O V e rV i ew OVERVIEW4

Introduction

Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction

1/569



Regular LT properties

2 /569



Regular LT properties

Idea: define regular LT properties to be those
languages of infinite words over the alphabet 24P
that have a representation by a finite automata

3/569



Regular LT properties

Idea: define regular LT properties to be those
languages of infinite words over the alphabet
that have a representation by a finite automata

2AP

e regular safety properties:
NFA-representation for the bad prefixes

4/569



Regular LT properties

Idea: define regular LT properties to be those
languages of infinite words over the alphabet 24P
that have a representation by a finite automata

e regular safety properties:
NFA-representation for the bad prefixes

e other regular LT properties:
representation by w-automata, i.e.,
acceptors for infinite words

5/569



OverView OVERVIEW4.1

Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
regular safety properties —
w-regular properties
model checking with Biichi automata
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction

6/569



Recall: definition of safety properties 152.5-158

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA.. € (2P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, B,,_|_1 B,,_|_2 B,,_|_3...
belongs to E, i.e.,

En{c’' € (2*")“: Ay... A, is a prefix of 0’} = &
Such words Ag A; ... A, are called bad prefixes for E.

BadPref def set of bad prefixes for E C (2AP )+

7/569



Regular safety properties 152.5-REG-SAFE

8/569



Regular safety properties 152.5-REG-SAFE

Let E C (2Ap)w be a safety property.

E is called regular iff the language
BadPref = set of all bad prefixes for E

is regular.

9/569



Regular safety properties 152.5-REG-SAFE

Let E C (2Ap)w be a safety property.

E is called regular iff the language
BadPref = set of all bad prefixes for E C (2AP)+

is regular.

10/569



Regular safety properties 152.5-REG-SAFE

Let E C (2AP)w be a safety property.

E is called regular iff the language

BadPref = set of all bad prefixes for E C (2AP)+
AN
BadPref = L(.A) for some NFA A

over the alphabet 24P

is regular.

11/569



Nondeterministic finite automata (NFA) 152.5-15

12 /569



Nondeterministic finite automata (NFA) 152.5-15

NFA A= (Q,%,4, Q, F)

e @ finite set of states

e 2 alphabet

e d:Q x X — 29 transition relation

e Q C Q set of initial states

o [ C Q@ set of final states, also called accept states

13/569



Nondeterministic finite automata (NFA) 152.5-15

NFA A= (Q,%,4, Q, F)

e @ finite set of states

e 2 alphabet

e d:Q x X — 29 transition relation

e Q C Q set of initial states

o [ C Q@ set of final states, also called accept states

run for a word ApA;...Ap—1 € 1%

state sequence T = G q1 - . - g, Where gp € Q
and gi+1 € 6(qi, A;)) for0<i<n

14 /569



Nondeterministic finite automata (NFA) 152.5-15

NFA A= (Q,%,4, Q, F)

e @ finite set of states

e 2 alphabet

e d:Q x X — 29 transition relation

e Q C Q set of initial states

o [ C Q@ set of final states, also called accept states

run for a word ApA;...Ap—1 € 1%

state sequence T = G q1 - . - g, Where gp € Q
and gi+1 € 6(qi, A;)) for0<i<n

run 7 is called accepting if g, € F

15/569



Nondeterministic finite automata (NFA) 152.5-15

NFA A= (Q,%,4, Q, F)

e @ finite set of states

e 2 alphabet

e d:Q x X — 29 transition relation

e Q C Q set of initial states

o [ C Q@ set of final states, also called accept states

accepted language £(.A) C X* is given by:

L(A) = set of finite words over ¥ that have
an accepting run in A

16 /569



Nondeterministic finite automata (NFA) 152.5-15

NFA A= (Q,%,4, Q, F)
e @ finite set of states
e ¥ alphabet «—| here; ¥ = 24P

e d:Q x X — 29 transition relation
e Y C @ set of initial states
o [ C Q@ set of final states, also called accept states

accepted language £(.A) C X* is given by:

L(A) = set of finite words over ¥ that have
an accepting run in A

17 /569



Notations in pictures for NFA

@ B p N jnitial state
A Q/-\) O nonfinal state

final state

18/569



Notations in pictures for NFA

B N jnitial state
Q=
A
. U O nonfinal state
B A
final state

NFA A with state space {qo, qr}

go initial state

gr final state
alphabet ¥ = {A, B}

19/569



Notations in pictures for NFA

B N jnitial state
Q=
A
. U O nonfinal state
B A
final state

accepted language L(.A):

set of all finite words over {A, B}
ending with letter A

20 /569



S ym b OI iC n Otations 182.5-SYMBOLIC-NOTATION-NFA

for transitions in NFA over the alphabet ¥ = 24P

21/569



S ym b OI iC n Otations 182.5-SYMBOLIC-NOTATION-NFA

NFA A = (Q, %, 4, Qo, F) over the alphabet & = 24P

symbolic notation for the labels of transitions:

If ® is a propositional formula over AP then

q i) p stands for the set of transitions g A p

where A C AP such that A @

22 /569



s ym b OI iC n Otations 182.5-SYMBOLIC-NOTATION-NFA

NFA A = (Q, %, 4, Qo, F) over the alphabet & = 24P

symbolic notation for the labels of transitions:

If ® is a propositional formula over AP then

q i) p stands for the set of transitions g A) p

where A C AP such that A @

Example: if AP = {a, b, c} then

= ~ A
qu)p= {q = p:A={a,c} or A={a}}

23/569



s ym b OI iC n Otations 182.5-SYMBOLIC-NOTATION-NFA

NFA A = (Q, %, 4, Qo, F) over the alphabet & = 24P

symbolic notation for the labels of transitions:

If ® is a propositional formula over AP then

q i) p stands for the set of transitions g A) p

where A C AP such that A @

Example: if AP = {a, b, c} then

= ~ A
qu)p= {q = p:A={a,c} or A={a}}
qtr—u€p E{qA)p:AQAP}

24 /569



Sym b OI i C n Otation S 182.5-SYMBOLIC-NOTATION-NFA

AP = {a, b}
z=2AP
¥ ={A,B} qﬁ)p
A a
9P qQ q@»p
B {2, b}
q—p
q——p ={qﬁ>p 128, }

569



Regular safety properties 152.5-14

A safety property E C (2AP)w is called regular iff

BadPref = set of all bad prefixes for E C (2AP)+

AN

BadPref = L(.A) for some NFA A
over the alphabet 24P

is regular.

25 /569



Regular safety properties 152.5-14

A safety property E C (2Ap)w is called regular iff

BadPref = set of all bad prefixes for E C (2AP)+

AN

BadPref = L(.A) for some NFA A
over the alphabet 24P

is regular.

aA-b/ N\ aA-b AP = {a, b}
qo0 q1 q2
\J

true Utrue

26 /569



Regular safety properties 152.5-14

A safety property E C (2Ap)w is called regular iff

BadPref = set of all bad prefixes for E C (2AP)+

AN

BadPref = L(.A) for some NFA A
over the alphabet 24P

is regular.

aA-b/ N\ aA-b AP = {a, b}
qo0 q1 q2
\J

U symbolic notation:
true true aA-b= {a}

27 /569




Regular safety properties 152.5-14

A safety property E C (2Ap)w is called regular iff

BadPref = set of all bad prefixes for E C (2AP)+

AN

BadPref = L(.A) for some NFA A
over the alphabet 24P

is regular.
% a/\ﬂb/ql\ aA-b @ AP = {a, b}
Z U symbolic notation:
true true aA-b= {a}

safety property E: “a A —b never holds twice in a row”

28 /569



Example: regular safety property 192.5-16

“Every red phase is preceded by a yellow phase”

29 /569



Example: regular safety property 192.5-16

“Every red phase is preceded by a yellow phase”
set of all infinite words Ap A; Ay ... s.t. forall i > 0:
red e A, = i2>1 and € A1

30/569



Example: regular safety property 192.5-16

“Every red phase is preceded by a yellow phase”
set of all infinite words Ap A; Ay ... s.t. forall i > 0:
red e A, = i2>1 and € A1

DFA for all (possibly non-minimal) bad prefixes

31/569



Example: regular safety property 192.5-16

“Every red phase is preceded by a yellow phase”
set of all infinite words Ap A; Ay ... s.t. forall i > 0:
red e A, = i2>1 and € A1

DFA for minimal bad prefixes

32/569



Bad prefixes vs minimal bad prefixes 152.5-14A

Let E C (2AP)w be a safety property.

BadPref = set of all bad prefixes for E
MinBadPref = set of minimal bad prefixes for E

Claim: BadPref is regular <= MinBadPref is regular

33/569



Bad prefixes vs minimal bad prefixes 152.5-14A

Let E C (2AP)w be a safety property.

BadPref = set of all bad prefixes for E
MinBadPref = set of minimal bad prefixes for E

Claim: BadPref is regular <= MinBadPref is regular

“«<=": Let A be an NFA for MinBadPref .

34 /569



Bad prefixes vs minimal bad prefixes 152.5-14A

Let E C (2AP)w be a safety property.

BadPref = set of all bad prefixes for E
MinBadPref = set of minimal bad prefixes for E

Claim: BadPref is regular <= MinBadPref is regular

“<=": Let A be an NFA for MinBadPref .
An NFA A’ for BadPref is obtained from A by

adding self-loops p e p to all final states p.

35 /569



Bad prefixes vs minimal bad prefixes 152.5-14A

Let E C (2AP)w be a safety property.

BadPref = set of all bad prefixes for E
MinBadPref = set of minimal bad prefixes for E

Claim: BadPref is regular <= MinBadPref is regular

“<=": Let A be an NFA for MinBadPref .
An NFA A’ for BadPref is obtained from A by

adding self-loops p e p to all final states p.

“—"": Let A be a DFA for BadPref.

36 /569



Bad prefixes vs minimal bad prefixes 152.5-14A

Let E C (2AP)w be a safety property.

BadPref = set of all bad prefixes for E
MinBadPref = set of minimal bad prefixes for E

Claim: BadPref is regular <= MinBadPref is regular

“<=": Let A be an NFA for MinBadPref .
An NFA A’ for BadPref is obtained from A by

adding self-loops p e p to all final states p.

“—"": Let A be a DFA for BadPref.

A DFA A’ for MinBadPref is obtained from A by
removing all outgoing transitions of final states.

37 /569




Correct or wrong? 152517

Every invariant is regular.

38/569



Correct or wrong?

182.5-17

Every invariant is regular.

correct.

39 /569



Correct or wrong? 152517

Every invariant is regular.

correct.

Let E be an invariant with invariant condition ®

40 /569



Correct or wrong?

182.5-17

Every invariant is regular.

correct.

Let E be an invariant with invariant condition ®

~¢ o

Dtrue

(40)
or

is a DFA for the language of all bad prefixes

41/569



Correct or wrong? 152517

Every invariant is regular.

correct.

Let E be an invariant with invariant condition ®

@ -
or

is a DFA for the language of all minimal bad prefixes

q1

42 /569



Example: DFA for MUTEX 152.5-19

“The two processes are never simultaneously
in their critical sections”

43 /569



Example: DFA for MUTEX

“The two processes are never simultaneously

in their critical sections”

DFA for minimal bad prefixes over the alphabet

24P \where AP = {crity, crity}

crit; A crit

—crity V —crity

a1

44 /569



Correct or wrong? 152,518

Every safety property is regular.

45 /569



Correct or wrong? 152,518

Every safety property is regular.

wrong.

46 /569



Correct or wrong? 152,518

Every safety property is regular.

wrong. e.g., AP = {pay, drink}

E = set of alle infinite words Ay A; A, ... € (24P)
such that for all j € N:

|{i§j: eA,-}| > |{i§j:drink€A,-}|

47 /569



Correct or wrong? 152,518

Every safety property is regular.

wrong. e.g., AP = {pay, drink}

E = set of alle infinite words Ay A; A, ... € (24P)
such that for all j € N:

|{i§j: eA,-}| > |{i§j:drink€A,-}|

e [ is a safety property, but

e the language of (minimal) bad prefixes is not regular

48 /569



Verifying regular safety properties 152.5-20

49 /569



Verifying regular safety properties 152.5-20

given: finite TS T
regular safety property E
(represented by an NIFFA for its bad prefixes)

question: does T |= E hold ?

50 /569



Verifying regular safety properties 152.5-20

given: finite TS T
regular safety property E
(represented by an NIFFA for its bad prefixes)

question: does T |= E hold ?

method.: relies on an analogy between the tasks:

e checking language inclusion for NFA

e model checking regular safety properties

51/569



language inclusion verification of regular
for NFA safety properties

L(A1) C L(A) ? Traces(T) C E ?

52 /569



language inclusion
for NFA

verification of regular
safety properties

L(A1) C L(A) ?

Traces(T) C E ?

check whether
L(A1) N (X \ L(A2))
IS empty

53 /569



language inclusion verification of regular

for NFA safety properties
L(A1) C L(A) ? Traces(T) C E ?
check whether
L(A1) N (X" \ £(A2))
IS empty

1. complement Az,_i.e.,
construct NFA A, with
L(Az) = T\ L(A)

54 /569



language inclusion verification of regular

for NFA safety properties
L(A1) C L(A) ? Traces(T) C E ?
check whether
L(A1) N (X" \ £(A2))
IS empty

1. complement A, i.e.,
construct NFA A, with
L(A2) = T*\ L(A)

2. construct NFA A with
L(A) = L(A;1) N L(A,)

55 /569



language inclusion verification of regular

for NFA safety properties
L(A1) C L(A) ? Traces(T) C E ?
check whether
L(A1) N (X" \ £(A2))
IS empty

1. complement A, i.e.,
construct NFA A, with
L(A) = T*\ L(A2)

2. construct NFA A with
L(A) = L(A;1) N L(A,)

3. check if L(A) =@

56 /569



language inclusion
for NFA

verification of regular
safety properties

L(A) C L(A2) ?

Traces(T) C E ?

check whether
L(A1) N (X \ L(A2))
IS empty

check whether
Tracesg,(T) N BadPref
is empty

1. complement Az,_i.e.,
construct NFA A, with
L(Az) = T\ L(A)

2. construct NFA A with
L(A) = L(A1) N L(A)

3. check if L(A) =@

57 /569



language inclusion
for NFA

verification of regular
safety properties

L(A) C L(A2) ?

Traces(T) C E ?

check whether
L(A1) N (X \ L(A2))
IS empty

check whether
Tracesg,(T) N BadPref
is empty

1. complement Az,_i.e.,
construct NFA A, with
L(Az) = T\ L(A)

2. construct NFA A with
L(A) = L(A1) N L(A)

3. check if L(A) =@

1. construct NFA A
for the bad prefixes
L(A) = BadPref

58 /569



language inclusion
for NFA

verification of regular
safety properties

L(A) C L(A2) ?

Traces(T) C E ?

check whether
L(A1) N (X \ L(A2))
IS empty

check whether
Tracesg,(T) N BadPref
is empty

1. complement Az,_i.e.,
construct NFA A, with
L(Az) = T\ L(A)

2. construct NFA A with
L(A) = L(A1) N L(A)

3. check if L(A) =@

1. construct NFA A
for the bad prefixes
L(A) = BadPref

2. construct TS 77 with
Tracesn(T') = . ..

59 /569



language inclusion
for NFA

verification of regular
safety properties

L(A) C L(A2) ?

Traces(T) C E ?

check whether
L(A1) N (X \ L(A2))
IS empty

check whether
Tracesg,(T) N BadPref
is empty

1. complement Az,_i.e.,
construct NFA A, with
L(Az) = T\ L(A)

2. construct NFA A with
L(A) = L(A1) N L(A)

3. check if L(A) =@

1. construct NFA A
for the bad prefixes
L(A) = BadPref

2. construct TS 77 with
Tracesn(T') = . ..

3. invariant checking
for T’

60 /569



Checking regular safety properties

182.5-21

finite transition
system T

regular safety
property E

N

safety checking

does T |= E hold ?

S N

yes

no

61/569



Checking regular safety properties

182.5-21

finite transition
system T

regular safety
property E

NFA A for

the bad prefixes of E

y

safety checking

does T |= E hold ?

S N

yes

no

62 /569



Checking regular safety properties 192,521

finite transition regular safety
system T property E
NFA A for

the bad prefixes of E

y

safety checking

via invariant checking
T ® A |E “never final state”

S N

yes no

63 /569



Checking regular safety properties 192,521

finite transition regular safety
system T property E
NFA A for

the bad prefixes of E

y

safety checking

via invariant checking
T ® A |E “never final state”

S N\

yes no + error indication

64 /569



Product of a TS and an NFA 152.5-22

65 /569



Product of a TS and an NFA 152.5-22

finite transition system NFA for bad prefixes

T = (S,Act,~,%,AP,1)  A=(Q,2",6,Q,F)

SRT DU B

|

Sn

path
fragment T

66 /569



Product of a TS and an NFA 152.5-22

finite transition system NFA for bad prefixes
T=(51ACt7_)1501AP7L) A=(Qa2AP76a Q07 F)

Slo L(s0)=Ao

511 L(s1)=A

O L(s2)=A2

|

|

Sn L(sp)=An

path

fragment T trace

67 /569



Product of a TS and an NFA 152.5-22

finite transition system NFA for bad prefixes
T=(51ACt7_)1501AP7 L) A=(Qa2AP76a Q07 F)
S L(so)=Ao g € Qo
| -
S1 L(51)=A1 0
| -
52 L(s2)=Aq %
| 1A
| !
Sn L(sp)=An A,
path dn+1

fragment 7 trace run for trace(T)

68 /569



Product of a TS and an NFA

finite transition

T = (S, Act,—, Sp, AP, L)

path
fragment 7

system

182.5-22

NFA for bad prefixes

A=(Q,2"",8, Qo, F)
q € Qo
...... (F_Qzlf’_l__)_ 140
""""""" q
...... (.S_I.zlq_z__)_ |Ar
""""""" q2
...... <52,Iq3> 1A
----------- ——
-~ {sn, Gns1) |An
path fragm. ru;?;ltrace(ﬁr‘)
in product

69 /569



Product transition system 152.5-25

70 /569



Product transition system 152.5-25

T = (S,Act,—,S),AP,L) transition system
A = (Q,2°7,6, Qo F) NFA

71/569



Product transition system 152.5-25
T = (S,Act,—,S),AP,L) transition system
A = (Q,2°7,6, Qo F) NFA

def

product-TST ® A = (5xQ, Act,—', S5, AP', L")

72 /569



Product transition system 152.5-25
T = (S,Act,—,S),AP,L) transition system
A = (Q,2°7,6, Qo F) NFA

product-TS7 ® A def (5xQ, Act,—', Sg, AP', L")

s—s A g €éq,l(s))
(s,q) —'(s',q")

73 /569



Product transition system 152.5-25
T = (S,Act,—,S),AP,L) transition system
A = (Q,2%7,6,Q, F) NFA

product-TS7 ® A def (5xQ, Act,—', Sg, AP', L")

s—s AN g edqLs)
(s,q9) —'(s', )
initial states: S§j = {(so, q) : s € S,q€ 5(Q0, L(SO)) }

74 /569



Product transition system 152.5-25
T = (S,Act,—,S),AP,L) transition system
A = (Q,2%7,6,Q, F) NFA

product-TS7 ® A def (5xQ, Act,—', Sg, AP', L")

s—s A g €éq,l(s))
(s,q) —'(s',q")

initial states: Sy = { (50,9) : S0 € So,q € 5(00, L(So)) }
/

for PC Qand ACAP: 6(P,A)= U é(p,A)
peP

75 /569



Product transition system 152.5-25
T = (S,Act,—,S),AP,L) transition system
A = (Q,2%7,6,Q, F) NFA

product-TS7 ® A def (5xQ, Act,—', Sg, AP', L")

s—5s A q€dqlL(s))
(s,q) —'(s',q")
initial states: S§ = {(s,q) : s € S0,q € 6(Qo, L(s0)) }

set of atomic propositions: AP’ = Q

76 /569



Product transition system 152.5-25
T = (S,Act,—,S),AP,L) transition system
A = (Q,2%7,6,Q, F) NFA

product-TS7 ® A def (5xQ, Act,—', Sg, AP', L")

s—5s A q€dqlL(s))
(s,q) —'(s',q")
initial states: S§ = {(s,q) : s € S0,q € 6(Qo, L(s0)) }

set of atomic propositions: AP’ = Q

labeling function: L'({s,q)) ={q}

77 /569



Example: product-TS 152.5-26

transition system 7 over

AP = {red, }

78 /569



Example: product-TS 152.5-26

transition system 7 over

AP = {red, }

T satisfies the safety property E
“every red phase is preceded by a yellow phase”

79 /569



Example: product-TS 152.5-26

transition system 7 over DFA A for the
AP = {red, } bad prefixes for E

T satisfies the safety property E
“every red phase is preceded by a yellow phase”

80 /569



Example: product-TS 152.5-26

(green qo | (red/yellow qo)  product-TS
TRA

(4 % 3 = 12 states)

81/569



Example: product-TS 152.5-26

((green qo ] (red/yellow qo) initial state
(gfee", 6((]0, Q))

g T
oo 1o

82 /569



Example: product-TS 152.5-26

Dtrue

(green qo ) (red/yellow q) initial state
(green, §(qo, 2))

-

83 /569



Example: product-TS

red
(4]

(

] (red/yellow)

[ green qo | [red/yellow qo ]

182.5-26

:)true

lifting the transition
green —»

84 /569



Example: product-TS

red
(4]

(

] (red/yellow)

[ green qo | [red/yellow qo ]

182.5-26

:)true

lifting the transition
green —»

(green, qo)

( ,7)

85 /569



Example: product-TS

red
%]
( ] (red/yellow)

[ green qo | [red/yellow qo ]

Celow ar)

182.5-26

(

lifting the transition
green —»

(green, ao)

(g0, {yellow}))

=aq

86 /569




Example: product-TS

red
%
(yellow) (red/yellow)

(green) o

[ green qo | [red/yellow qo ]

@

182.5-26

lifting the transition
— red

( ’ ql)

(red, 8(qu, {red}))
= qo

87 /569



Example: product-TS

| green qo |

(red/yellow qq |

q1

red qo

182.5-26

Dtrue

lifting the transition
red — red / yellow

(red, qO)

(red/yellow, 6(qo, &)

= qo

)

88 /569



Example: product-TS 152.5-26

lifting the transition
red [ yellow — green

(red /yellow, qo)

| green qo }— red/yellow qq |

q red qo
(green, 6(qo, 2) )
N——

= qo

89 /569



Example: product-TS 152.5-26

:)true

\
(“green qo }—{red]yellow qo) Product-TS
TRA

4 x 3 = 12 states, but
just 4 reachable states

q red qo

90 /569



Example: product-TS 152.5-26

set of propositions
AP" = {qo, 91, 9}

91 /569



Example: product-TS 152.5-26

\
((Beeerr qo }—{redtAyettow qo)

set of propositions
AP" = {qo, 91, 9}

Yelew q, 2=d qo

invariant condition —gf holds
for all reachable states

92 /569



Technical remark on the product-TS 1525-PRODUCTTS-AUT

definition of the product of
e a transition system 7 = (S, Act, —, So, AP, L)

e an NFA A = (Q,27%,6, Qo, F)
then the product 7 ® A = (§xQ, Act,—',...)isa TS

93 /569



Technical remark on the product-TS 152 5-PRODUCTTS-AUT

definition of the product of
e a transition system 7 = (S, Act, —, So, AP, L)
T

|without terminal states|
e an NFA A = (Q,27%,6, Qo, F)
then the product 7 ® A = (§xQ, Act,—',...)isa TS

94 /569



Technical remark on the product-TS 152 5-PRODUCTTS-AUT

definition of the product of
e a transition system 7 = (S, Act, —, So, AP, L)
T

|without terminal states|
e an NFA A = (Q,27%,6, Qo, F)
then the product 7 ® A = (§xQ, Act,—',...)isa TS
T

|without terminal states|

95 /569



Technical remark on the product-TS 152 5-PRODUCTTS-AUT

definition of the product of
e a transition system 7 = (S, Act, —, So, AP, L)
T

|without terminal states|
e an NFA A = (Q,27%,6, Qo, F)
then the product 7 ® A = (§xQ, Act,—',...)isa TS
T

|without terminal states|

assumptions on the NFA A:

96 /569



Technical remark on the product-TS 152 5-PRODUCTTS-AUT

definition of the product of
e a transition system 7 = (S, Act, —, So, AP, L)
T

|without terminal states|
e an NFA A = (Q,27%,6, Qo, F)
then the product 7 ® A = (§xQ, Act,—',...)isa TS
T

|without terminal states|

assumptions on the NFA A:
e A is non-blocking, i.e.,

Q#93 N Vqe QVAe€ 24P §(q,A) # @

97 /569



Technical remark on the product-TS 152 5-PRODUCTTS-AUT

definition of the product of
e a transition system 7 = (S, Act, —, So, AP, L)
T

|without terminal states|
e an NFA A = (Q,27%,6, Qo, F)
then the product 7 ® A = (§xQ, Act,—',...)isa TS
T

|without terminal states|

assumptions on the NFA A:
e A is non-blocking, i.e.,

Q # 9 A Vge QVAe 247, §(q,A) # @

e no initial state of A is final, i.e., @QNF =@

98 /569



Non-blocking NFA 152.5-23
NFA A

alphabet & = 24P where AP = {a, b}

99 /569



Non-blocking NFA 152.5-23
NFA A

b

aeob @

—a

blocks for input

{a} 2 {a}
alphabet & = 24P where AP = {a, b}

100 /569



Non-blocking NFA
NFA A v

—a

blocks for input

{a} 2 {a}

182.5-23

equivalent NFA A’

add a trap state stop

101 /569



Non-blocking NFA
NFA A v

—a

blocks for input

{a} 2 {a}

182.5-23

equivalent NFA A’

add a trap state stop

102 /569



Non-blocking NFA 152.5-23
NFA A > equivalent NFA A’

—a

bIoEI;i gr{‘ian}put non-blocking

103 /569



NFA where no initial state is final 152.5-24

NFA A with QN F # @

ent e
Qo b

—a

104 /569



NFA where no initial state is final 152.5-24

NFA A with QNF#3 ., NFAA with @QNF=0

ent e
Qo b

105 /569



NFA where no initial state is final 152.5-24

NFA A with QNF#3 ., NFAA with @QNF=0

ent e
Qo b

L(A) = L(A)\ {e}

106 /569



NFA where no initial state is final 152.5-24

NFA A with QNF#3 ., NFAA with @QNF=0

ent e
Qo b

—a

L(A) = L(A)\ {e}

note: if A is an NFA for the
bad prefixes of a safety property then

e ¢ L(A) = BadPref

107 /569



Model checking regular safety properties

108 /569



Model checking regular safety properties

. via a reduction to invariant checking .....

109 /569



Model checking regular safety properties

Let T = (S, Act,—, Sp, AP, L) be a transition system

A=(Q,2"",4, Qo, F) be an NFA
for the bad prefixes of a regular safety property E

110 /569



Model checking regular safety properties

Let T = (S, Act,—, Sp, AP, L) be a transition system
(without terminal states)

A=(Q,2"",4, Qo, F) be an NFA
for the bad prefixes of a regular safety property E

111/569



Model checking regular safety properties

Let T = (S, Act,—, Sp, AP, L) be a transition system
(without terminal states)

A=(Q,2"",4, Qo, F) be an NFA
for the bad prefixes of a regular safety property E
(non-blocking and Qo N F = Q)

112 /569



Model checking regular safety properties

Let T = (S, Act,—, Sp, AP, L) be a transition system
(without terminal states)

A=(Q,2"",4, Qo, F) be an NFA
for the bad prefixes of a regular safety property E
(non-blocking and Qo N F = Q)

The following statements are equivalent:
(1) TEE
(2) Tracessi(T)NL(A) =@

113 /569



Model checking regular safety properties

Let T = (S, Act,—, Sp, AP, L) be a transition system
(without terminal states)

A=(Q,2"",4, Qo, F) be an NFA
for the bad prefixes of a regular safety property E
(non-blocking and Qo N F = Q)

The following statements are equivalent:
(1) TEE
(2) Tracessi(T)NL(A) =@
(3) T® A [ invariant “always =F"

114 /569



Model checking regular safety properties

Let T = (S, Act,—, Sp, AP, L) be a transition system
(without terminal states)

A=(Q,2"",4, Qo, F) be an NFA
for the bad prefixes of a regular safety property E
(non-blocking and Qo N F = Q)

The following statements are equivalent:
(1) TEE
(2) Tracessi(T)NL(A) =@
(3) T® A [ invariant “always =F"

where “=F" denotes A —gq
qeF

115 /569



Product transition system 152.5-254
T = (S,Act,—,S),AP,L) transition system
A = (Q,2%7,6,Q, F) NFA

product-TS7 ® A def (5xQ, Act,—', Sg, AP', L")

s—5s A q€dqlL(s))
(s,q) —'(s',q")
initial states: S§ = {(s,q) : s € S0,q € 6(Qo, L(s0)) }

set of atomic propositions: AP’ = Q

labeling function: L'({s,q)) ={q}

116 /569



Example: sequential circuit

X

C

G

>

r

Yy

182.5-27

Ay =0, =x®r

117 /569



Example: sequential circuit

X

C

G

r

>

transition system 7

Yy

182.5-27

Ay =0, =x®r
initially r =0

over AP = {y}

118 /569



Example: sequential circuit
c —Y .

e

r

X

transition system 7

182.5-27

Ay =0, =x®r
initially r =0
over AP = {y}

safety property E

The circuit will never
ouput two ones
after each other

119/569



Example: sequential circuit
c —Y .

e

r

X

transition system 7

182.5-27

Ay =0, =x®r
initially r =0
TWE

safety property E

The circuit will never
ouput two ones
after each other

120 /569



Example: sequential circuit

Yy

X

C

e

r

transition system 7

182.5-27

Ay =0, =x®r
initially r =0

TWE

error indication, e.g.,

(10) (01)

safety property E

The circuit will never
ouput two ones
after each other

121/569



Example: sequential circuit 152.5-27

X C y Ay = 5, =X @ r
Q - ) initially r =0
transition system 7 TWE

error indication, e.g.,

(10) (01)
bad prefix: {y} {y}

safety property E

The circuit will never
ouput two ones
after each other

122 /569



Example: sequential circuit 152.5-27

X C y Ay = 5, =X @ r
Q - ) initially r =0
transition system 7 TWE

error indication, e.g.,

(10) (01)
bad prefix: {y} {y}

safety property E

y
9.@ 4 qr D The circuit will never
oy

true  ouput two ones
DFA for bad prefixes after each other

123 /569



Example: product-TS 152.5-28

transition system 7 safety property E
.. hever two ones in a row ...

- Y farD)

-y ' -y true

product-TS TQ®A

124 /569



Example: product-TS 152.5-28

transition system 7 safety property E
.. hever two ones in a row ...

- Y farD)

-y ' -y true

T®A [~ "never g¢”

125 /569



Example: product-TS 152.5-28

transition system 7 safety property E
.. hever two ones in a row ...

DM OEATO
—.y -y true

error indication for

T®A [~ "never g¢”

10g; Olgr

126 /569



Example: product-TS 152.5-28

transition system 7 safety property E
.. hever two ones in a row ...

9

true

error indication for

T®A [~ "never g¢”

10g; Olgr

]

error indication for 7 & E 10 01

127 /569




Model checking regular safety properties 152.5-29

128 /569



Model checking regular safety properties 152.5-29
input.  finite TS T,
NFA A for the bad prefixes of E

output: ‘“yes' if T E E
otherwise “no”

129 /569



Model checking regular safety properties 152.5-29
input.  finite TS T,
NFA A for the bad prefixes of E

output: ‘“yes' if T E E
otherwise “no”

construct product transition system 7 ® A
check whether T ® A |= “always ~F"

where F = set of final states in A

130 /569



Model checking regular safety properties 152.5-29
input.  finite TS T,
NFA A for the bad prefixes of E

output: ‘“yes' if T E E
otherwise “no”

construct product transition system 7 ® A
check whether T ® A |= “always ~F"

if so, then return “yes”

if not, then return “no’

where F = set of final states in A

131/569



Model checking regular safety properties 152.5-29
input.  finite TS T,
NFA A for the bad prefixes of E

output: ‘“yes' if T E E
otherwise “no” + error indication

construct product transition system 7 ® A
check whether T ® A |= “always ~F"

if so, then return “yes”

if not, then return “no” «| and an error indication

where F = set of final states in A

132 /569



Model checking regular safety properties 152.5-29

construct product transition system 7 ® A
IFT ® A “always =F"

THEN return “yes”

ELSE

FI

133 /569



Model checking regular safety properties 152.5-29

construct product transition system 7 ® A
IFT ® A “always =F"
THEN return “yes”

ELSE compute a counterexample for 7 ® A and
the invariant “always =F",

FI

134 /569



Model checking regular safety properties 152.5-29

construct product transition system 7 ® A
IFT ® A “always =F"
THEN return “yes”

ELSE compute a counterexample for 7 ® A and
the invariant “always =F",

i.e., an initial path fragment in the product

(s0, po) (51, P1) - --(Sns Pn) Where p, € F

FI

135 /569



Model checking regular safety properties 152.5-29

construct product transition system 7 ® A
IFT ® A “always =F"
THEN return “yes”

ELSE compute a counterexample for 7 ® A and
the invariant “always =F",

i.e., an initial path fragment in the product
(s0, po) (51, P1) - --(Sns Pn) Where p, € F

return “no” and sps;...5,
FI

136 /569



Model checking regular safety properties 152.5-29

construct product transition system 7 ® A
IFT ® A “always =F"
THEN return “yes”
ELSE compute a counterexample for 7 ® A and
the invariant “always =F",
i.e., an initial path fragment in the product

(s0, po) (51, P1) - --(Sns Pn) Where p, € F

return “no” and sps;...5,
FI

time complexity: O(size(T) - size(A))

137 /569



Correct or wrong? 152.5-35

If 7 is a finite transition system then
Tracesgin(T) is regular.

138 /569



Correct or wrong? 152.5-35

If 7 is a finite transition system then
Tracesgin(T) is regular.

correct.

139/569



Correct or wrong? 152.5-35

If 7 is a finite transition system then
Tracesgin(T) is regular.

correct. 7 can be transformed into an NFA.

140 /569



Correct or wrong? 152.5-35

If 7 is a finite transition system then
Tracesgin(T) is regular.

correct. 7 can be transformed into an NFA.

141 /569



Correct or wrong? 152.5-35

If 7 is a finite transition system then
Tracesgin(T) is regular.

correct. 7 can be transformed into an NFA.

L(5) L(t)

142 /569



Correct or wrong? 152.5-35

If 7 is a finite transition system then
Tracesgin(T) is regular.

correct. 7 can be transformed into an NFA.

L(5) L(t)

143 /569



Correct or wrong? 152.5-35

If 7 is a finite transition system then
Tracesgin(T) is regular.

correct. 7 can be transformed into an NFA.

Tracessn(T) = L(A) L(s") L(t')

144 /569



