

Introduction

Modelling parallel systems

Linear Time Properties

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Regular LT properties

LF2.6-REGULAR

Regular LT properties

LF2.6-REGULAR

Idea: define **regular LT properties** to be those languages of **infinite words** over the alphabet 2^{AP} that have a representation by a **finite automata**

Regular LT properties

LF2.6-REGULAR

Idea: define **regular LT properties** to be those languages of **infinite words** over the alphabet 2^{AP} that have a representation by a **finite automata**

- regular safety properties:
NFA-representation for the **bad prefixes**

Regular LT properties

LF2.6-REGULAR

Idea: define **regular LT properties** to be those languages of **infinite words** over the alphabet 2^{AP} that have a representation by a **finite automata**

- regular safety properties:
NFA-representation for the **bad prefixes**
- other regular LT properties:
representation by **ω -automata**, i.e.,
acceptors for infinite words

Introduction

Modelling parallel systems

Linear Time Properties

Regular Properties

regular safety properties

ω -regular properties

model checking with Büchi automata

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Recall: definition of safety properties

IS2.5-15B

Let E be a LT property over AP , i.e., $E \subseteq (2^{AP})^\omega$.

E is called a *safety property* if for all words

$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^\omega \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that
none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$
belongs to E , i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called *bad prefixes* for E .

$$BadPref \stackrel{\text{def}}{=} \text{set of bad prefixes for } E \subseteq (2^{AP})^+$$

Regular safety properties

IS2.5-REG-SAFE

Let $E \subseteq (2^{AP})^\omega$ be a safety property.

E is called regular iff the language

$BadPref =$ set of all bad prefixes for E
is regular.

Let $E \subseteq (2^{AP})^\omega$ be a safety property.

E is called regular iff the language

$BadPref =$ set of all bad prefixes for $E \subseteq (2^{AP})^+$
is regular.

Regular safety properties

IS2.5-REG-SAFE

Let $E \subseteq (2^{AP})^\omega$ be a safety property.

E is called regular iff the language

$BadPref = \text{set of all bad prefixes for } E \subseteq (2^{AP})^+$

$BadPref = \mathcal{L}(\mathcal{A})$ for some NFA \mathcal{A}
over the alphabet 2^{AP}

is regular.

Nondeterministic finite automata (NFA)

is2.5-15

NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$

- Q finite set of states
- Σ alphabet
- $\delta : Q \times \Sigma \rightarrow 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$

- Q finite set of states
- Σ alphabet
- $\delta : Q \times \Sigma \rightarrow 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

run for a word $A_0 A_1 \dots A_{n-1} \in \Sigma^*$:

state sequence $\pi = q_0 q_1 \dots q_n$ where $q_0 \in Q_0$
and $q_{i+1} \in \delta(q_i, A_i)$ for $0 \leq i < n$

Nondeterministic finite automata (NFA)

IS2.5-15

NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$

- Q finite set of states
- Σ alphabet
- $\delta : Q \times \Sigma \rightarrow 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

run for a word $A_0 A_1 \dots A_{n-1} \in \Sigma^*$:

state sequence $\pi = q_0 q_1 \dots q_n$ where $q_0 \in Q_0$
and $q_{i+1} \in \delta(q_i, A_i)$ for $0 \leq i < n$

run π is called accepting if $q_n \in F$

NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$

- Q finite set of states
- Σ alphabet
- $\delta : Q \times \Sigma \rightarrow 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

accepted language $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^*$ is given by:

$\mathcal{L}(\mathcal{A}) =$ set of finite words over Σ that have
an accepting run in \mathcal{A}

Nondeterministic finite automata (NFA)

is2.5-15

NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$

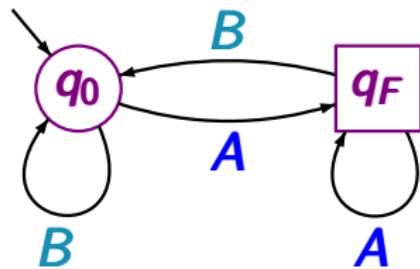
- Q finite set of states
- Σ alphabet \leftarrow here: $\Sigma = 2^{AP}$
- $\delta : Q \times \Sigma \rightarrow 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

accepted language $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^*$ is given by:

$\mathcal{L}(\mathcal{A}) =$ set of finite words over Σ that have
an accepting run in \mathcal{A}

Notations in pictures for NFA

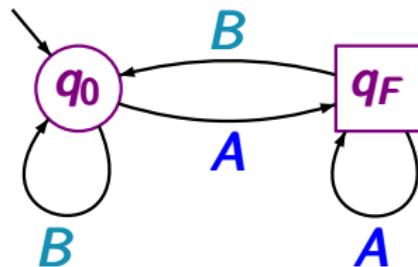
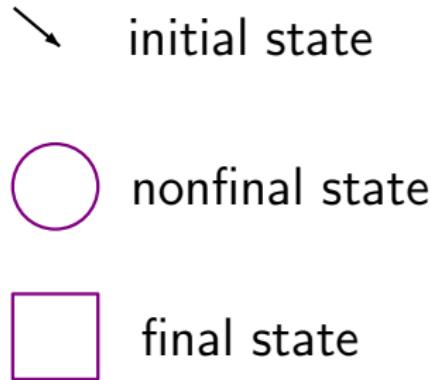
IS2.5-15A



- initial state
- nonfinal state
- final state

Notations in pictures for NFA

IS2.5-15A



NFA \mathcal{A} with state space $\{q_0, q_F\}$

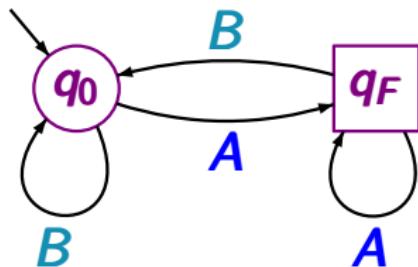
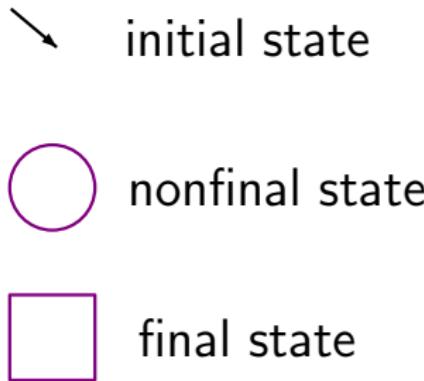
q_0 initial state

q_F final state

alphabet $\Sigma = \{A, B\}$

Notations in pictures for NFA

IS2.5-15A



accepted language $\mathcal{L}(\mathcal{A})$:

set of all finite words over $\{A, B\}$
ending with letter **A**

Symbolic notations

IS2.5-SYMBOLIC-NOTATION-NFA

for transitions in **NFA** over the alphabet $\Sigma = 2^{AP}$

Symbolic notations

NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ over the alphabet $\Sigma = 2^{AP}$

symbolic notation for the labels of transitions:

If Φ is a propositional formula over AP then

$q \xrightarrow{\Phi} p$ stands for the set of transitions $q \xrightarrow{A} p$

where $A \subseteq AP$ such that $A \models \Phi$

Symbolic notations

NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ over the alphabet $\Sigma = 2^{AP}$
symbolic notation for the labels of transitions:

If Φ is a propositional formula over AP then

$q \xrightarrow{\Phi} p$ stands for the set of transitions $q \xrightarrow{A} p$

where $A \subseteq AP$ such that $A \models \Phi$

Example: if $AP = \{a, b, c\}$ then

$q \xrightarrow{a \wedge \neg b} p \hat{=} \{ q \xrightarrow{A} p : A = \{a, c\} \text{ or } A = \{a\} \}$

Symbolic notations

NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ over the alphabet $\Sigma = 2^{AP}$
symbolic notation for the labels of transitions:

If Φ is a propositional formula over AP then

$q \xrightarrow{\Phi} p$ stands for the set of transitions $q \xrightarrow{A} p$

where $A \subseteq AP$ such that $A \models \Phi$

Example: if $AP = \{a, b, c\}$ then

$$q \xrightarrow{a \wedge \neg b} p \hat{=} \{ q \xrightarrow{A} p : A = \{a, c\} \text{ or } A = \{a\} \}$$

$$q \xrightarrow{\text{true}} p \hat{=} \{ q \xrightarrow{A} p : A \subseteq AP \}$$

Symbolic notations

$$\Sigma = \{A, B\}$$

$$q \xrightarrow{A} p$$

$$q \xrightarrow{B} p$$

$$AP = \{a, b\}$$

$$\Sigma = 2^{AP}$$

$$q \xrightarrow{\{\}} p$$

$$q \xrightarrow{\{a\}} p \quad q \xrightarrow{\{b\}} p$$

$$q \xrightarrow{\{a, b\}} p$$

$$q \xrightarrow{a} p \cong \left\{ q \xrightarrow{\{a\}} p \quad q \xrightarrow{\{a, b\}} p \right\}$$

A safety property $E \subseteq (2^{AP})^\omega$ is called regular iff

$BadPref =$ set of all bad prefixes for $E \subseteq (2^{AP})^+$

$BadPref = \mathcal{L}(\mathcal{A})$ for some NFA \mathcal{A}
over the alphabet 2^{AP}

is regular.

Regular safety properties

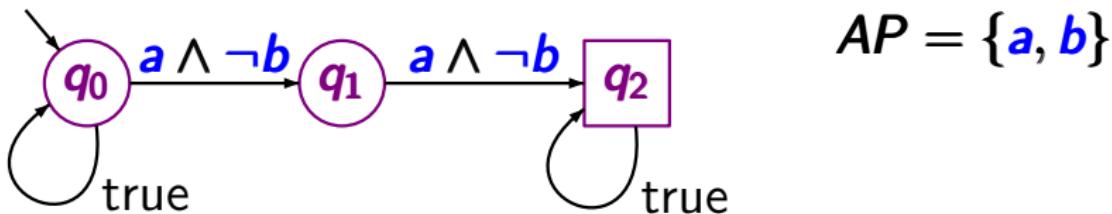
is 2.5-14

A safety property $E \subseteq (2^{AP})^\omega$ is called regular iff

$BadPref$ = set of all bad prefixes for $E \subseteq (2^{AP})^+$

$BadPref = \mathcal{L}(\mathcal{A})$ for some NFA \mathcal{A}
over the alphabet 2^{AP}

is regular.

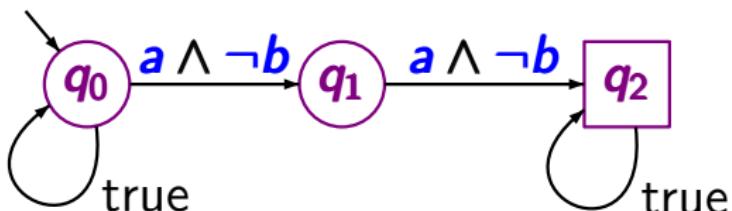


A safety property $E \subseteq (2^{AP})^\omega$ is called regular iff

$BadPref$ = set of all bad prefixes for $E \subseteq (2^{AP})^+$

$BadPref = \mathcal{L}(\mathcal{A})$ for some NFA \mathcal{A}
over the alphabet 2^{AP}

is regular.



$$AP = \{a, b\}$$

symbolic notation:

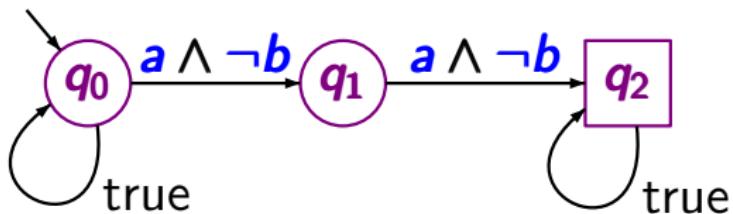
$$a \wedge \neg b \hat{=} \{a\}$$

A safety property $E \subseteq (2^{AP})^\omega$ is called regular iff

$BadPref$ = set of all bad prefixes for $E \subseteq (2^{AP})^+$

$BadPref = \mathcal{L}(\mathcal{A})$ for some NFA \mathcal{A}
over the alphabet 2^{AP}

is regular.



$$AP = \{a, b\}$$

symbolic notation:

$$a \wedge \neg b \hat{=} \{a\}$$

safety property E : “ $a \wedge \neg b$ never holds twice in a row”

Example: regular safety property

is2.5-16

“Every red phase is preceded by a yellow phase”

Example: regular safety property

is2.5-16

“Every red phase is preceded by a yellow phase”

set of all infinite words $A_0 A_1 A_2 \dots$ s.t. for all $i \geq 0$:

red $\in A_i \Rightarrow i \geq 1$ and **yellow** $\in A_{i-1}$

Example: regular safety property

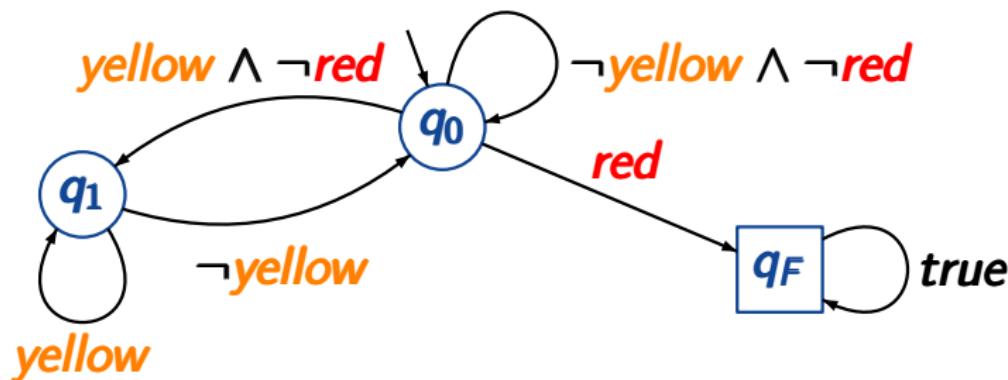
is2.5-16

“Every red phase is preceded by a yellow phase”

set of all infinite words $A_0 A_1 A_2 \dots$ s.t. for all $i \geq 0$:

red $\in A_i \Rightarrow i \geq 1$ and **yellow** $\in A_{i-1}$

DFA for all (possibly non-minimal) bad prefixes



Example: regular safety property

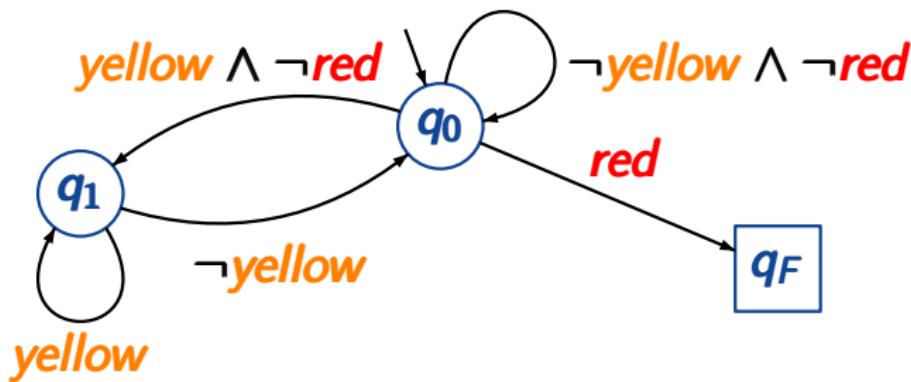
is2.5-16

“Every red phase is preceded by a yellow phase”

set of all infinite words $A_0 A_1 A_2 \dots$ s.t. for all $i \geq 0$:

red $\in A_i \Rightarrow i \geq 1$ and **yellow** $\in A_{i-1}$

DFA for minimal bad prefixes



Bad prefixes vs minimal bad prefixes

IS2.5-14A

Let $E \subseteq (2^{AP})^\omega$ be a safety property.

BadPref = set of all bad prefixes for E

MinBadPref = set of minimal bad prefixes for E

Claim: BadPref is regular \iff MinBadPref is regular

Bad prefixes vs minimal bad prefixes

IS2.5-14A

Let $E \subseteq (2^{AP})^\omega$ be a safety property.

BadPref = set of all bad prefixes for E

MinBadPref = set of minimal bad prefixes for E

Claim: BadPref is regular \iff MinBadPref is regular

“ \Leftarrow ”: Let A be an NFA for MinBadPref .

Bad prefixes vs minimal bad prefixes

IS2.5-14A

Let $E \subseteq (2^{AP})^\omega$ be a safety property.

BadPref = set of all bad prefixes for E

MinBadPref = set of minimal bad prefixes for E

Claim: BadPref is regular \iff MinBadPref is regular

“ \iff ”: Let \mathcal{A} be an NFA for MinBadPref .

An NFA \mathcal{A}' for BadPref is obtained from \mathcal{A} by adding self-loops $p \xrightarrow{\text{true}} p$ to all final states p .

Bad prefixes vs minimal bad prefixes

IS2.5-14A

Let $E \subseteq (2^{AP})^\omega$ be a safety property.

BadPref = set of all bad prefixes for E

MinBadPref = set of minimal bad prefixes for E

Claim: BadPref is regular \iff MinBadPref is regular

“ \Leftarrow ”: Let \mathcal{A} be an NFA for MinBadPref .

An NFA \mathcal{A}' for BadPref is obtained from \mathcal{A} by adding self-loops $p \xrightarrow{\text{true}} p$ to all final states p .

“ \Rightarrow ”: Let \mathcal{A} be a DFA for BadPref .

Bad prefixes vs minimal bad prefixes

IS2.5-14A

Let $E \subseteq (2^{AP})^\omega$ be a safety property.

BadPref = set of all bad prefixes for E

MinBadPref = set of minimal bad prefixes for E

Claim: BadPref is regular \iff MinBadPref is regular

“ \iff ”: Let \mathcal{A} be an NFA for MinBadPref .

An NFA \mathcal{A}' for BadPref is obtained from \mathcal{A} by adding self-loops $p \xrightarrow{\text{true}} p$ to all final states p .

“ \implies ”: Let \mathcal{A} be a DFA for BadPref .

A DFA \mathcal{A}' for MinBadPref is obtained from \mathcal{A} by removing all outgoing transitions of final states.

Correct or wrong?

IS2.5-17

Every **invariant** is regular.

Correct or wrong?

IS2.5-17

Every **invariant** is regular.

correct.

Correct or wrong?

IS2.5-17

Every **invariant** is regular.

correct.

Let E be an invariant with invariant condition Φ

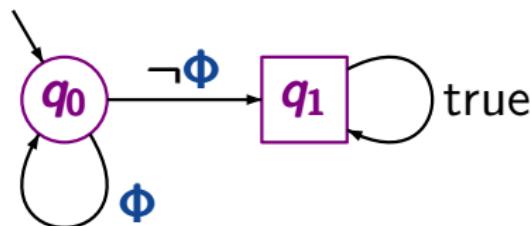
Correct or wrong?

IS2.5-17

Every **invariant** is regular.

correct.

Let E be an invariant with invariant condition Φ



is a DFA for the language of all bad prefixes

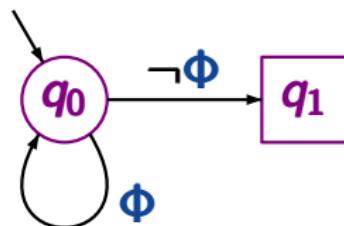
Correct or wrong?

IS2.5-17

Every **invariant** is regular.

correct.

Let E be an invariant with invariant condition Φ



is a DFA for the language of all minimal bad prefixes

Example: DFA for *MUTEX*

is2.5-19

“The two processes are never simultaneously in their **critical sections**”

Example: DFA for *MUTEX*

is2.5-19

“The two processes are never simultaneously in their **critical sections**”

DFA for minimal bad prefixes over the alphabet 2^{AP} where $AP = \{\text{crit}_1, \text{crit}_2\}$

$\neg \text{crit}_1 \vee \neg \text{crit}_2$

Correct or wrong?

IS2.5-18

Every **safety property** is regular.

Correct or wrong?

IS2.5-18

Every **safety property** is regular.

wrong.

Correct or wrong?

IS2.5-18

Every **safety property** is regular.

wrong. e.g., $AP = \{\text{pay}, \text{drink}\}$

E = set of all infinite words $A_0 A_1 A_2 \dots \in (2^{AP})^\omega$
such that for all $j \in \mathbb{N}$:

$$|\{i \leq j : \text{pay} \in A_i\}| \geq |\{i \leq j : \text{drink} \in A_i\}|$$

Correct or wrong?

IS2.5-18

Every **safety property** is regular.

wrong. e.g., $AP = \{\text{pay}, \text{drink}\}$

E = set of all infinite words $A_0 A_1 A_2 \dots \in (2^{AP})^\omega$
such that for all $j \in \mathbb{N}$:

$$|\{i \leq j : \text{pay} \in A_i\}| \geq |\{i \leq j : \text{drink} \in A_i\}|$$

- E is a safety property, but
- the language of (minimal) bad prefixes is *not* regular

Verifying regular safety properties

is2.5-20

Verifying regular safety properties

IS2.5-20

given: finite TS \mathcal{T}

regular safety property \mathcal{E}

(represented by an **NFA** for its bad prefixes)

question: does $\mathcal{T} \models \mathcal{E}$ hold ?

given: finite TS \mathcal{T}

regular safety property \mathcal{E}

(represented by an **NFA** for its bad prefixes)

question: does $\mathcal{T} \models \mathcal{E}$ hold ?

method: relies on an analogy between the tasks:

- checking **language inclusion** for **NFA**
- model checking regular safety properties

language inclusion
for NFA

verification of regular
safety properties

$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) ?$

$Traces(\mathcal{T}) \subseteq E ?$

language inclusion
for NFA

verification of regular
safety properties

$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) ?$

$Traces(\mathcal{T}) \subseteq E ?$

check whether

$\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$
is empty

language inclusion
for NFA

verification of regular
safety properties

$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) ?$

$Traces(\mathcal{T}) \subseteq E ?$

check whether

$\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$
is empty

1. complement \mathcal{A}_2 , i.e.,
construct NFA $\overline{\mathcal{A}_2}$ with
 $\mathcal{L}(\overline{\mathcal{A}_2}) = \Sigma^* \setminus \mathcal{L}(\mathcal{A}_2)$

language inclusion
for NFA

verification of regular
safety properties

$$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) ?$$

$$\text{Traces}(\mathcal{T}) \subseteq E ?$$

check whether

$$\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$$

is empty

1. complement \mathcal{A}_2 , i.e.,
construct NFA $\overline{\mathcal{A}_2}$ with
 $\mathcal{L}(\overline{\mathcal{A}_2}) = \Sigma^* \setminus \mathcal{L}(\mathcal{A}_2)$
2. construct NFA \mathcal{A} with
 $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\overline{\mathcal{A}_2})$

language inclusion
for NFA

verification of regular
safety properties

$$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) ?$$

$$\text{Traces}(\mathcal{T}) \subseteq E ?$$

check whether

$$\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$$

is empty

1. complement \mathcal{A}_2 , i.e.,
construct NFA $\overline{\mathcal{A}_2}$ with
 $\mathcal{L}(\overline{\mathcal{A}_2}) = \Sigma^* \setminus \mathcal{L}(\mathcal{A}_2)$
2. construct NFA \mathcal{A} with
 $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\overline{\mathcal{A}_2})$
3. check if $\mathcal{L}(\mathcal{A}) = \emptyset$

language inclusion
for NFA

verification of regular
safety properties

$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?

$Traces(\mathcal{T}) \subseteq E$?

check whether

$\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$
is empty

check whether

$Traces_{fin}(\mathcal{T}) \cap \text{BadPref}$
is empty

1. complement \mathcal{A}_2 , i.e.,
construct NFA $\overline{\mathcal{A}_2}$ with
 $\mathcal{L}(\overline{\mathcal{A}_2}) = \Sigma^* \setminus \mathcal{L}(\mathcal{A}_2)$
2. construct NFA \mathcal{A} with
 $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\overline{\mathcal{A}_2})$
3. check if $\mathcal{L}(\mathcal{A}) = \emptyset$

language inclusion
for NFA

verification of regular
safety properties

$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?

check whether

$\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$
is empty

$Traces(\mathcal{T}) \subseteq E$?

check whether

$Traces_{fin}(\mathcal{T}) \cap \text{BadPref}$
is empty

1. complement \mathcal{A}_2 , i.e.,
construct NFA $\overline{\mathcal{A}_2}$ with
 $\mathcal{L}(\overline{\mathcal{A}_2}) = \Sigma^* \setminus \mathcal{L}(\mathcal{A}_2)$

2. construct NFA \mathcal{A} with
 $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\overline{\mathcal{A}_2})$

3. check if $\mathcal{L}(\mathcal{A}) = \emptyset$

1. construct NFA \mathcal{A}
for the bad prefixes
 $\mathcal{L}(\overline{\mathcal{A}}) = \text{BadPref}$

language inclusion
for NFA

$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?

check whether

$\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$
is empty

1. complement \mathcal{A}_2 , i.e.,
construct NFA $\overline{\mathcal{A}_2}$ with
 $\mathcal{L}(\overline{\mathcal{A}_2}) = \Sigma^* \setminus \mathcal{L}(\mathcal{A}_2)$

2. construct NFA \mathcal{A} with
 $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\overline{\mathcal{A}_2})$

3. check if $\mathcal{L}(\mathcal{A}) = \emptyset$

verification of regular
safety properties

$Traces(\mathcal{T}) \subseteq E$?

check whether

$Traces_{fin}(\mathcal{T}) \cap \text{BadPref}$
is empty

1. construct NFA \mathcal{A}
for the bad prefixes
 $\mathcal{L}(\overline{\mathcal{A}}) = \text{BadPref}$
2. construct TS \mathcal{T}' with
 $Traces_{fin}(\mathcal{T}') = \dots$

language inclusion
for NFA

verification of regular
safety properties

$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?

check whether

$\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$
is empty

$Traces(\mathcal{T}) \subseteq E$?

check whether

$Traces_{fin}(\mathcal{T}) \cap \text{BadPref}$
is empty

1. complement \mathcal{A}_2 , i.e.,
construct NFA $\overline{\mathcal{A}_2}$ with
 $\mathcal{L}(\overline{\mathcal{A}_2}) = \Sigma^* \setminus \mathcal{L}(\mathcal{A}_2)$

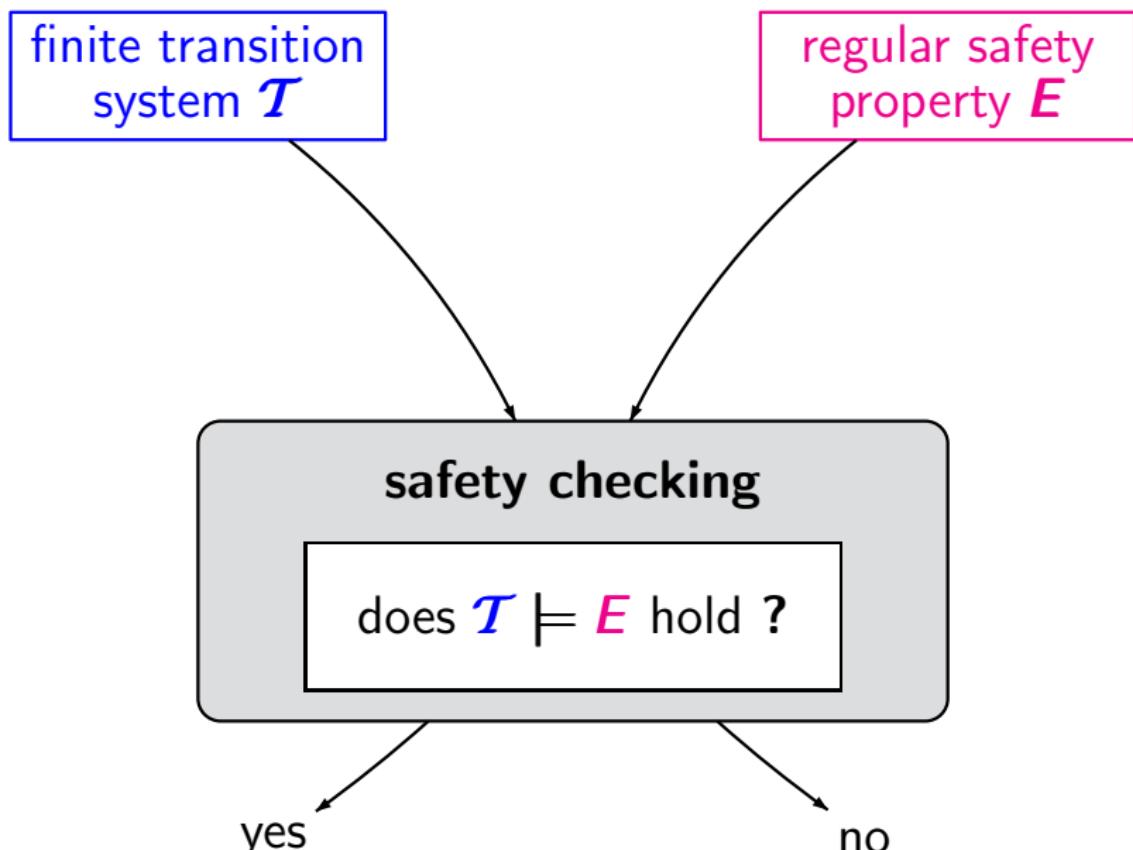
2. construct NFA \mathcal{A} with
 $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\overline{\mathcal{A}_2})$

3. check if $\mathcal{L}(\mathcal{A}) = \emptyset$

1. construct NFA \mathcal{A}
for the bad prefixes
 $\mathcal{L}(\overline{\mathcal{A}}) = \text{BadPref}$
2. construct TS \mathcal{T}' with
 $Traces_{fin}(\mathcal{T}') = \dots$
3. invariant checking
for \mathcal{T}'

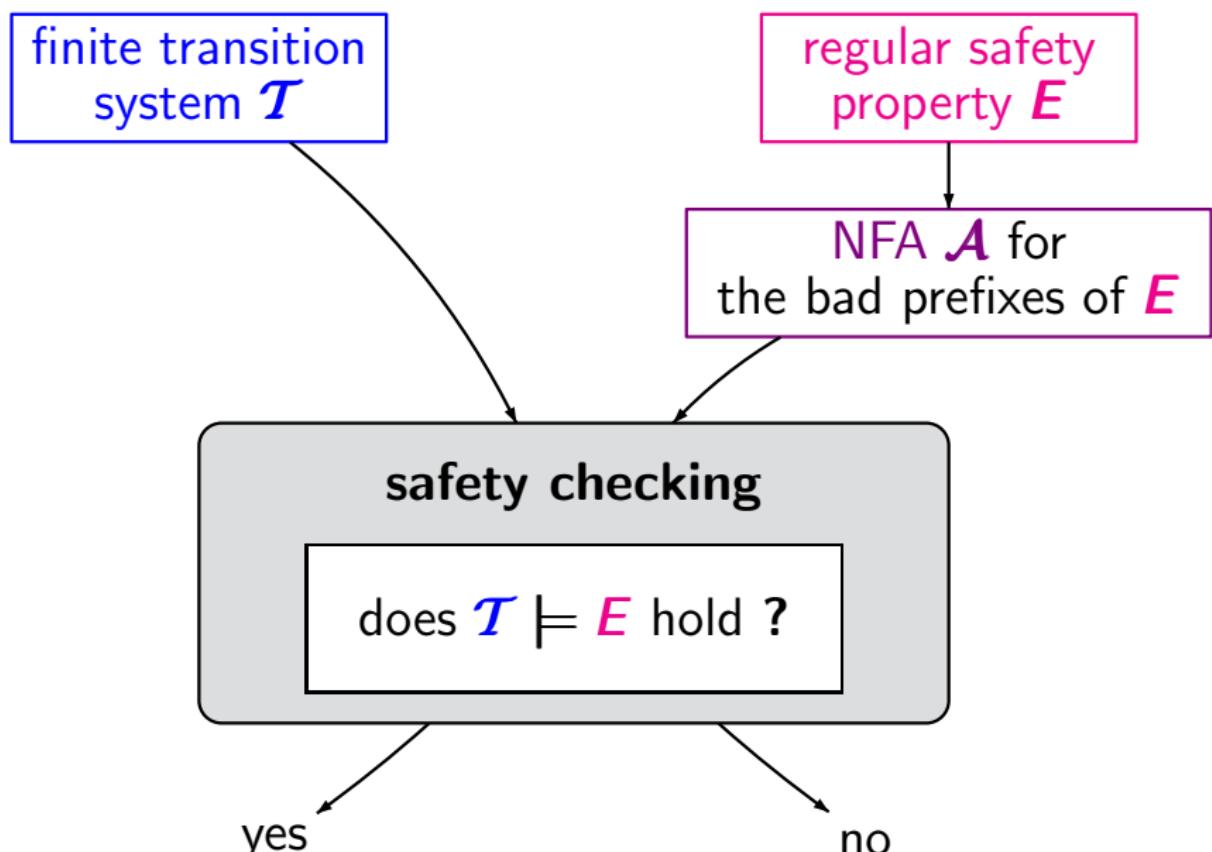
Checking regular safety properties

is2.5-21



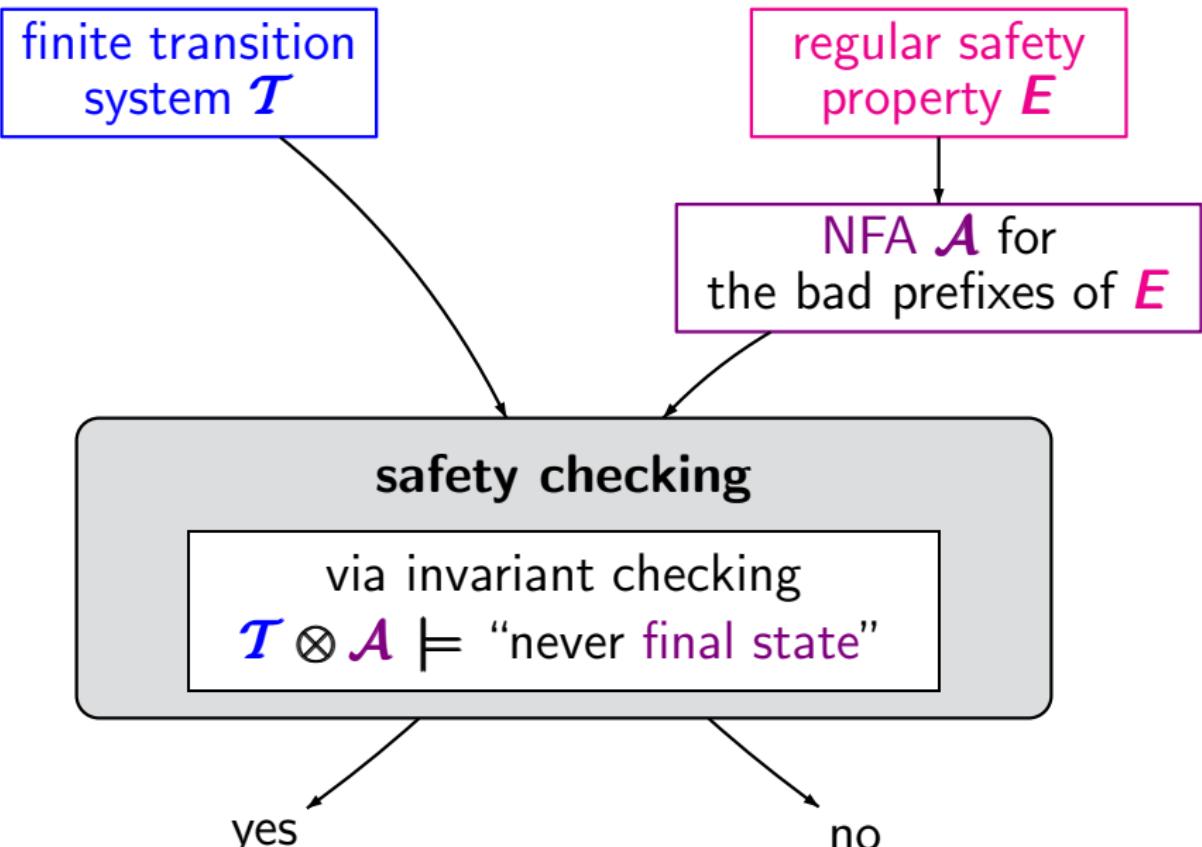
Checking regular safety properties

IS2.5-21



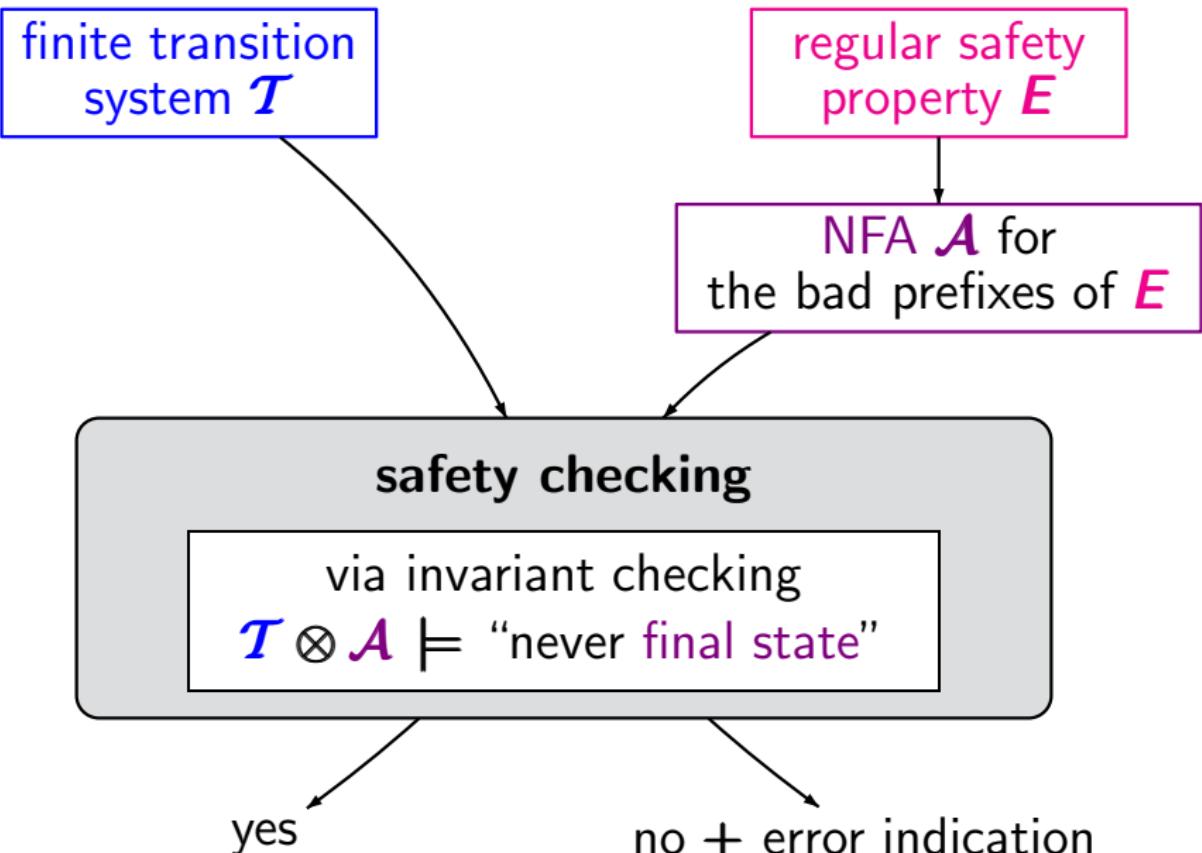
Checking regular safety properties

IS2.5-21



Checking regular safety properties

IS2.5-21



Product of a TS and an NFA

IS2.5-22

Product of a TS and an NFA

IS2.5-22

finite transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

NFA for bad prefixes

$$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$$

path
fragment $\hat{\pi}$

Product of a TS and an NFA

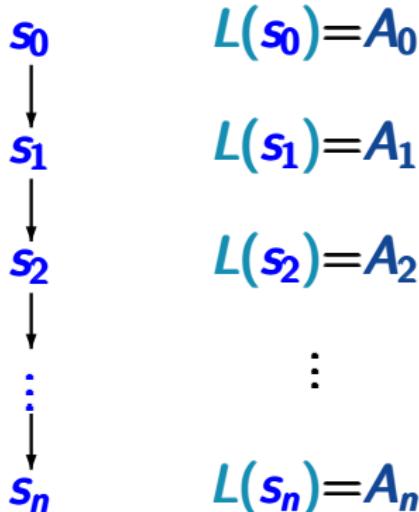
IS2.5-22

finite transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

NFA for bad prefixes

$$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$$



path
fragment $\hat{\pi}$ trace

Product of a TS and an NFA

IS2.5-22

finite transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

$$L(s_0) = A_0$$

$$L(s_1) = A_1$$

$$L(s_2) = A_2$$

⋮

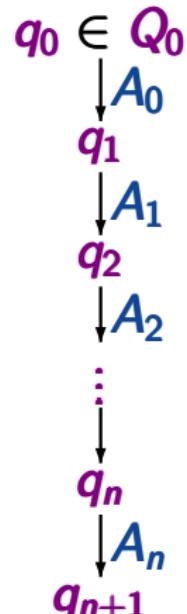
$$L(s_n) = A_n$$

path
fragment $\hat{\pi}$

trace

NFA for bad prefixes

$$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$$



run for $trace(\hat{\pi})$

Product of a TS and an NFA

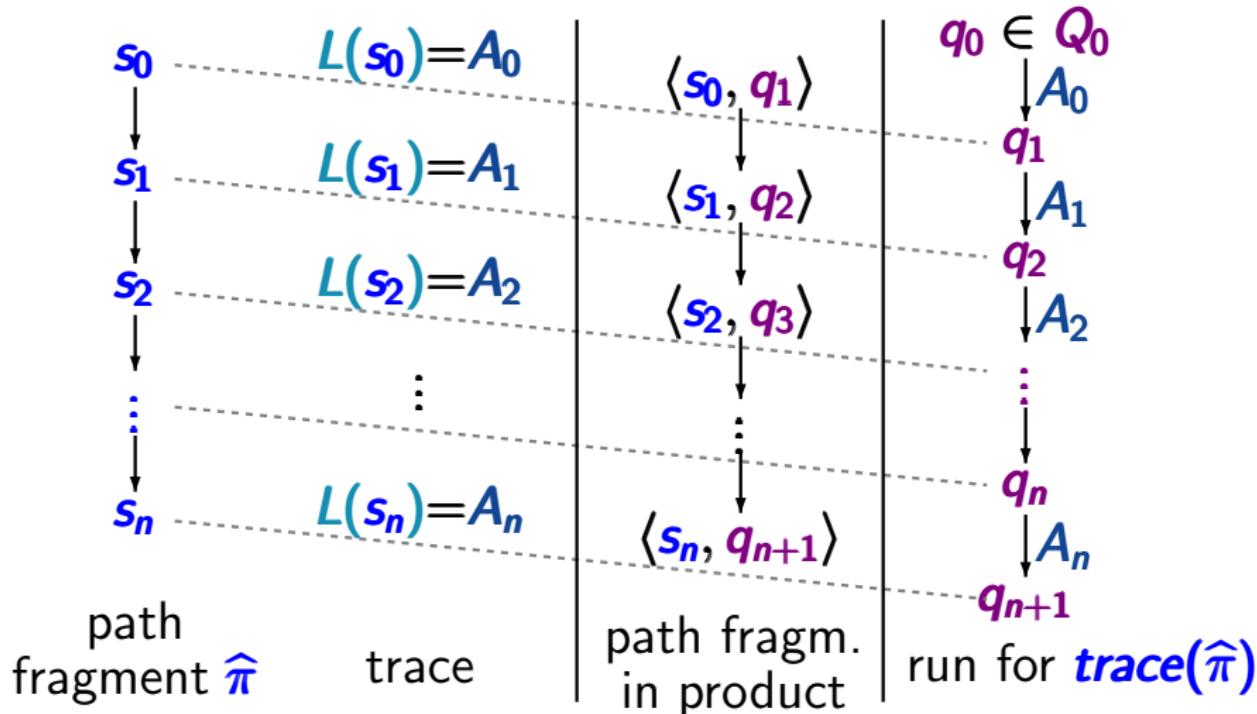
is2.5-22

finite transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

NFA for bad prefixes

$$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$$



Product transition system

IS2.5-25

Product transition system

IS2.5-25

$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ transition system
 $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NFA

Product transition system

IS2.5-25

$\mathcal{T} = (\mathcal{S}, Act, \rightarrow, \mathcal{S}_0, AP, L)$ transition system

$\mathcal{A} = (\mathcal{Q}, 2^{AP}, \delta, \mathcal{Q}_0, F)$ NFA

product-TS $\mathcal{T} \otimes \mathcal{A} \stackrel{\text{def}}{=} (\mathcal{S} \times \mathcal{Q}, Act, \longrightarrow', \mathcal{S}'_0, AP', L')$

Product transition system

is2.5-25

$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ transition system

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NFA

product-TS $\mathcal{T} \otimes \mathcal{A} \stackrel{\text{def}}{=} (S \times Q, Act, \rightarrow', S'_0, AP', L')$

$$\frac{s \xrightarrow{\alpha} s' \quad \wedge \quad q' \in \delta(q, L(s'))}{\langle s, q \rangle \xrightarrow{\alpha}' \langle s', q' \rangle}$$

Product transition system

IS2.5-25

$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ transition system

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NFA

product-TS $\mathcal{T} \otimes \mathcal{A} \stackrel{\text{def}}{=} (S \times Q, Act, \rightarrow', S'_0, AP', L')$

$$\frac{s \xrightarrow{\alpha} s' \quad \wedge \quad q' \in \delta(q, L(s'))}{\langle s, q \rangle \xrightarrow{\alpha}' \langle s', q' \rangle}$$

initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$

Product transition system

IS2.5-25

$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ transition system

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NFA

product-TS $\mathcal{T} \otimes \mathcal{A} \stackrel{\text{def}}{=} (S \times Q, Act, \rightarrow', S'_0, AP', L')$

$$\frac{s \xrightarrow{\alpha} s' \quad \wedge \quad q' \in \delta(q, L(s'))}{\langle s, q \rangle \xrightarrow{\alpha}' \langle s', q' \rangle}$$

initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$

for $P \subseteq Q$ and $A \subseteq AP$: $\delta(P, A) = \bigcup_{p \in P} \delta(p, A)$

Product transition system

IS2.5-25

$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ transition system

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NFA

product-TS $\mathcal{T} \otimes \mathcal{A} \stackrel{\text{def}}{=} (S \times Q, Act, \rightarrow', S'_0, AP', L')$

$$\frac{s \xrightarrow{\alpha} s' \quad \wedge \quad q' \in \delta(q, L(s'))}{\langle s, q \rangle \xrightarrow{\alpha}' \langle s', q' \rangle}$$

initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$

set of atomic propositions: $AP' = Q$

Product transition system

IS2.5-25

$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ transition system

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NFA

product-TS $\mathcal{T} \otimes \mathcal{A} \stackrel{\text{def}}{=} (S \times Q, Act, \rightarrow', S'_0, AP', L')$

$$\frac{s \xrightarrow{\alpha} s' \quad \wedge \quad q' \in \delta(q, L(s'))}{\langle s, q \rangle \xrightarrow{\alpha}' \langle s', q' \rangle}$$

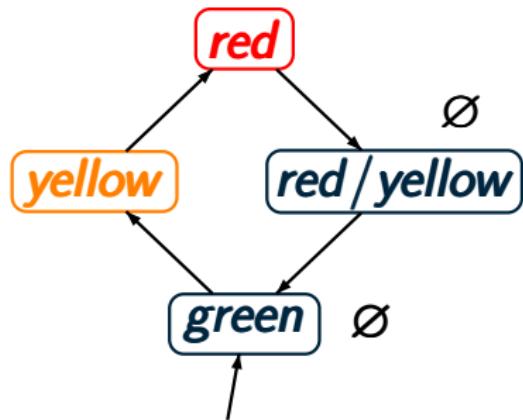
initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$

set of atomic propositions: $AP' = Q$

labeling function: $L'(\langle s, q \rangle) = \{q\}$

Example: product-TS

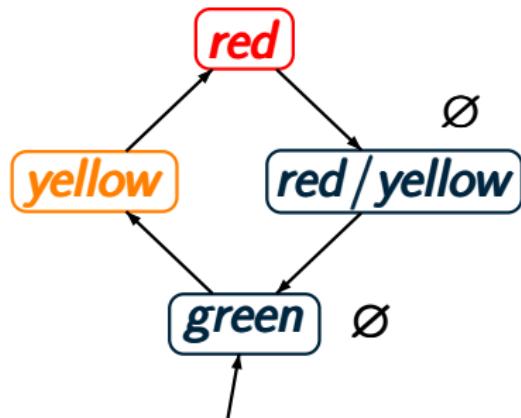
is2.5-26



transition system \mathcal{T} over
 $AP = \{ \text{red}, \text{yellow} \}$

Example: product-TS

is2.5-26

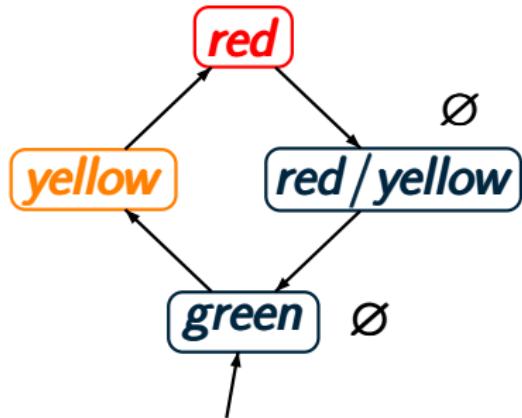
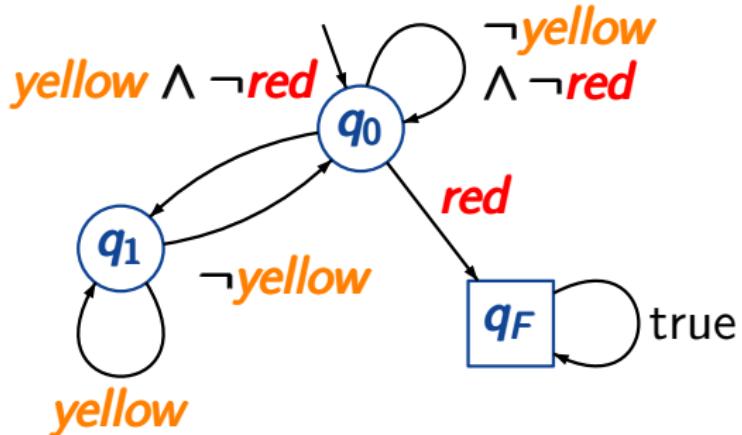


transition system \mathcal{T} over
 $AP = \{ \text{red}, \text{yellow} \}$

\mathcal{T} satisfies the safety property E
“every red phase is preceded by a yellow phase”

Example: product-TS

is2.5-26



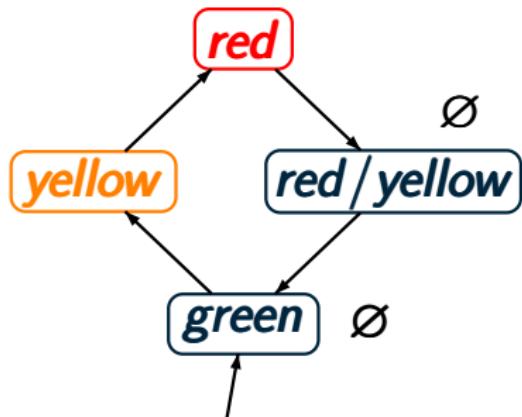
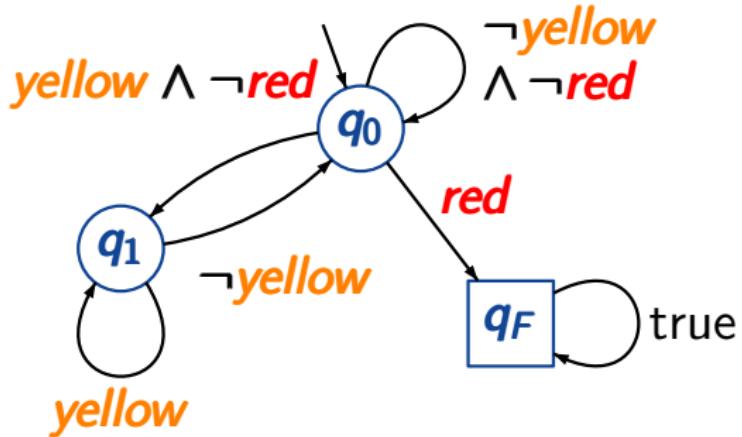
transition system \mathcal{T} over
 $AP = \{red, yellow\}$

DFA \mathcal{A} for the
bad prefixes for E

\mathcal{T} satisfies the safety property E
“every red phase is preceded by a yellow phase”

Example: product-TS

is2.5-26



green q_0

red / yellow q_0

product-TS
 $T \otimes A$

yellow q_1

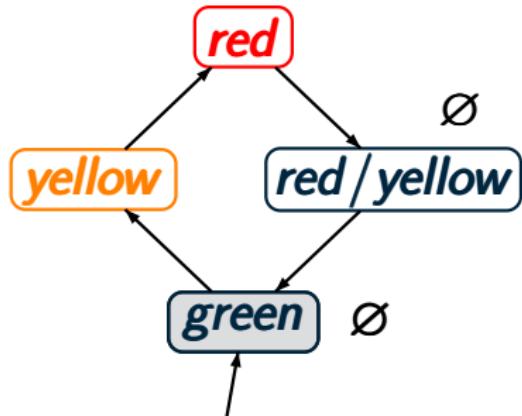
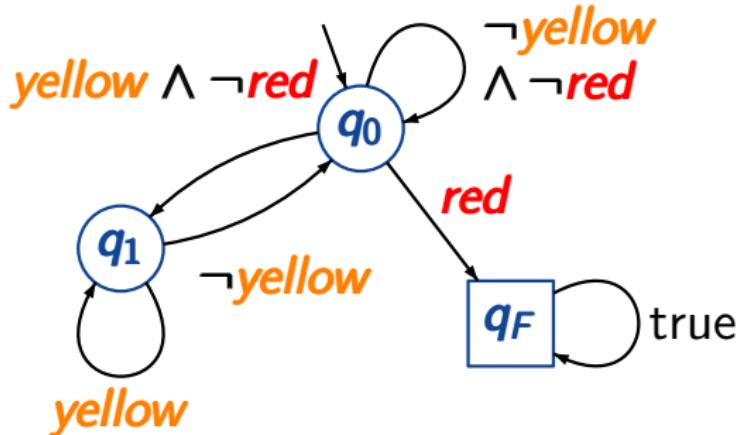
red q_0

($4 * 3 = 12$ states)

...

Example: product-TS

is2.5-26



green q_0

red/yellow q_0

initial state

$\langle \text{green}, \delta(q_0, \emptyset) \rangle$

yellow q_1

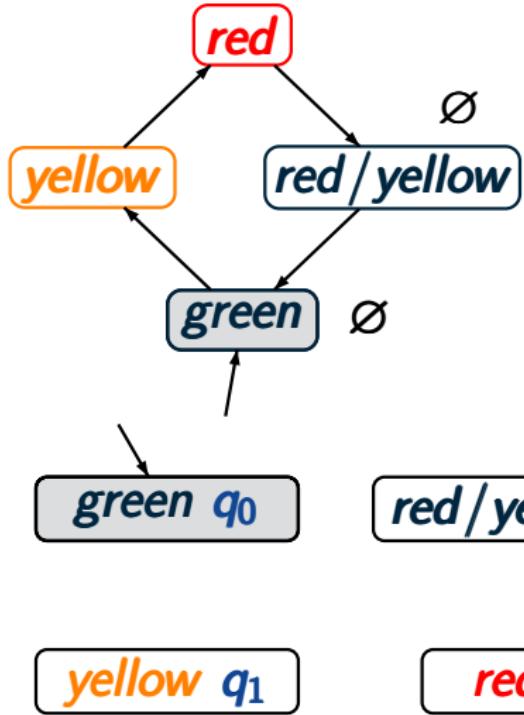
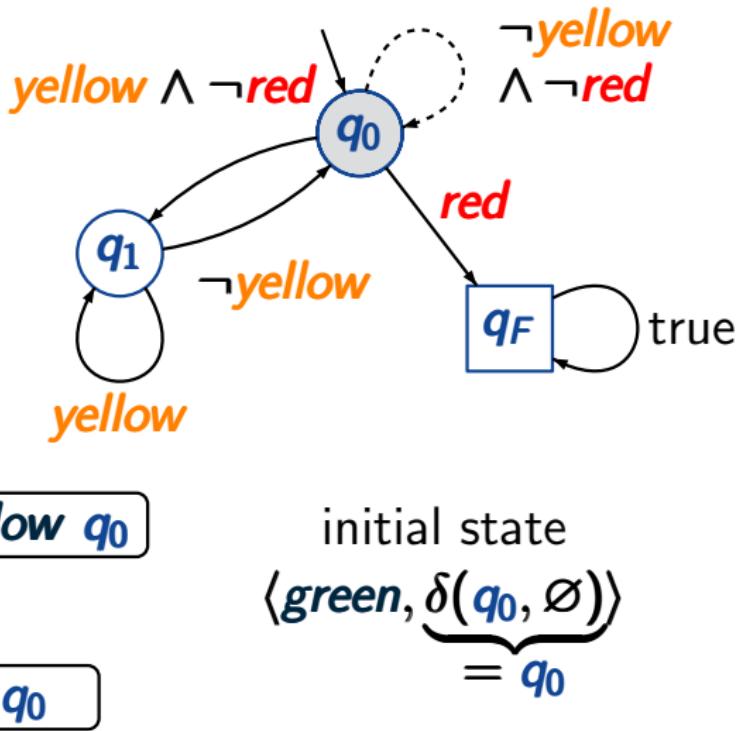
red q_0

...

$L(\text{green}) = \emptyset$

Example: product-TS

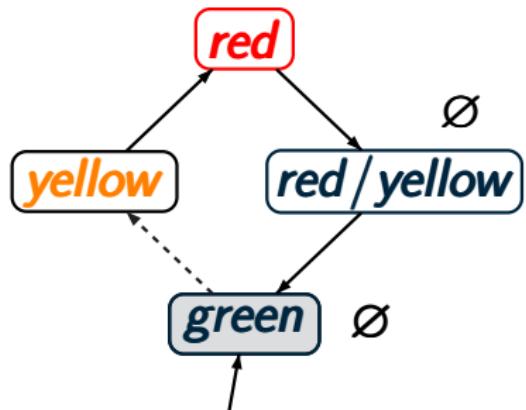
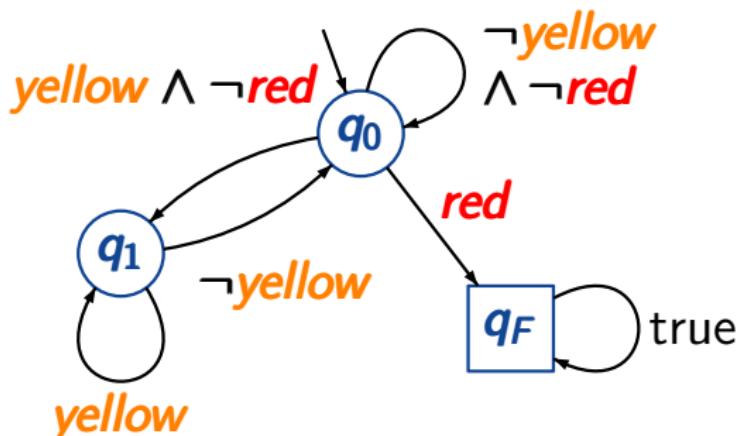
is2.5-26



...

Example: product-TS

is2.5-26



green q_0 red / yellow q_0

yellow q_1

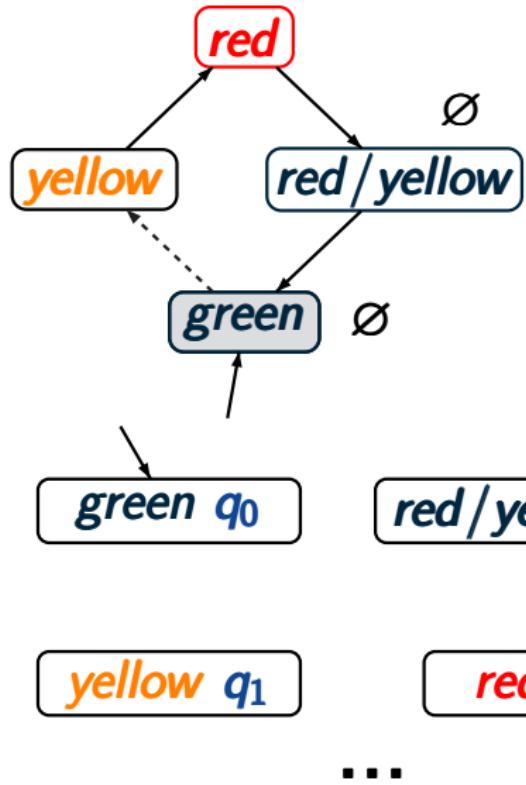
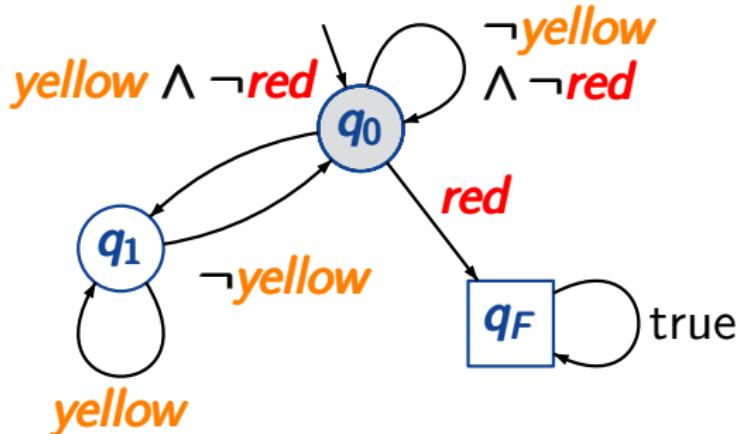
red q_0

...

lifting the transition
 $green \rightarrow yellow$

Example: product-TS

is2.5-26



lifting the transition
 $green \rightarrow yellow$

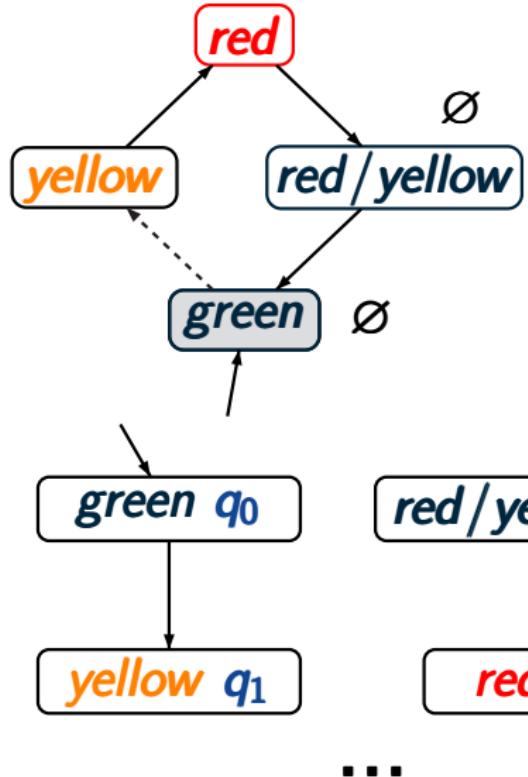
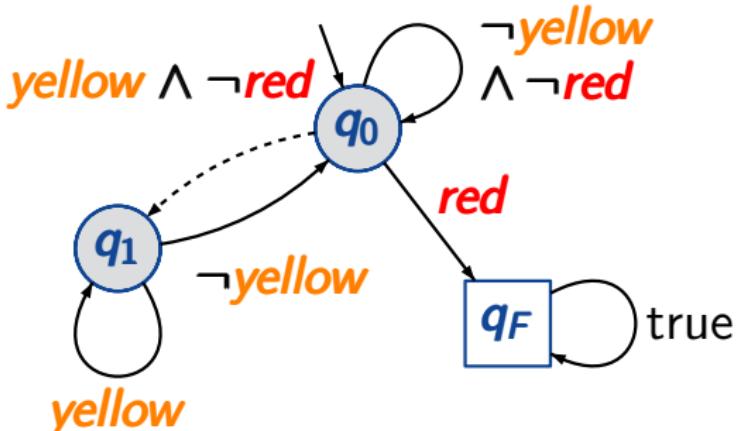
$\langle green, q_0 \rangle$

\downarrow

$\langle yellow, ? \rangle$

Example: product-TS

is2.5-26

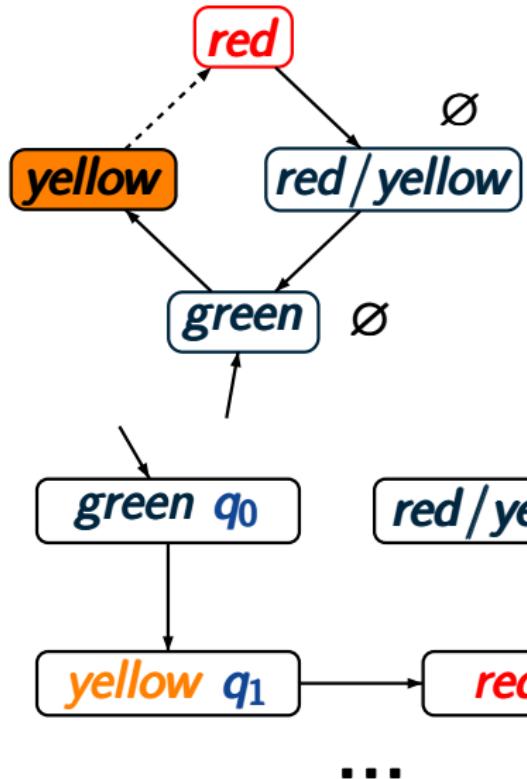
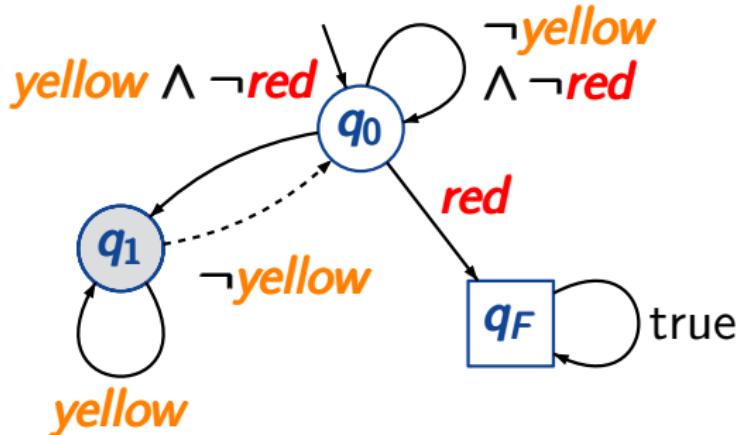


lifting the transition
 $green \rightarrow yellow$

$$\langle green, q_0 \rangle \xrightarrow{} \langle yellow, \underbrace{\delta(q_0, \{yellow\})}_{= q_1} \rangle$$

Example: product-TS

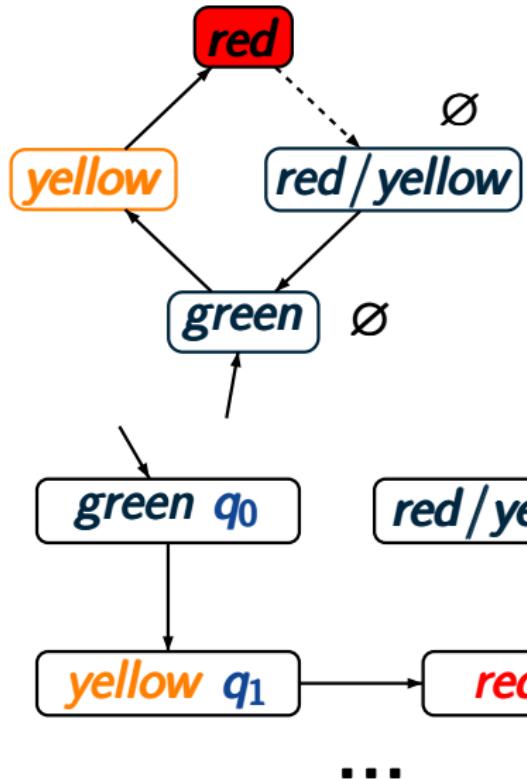
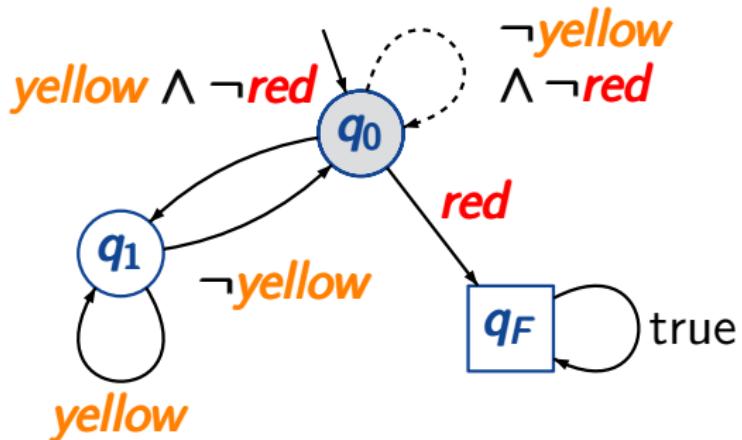
is2.5-26



lifting the transition
 $yellow \rightarrow red$
 $\langle yellow, q_1 \rangle$
 \downarrow
 $\langle red, \underbrace{\delta(q_1, \{red\})}_{= q_0} \rangle$

Example: product-TS

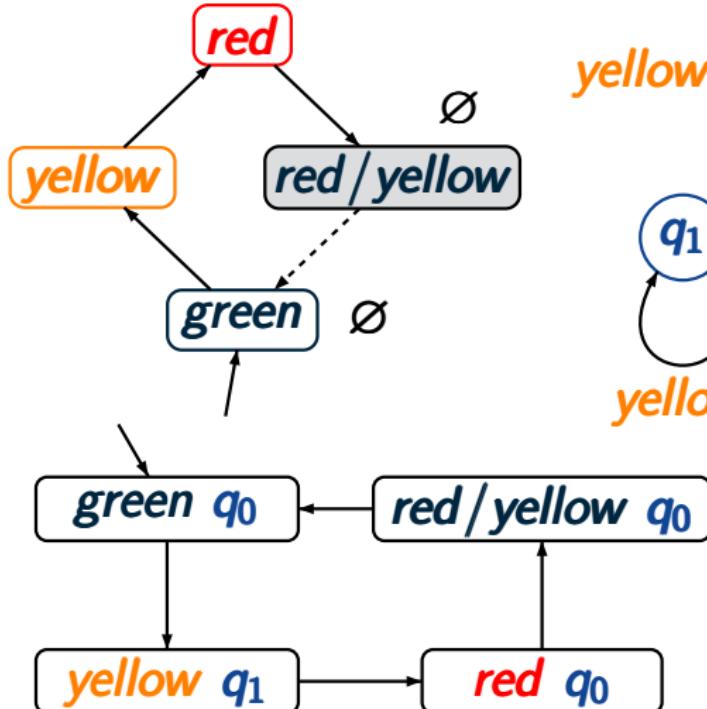
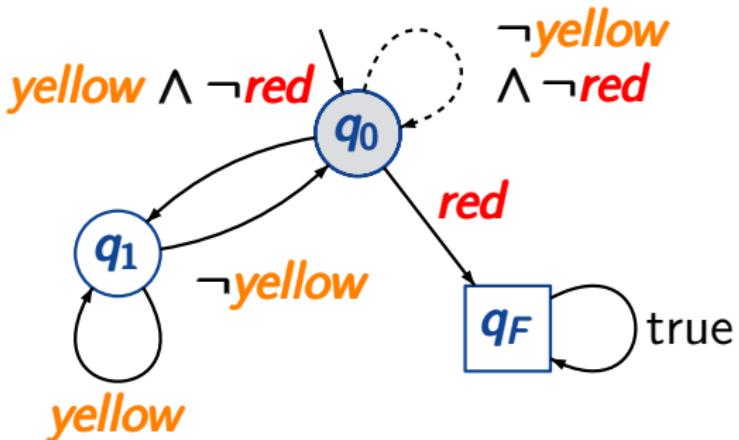
is2.5-26



lifting the transition
 $red \rightarrow red/yellow$
 $\langle red, q_0 \rangle$
 \downarrow
 $\langle red/yellow, \underbrace{\delta(q_0, \emptyset)}_{= q_0} \rangle$

Example: product-TS

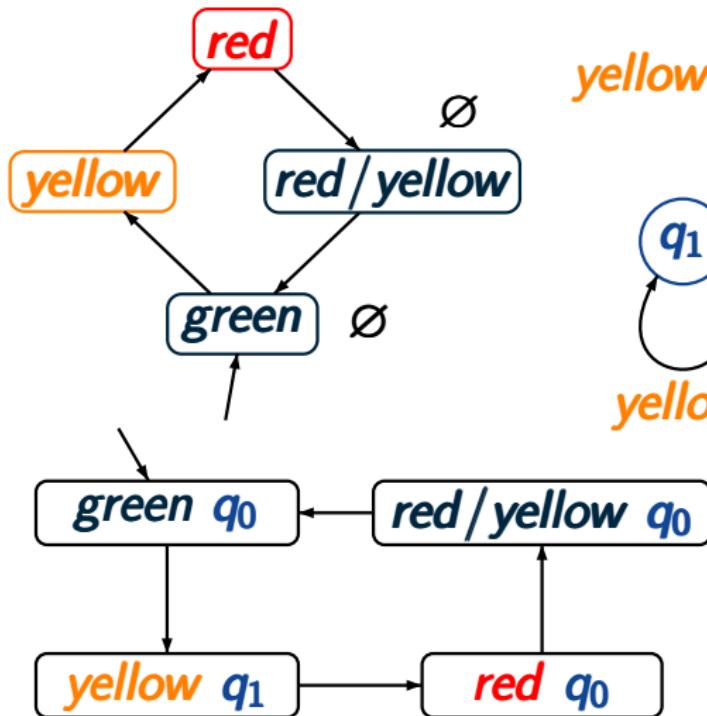
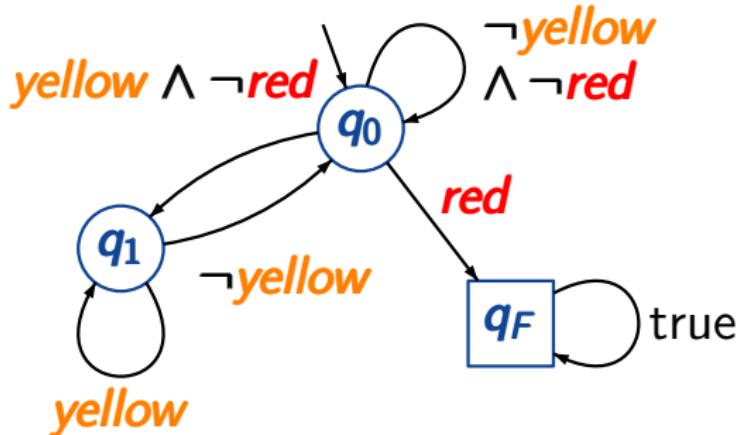
is2.5-26



lifting the transition
 $red/yellow \rightarrow green$
 $\langle red/yellow, q_0 \rangle$
 \downarrow
 $\langle green, \delta(q_0, \emptyset) \rangle$
 $= q_0$

Example: product-TS

is2.5-26

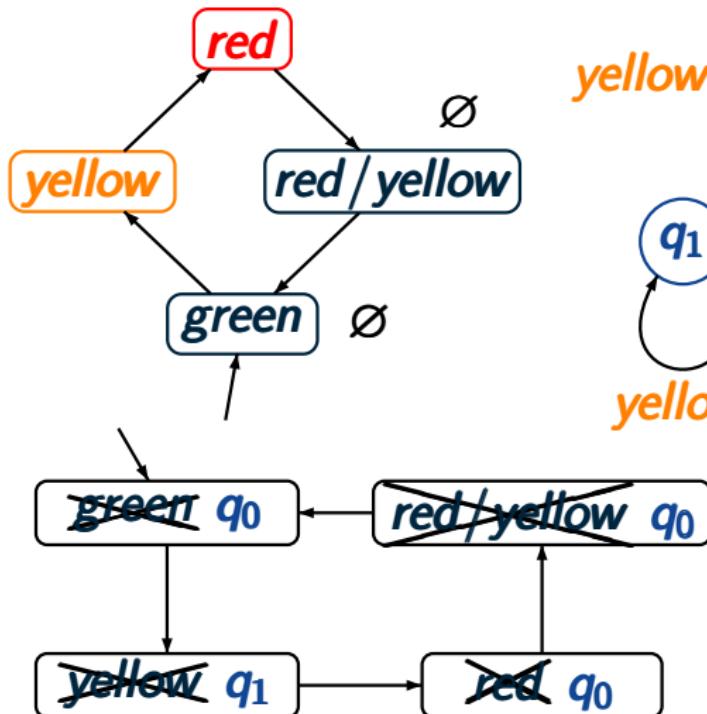
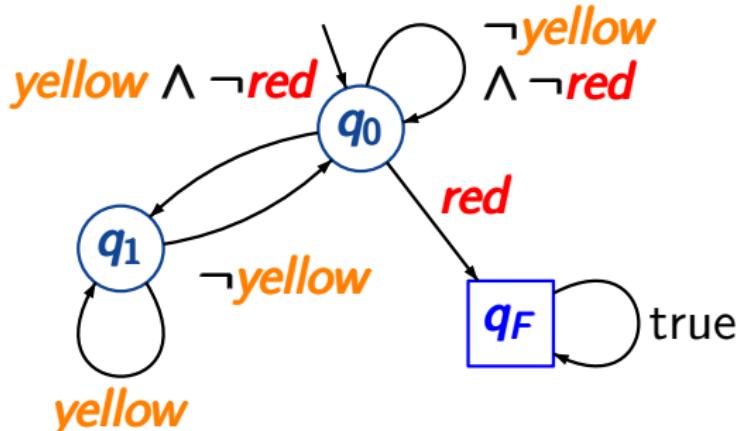


product-TS
 $T \otimes A$

$4 * 3 = 12$ states, but
just **4** reachable states

Example: product-TS

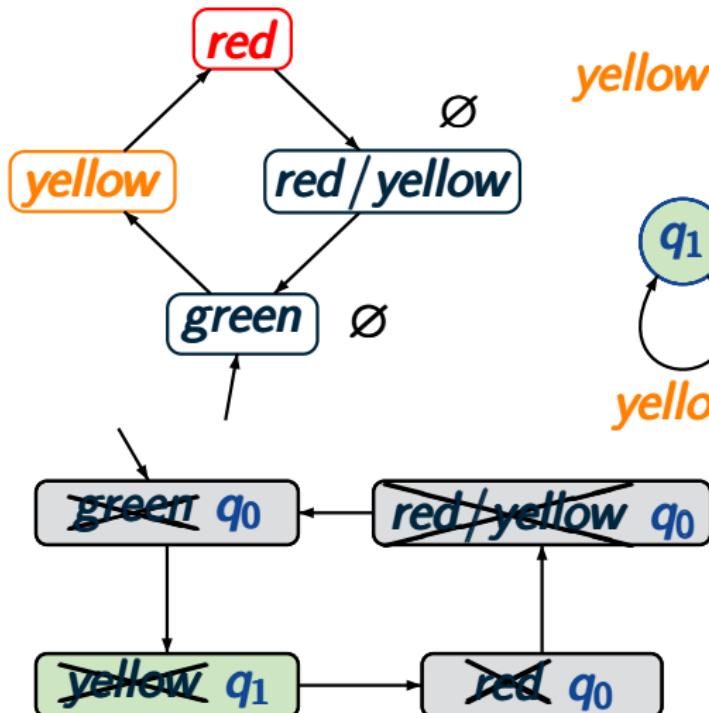
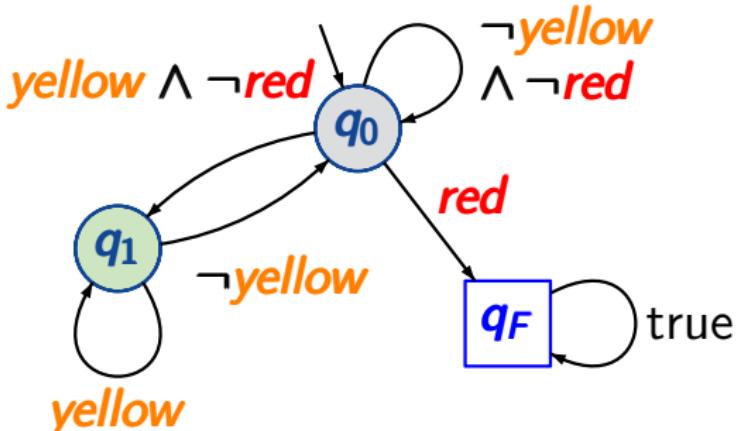
is2.5-26



set of propositions
 $AP' = \{q_0, q_1, q_F\}$

Example: product-TS

IS2.5-26



set of propositions
 $AP' = \{q_0, q_1, q_F\}$

invariant condition $\neg q_F$ holds
for all reachable states

Technical remark on the product-TS

IS2.5-PRODUCT-TS-AUT

definition of the product of

- a transition system $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$
- an NFA $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

then the product $\mathcal{T} \otimes \mathcal{A} = (S \times Q, Act, \rightarrow', \dots)$ is a TS

Technical remark on the product-TS

IS2.5-PRODUCT-TS-AUT

definition of the product of

- a transition system $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$

↑
without terminal states

- an NFA $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

then the product $\mathcal{T} \otimes \mathcal{A} = (S \times Q, Act, \rightarrow', \dots)$ is a TS

Technical remark on the product-TS

IS2.5-PRODUCT-TS-AUT

definition of the product of

- a transition system $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$

without terminal states

- an NFA $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

then the product $\mathcal{T} \otimes \mathcal{A} = (S \times Q, Act, \rightarrow', \dots)$ is a TS

without terminal states

Technical remark on the product-TS

IS2.5-PRODUCT-TS-AUT

definition of the product of

- a transition system $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$

without terminal states

- an NFA $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

then the product $\mathcal{T} \otimes \mathcal{A} = (S \times Q, Act, \rightarrow', \dots)$ is a TS

without terminal states

assumptions on the NFA \mathcal{A} :

Technical remark on the product-TS

IS2.5-PRODUCT-TS-AUT

definition of the product of

- a transition system $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$

without terminal states

- an NFA $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

then the product $\mathcal{T} \otimes \mathcal{A} = (S \times Q, Act, \rightarrow', \dots)$ is a TS

without terminal states

assumptions on the NFA \mathcal{A} :

- \mathcal{A} is non-blocking, i.e.,

$$Q_0 \neq \emptyset \wedge \forall q \in Q \forall A \in 2^{AP}. \delta(q, A) \neq \emptyset$$

Technical remark on the product-TS

IS2.5-PRODUCT-TS-AUT

definition of the product of

- a transition system $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$

without terminal states

- an NFA $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

then the product $\mathcal{T} \otimes \mathcal{A} = (S \times Q, Act, \rightarrow', \dots)$ is a TS

without terminal states

assumptions on the NFA \mathcal{A} :

- \mathcal{A} is non-blocking, i.e.,

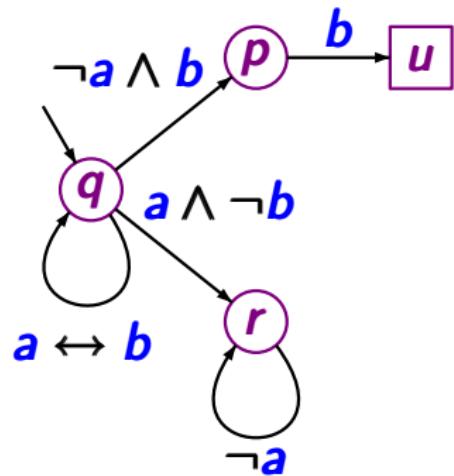
$$Q_0 \neq \emptyset \wedge \forall q \in Q \forall A \in 2^{AP}. \delta(q, A) \neq \emptyset$$

- no initial state of \mathcal{A} is final, i.e., $Q_0 \cap F = \emptyset$

Non-blocking NFA

IS2.5-23

NFA \mathcal{A}

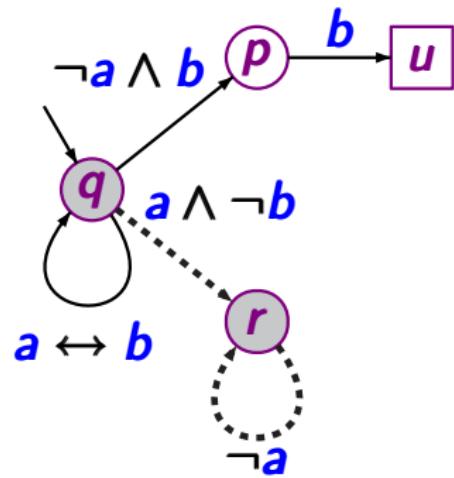


alphabet $\Sigma = 2^{AP}$ where $AP = \{a, b\}$

Non-blocking NFA

IS2.5-23

NFA \mathcal{A}



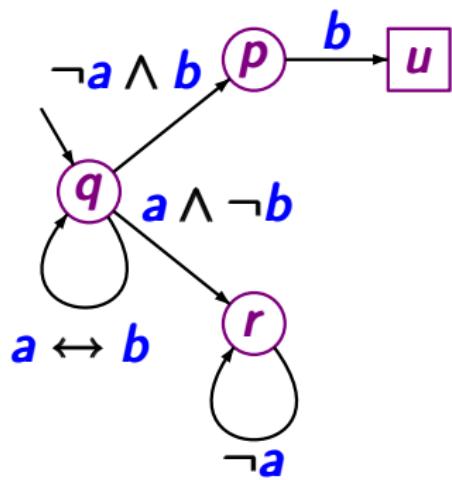
blocks for input
 $\{a\} \otimes \{a\}$

alphabet $\Sigma = 2^{AP}$ where $AP = \{a, b\}$

Non-blocking NFA

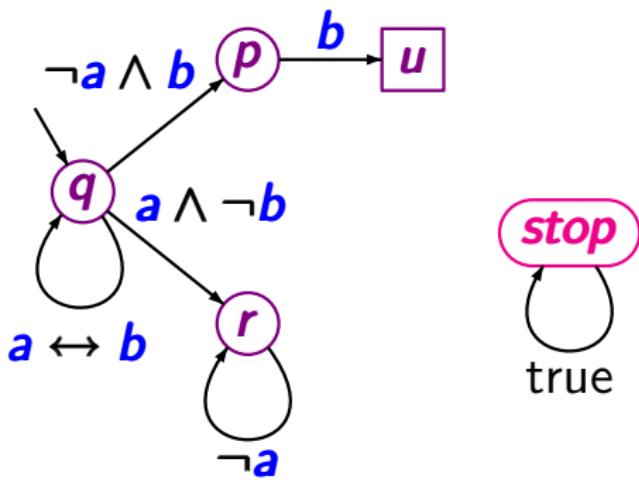
IS2.5-23

NFA \mathcal{A}



\rightsquigarrow

equivalent NFA \mathcal{A}'

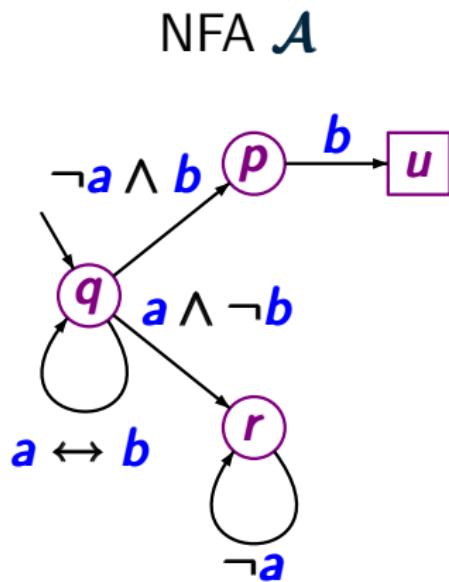


blocks for input
 $\{a\} \oslash \{a\}$

add a trap state *stop*

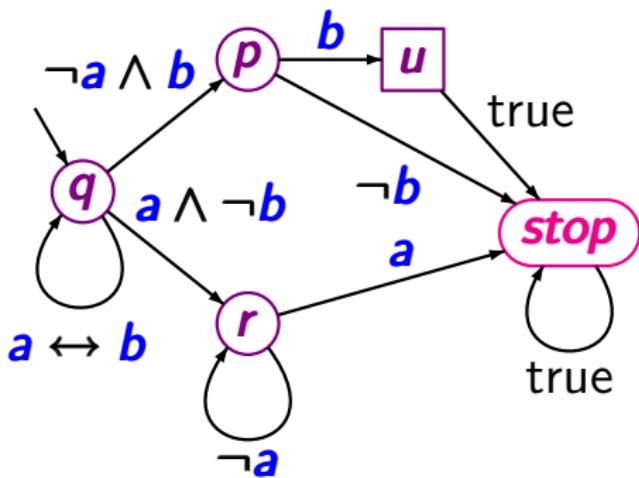
Non-blocking NFA

IS2.5-23



\rightsquigarrow

equivalent NFA \mathcal{A}'

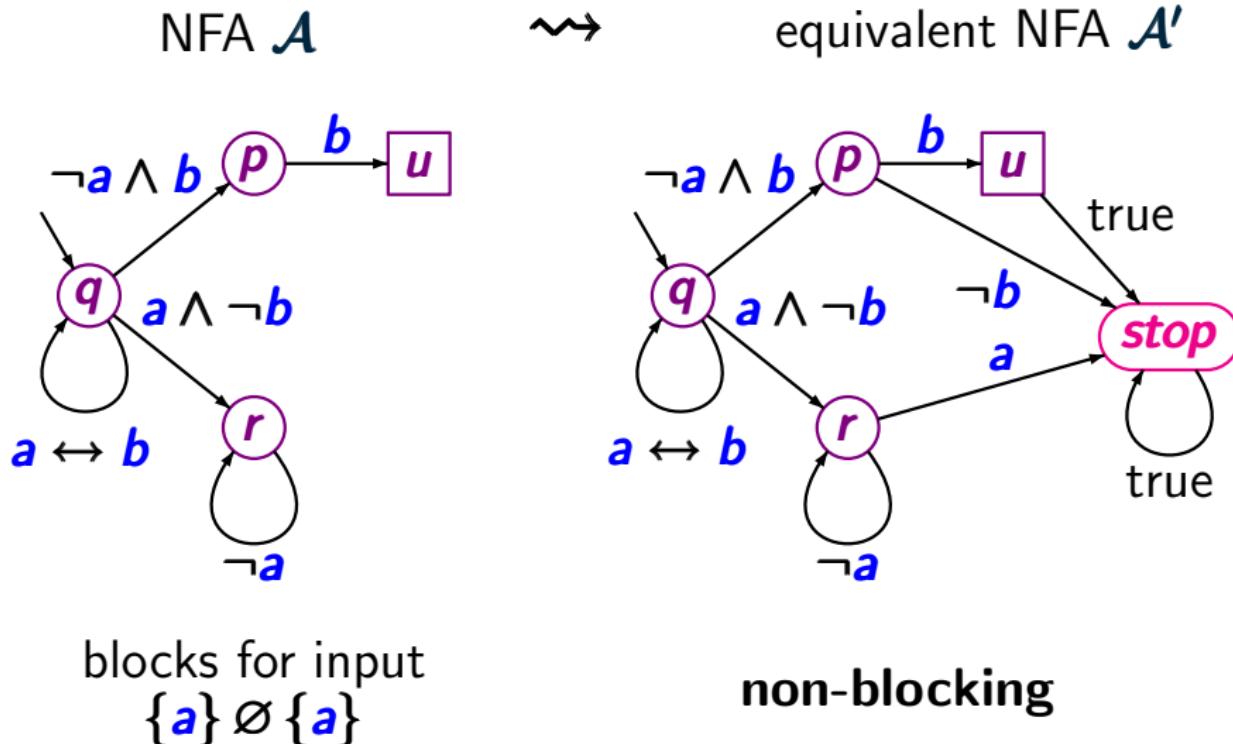


blocks for input
 $\{a\} \oslash \{a\}$

add a trap state $stop$

Non-blocking NFA

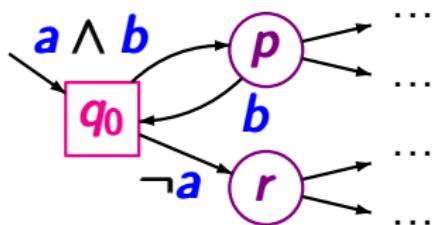
IS2.5-23



NFA where no initial state is final

IS2.5-24

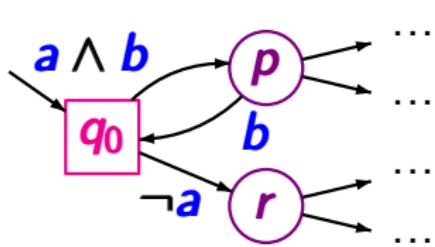
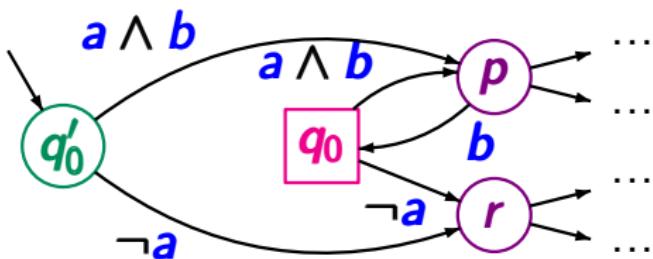
NFA \mathcal{A} with $Q_0 \cap F \neq \emptyset$



NFA where no initial state is final

is2.5-24

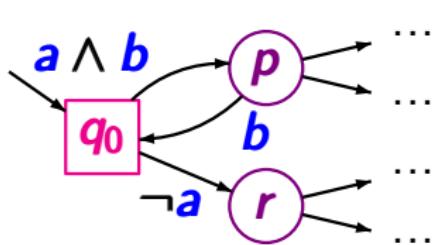
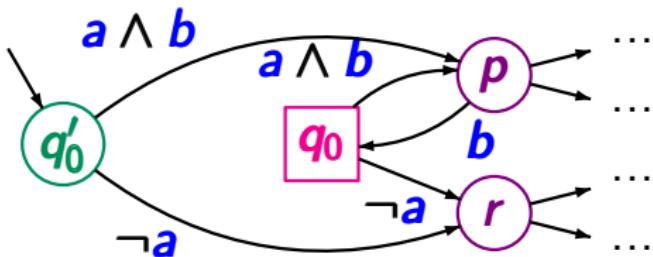
NFA \mathcal{A} with $Q_0 \cap F \neq \emptyset$ \rightsquigarrow NFA \mathcal{A}' with $Q_0 \cap F = \emptyset$



NFA where no initial state is final

is2.5-24

NFA \mathcal{A} with $Q_0 \cap F \neq \emptyset$ \rightsquigarrow NFA \mathcal{A}' with $Q_0 \cap F = \emptyset$

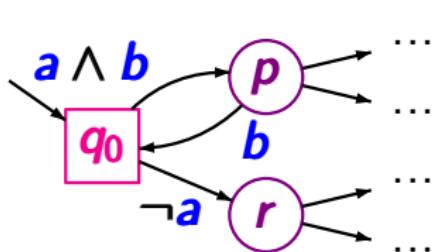
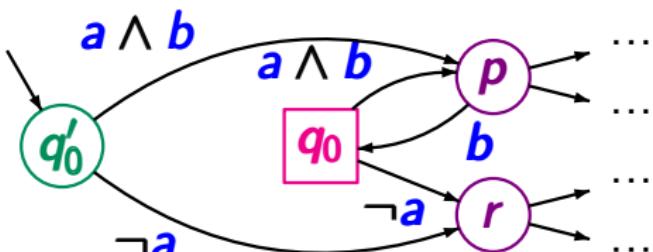


$$\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A}) \setminus \{\varepsilon\}$$

NFA where no initial state is final

is2.5-24

NFA \mathcal{A} with $Q_0 \cap F \neq \emptyset$ \rightsquigarrow NFA \mathcal{A}' with $Q_0 \cap F = \emptyset$



$$\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A}) \setminus \{\varepsilon\}$$

note: if \mathcal{A} is an NFA for the bad prefixes of a safety property then

$$\varepsilon \notin \mathcal{L}(\mathcal{A}) = \text{BadPref}$$

Model checking regular safety properties

1s2.5-26A

... via a reduction to invariant checking

Model checking regular safety properties

1s2.5-26A

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ be an NFA

for the bad prefixes of a regular safety property E

Model checking regular safety properties

1s2.5-26A

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system
(without terminal states)

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ be an NFA

for the bad prefixes of a regular safety property E

Model checking regular safety properties

1s2.5-26A

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system
(without terminal states)

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ be an NFA

for the bad prefixes of a regular safety property E
(non-blocking and $Q_0 \cap F = \emptyset$)

Model checking regular safety properties

1s2.5-26A

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system
(without terminal states)

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ be an NFA

for the bad prefixes of a regular safety property E
(non-blocking and $Q_0 \cap F = \emptyset$)

The following statements are equivalent:

- (1) $\mathcal{T} \models E$
- (2) $Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$

Model checking regular safety properties

1s2.5-26A

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system
(without terminal states)

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ be an NFA

for the bad prefixes of a regular safety property E
(non-blocking and $Q_0 \cap F = \emptyset$)

The following statements are equivalent:

- (1) $\mathcal{T} \models E$
- (2) $Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$
- (3) $\mathcal{T} \otimes \mathcal{A} \models$ invariant “always $\neg F$ ”

Model checking regular safety properties

1s2.5-26A

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system
(without terminal states)

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ be an NFA

for the bad prefixes of a regular safety property E
(non-blocking and $Q_0 \cap F = \emptyset$)

The following statements are equivalent:

- (1) $\mathcal{T} \models E$
- (2) $Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$
- (3) $\mathcal{T} \otimes \mathcal{A} \models$ invariant “always $\neg F$ ”

where “ $\neg F$ ” denotes $\bigwedge_{q \in F} \neg q$

Product transition system

IS2.5-25A

$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ transition system

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NFA

product-TS $\mathcal{T} \otimes \mathcal{A} \stackrel{\text{def}}{=} (S \times Q, Act, \rightarrow', S'_0, AP', L')$

$$\frac{s \xrightarrow{\alpha} s' \quad \wedge \quad q' \in \delta(q, L(s'))}{\langle s, q \rangle \xrightarrow{\alpha}' \langle s', q' \rangle}$$

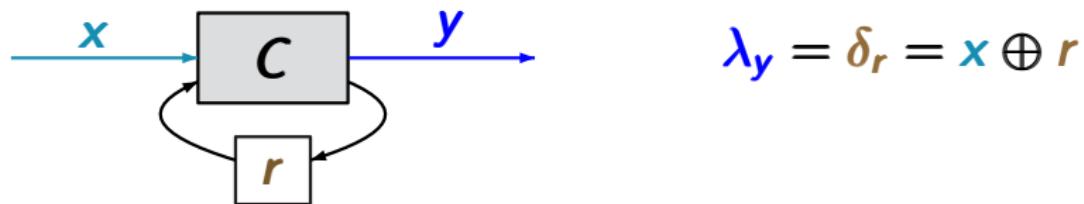
initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$

set of atomic propositions: $AP' = Q$

labeling function: $L'(\langle s, q \rangle) = \{q\}$

Example: sequential circuit

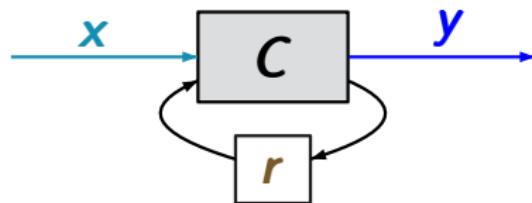
IS2.5-27



$$\lambda_y = \delta_r = x \oplus r$$

Example: sequential circuit

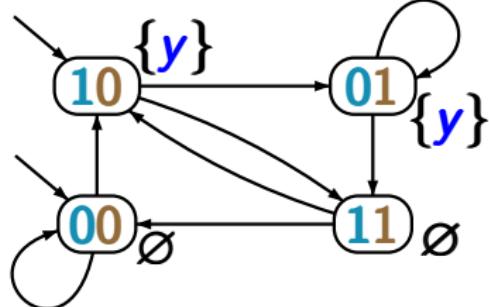
IS2.5-27



$$\lambda_y = \delta_r = x \oplus r$$

initially $r = 0$

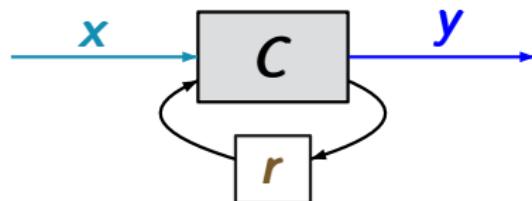
transition system \mathcal{T}



over $AP = \{y\}$

Example: sequential circuit

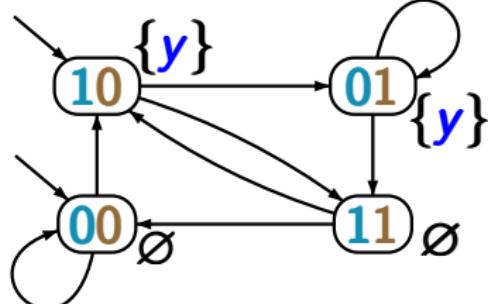
IS2.5-27



$$\lambda_y = \delta_r = x \oplus r$$

initially $r = 0$

transition system T



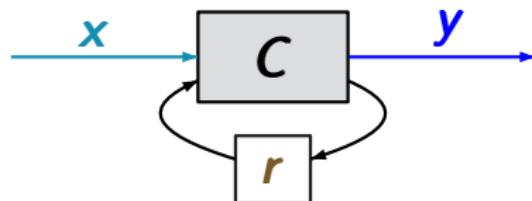
over $AP = \{y\}$

safety property E

The circuit will never output two ones after each other

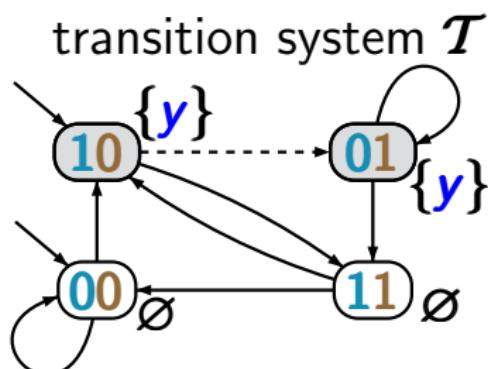
Example: sequential circuit

IS2.5-27



$$\lambda_y = \delta_r = x \oplus r$$

initially $r = 0$

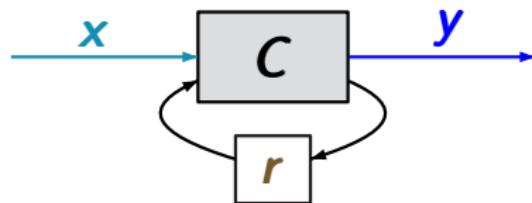


$\mathcal{T} \not\models E$

safety property E
The circuit will never output two ones after each other

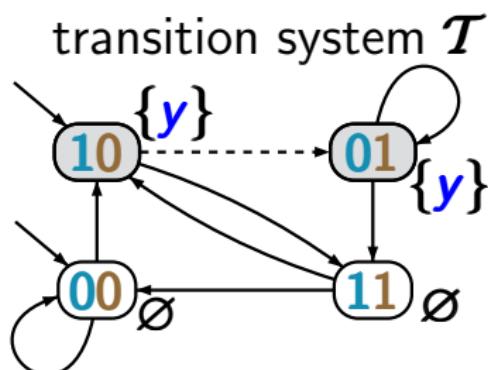
Example: sequential circuit

IS2.5-27



$$\lambda_y = \delta_r = x \oplus r$$

initially $r = 0$



$\mathcal{T} \not\models E$

error indication, e.g.,

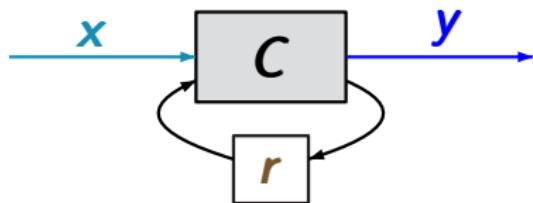
$\langle 10 \rangle \langle 01 \rangle$

safety property E

The circuit will never output two ones after each other

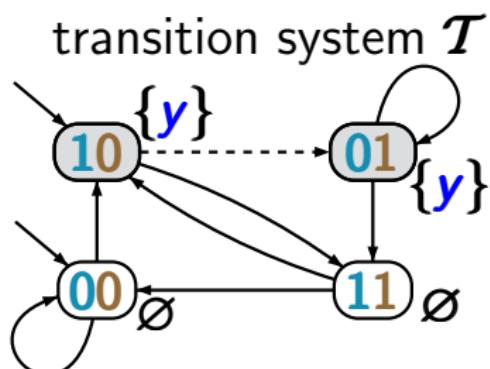
Example: sequential circuit

IS2.5-27



$$\lambda_y = \delta_r = x \oplus r$$

initially $r = 0$



$\mathcal{T} \not\models E$

error indication, e.g.,

$\langle 10 \rangle \langle 01 \rangle$

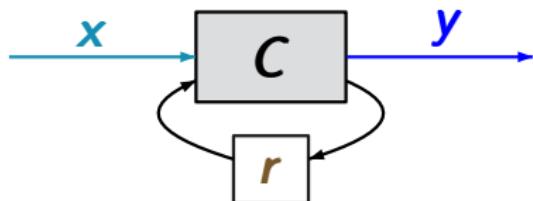
bad prefix: $\{y\} \{y\}$

safety property E

The circuit will never output two ones after each other

Example: sequential circuit

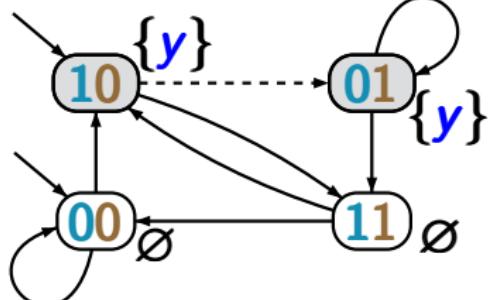
IS2.5-27



$$\lambda_y = \delta_r = x \oplus r$$

initially $r = 0$

transition system \mathcal{T}



$\mathcal{T} \not\models E$

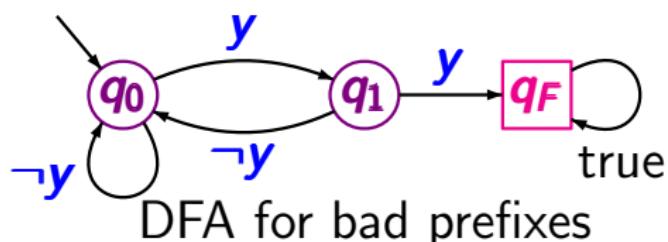
error indication, e.g.,

$\langle 10 \rangle \langle 01 \rangle$

bad prefix: $\{y\} \{y\}$

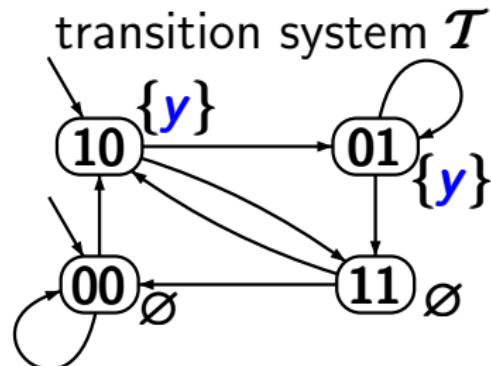
safety property E

The circuit will never output two ones after each other

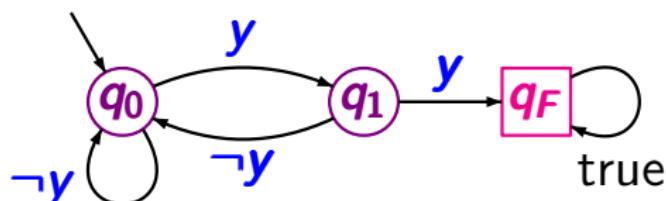
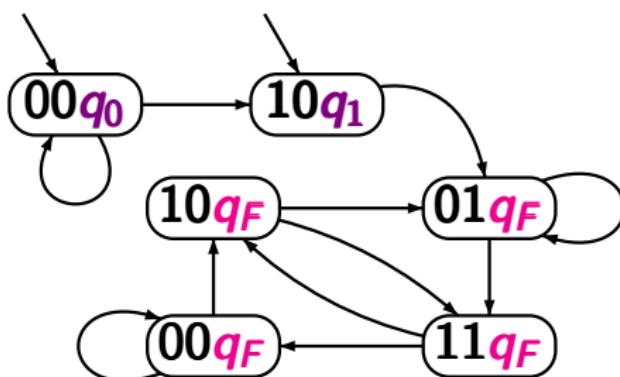


Example: product-TS

is2.5-28



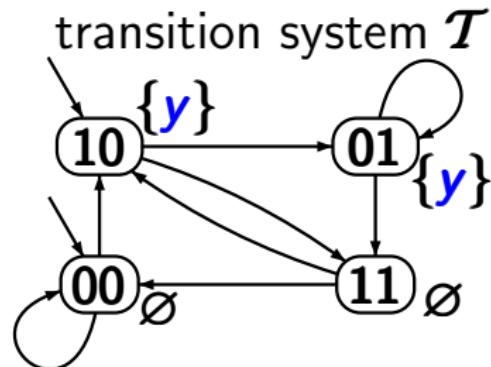
safety property E
... never two ones in a row ...



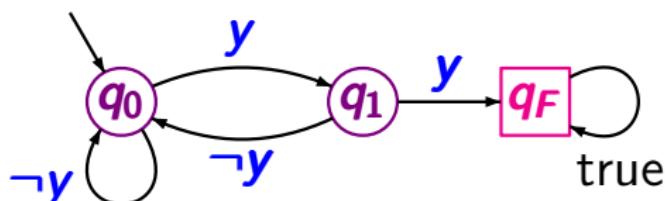
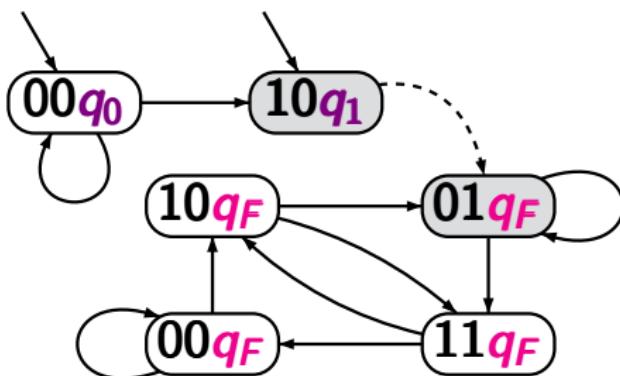
product-TS $\mathcal{T} \otimes \mathcal{A}$

Example: product-TS

is2.5-28



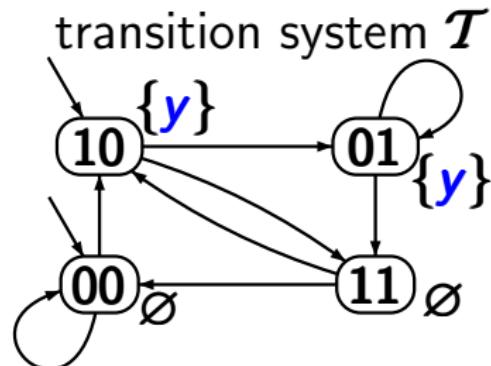
safety property E
... never two ones in a row ...



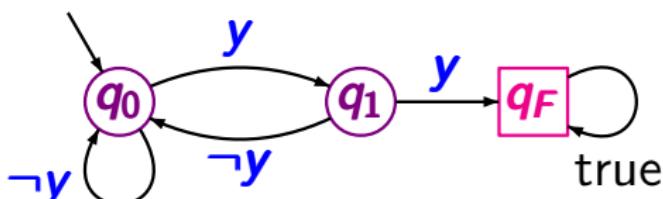
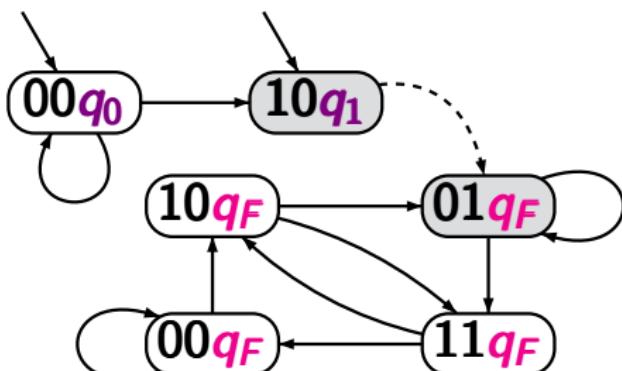
$\mathcal{T} \otimes \mathcal{A} \not\models \text{"never } q_F\text{"}$

Example: product-TS

is2.5-28



safety property E
... never two ones in a row ...

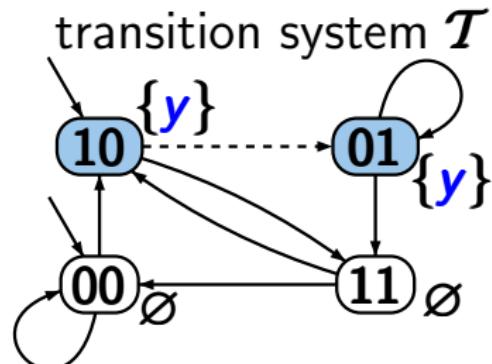


error indication for
 $\mathcal{T} \otimes \mathcal{A} \not\models \text{"never } q_F \text{"}$

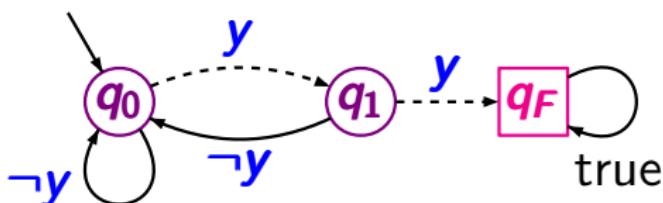
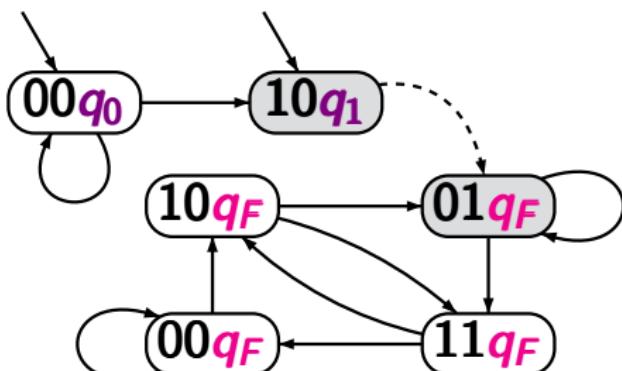
$10q_1$ $01q_F$

Example: product-TS

is2.5-28

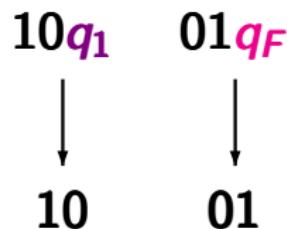


safety property E
... never two ones in a row ...



error indication for
 $\mathcal{T} \otimes \mathcal{A} \not\models \text{"never } q_F \text{"}$

error indication for $\mathcal{T} \not\models E$



Model checking regular safety properties

IS2.5-29

Model checking regular safety properties

IS2.5-29

input: finite TS \mathcal{T} ,
NFA \mathcal{A} for the bad prefixes of \mathcal{E}

output: “yes” if $\mathcal{T} \models \mathcal{E}$
otherwise “no”

Model checking regular safety properties

IS2.5-29

input: finite TS \mathcal{T} ,
NFA \mathcal{A} for the bad prefixes of \mathcal{E}

output: “yes” if $\mathcal{T} \models \mathcal{E}$
otherwise “no”

construct product transition system $\mathcal{T} \otimes \mathcal{A}$

check whether $\mathcal{T} \otimes \mathcal{A} \models$ “always $\neg \mathcal{F}$ ”

where \mathcal{F} = set of final states in \mathcal{A}

Model checking regular safety properties

IS2.5-29

input: finite TS \mathcal{T} ,
NFA \mathcal{A} for the bad prefixes of \mathcal{E}

output: “yes” if $\mathcal{T} \models \mathcal{E}$
otherwise “no”

construct product transition system $\mathcal{T} \otimes \mathcal{A}$

check whether $\mathcal{T} \otimes \mathcal{A} \models$ “always $\neg F$ ”

if so, then return “yes”

if not, then return “no”

where F = set of final states in \mathcal{A}

Model checking regular safety properties

IS2.5-29

input: finite TS \mathcal{T} ,
NFA \mathcal{A} for the bad prefixes of \mathcal{E}

output: “yes” if $\mathcal{T} \models \mathcal{E}$
otherwise “no” + error indication

construct product transition system $\mathcal{T} \otimes \mathcal{A}$

check whether $\mathcal{T} \otimes \mathcal{A} \models$ “always $\neg \mathcal{F}$ ”

if so, then return “yes”

if not, then return “no” \leftarrow and an error indication

where \mathcal{F} = set of final states in \mathcal{A}

construct product transition system $\mathcal{T} \otimes \mathcal{A}$

IF $\mathcal{T} \otimes \mathcal{A} \models \text{"always } \neg F\text{"}$

THEN return "yes"

ELSE

FI

construct product transition system $\mathcal{T} \otimes \mathcal{A}$

IF $\mathcal{T} \otimes \mathcal{A} \models \text{"always } \neg F\text{"}$

THEN return "yes"

ELSE compute a counterexample for $\mathcal{T} \otimes \mathcal{A}$ and
the invariant "always $\neg F$ ",

FI

construct product transition system $\mathcal{T} \otimes \mathcal{A}$

IF $\mathcal{T} \otimes \mathcal{A} \models \text{"always } \neg F\text{"}$

THEN return "yes"

ELSE compute a counterexample for $\mathcal{T} \otimes \mathcal{A}$ and
the invariant "always $\neg F$ ",

i.e., an initial path fragment in the product

$\langle s_0, p_0 \rangle \langle s_1, p_1 \rangle \dots \langle s_n, p_n \rangle$ where $p_n \in F$

FI

construct product transition system $\mathcal{T} \otimes \mathcal{A}$

IF $\mathcal{T} \otimes \mathcal{A} \models \text{"always } \neg F\text{"}$

THEN return "yes"

ELSE compute a counterexample for $\mathcal{T} \otimes \mathcal{A}$ and
the invariant "always $\neg F$ ",

i.e., an initial path fragment in the product

$\langle s_0, p_0 \rangle \langle s_1, p_1 \rangle \dots \langle s_n, p_n \rangle$ where $p_n \in F$

return "no" and $s_0 s_1 \dots s_n$

FI

construct product transition system $\mathcal{T} \otimes \mathcal{A}$

IF $\mathcal{T} \otimes \mathcal{A} \models \text{"always } \neg F\text{"}$

THEN return "yes"

ELSE compute a counterexample for $\mathcal{T} \otimes \mathcal{A}$ and
the invariant "always $\neg F$ ",

i.e., an initial path fragment in the product

$\langle s_0, p_0 \rangle \langle s_1, p_1 \rangle \dots \langle s_n, p_n \rangle$ where $p_n \in F$

return "no" and $s_0 s_1 \dots s_n$

FI

time complexity: $\mathcal{O}(\text{size}(\mathcal{T}) \cdot \text{size}(\mathcal{A}))$

Correct or wrong?

IS2.5-35

If \mathcal{T} is a finite transition system then
 $\text{Traces}_{\text{fin}}(\mathcal{T})$ is regular.

Correct or wrong?

IS2.5-35

If \mathcal{T} is a finite transition system then
 $Traces_{fin}(\mathcal{T})$ is regular.

correct.

Correct or wrong?

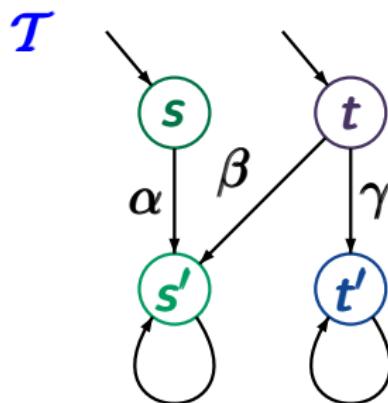
IS2.5-35

If \mathcal{T} is a finite transition system then
 $Traces_{fin}(\mathcal{T})$ is regular.

correct. \mathcal{T} can be transformed into an NFA.

If \mathcal{T} is a finite transition system then
 $Traces_{fin}(\mathcal{T})$ is regular.

correct. \mathcal{T} can be transformed into an NFA.

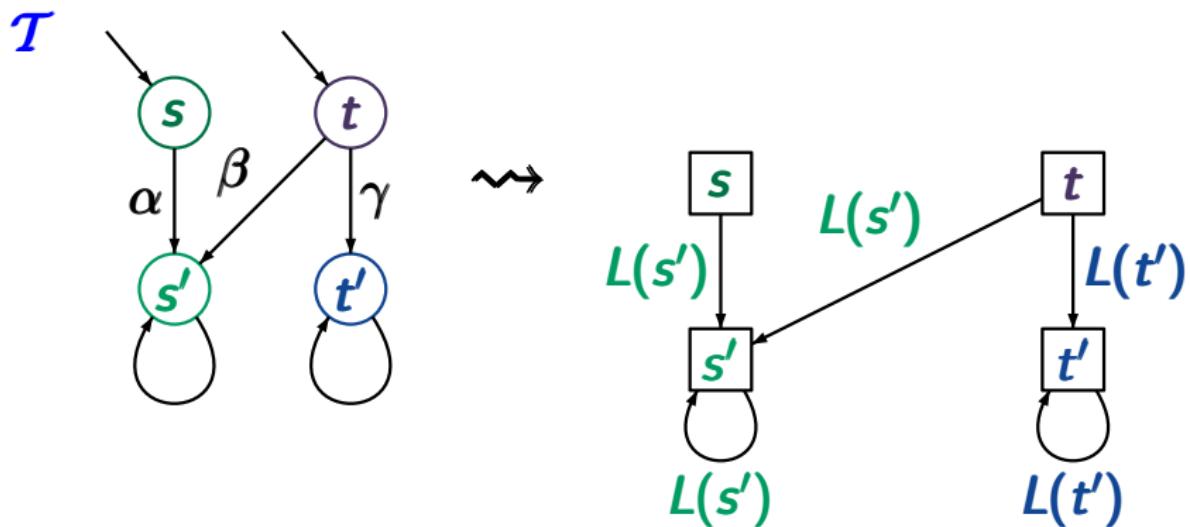


Correct or wrong?

IS2.5-35

If \mathcal{T} is a finite transition system then
 $Traces_{fin}(\mathcal{T})$ is regular.

correct. \mathcal{T} can be transformed into an NFA.

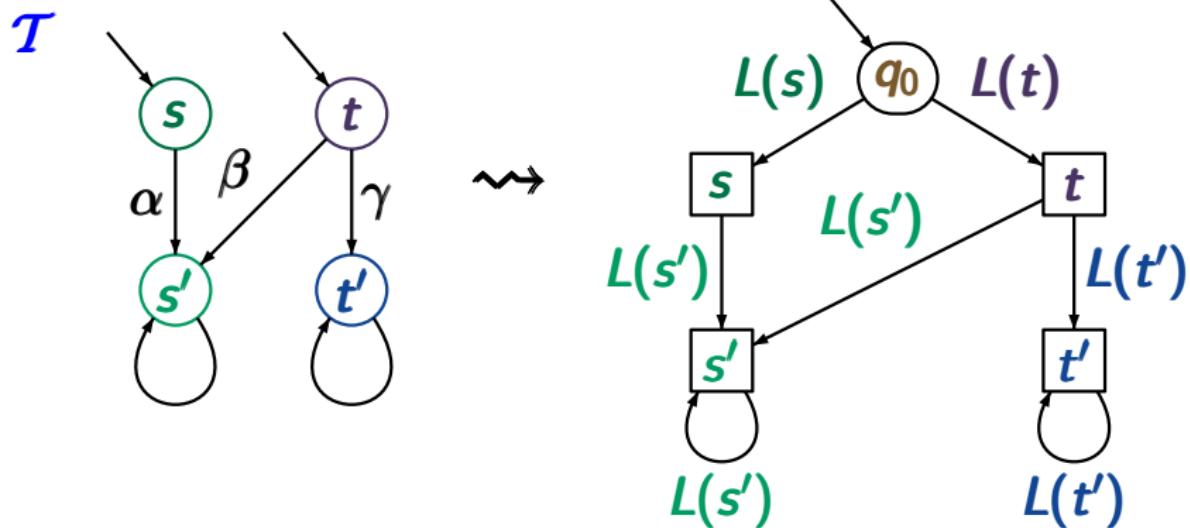


Correct or wrong?

IS2.5-35

If \mathcal{T} is a finite transition system then
 $Traces_{fin}(\mathcal{T})$ is regular.

correct. \mathcal{T} can be transformed into an NFA.



Correct or wrong?

IS2.5-35

If \mathcal{T} is a finite transition system then
 $Traces_{fin}(\mathcal{T})$ is regular.

correct. \mathcal{T} can be transformed into an NFA.

