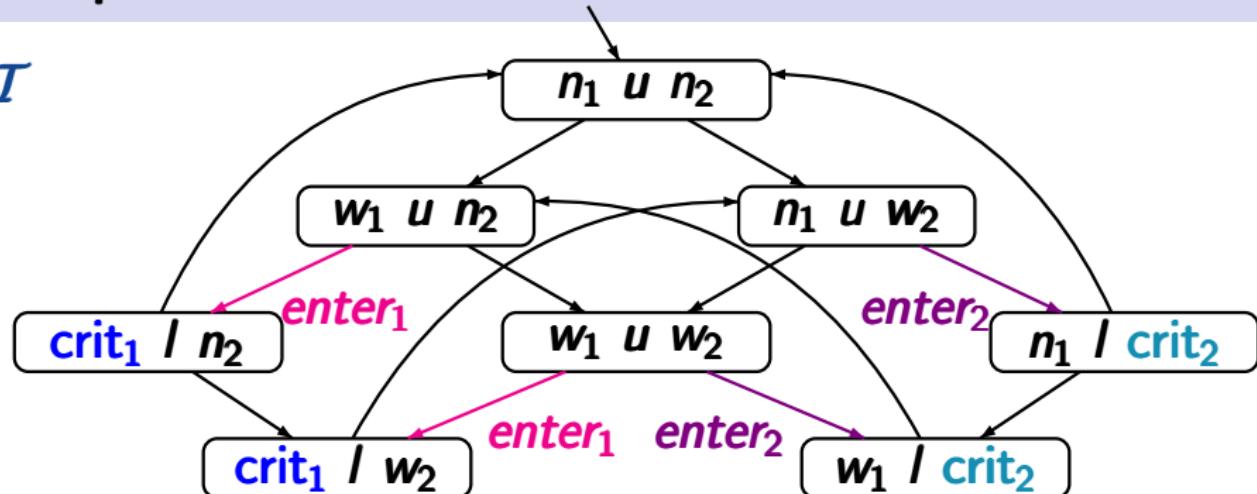
$$\mathcal{F}_{weak} = \emptyset$$

$\mathcal{T} \not\models E$,
but $\mathcal{T} \models_{\mathcal{F}} E$

Example: MUTEX with fair arbiter

LF2.6-16

\mathcal{T}



E : each waiting process eventually enters its crit. section

D : each process enters its critical section infinitely often

$$\mathcal{F}_{ucond} = \emptyset$$

$$\mathcal{F}_{strong} = \{\{enter_1\}, \{enter_2\}\}$$

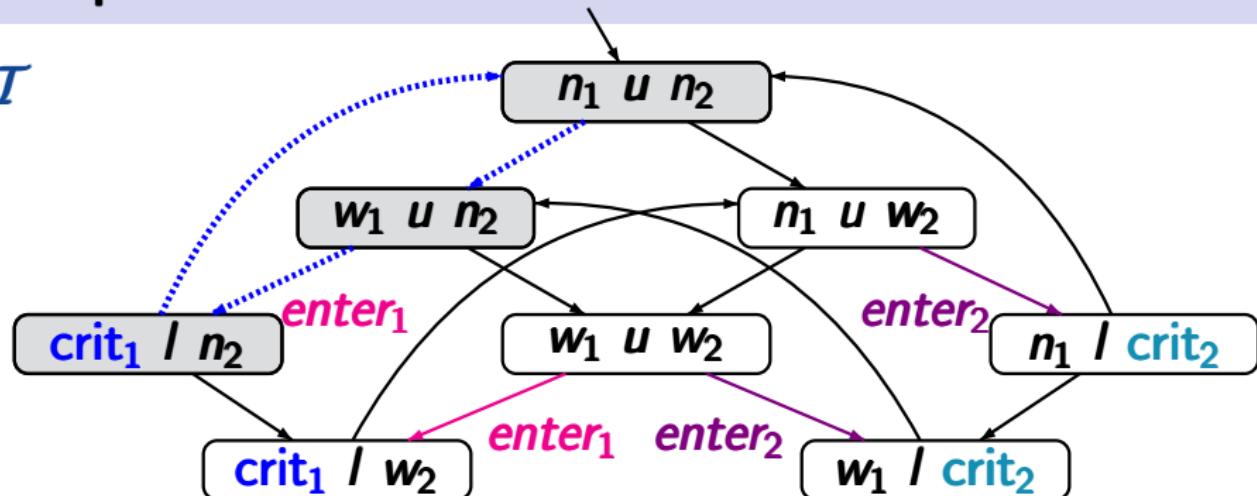
$$\mathcal{F}_{weak} = \emptyset$$

$$\begin{array}{l} \mathcal{T} \models_{\mathcal{F}} E, \\ \mathcal{T} \not\models_{\mathcal{F}} D \end{array}$$

Example: MUTEX with fair arbiter

LF2.6-16

\mathcal{T}



E : each waiting process eventually enters its crit. section

D : each process enters its critical section infinitely often

$$\mathcal{F}_{ucond} = \emptyset$$

$$\mathcal{F}_{strong} = \{\{\text{enter}_1\}, \{\text{enter}_2\}\}$$

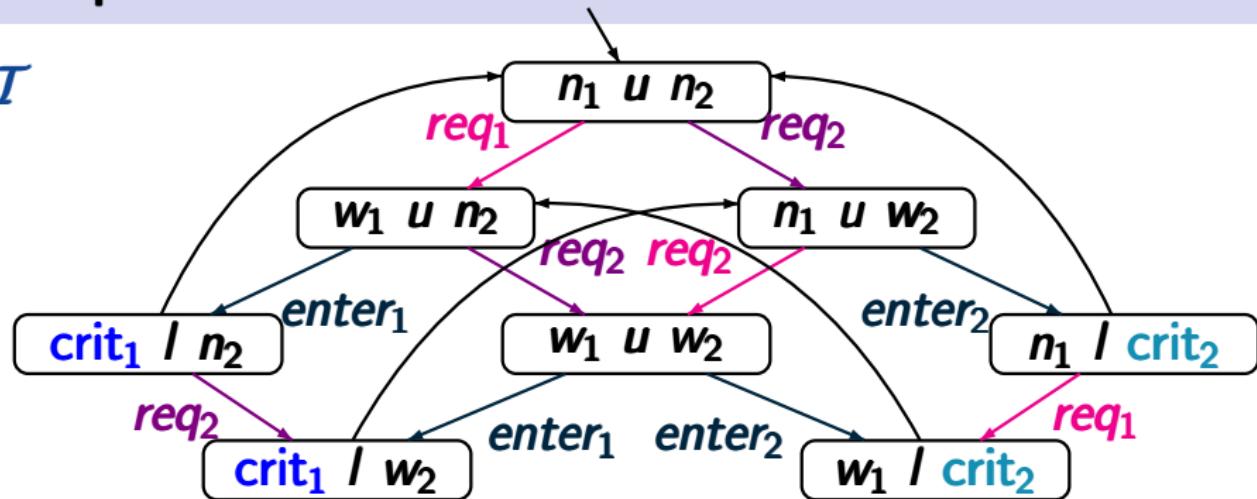
$$\mathcal{F}_{weak} = \emptyset$$

$$\begin{array}{l} \mathcal{T} \models_{\mathcal{F}} E, \\ \mathcal{T} \not\models_{\mathcal{F}} D \end{array}$$

Example: MUTEX with fair arbiter

LF2.6-16

\mathcal{T}



E : each waiting process eventually enters its crit. section

D : each process enters its critical section infinitely often

$$\mathcal{F}_{ucond} = \emptyset$$

$$\mathcal{F}_{strong} = \{\{enter_1\}, \{enter_2\}\}$$

$$\mathcal{F}_{weak} = \{\{req_1\}, \{req_2\}\}$$

$$\begin{array}{l} \mathcal{T} \models_{\mathcal{F}} E, \\ \mathcal{T} \models_{\mathcal{F}} D \end{array}$$

Process fairness

LF2.6-19

For asynchronous systems:

parallelism = interleaving + fairness

For asynchronous systems:

parallelism = interleaving + fairness

should be as weak as possible

For asynchronous systems:

$$\text{parallelism} = \text{interleaving} + \text{fairness}$$

↑
should be as weak as possible

rule of thumb:

- strong fairness for the
 - * choice between dependent actions
 - * resolution of competitions

For asynchronous systems:

$$\text{parallelism} = \text{interleaving} + \text{fairness}$$

↑
should be as weak as possible

rule of thumb:

- **strong fairness** for the
 - * choice between **dependent actions**
 - * resolution of **competitions**
- **weak fairness** for the nondeterminism obtained from the interleaving of **independent actions**

For asynchronous systems:

$$\text{parallelism} = \text{interleaving} + \text{fairness}$$

should be as weak as possible

rule of thumb:

- **strong fairness** for the
 - * choice between **dependent actions**
 - * resolution of **competitions**
- **weak fairness** for the nondeterminism obtained from the interleaving of **independent actions**
- **unconditional fairness**: only of theoretical interest

parallelism = interleaving + fairness

Process fairness and other fairness conditions

- can compensate **information loss** due to interleaving
or rule out other **unrealistic pathological cases**
- can be **requirements for a scheduler**
or **requirements for environment**
- can be **verifiable system properties**

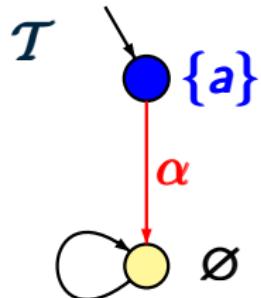
parallelism = interleaving + fairness

Process fairness and other fairness conditions

- can compensate **information loss** due to interleaving or rule out other **unrealistic pathological cases**
- can be **requirements for a scheduler** or **requirements for environment**
- can be **verifiable system properties**

liveness properties: fairness can be essential

safety properties: fairness is irrelevant

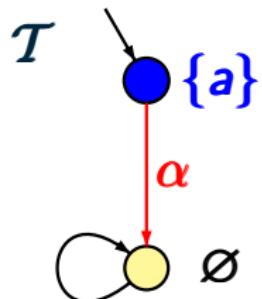


fairness assumption \mathcal{F} :
unconditional fairness
for action set $\{\alpha\}$

does $T \models_{\mathcal{F}}$ “infinitely often a ” hold ?

Fairness

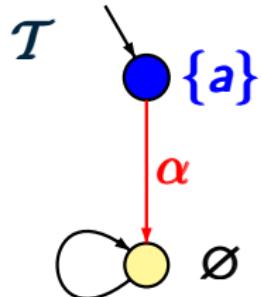
LF2.6-22



fairness assumption \mathcal{F} :
unconditional fairness
for action set $\{\alpha\}$

does $T \models_{\mathcal{F}}$ “infinitely often a ” hold ?

answer: yes as there is no fair path



fairness assumption \mathcal{F} :
unconditional fairness
for action set $\{\alpha\}$

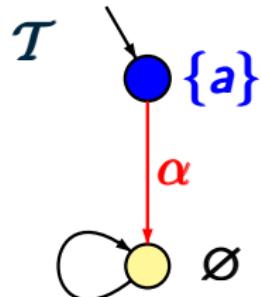
↑
not realizable

does $\mathcal{T} \models_{\mathcal{F}}$ “infinitely often a ” hold ?

answer: yes as there is no fair path

Realizability of fairness assumptions

LF2.6-22



fairness assumption \mathcal{F} :
unconditional fairness
for action set $\{\alpha\}$

not realizable

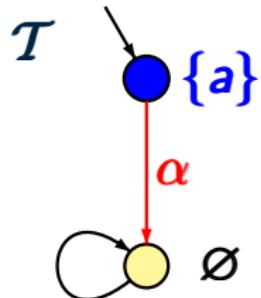
does $\mathcal{T} \models_{\mathcal{F}}$ “infinitely often a ” hold ?

answer: yes as there is no fair path

Realizability requires that each initial finite path fragment can be extended to a \mathcal{F} -fair path

Realizability of fairness assumptions

LF2.6-22



fairness assumption \mathcal{F} :
unconditional fairness
for action set $\{\alpha\}$

↑
not realizable

does $\mathcal{T} \models_{\mathcal{F}}$ “infinitely often a ” hold ?

answer: yes as there is no fair path

Fairness assumption \mathcal{F} is said to be **realizable** for a transition system \mathcal{T} if for each reachable state s in \mathcal{T} there exists a \mathcal{F} -fair path starting in s

Safety and realizable fairness

LF2.6-24

Realizable fairness assumptions are irrelevant
for safety properties

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a **realizable** fairness assumption for TS \mathcal{T} and E a **safety property** then:

$$\mathcal{T} \models E \quad \text{iff} \quad \mathcal{T} \models_{\mathcal{F}} E$$

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a **realizable** fairness assumption for TS \mathcal{T} and E a **safety property** then:

$$\mathcal{T} \models E \quad \text{iff} \quad \mathcal{T} \models_{\mathcal{F}} E$$

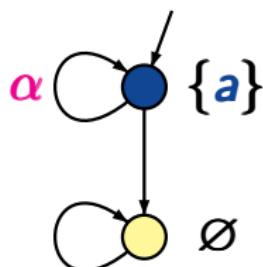
... wrong for non-realizable fairness assumptions

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a **realizable** fairness assumption for TS \mathcal{T} and E a **safety property** then:

$$\mathcal{T} \models E \text{ iff } \mathcal{T} \models_{\mathcal{F}} E$$

... wrong for non-realizable fairness assumptions



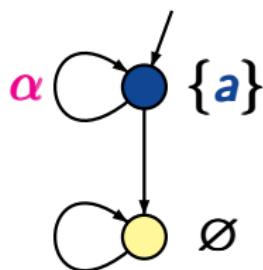
\mathcal{F} : unconditional fairness for $\{\alpha\}$

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a **realizable** fairness assumption for TS \mathcal{T} and E a **safety property** then:

$$\mathcal{T} \models E \text{ iff } \mathcal{T} \models_{\mathcal{F}} E$$

... wrong for non-realizable fairness assumptions



\mathcal{F} : unconditional fairness for $\{\alpha\}$

E = invariant “always a ”

$\mathcal{T} \not\models E$, but $\mathcal{T} \models_{\mathcal{F}} E$