

Introduction

Modelling parallel systems

Linear Time Properties

Regular Properties

regular safety properties

ω -regular properties

model checking with Büchi automata ←

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Verifying ω -regular properties

LTLMC3.2-MC-OMEGA-REG-PERSISTENCE

given: finite transition system \mathcal{T}
 ω -regular property E

question: does $\mathcal{T} \models E$ hold ?

Verifying ω -regular properties

LTLMC3.2-MC-OMEGA-REG-PERSISTENCE

given: finite transition system \mathcal{T}
 ω -regular property E

question: does $\mathcal{T} \models E$ hold ?

- (1) construct an **NBA** \mathcal{A} for the bad behaviors, i.e.,
$$\mathcal{L}_\omega(\mathcal{A}) = (2^{\text{AP}})^\omega \setminus E$$

Verifying ω -regular properties

LTLMC3.2-MC-OMEGA-REG-PERSISTENCE

given: finite transition system \mathcal{T}
 ω -regular property E

question: does $\mathcal{T} \models E$ hold ?

(1) construct an **NBA** A for the bad behaviors, i.e.,

$$\mathcal{L}_\omega(A) = (2^{AP})^\omega \setminus E$$

(2) check whether $Traces(\mathcal{T}) \cap \mathcal{L}_\omega(A) = \emptyset$

Verifying ω -regular properties

LTLMC3.2-MC-OMEGA-REG-PERSISTENCE

given: finite transition system \mathcal{T}
 ω -regular property E

question: does $\mathcal{T} \models E$ hold ?

(1) construct an **NBA** \mathcal{A} for the bad behaviors, i.e.,

$$\mathcal{L}_\omega(\mathcal{A}) = (2^{AP})^\omega \setminus E$$

(2) check whether $\text{Traces}(\mathcal{T}) \cap \mathcal{L}_\omega(\mathcal{A}) = \emptyset$

(3) build the product transition system $\mathcal{T} \otimes \mathcal{A}$ and
check whether

$\mathcal{T} \otimes \mathcal{A} \models$ “never acceptance condition of \mathcal{A} ”

Verifying ω -regular properties

LTLMC3.2-MC-OMEGA-REG-PERSISTENCE

given: finite transition system \mathcal{T}
 ω -regular property E

question: does $\mathcal{T} \models E$ hold ?

(1) construct an **NBA A** for the bad behaviors, i.e.,

$$\mathcal{L}_\omega(A) = (2^{AP})^\omega \setminus E$$

(2) check whether $\text{Traces}(\mathcal{T}) \cap \mathcal{L}_\omega(A) = \emptyset$

(3) build the product transition system $\mathcal{T} \otimes A$ and
check whether

$\mathcal{T} \otimes A \models$ “never acceptance condition of A ”

requires techniques for checking
persistence properties in finite TS

Persistence property

LTLMC3.2-PERSISTENCE-PROP.TEX

Persistence property

Let E be an LT-property, i.e., $E \subseteq (2^{AP})^\omega$

E is called a **persistence property** if there exists a propositional formula Φ over AP such that

$$E = \left\{ \begin{array}{l} \text{set of all infinite words } A_0 A_1 A_2 \dots \in (2^{AP})^\omega \\ \text{s.t. } \forall^{\infty} i \geq 0. A_i \models \Phi \end{array} \right.$$

$\forall^{\infty} i \geq 0. \dots = \exists j \geq 0 \forall i \geq j. \dots$ “for all but finitely many”

Persistence property

Let E be an LT-property, i.e., $E \subseteq (2^{AP})^\omega$

E is called a **persistence property** if there exists a propositional formula Φ over AP such that

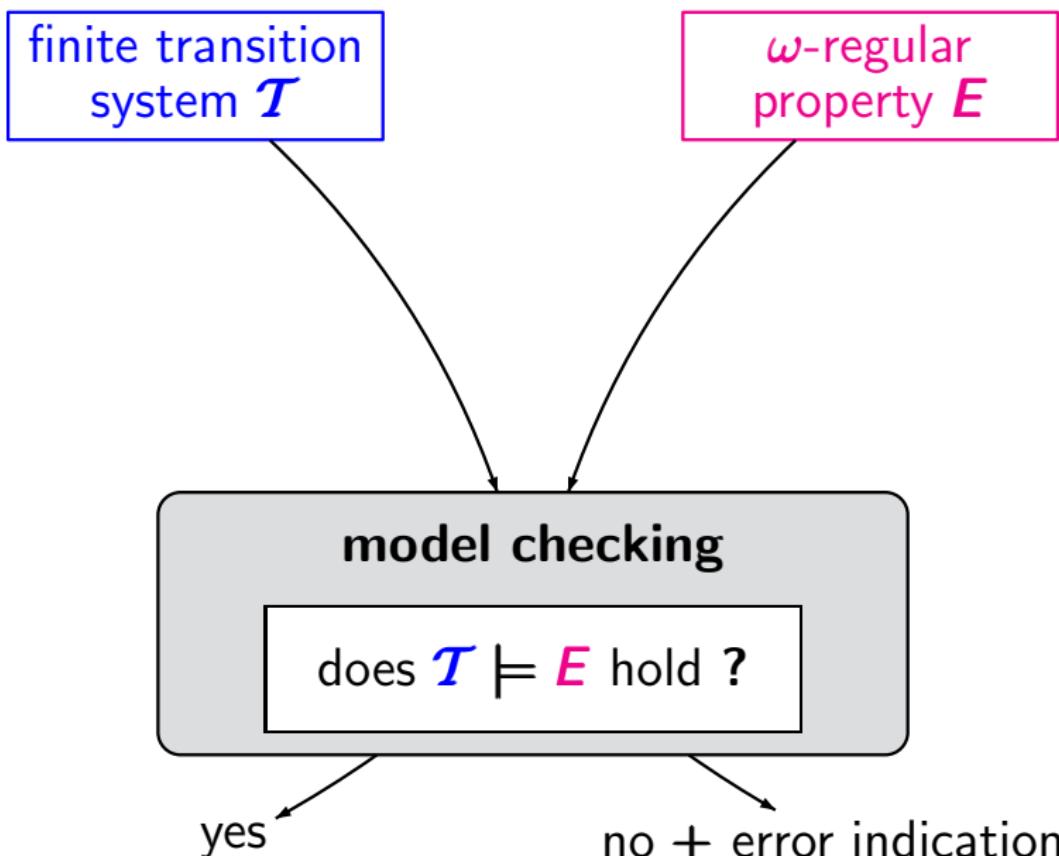
$$E = \left\{ \begin{array}{l} \text{set of all infinite words } A_0 A_1 A_2 \dots \in (2^{AP})^\omega \\ \text{s.t. } \forall i \geq 0. A_i \models \Phi \end{array} \right.$$

“from some moment on Φ ”
“eventually forever Φ ”

$\forall^\infty i \geq 0. \dots = \exists j \geq 0 \forall i \geq j. \dots$ “for all but finitely many”

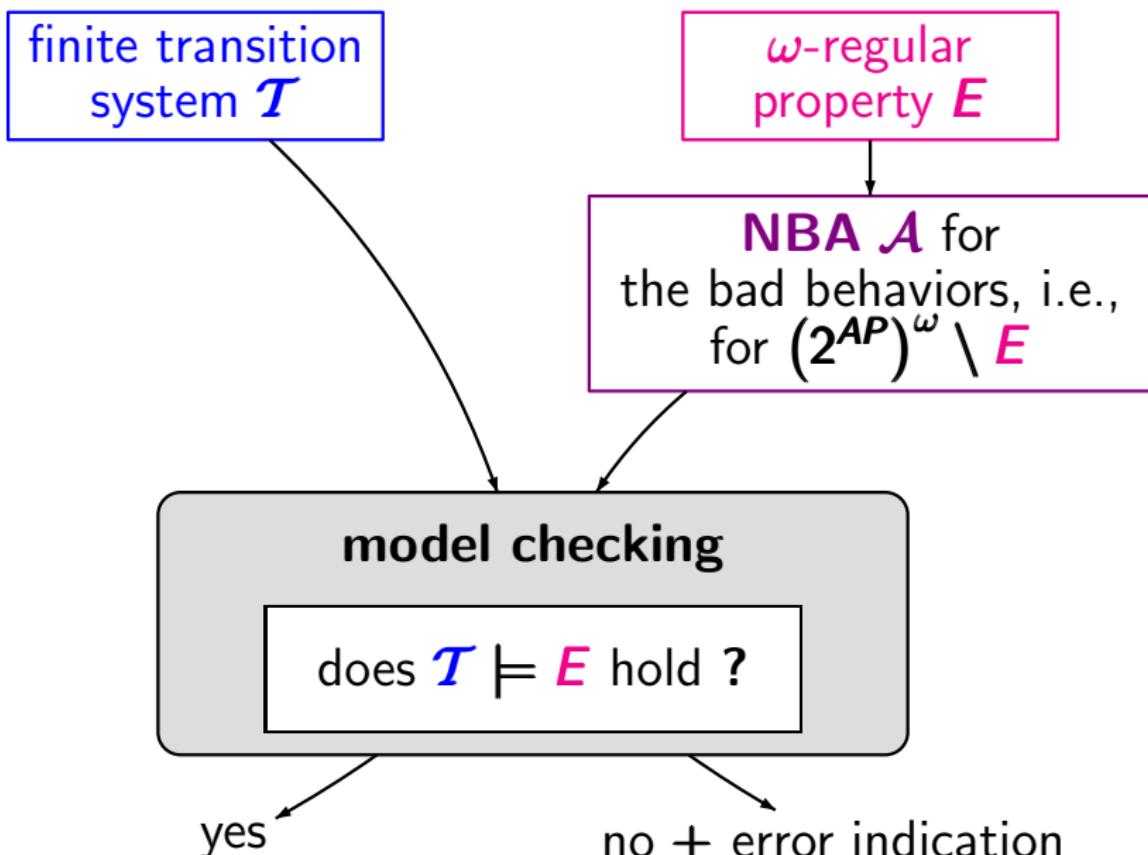
Checking ω -regular properties

LTLMC3.2-OMEGA



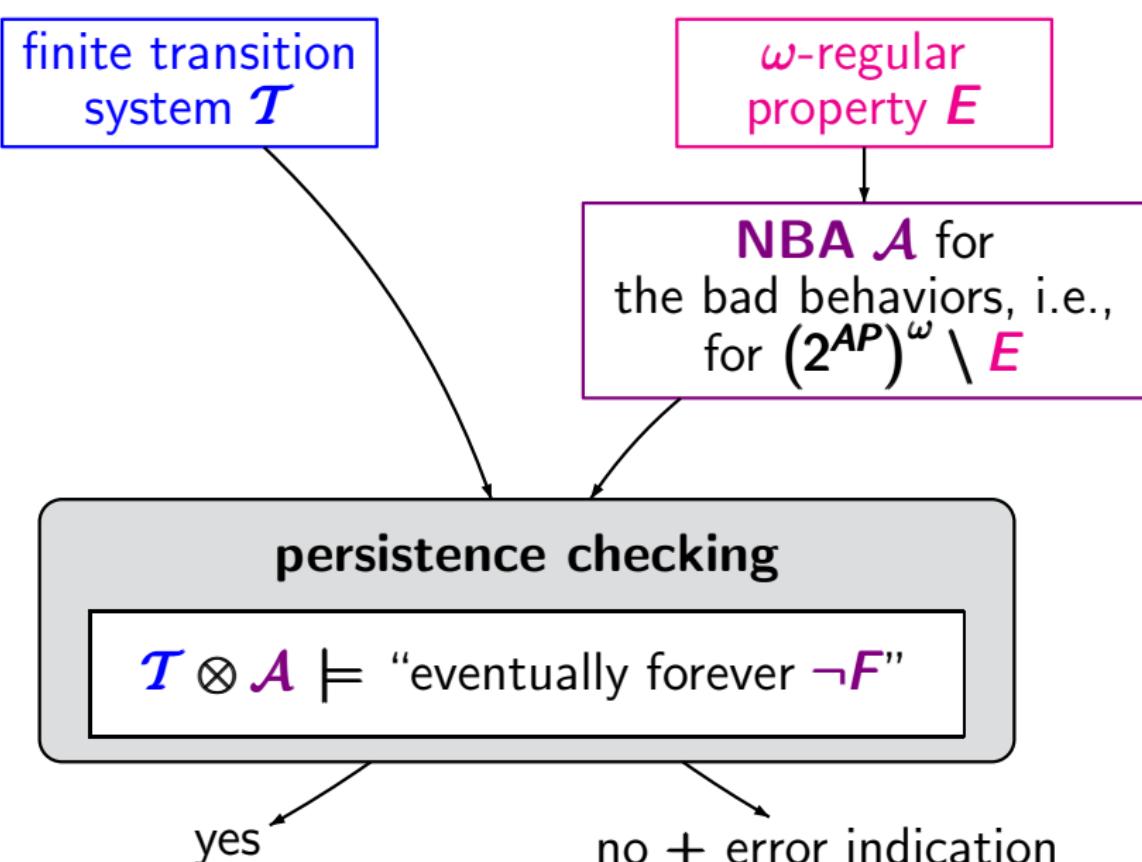
Checking ω -regular properties

LTLMC3.2-OMEGA



Checking ω -regular properties

LTLMC3.2-OMEGA



Recall: product of a TS and an NFA

LTLMC3.2-PROD

finite transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

NFA for bad prefixes

$$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$$

path
fragment $\hat{\pi}$

Recall: product of a TS and an NFA

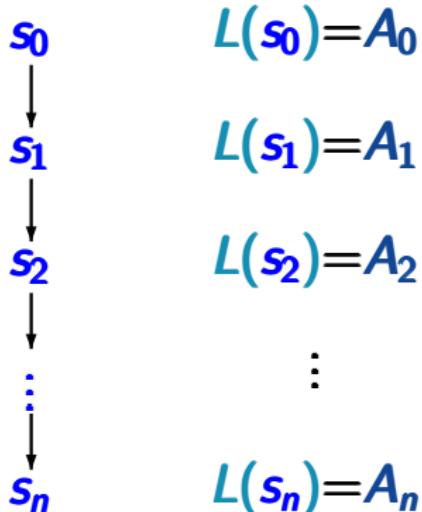
LTLMC3.2-PROD

finite transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

NFA for bad prefixes

$$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$$



path
fragment $\hat{\pi}$ trace

Recall: product of a TS and an NFA

LTLMC3.2-PROD

finite transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

$$L(s_0) = A_0$$

$$L(s_1) = A_1$$

$$L(s_2) = A_2$$

⋮

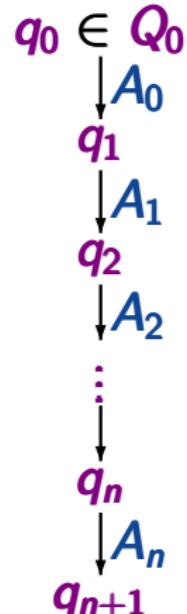
$$L(s_n) = A_n$$

path
fragment $\hat{\pi}$

trace

NFA for bad prefixes

$$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$$



run for $trace(\hat{\pi})$

Recall: product of a TS and an NFA

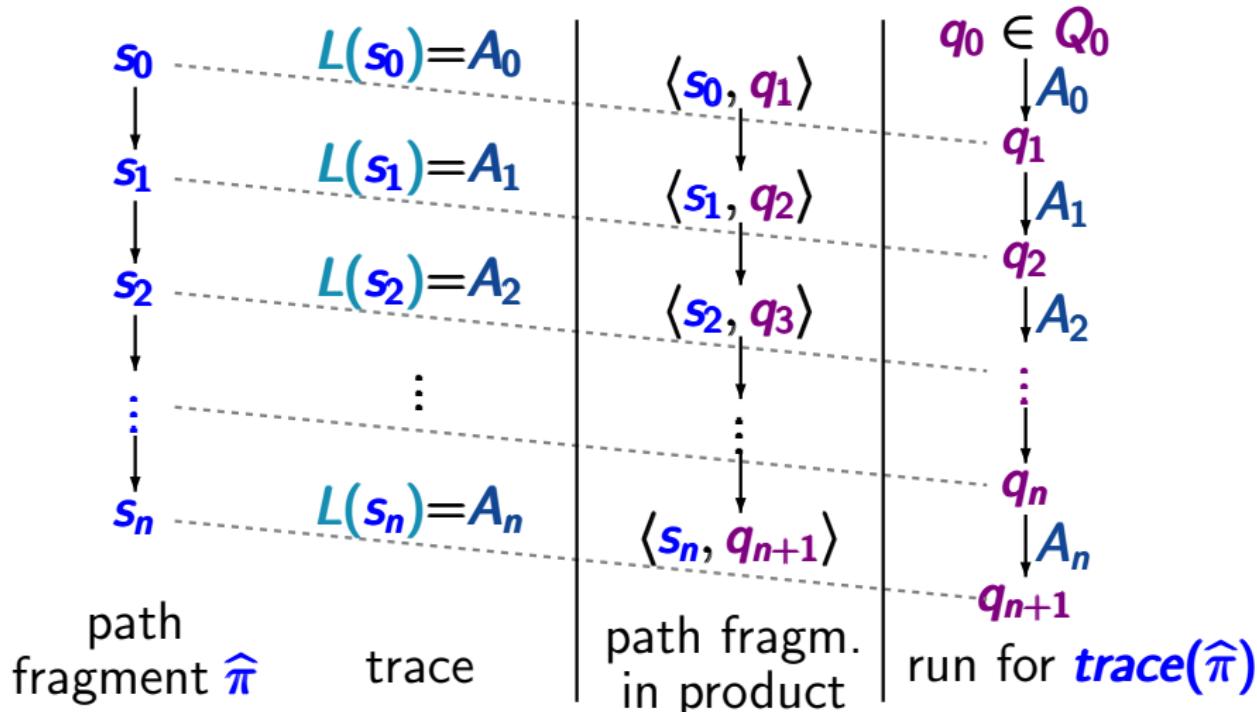
LTLMC3.2-PROD

finite transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

NFA for bad prefixes

$$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$$



Product transition system

LTLMC3.2-PROD-1

recall: definition of the product of a **TS** and **NFA**

Product transition system

LTLMC3.2-PROD

$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ transition system

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NFA

product-TS $\mathcal{T} \otimes \mathcal{A} \stackrel{\text{def}}{=} (S \times Q, Act, \longrightarrow', S'_0, AP', L')$

Product transition system

LTLMC3.2-PROD

$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ transition system

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NFA

product-TS $\mathcal{T} \otimes \mathcal{A} \stackrel{\text{def}}{=} (S \times Q, Act, \rightarrow', S'_0, AP', L')$

$$\frac{s \xrightarrow{\alpha} s' \quad \wedge \quad q' \in \delta(q, L(s'))}{\langle s, q \rangle \xrightarrow{\alpha}' \langle s', q' \rangle}$$

initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$

Product transition system

LTLMC3.2-PROD

$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ transition system

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NFA

product-TS $\mathcal{T} \otimes \mathcal{A} \stackrel{\text{def}}{=} (S \times Q, Act, \rightarrow', S'_0, AP', L')$

$$\frac{s \xrightarrow{\alpha} s' \quad \wedge \quad q' \in \delta(q, L(s'))}{\langle s, q \rangle \xrightarrow{\alpha} \langle s', q' \rangle}$$

initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$

set of atomic propositions: $AP' = Q$

labeling function: $L'(\langle s, q \rangle) = \{q\}$

Product transition system

LTLMC3.2-PROD

$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ transition system

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

NFA \leftarrow

same definition
for **NBA**

product-TS $\mathcal{T} \otimes \mathcal{A} \stackrel{\text{def}}{=} (S \times Q, Act, \rightarrow', S'_0, AP', L')$

$$\frac{s \xrightarrow{\alpha} s' \quad \wedge \quad q' \in \delta(q, L(s'))}{\langle s, q \rangle \xrightarrow{\alpha} \langle s', q' \rangle}$$

initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$

set of atomic propositions: $AP' = Q$

labeling function:

$L'(\langle s, q \rangle) = \{q\}$

Product of a TS and NBA

LTLMC3.2-PROD-2

$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ transition system

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NFA or NBA

product-TS $\mathcal{T} \otimes \mathcal{A} \stackrel{\text{def}}{=} (S \times Q, Act, \rightarrow', S'_0, AP', L')$

$$\frac{s \xrightarrow{\alpha} s' \quad \wedge \quad q' \in \delta(q, L(s'))}{\langle s, q \rangle \xrightarrow{\alpha}' \langle s', q' \rangle}$$

initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$

set of atomic propositions: $AP' = Q$

labeling function: $L'(\langle s, q \rangle) = \{q\}$

given: finite TS \mathcal{T}
 ω -regular LT property E

question: does $\mathcal{T} \models E$ hold ?

ω -regular model checking

LTLMC3.2-RED

given: finite TS \mathcal{T}
 ω -regular LT property E

question: does $\mathcal{T} \models E$ hold ?

algorithm uses an **NBA** for the bad behaviors for E

given: finite TS \mathcal{T}
 ω -regular LT property E

question: does $\mathcal{T} \models E$ hold ?

algorithm uses an **NBA** for the bad behaviors for E
relies on a reduction to the **persistence checking** problem

$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ finite transition system
without terminal states

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ non-blocking NBA
representing the bad behaviors of an ω -regular
LT-property E

ω -regular model checking

LTLMC3.2-RED

$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ finite transition system
without terminal states

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ non-blocking NBA
representing the bad behaviors of an ω -regular
LT-property E , i.e., $\mathcal{L}_\omega(\mathcal{A}) = (2^{AP})^\omega \setminus E$

$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ finite transition system without terminal states

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ non-blocking NBA
representing the bad behaviors of an ω -regular LT-property E , i.e., $\mathcal{L}_\omega(\mathcal{A}) = (2^{AP})^\omega \setminus E$

The following statements are equivalent:

$$(1) \quad \mathcal{T} \models E$$

$$(2) \quad \text{Traces}(\mathcal{T}) \cap \mathcal{L}_\omega(\mathcal{A}) = \emptyset$$

$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ finite transition system without terminal states

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ non-blocking NBA representing the bad behaviors of an ω -regular LT-property E , i.e., $\mathcal{L}_\omega(\mathcal{A}) = (2^{AP})^\omega \setminus E$

The following statements are equivalent:

(1) $\mathcal{T} \models E$

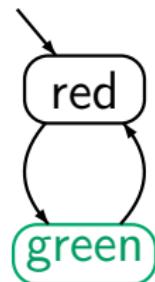
(2) $Traces(\mathcal{T}) \cap \mathcal{L}_\omega(\mathcal{A}) = \emptyset$

(3) $\mathcal{T} \otimes \mathcal{A} \models \text{"eventually forever } \neg F\text{"}$

Example: ω -regular model checking

LTLMC3.2-8-OMEGA

TS \mathcal{T}

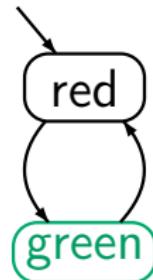


LT property: “infinitely often green”

Example: ω -regular model checking

LTLMC3.2-8-OMEGA

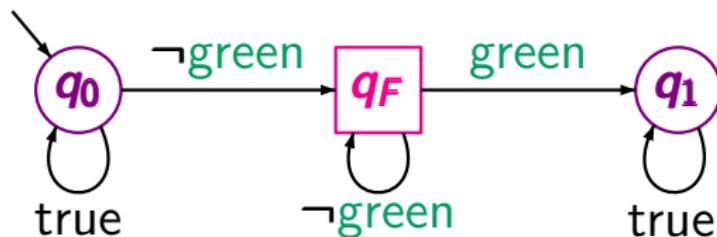
TS \mathcal{T}



LT property: “infinitely often green”

NBA \mathcal{A} for the complement

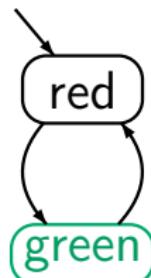
“from some moment on \neg green”



Example: ω -regular model checking

LTLMC3.2-8-OMEGA

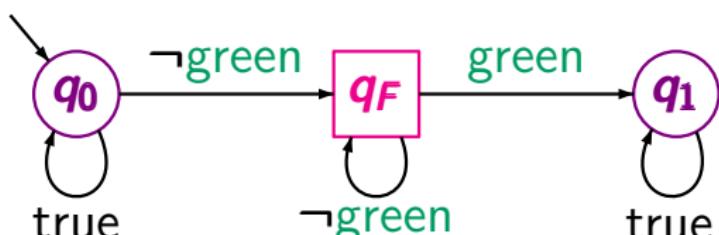
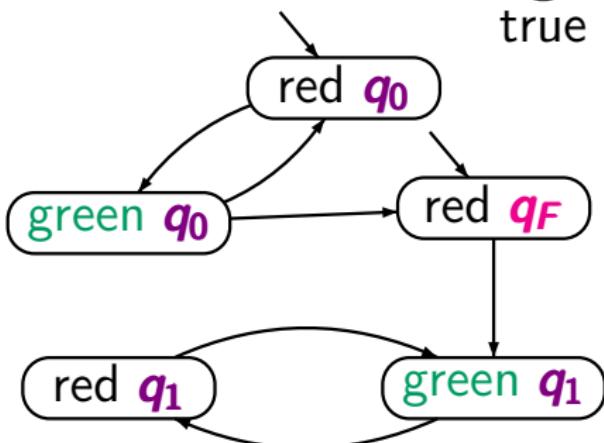
TS \mathcal{T}



LT property: “infinitely often green”

NBA \mathcal{A} for the complement

“from some moment on \neg green”

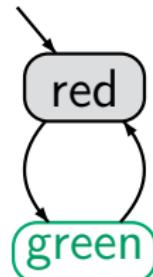


reachable fragment of the product TS $\mathcal{T} \otimes \mathcal{A}$

Example: ω -regular model checking

LTLMC3.2-8-OMEGA

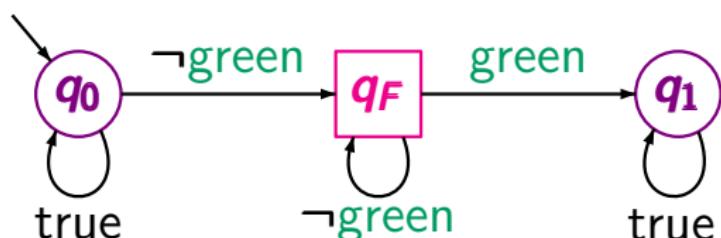
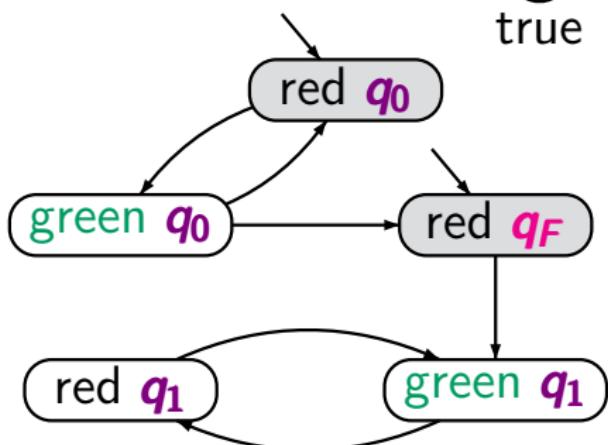
TS \mathcal{T}



LT property: “infinitely often green”

NBA \mathcal{A} for the complement

“from some moment on \neg green”



initial states:

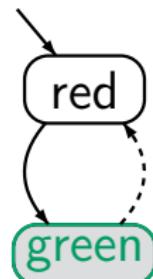
$\langle \text{red}, q \rangle$ where

$$\begin{aligned} q &\in \delta(q_0, L(\text{red})) \\ &= \delta(q_0, \emptyset) \\ &= \{q_0, q_F\} \end{aligned}$$

Example: ω -regular model checking

LTLMC3.2-8-OMEGA

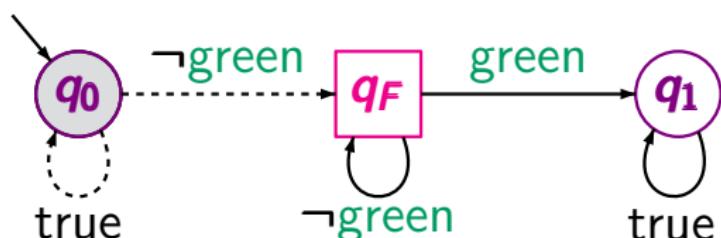
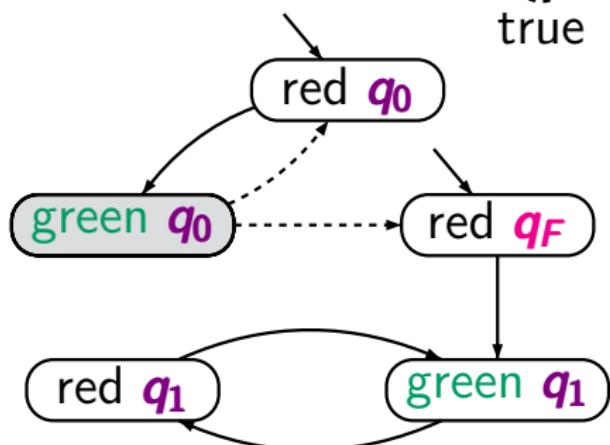
TS \mathcal{T}



LT property: “infinitely often green”

NBA \mathcal{A} for the complement

“from some moment on \neg green”



transition

$$\langle \text{green}, q_0 \rangle \rightarrow \langle \text{red}, q \rangle$$

$$q \in \delta(q_0, L(\text{red}))$$

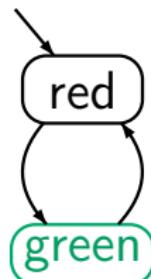
$$= \delta(q_0, \emptyset)$$

$$= \{q_0, q_F\}$$

Example: ω -regular model checking

LTLMC3.2-8-OMEGA

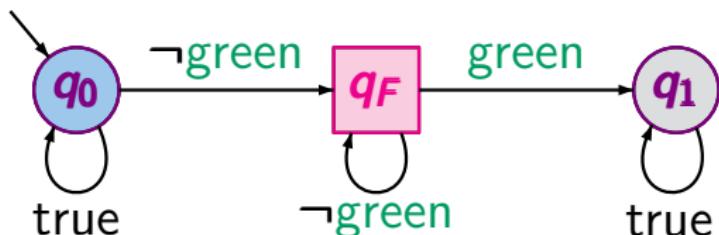
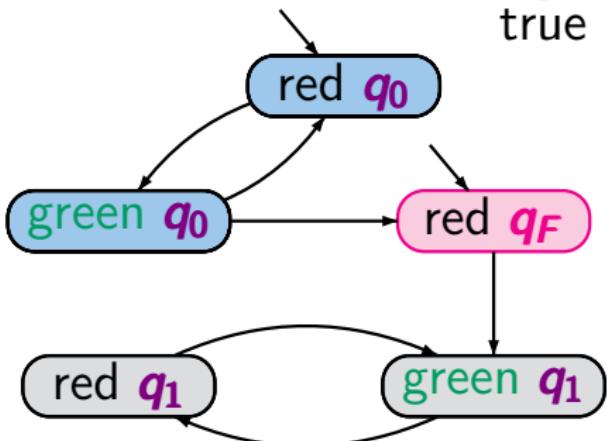
TS \mathcal{T}



LT property: “infinitely often green”

NBA \mathcal{A} for the complement

“from some moment on \neg green”



atomic propositions

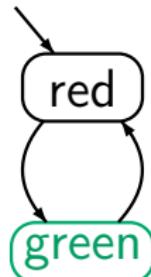
$$AP' = \{q_0, q_F, q_1\}$$

obvious labeling function

Example: ω -regular model checking

LTLMC3.2-8-OMEGA

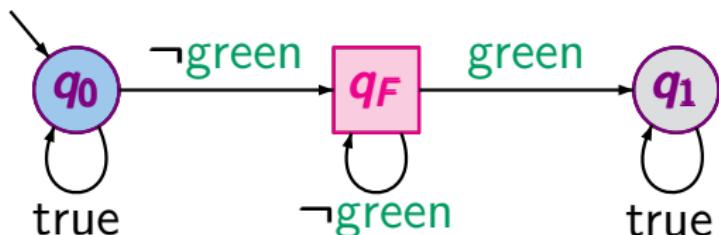
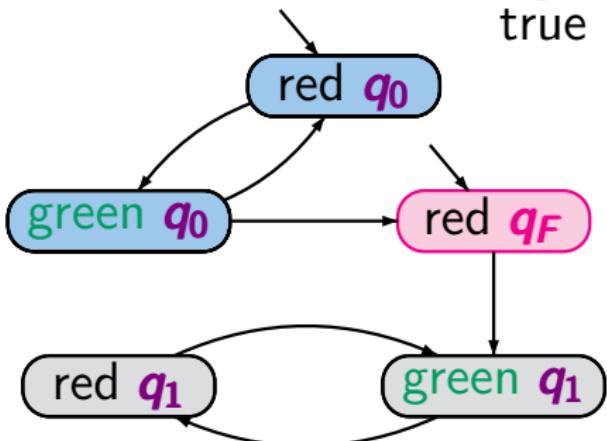
TS \mathcal{T}



LT property: “infinitely often green”

NBA \mathcal{A} for the complement

“from some moment on \neg green”



atomic propositions

$$AP' = \{q_0, q_F, q_1\}$$

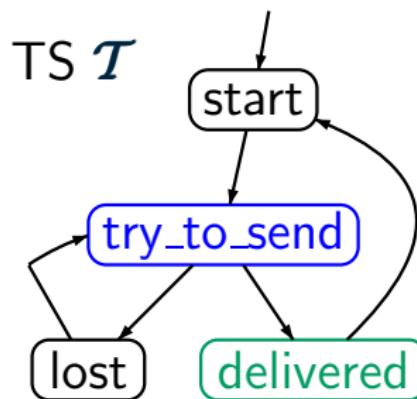
obvious labeling function

$\mathcal{T} \otimes \mathcal{A} \models$

“eventually forever $\neg F$ ”

Example: ω -regular model checking

LTLMC3.2-9-OMEGA

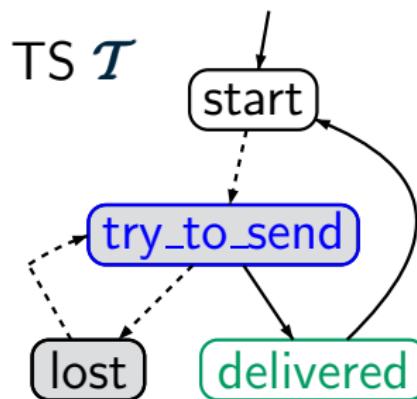


ω -regular LT property E :

“each (repeatedly) sent message will eventually be delivered”

Example: ω -regular model checking

LTLMC3.2-9-OMEGA



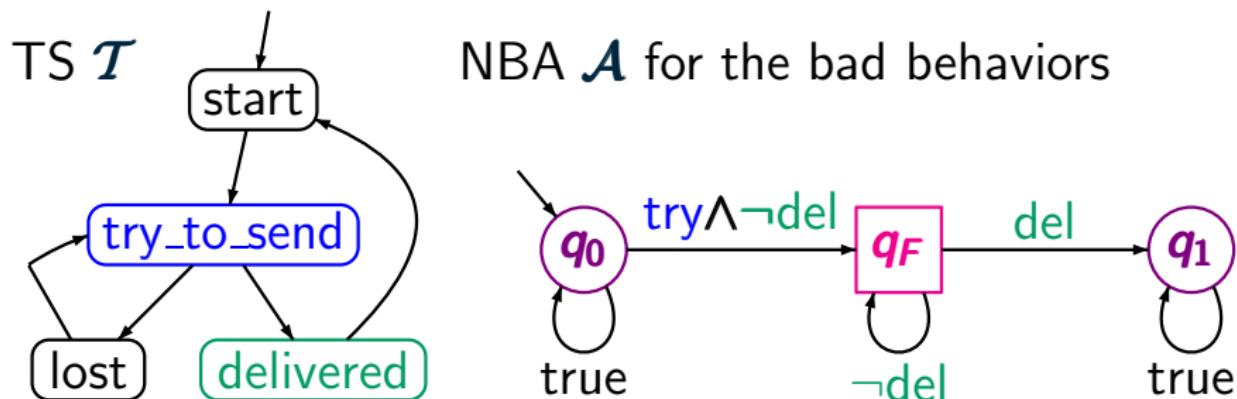
ω -regular LT property E :

“each (repeatedly) sent message will eventually be delivered”

$\mathcal{T} \not\models E$

Example: ω -regular model checking

LTLMC3.2-9-OMEGA



ω -regular LT property E :

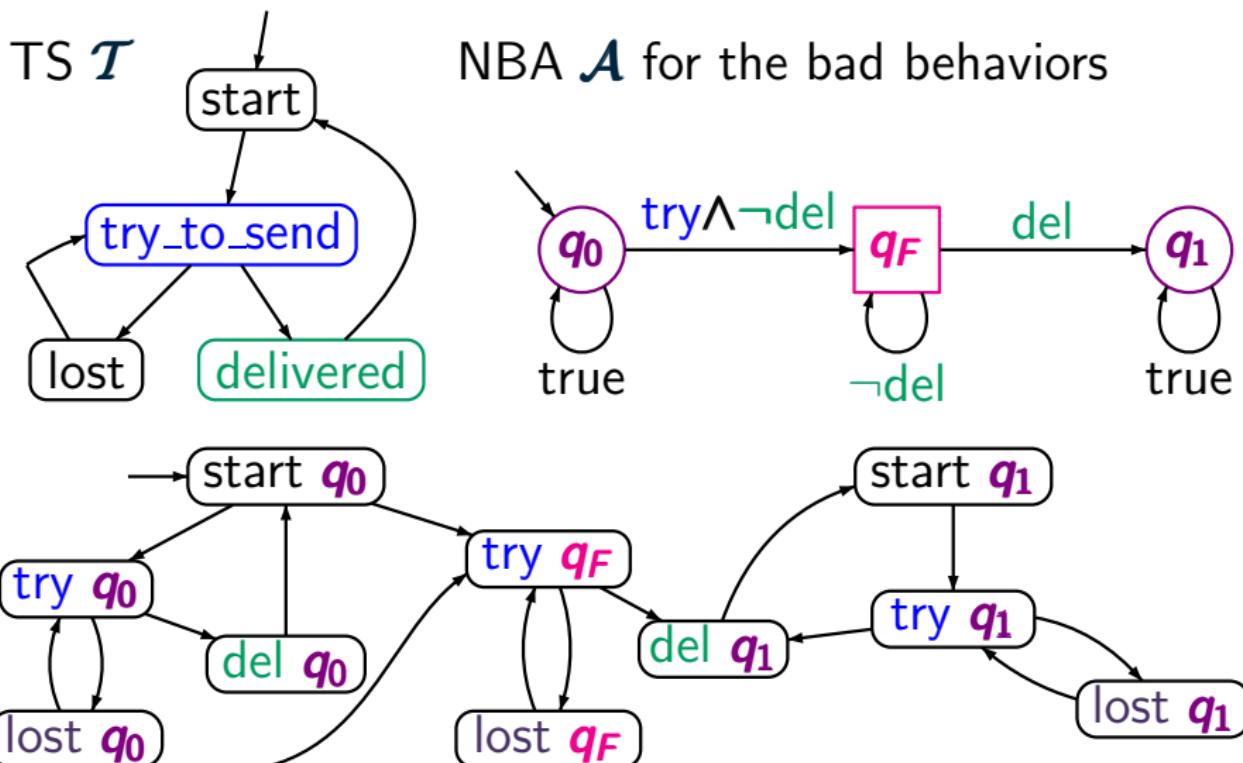
“each (repeatedly) sent message will eventually be delivered”

complement of E , i.e., LT property for the bad behaviors:

“never delivered after some trial”

Example: ω -regular model checking

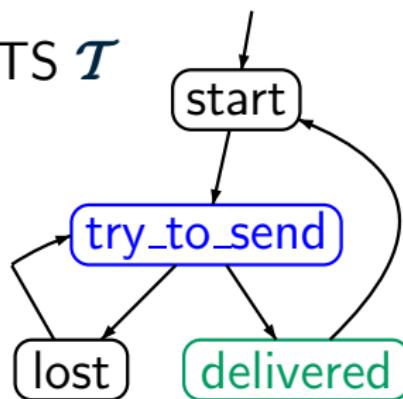
LTLMC3.2-9-OMEGA



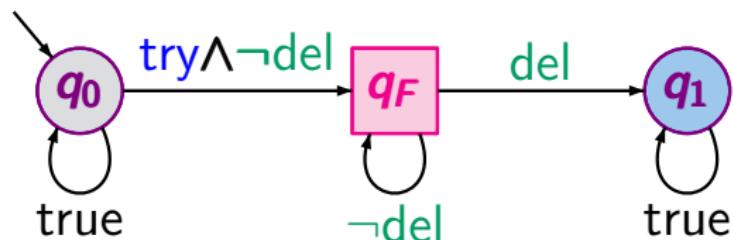
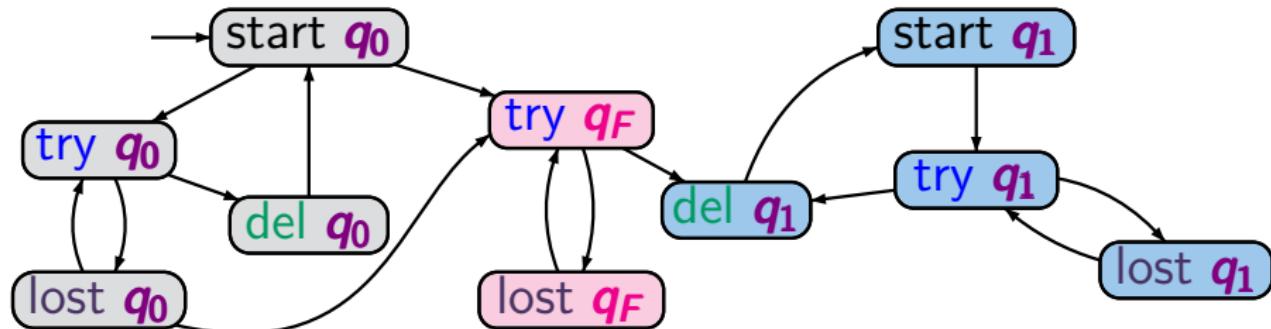
Example: ω -regular model checking

LTLMC3.2-9-OMEGA

TS \mathcal{T}



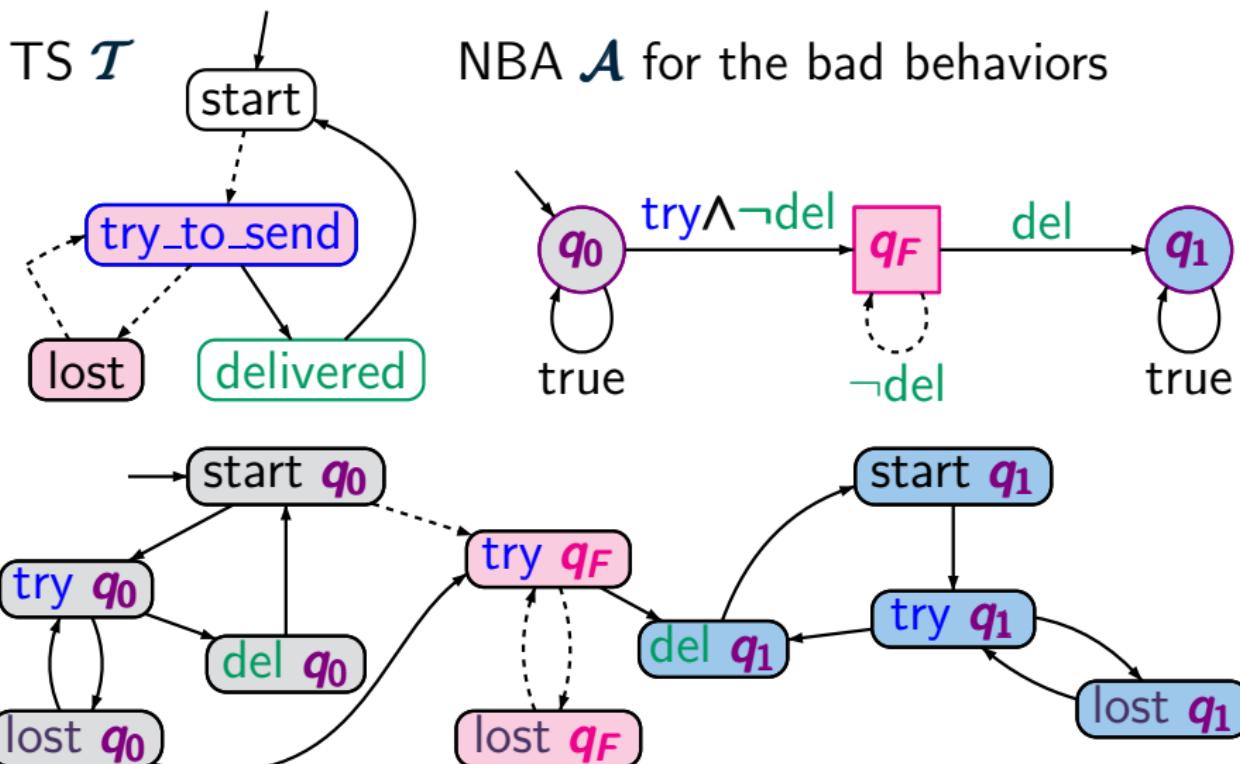
NBA \mathcal{A} for the bad behaviors



set of atomic propositions $AP' = \{q_0, q_1, q_F\}$

Example: ω -regular model checking

LTLMC3.2-9-OMEGA



$\mathcal{T} \otimes \mathcal{A} \not\models \text{"eventually forever } \neg F\text{"}$

Checking safety and ω -regular properties

LTLMC3.2-10A

Checking safety and ω -regular properties

LTLMC3.2-10A

for regular safety property E

$$T \models E$$

iff $Traces_{fin}(T) \cap BadPref = \emptyset$

Checking safety and ω -regular properties

LTLMC3.2-10A

for regular safety property E

$$\mathcal{T} \models E$$

iff $Traces_{fin}(\mathcal{T}) \cap BadPref = \emptyset$

for ω -regular property E

$$\mathcal{T} \models E$$

iff $Traces(\mathcal{T}) \cap \mathcal{L}_\omega(\mathcal{A}) = \emptyset$

\mathcal{A} is an **NBA**
for the bad
behaviors of E

Checking safety and ω -regular properties

LTLMC3.2-10A

for regular safety property E

$$\mathcal{T} \models E$$

iff $Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$

\mathcal{A} is an **NFA**
for the bad
prefixes of E

for ω -regular property E

$$\mathcal{T} \models E$$

iff $Traces(\mathcal{T}) \cap \mathcal{L}_\omega(\mathcal{A}) = \emptyset$

\mathcal{A} is an **NBA**
for the bad
behaviors of E

Checking safety and ω -regular properties

LTLMC3.2-10A

for regular safety property E

$$\mathcal{T} \models E$$

iff $\text{Traces}_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$

iff $\mathcal{T} \otimes \mathcal{A} \models \text{"forever } \neg F\text{"}$

\mathcal{A} is an **NFA**
for the bad
prefixes of E

for ω -regular property E

$$\mathcal{T} \models E$$

iff $\text{Traces}(\mathcal{T}) \cap \mathcal{L}_\omega(\mathcal{A}) = \emptyset$

iff $\mathcal{T} \otimes \mathcal{A} \models \text{"eventually forever } \neg F\text{"}$

\mathcal{A} is an **NBA**
for the bad
behaviors of E

F = set of final states in \mathcal{A}

Checking safety and ω -regular properties

LTLMC3.2-10A

for regular safety property E

$$\mathcal{T} \models E$$

iff $Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$

iff $\mathcal{T} \otimes \mathcal{A} \models \text{"forever } \neg F\text{"}$

invariant
checking

for ω -regular property E

$$\mathcal{T} \models E$$

iff $Traces(\mathcal{T}) \cap \mathcal{L}_\omega(\mathcal{A}) = \emptyset$

iff $\mathcal{T} \otimes \mathcal{A} \models \text{"eventually forever } \neg F\text{"}$

persistence
checking

F = set of final states in \mathcal{A}

Persistence checking

LTLMC3.2-11

given: finite transition system \mathcal{T} over AP
persistence condition $a \in AP$

question: does $\mathcal{T} \models$ “eventually forever a ” hold ?

Persistence checking

LTLMC3.2-11

given: finite transition system \mathcal{T} over AP
persistence condition $a \in AP$

question: does $\mathcal{T} \models$ “eventually forever a ” hold ?

$\mathcal{T} \not\models$ “eventually forever a ”

iff there is a path $s_0 s_1 s_2 s_3 \dots$ in \mathcal{T} s.t.
 $s_i \not\models a$ for infinitely many $i \geq 0$

Persistence checking

LTLMC3.2-11

given: finite transition system \mathcal{T} over AP
persistence condition $a \in AP$

question: does $\mathcal{T} \models$ “eventually forever a ” hold ?

$\mathcal{T} \not\models$ “eventually forever a ”

iff there is a path $s_0 s_1 s_2 s_3 \dots$ in \mathcal{T} s.t.
 $s_i \not\models a$ for infinitely many $i \geq 0$

iff there exists a reachable state s with $s \not\models a$
and a cycle $s \dots s$

Persistence checking

LTLMC3.2-11

given: finite transition system \mathcal{T} over AP
persistence condition $a \in AP$

question: does $\mathcal{T} \models$ “eventually forever a ” hold ?

$\mathcal{T} \not\models$ “eventually forever a ”

iff there is a path $s_0 s_1 s_2 s_3 \dots$ in \mathcal{T} s.t.
 $s_i \not\models a$ for infinitely many $i \geq 0$

iff there exists a reachable state s with $s \not\models a$
and a cycle $s \dots s$

iff there exists a non-trivial reachable SCC C
with $C \cap \{s \in S : s \not\models a\} \neq \emptyset$

Persistence checking

LTLMC3.2-11

given: finite transition system \mathcal{T} over AP
persistence condition $a \in AP$

question: does $\mathcal{T} \models$ “eventually forever a ” hold ?

$\mathcal{T} \not\models$ “eventually forever a ”

iff there exists a reachable state s with $s \not\models a$
and a cycle $s \dots s$

iff there exists a non-trivial reachable **SCC** C
with $C \cap \{s \in S : s \not\models a\} \neq \emptyset$

SCC: **strongly connected component**, i.e., maximal
set of states that are reachable from each other

Persistence checking

LTLMC3.2-11

given: finite transition system \mathcal{T} over AP
persistence condition $a \in AP$

question: does $\mathcal{T} \models$ “eventually forever a ” hold ?

$\mathcal{T} \not\models$ “eventually forever a ”

iff there exists a reachable state s with $s \not\models a$
and a cycle $s \dots s$

iff there exists a non-trivial reachable SCC C
with $C \cap \{s \in S : s \not\models a\} \neq \emptyset$

A SCC is called non-trivial if it has at least one edge.
“either 1 state with a self-loop or 2 or more states”

Persistence checking

LTLMC3.2-11

given: finite transition system \mathcal{T} over AP
persistence condition $a \in AP$

question: does $\mathcal{T} \models$ “eventually forever a ” hold ?

$\mathcal{T} \not\models$ “eventually forever a ”

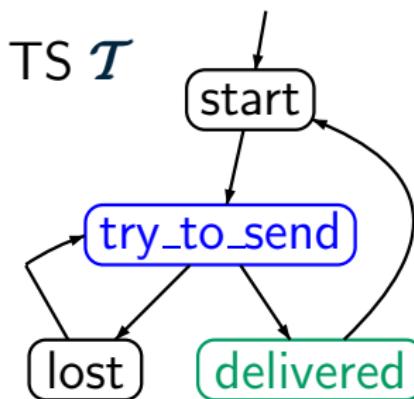
iff there exists a reachable state s with $s \not\models a$
and a cycle $s \dots s$

iff there exists a non-trivial reachable $SCC C$
with $C \cap \{s \in S : s \not\models a\} \neq \emptyset$

method: calculate and analyze the $SCCs$

Example: ω -regular model checking

LTLMC3.2-9-OMEGA-COPY



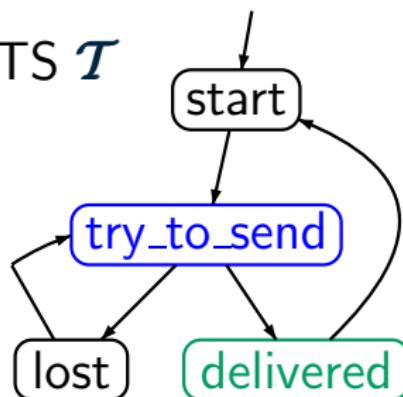
ω -regular LT property E :

“each (repeatedly) sent message will eventually be delivered”

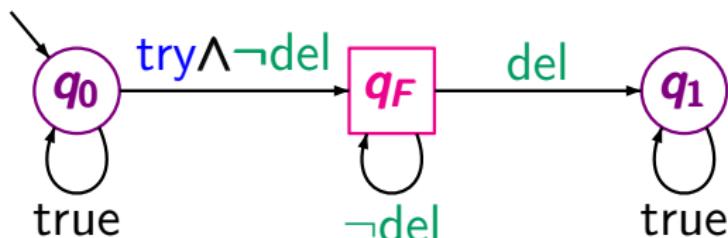
Example: ω -regular model checking

LTLMC3.2-9-OMEGA-COPY

TS \mathcal{T}



NBA \mathcal{A} for the bad behaviors



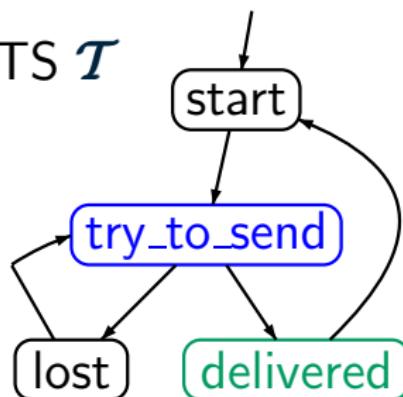
ω -regular LT property E :

“each (repeatedly) sent message will eventually be delivered”

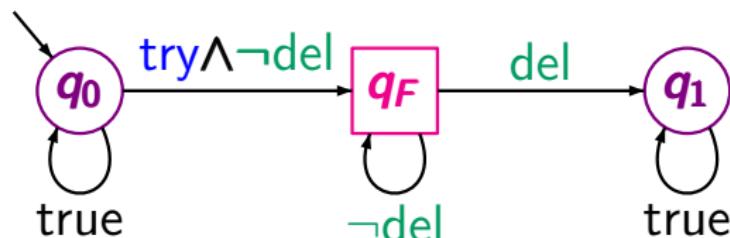
Example: ω -regular model checking

LTLMC3.2-9-OMEGA-COPY

TS \mathcal{T}



NBA \mathcal{A} for the bad behaviors



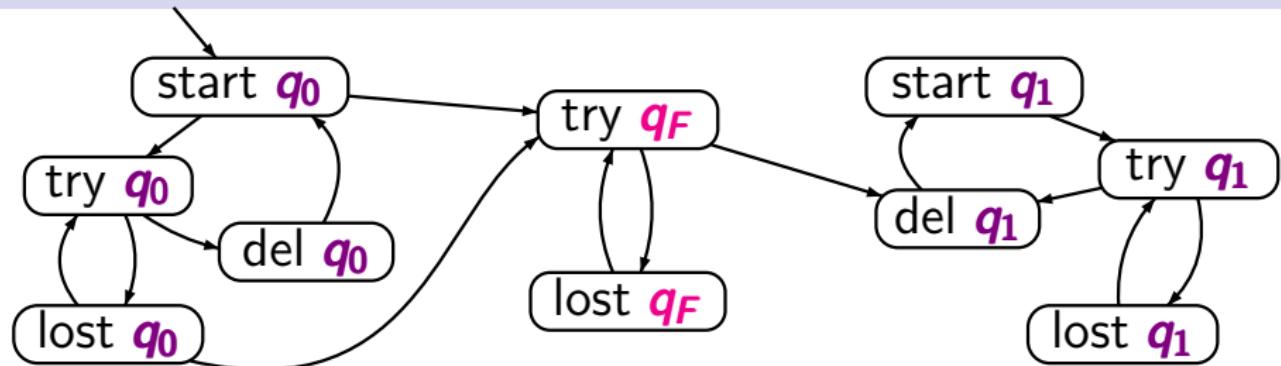
ω -regular LT property E :

“each (repeatedly) sent message will eventually be delivered”

... analysis of the SCCs in product $\mathcal{T} \otimes \mathcal{A}$...

Example: persistence checking $\mathcal{T} \otimes \mathcal{A}$

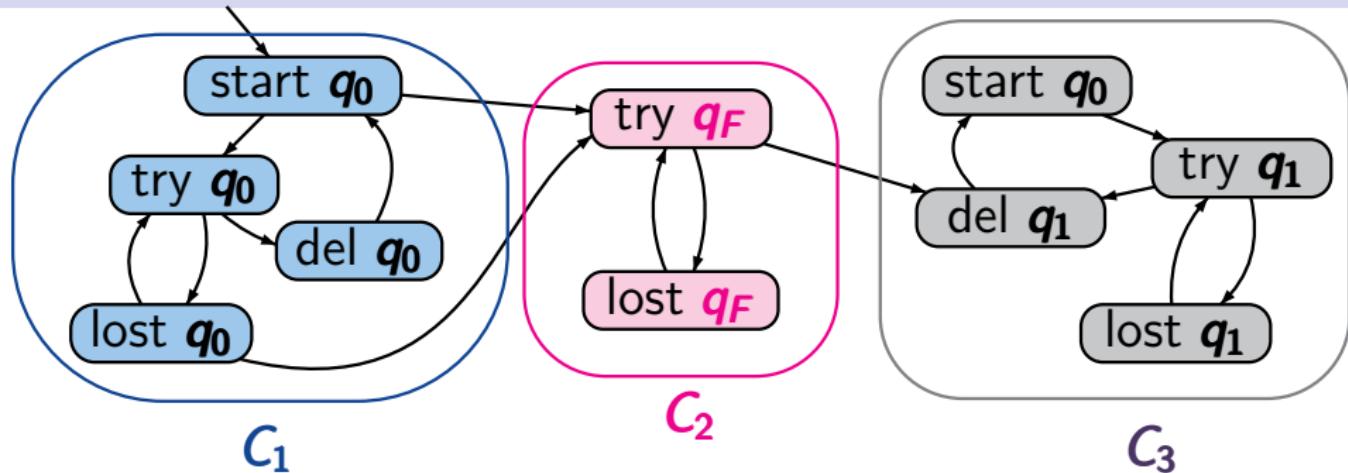
LTLMC3.2-12



persistence property: “eventually forever $\neg q_F$ ”

Example: persistence checking $\mathcal{T} \otimes \mathcal{A}$

LTLMC3.2-12

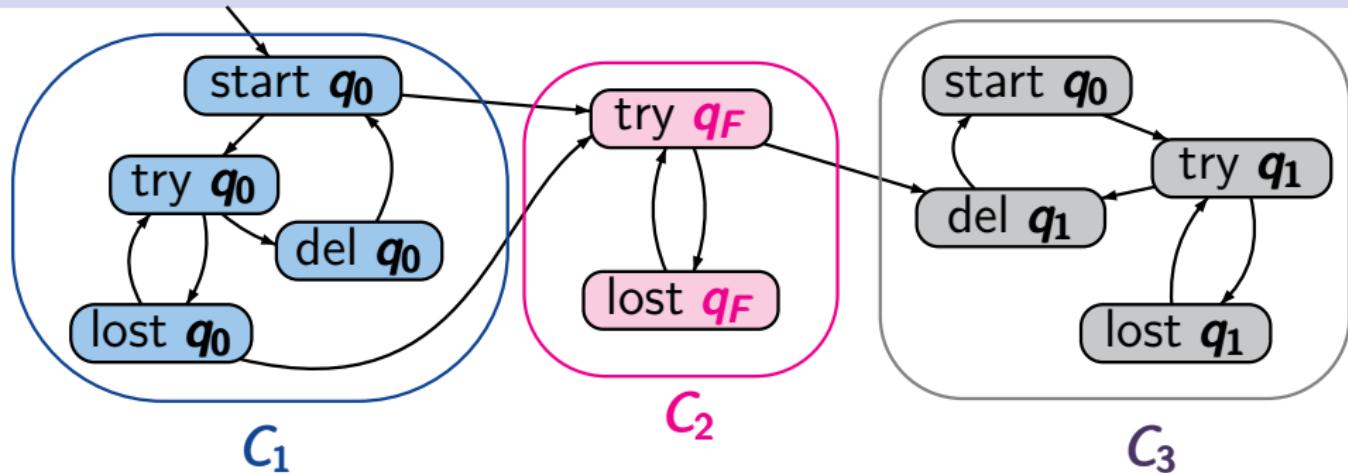


persistence property: “eventually forever $\neg q_F$ ”

3 reachable SCCs: C_1 , C_2 , C_3

Example: persistence checking $\mathcal{T} \otimes \mathcal{A}$

LTLMC3.2-12



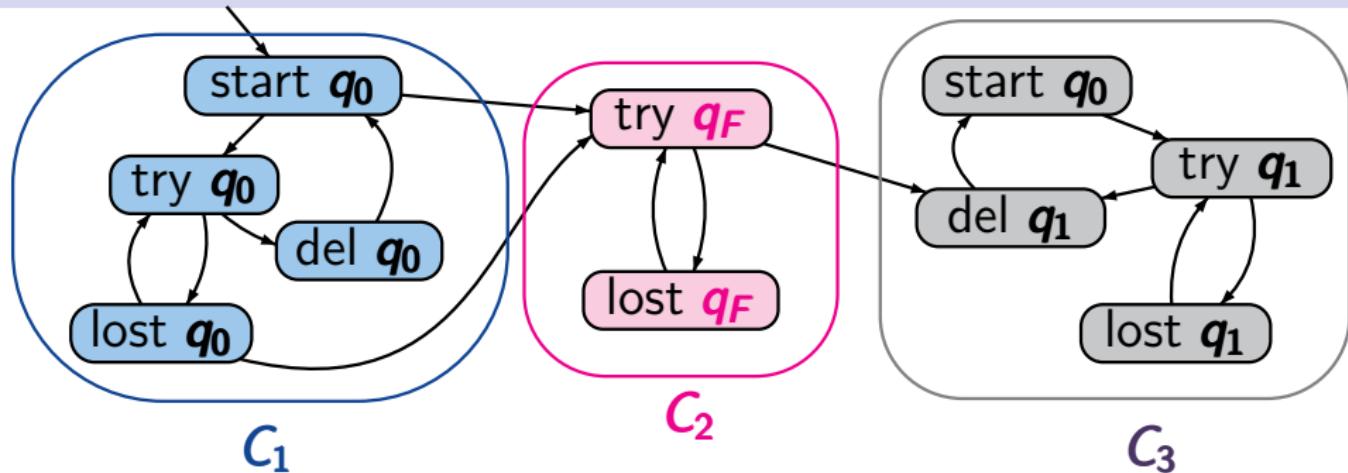
persistence property: “eventually forever $\neg q_F$ ”

3 reachable SCCs: C_1 , C_2 , C_3

C_2 non-trivial, and contains two states s with $s \not\models \neg q_F$

Example: persistence checking $\mathcal{T} \otimes \mathcal{A}$

LTLMC3.2-12



persistence property: “eventually forever $\neg q_F$ ”

3 reachable SCCs: C_1 , C_2 , C_3

C_2 non-trivial, and contains two states s with $s \not\models \neg q_F$

$\mathcal{T} \otimes \mathcal{A} \not\models$ “eventually forever $\neg q_F$ ”

$\mathcal{T} \not\models$ “eventually forever a ”

- iff there exists a reachable state s with $s \not\models a$ and a cycle $s \dots s$
- iff there exists a non-trivial reachable SCC C with $C \cap \{s \in S : s \not\models a\} \neq \emptyset$