OverView OVERVIEWS. 1

Introduction

Modelling parallel systems
Linear Time Properties

Regular Properties

Linear Temporal Logic (LTL)

syntax and semantics of LTL —
automata-based LTL model checking
complexity of LTL model checking

Computation-Tree Logic

Equivalences and Abstraction

5/416

Positive normal form (PNF) LrLsE. 135

217 /416

Positive normal form (PNF) LrLsE. 135

e negation only on the level of literals

e uses for each operator its dual

218 /416

PNF for propositional logic LTLSF3.1-35

e negation only on the level of literals

e uses for each operator its dual

syntax of propositional formulas in PNF:

@ = true|false|a|ﬂa|g01/\<p2 01V

219 /416

PNF for propositional logic LTLSF3.1-35

e negation only on the level of literals

e uses for each operator its dual

syntax of propositional formulas in PNF:

@ = true|false|a|ﬂa|g01/\<p2 01V

-true = false duality of the
constant truth values

(1 Ap2) = 1V gy duality of V and A
(de Morgan's law)

220/ 416

LTL in positive normal form (PNF) LTLSE. 1350

e negation only on the level of literals

e uses for each operator its dual

221 /416

LTL in positive normal form (PNF) LTLSE. 1350

e negation only on the level of literals

e uses for each operator its dual

p = true|false|a|—na|cp1/\<p2 01V

using duality of constants and duality of V and A

222 /416

LTL in positive normal form (PNF) LTLSE. 1350

e negation only on the level of literals

e uses for each operator its dual

@ = true | false | a | -a | 01 A\ P2 | 01V
Oy + dual operator for O

using duality of constants and duality of V and A

223 /416

LTL in positive normal form (PNF) LTLSE. 1350

e negation only on the level of literals

e uses for each operator its dual

@ = true | false | a|—-a|cp1/\<p2 | 4,01V<P2|

Oy «| no new operator needed for =)

using duality of constants and duality of V and A

2 O¢ = O~ self-duality of the next operator

224 /416

LTL in positive normal form (PNF) LTLSE. 1350

e negation only on the level of literals

e uses for each operator its dual

@ = true | false | a|—na|<p1/\<p2 | 4,01V<P2|

Oy | w1 Uy + dual operator for U

using duality of constants and duality of V and A

2 O¢ = O~ self-duality of the next operator

225 /416

LTL in positive normal form (PNF) LTLSE. 1350

e negation only on the level of literals

e uses for each operator its dual

p = true|false|a|—na|<p1/\<p2 01V

O¢ | e1Up2 | p1We

using duality of constants and duality of V and A

2 O¢ = O~ self-duality of the next operator

(p1Up2) = (—p2) W(—p1 A =)
duality of U and W

226 / 416

Derivation of) and O in LTL-PNF LTLSF3.1-35

p = true|false|a|—-a|<p1/\<p2 01V

O¢ | e1Uep2 | o1 W o

Derivation of) and O in LTL-PNF

LTLSF3.1-35B

p = true|false|a|—-a|<p1/\<p2|<p1V<p2|
Op | o1V | e1Wer | Op | Op

¢ and O can (still) be derived:

Qp def true U
Oy def oW false

228 /416

Universality of LTL-PNF LTLSFS. 1-36

229 /416

Universality of LTL-PNF LTLSFS. 1-36

Each LTL formula can be transformed into
an equivalent LTL formula in PNF

230 /416

Universality of LTL-PNF LTLSFS. 1-36

Each LTL formula can be transformed into
an equivalent LTL formula in PNF

LTL formula ¢ ~» LTL formula in PNF ¢’
by successive application of the following rules:

231 /416

Universality of LTL-PNF LTLSFS. 1-36

Each LTL formula can be transformed into
an equivalent LTL formula in PNF

LTL formula ¢ ~» LTL formula in PNF ¢’
by successive application of the following rules:

—true ~~ false

Y ~p

(p1Ap2) ~ D1 Vo

lOX% ~ Oy

“(p1U2) ~» (mp2) W(—p1 A =)

232 /416

Universality of LTL-PNF LTLSFS. 1-36

Each LTL formula can be transformed into
an equivalent LTL formula in PNF

LTL formula ¢ ~» LTL formula in PNF ¢’
by successive application of the following rules:

—true ~> false

_I_I(p > 80

(1 Ap2) ~ -1 Vo
“QOe ~ Oy

(pr1U2) ~ (2p2) W(=p1 A o)

exponential-blow up is possible

233 /416

Example: LTL ~» LTL-PNF LTLSF3.1-37

~true ~ false

g o

“(p1Ap2) ~ —p1V -

~Op ~ Oy

“(p1Up2) ~ (2p2) W(=p1 A —)

234 /416

Example: LTL ~» LTL-PNF LTLSF3.1-37

~true ~> false 4+ analogue rule for —false
Y P

(1 Ap2) ~» =1V -y + analogue rule for -V
~Op ~» O

(p1Up2) > (2p2) W1 A)

235 /416

Example: LTL ~» LTL-PNF LTLSF3.1-37

~true ~> false 4+ analogue rule for —false
- ~ P

(1 Ap2) ~» =1V -y + analogue rule for -V
~Op ~ O

“(e1Ug2) ~ (m2) W1 A)

~0p w Onp o —lp ~ O

236 /416

Example: LTL ~» LTL-PNF LTLSF3.1-37

~true ~> false 4+ analogue rule for —false
- ~ P

(1 Ap2) ~» =1V -y + analogue rule for -V
~Op ~ O

“(e1Ug2) ~ (m2) W1 A)

~0p w Onp o —lp ~ O

-0O((aUb) v QOc)

237 /416

Example: LTL ~» LTL-PNF LTLSF3.1-37

~true ~> false 4+ analogue rule for —false
- ~ P

(1 Ap2) ~» =1V -y + analogue rule for -V
~Op ~ O

“(e1Ug2) ~ (m2) W1 A)

~0p w Onp o —lp ~ O

-0O((aUb) v QOc)
= 0-((aUb) v Qc) «—|duality of ¢ and O

238 /416

Example: LTL ~» LTL-PNF LTLSF3.1-37

~true ~> false 4+ analogue rule for —false
(1 Ap2) ~» =1V -y + analogue rule for -V
~O¢ ~ Oy
(e1Ug2) ~ (2p2) W(mp1 A o)

-O((aUb) v Qc)
= ¢0—((aUb) v Qc) | duality of ¢ and O

= O(—~(aUb) A =Qc) «—|duality of A and V

239 /416

Example: LTL ~» LTL-PNF LTLSF3.1-37

~true ~> false 4+ analogue rule for —false
(1 Ap2) ~» =1V -y + analogue rule for -V
~Op ~ Oy
(p1Up2) > (2p2) W1 A)

-0O((aUb) v QOc)
= 0-((aUb) v Qc) «—|duality of ¢ and O
= Q(—-(aUb) A =) «—|duality of A and V
= O(—(aUb) A O—c) «— self-duality of O

240 / 416

Example: LTL ~» LTL-PNF LTLSF3.1-37

~true ~> false 4+ analogue rule for —false
—(p1 A@2) ~» -1 Vs + analogue rule for Vv
~Ov ~ O~y
(p1Ugp2) ~ (p2) W1 A =)

-0O((aUb) v QOc)
= 0-((aUb) v Qc) «—|duality of ¢ and O
= Q(—-(aUb) A =) «—|duality of A and V
= O((-b)W(—a A —-b) A O~c) «|duality of U and W

241/ 416

Example: LTL ~» LTL-PNF LTLSF3.1-37

~true false 4+ analogue rule for —false

A~
(1 Ap2) ~» =1V -y + analogue rule for -V
A~

Qe O
“(p1Upa) ~ (2p2) W(=p1 A —p2)

-0O((aUb) v QOc)

0-((aUb) v O¢)

0(=(aUb) A =Oc)

O((=b) W(=a A =b) A O—c) «—|PNF|

242 /416

Fairness in LTL LTLSF3.1-38

243 /416

Recall: action-based fairness LTLSF3.1-38

244 /416

Recall: action-based fairness LTLSF3.1-38

fairness assumption for TS 7T = (S, Act, —, Sp, AP, L):

F = (f ucond F. strong s F weak)

A
where fucondy fstrong:]:weak c2 ct

Fucond unconditional fairness assumption
Fistrong Strong fairness assumption
Fuweak Weak fairness assumption

245 /416

Recall: action-based fairness LTLSF3.1-38

fairness assumption for TS 7T = (S, Act, —, Sp, AP, L):

F = (f ucond F. strong s F weak)

Act
where fucondy fstrong:]:weak c2

. aq (0%) a3 .
execution sg — §; — 5 — ... F-fair if

246 / 416

Recall: action-based fairness LTLSF3.1-38

fairness assumption for TS 7T = (S, Act, —, Sp, AP, L):

F = (f ucond F. strong s F weak)

Act
where fucondy fstrong:]:weak c2

. ah (0% a3 .
execution sg — §; — 5 — ... F-fair if

o forall A€ Fueong: 3i>1.0, €A

247 /416

Recall: action-based fairness LTLSF3.1-38

fairness assumption for TS 7T = (S, Act, —, Sp, AP, L):
F = (f ucond F. strong s F weak)

Act
where fucondy fstrong:]:weak c2

. ah (0% a3 .
execution sg — §; — 5 — ... F-fair if

o forall A€ Fueong: 3i>1.0, €A
o forall A € Fatrong:

Ji>1LANAct(s)#A0 = Ji>l.a, €A

248 /416

Recall: action-based fairness LTLSF3.1-38

fairness assumption for TS 7T = (S, Act, —, Sp, AP, L):
F = (f ucond F. strong s F weak)

Act
where fucondy fstrong:]:weak c2

. ah (0% a3 .
execution sg — §; — 5 — ... F-fair if

o forall A€ Froong: Ji>1l.c, €A
o forall A € Fatrong:

Ji>1LANAct(s)#A0 = Ji>l.a, €A
o for all A € Feax:

Vi>1ANAct(s)#0 = Ji>l.a, €A

249 /416

Recall: action-based fairness LTLSF3.1-38

fairness assumption for TS T = (S, Act, —, Sp, AP, L):

F = (f ucond F. strong s F weak)

Act
where fucondy fstrong: fweak c2

satisfaction relation for LT-properties under fairness:

T E# E iff for all F-fair paths 7 of T :
trace(w) € E

250/ 416

Process fairness is LTL-definable LTLSF3.1-5

251 /416

Process fairness is LTL-definable

LTLSF3.1-5

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually Q¢ & trueU ©
always O def Q-
infinitely often 0o ¢
eventually forever OO

252 /416

Process fairness is LTL-definable LTLSF3.1-5

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually Q¢ dof true U ¢

always O def Q-

infinitely often 0o ¢
eventually forever OO

e.g., unconditional fairness [crit;

strong fairness OO wait; — OOcrit;

253 /416

Process fairness is LTL-definable LTLSF3.1-5

@

true | a|<p1/\<p2 | —-<p| Oep | w1 U2

eventually Q¢ dof true U ¢

def

always Op = -0

infinitely often 0o ¢

eventually forever OO

e.g.,

unconditional fairness [Ocrit;
OO wait; — OOcrit;

weak fairness O0wait; — Ocrit;

strong fairness

254 /416

LTL fairness assumptions LTLSF3.1-39

255 /416

LTL fairness assumptions LTLSF3.1-39

... are conjunctions of LTL formulas of the form:

e unconditional fairness Q¢
e strong fairness 00p1 — L0
e weak fairness O0p; — OG0

where @1, ¢, @ are propositional formulas

256 / 416

LTL fairness assumptions LTLSF3.1-39

... are conjunctions of LTL formulas of the form:

e unconditional fairness Q¢
e strong fairness 00p1 — L0
e weak fairness O0¢p1 — OO

where @1, ¢, @ are propositional formulas

If fair is a LTL fairness assumption, s a state in a TS,
and ¢ an LTL formula then

257 /416

LTL fairness assumptions LTLSF3.1-39

... are conjunctions of LTL formulas of the form:

e unconditional fairness Q¢
e strong fairness 00p1 — L0
e weak fairness O0p; — OG0

where @1, ¢, @ are propositional formulas

If fair is a LTL fairness assumption, s a state in a TS,
and ¢ an LTL formula then

s Enrir @ iff for all T € Paths(s):
if w |= fair then 7 |= ¢

258 /416

LTL fairness assumptions LTLSF3.1-39

... are conjunctions of LTL formulas of the form:

e unconditional fairness [OQ¢
e strong fairness 00p1 — L0
e weak fairness O0p; — OG0

where @1, ¢, @ are propositional formulas

If fair is a LTL fairness assumption, s a state in a TS,
and ¢ an LTL formula then

s Enrir @ iff for all T € Paths(s):
if w |= fair then 7 |= ¢

iff s = fair — ¢

259 /416

Randomized arbiter for MUTEX

LTLSF3.1-40

noncrity

260 / 416

Randomized arbiter for MUTEX

LTLSF3.1-40

noncrity

261/416

Randomized arbiter for MUTEX W

(71 ||| 1) || Arbiter

noncrltl toss_coin noncr|t2

[noncrltl head noncrltgj [noncrltl tail noncrltgj
enter; enter,
release

[crltl lock nOI‘]CI’Itgj [noncrltl lock Crlt2j

262 /416

Randomized arbiter for MUTEX W

(71 ||| 1) || Arbiter [Odcrity A Ocrit,

noncrltl toss_coin noncr|t2

[noncrltl head noncrltgj [noncrltl tail noncrltgj
enter; enter,
release

[crltl lock nOI‘]CI’Itgj [noncrltl lock Crlt2j

263 /416

Randomized arbiter for MUTEX

LTLSF3.1-40

noncrity

unconditional LTL-fairness:

fair = OOhead A Otail

264 /416

Randomized arbiter for MUTEX W

noncrity

unconditional LTL-fairness:
fair = OOhead A Otail
(71 ||| 72) || Arbiter g Oocrity A Odcrity

265 /416

Correct or wrong? LTLSFS. 141

T LTL fairness assumption

fair = O0a — OOb

® ={a} @ ={b}

266 / 416

Correct or wrong? LTLSFS. 141

T LTL fairness assumption

fair = O0a — OOb

® ={a} @ ={b}

T |=fair Ob ?

267 /416

Correct or wrong? LTLSFS. 141

T LTL fairness assumption

fair = O0a — OOb

® ={a} @ ={b}

T Vpir Ob as 00000 .. s fair

268 / 416

Correct or wrong?

T

LTLSF3.1-41

LTL fairness assumption

fair = O0a — OOb

® ={a} ® ={b}

T e aUb 7

T béfair Ob as0—-0—-0-0-0-0— .

is fair

269 /416

Correct or wrong?

T

LTLSF3.1-41

LTL fairness assumption

fair = O0a — OOb

® ={a} ® ={b}

T|=fair aUb \/

T béfair Ob as0—-0—-0-0-0-0— .

is fair

270/ 416

Correct or wrong? LTLSFS. 141

T LTL fairness assumption

fair = O0a — OOb

® ={a} @ ={b}

T Vpir Ob as 00000 .. s fair

T|=fa,', aUb \/
T pir aUO(b o Qa) ?

271/ 416

Correct or wrong? LTLSFS. 141

T LTL fairness assumption

fair = O0a — OOb

® ={a} @ ={b}

T Vpir Ob as 00000 .. s fair

T |=fa,', aUb \/
T Wi aUO(b — Qa)

as 0—-0—-0—-0-0—-0— . . s fair

272 /416

LTL-fairness assumptions LTLSF3.1-50

e can be necessary to prove liveness properties, e.g.,
mutual exclusion with arbiter/semaphore

Teem OOcrity A Ocrity
Teem Erir OOcrity A OOcrity

for appropriate fairness condition

273 /416

LTL-fairness assumptions LTLSF3.1-50

e can be necessary to prove liveness properties, e.g.,
mutual exclusion with arbiter/semaphore

Teem OOcrity A Ocrity
Teem Erir OOcrity A OOcrity

for appropriate fairness condition, e.g.,

fair = A ((OOwait; — Odcrit;) A
i=1.2

(OOnoncrit; — OO wait;))

274 /416

LTL-fairness assumptions LTLSF3.1-50

e can be necessary to prove liveness properties, e.g.,
mutual exclusion with arbiter/semaphore

Teem - OOcrity A Ocrity
Teem FErir OOcrity A Ocrity

for appropriate fairness condition

e can be verifiable system properties

e.g., Peterson algorithm guarantees strong fairness

Tpet |= OOwaity — O crity

275 /416

LTL-fairness assumptions LTLSF3.1-50

e can be necessary to prove liveness properties, e.g.,
Teem - OOcrity A Ocrity
Teem FErir OOcrity A OOcrity
for appropriate fairness condition

e can be verifiable system properties, e.g.,
TI"et |= OOwaity — O crity

e are irrelevant for verifying safety properties

T |= Psafe iff T |:fair Psafe

if fair is realizable

276 / 416

Correct or wrong? LTLSFS. 142

Each strong LTL fairness assumption
fair = O0a — OOb
is realizable for each TS over AP = {a, b, ...}.

277 /416

Correct or wrong? LTLSFS. 142

Each strong LTL fairness assumption
fair = O0a — OOb
is realizable for each TS over AP = {a, b, ...}.

recall: a fairness condition is called realizable
if for each reachable state s there exists
a fair path starting in s

278 /416

Correct or wrong? LTLSFS. 142

Each strong LTL fairness assumption
fair = O0a — OOb
is realizable for each TS over AP = {a, b, ...}.

wrong

{b} fair = O0a — OOb

Is not realizable
{a}

279 /416

Action-based fairness ~~» LTL-fairness

280 /416

Action-based fairness ~~» LTL-fairness

idea: use new atomic propositions enabled(A) and
taken(A) and extend the labeling function:

enabled(A) € L(s) iff s — ... forsome a € A

taken(A) € L(s) iff for all transitions ... NS
a€A

281/416

Action-based fairness ~~» LTL-fairness

idea: use new atomic propositions enabled(A) and
taken(A) and extend the labeling function:

enabled(A) € L(s) iff s - ... for somea € A

taken(A) € L(s) iff for all transitions ... L s
a€A

e unconditional A-fairness: O¢taken(A)
e strong A-fairness: [O{enabled(A) — OO taken(A)
e weak A-fairness: QOenabled(A) — OO taken(A)

282 /416

Action-based fairness ~~» LTL-fairness

idea: use new atomic propositions enabled(A) and
taken(A) and extend the labeling function:

enabled(A) € L(s) iff s — ... forsome a € A

taken(A) € L(s) iff for [all] transitions ... > s:
a€A

problem: each state s can have several incoming
transitions
«a
t—s u—s

y 9 oo

283 /416

Action-based fairness ~» LTL-fairness

LTLSF3.1-43

idea: use new atomic propositions enabled(A) and
taken(A) and extend the labeling function:

enabled(A) € L(s) iff s — ... forsome a € A

taken(A) € L(s) iff for [all] transitions ... > s:
a€A

alternative 1: ad-hoc choice of “taken-predicate”

alternative 2: modify the given transition system
by adding an action component
to the states

284 /416

Ad-hoc: action fairness ~» LTL-fairness

~
ncy ncy y=1
/ \

(wait; ncy y=1 nc; waity y=1)

enter;
(crit; ncy y=0) (ncy crit, y=0)
request, enten,
(crit; waitp, y=0) (waity critp y=0)

TS for mutual exclusion with semaphore

285 /416

Ad-hoc: action fairness ~» LTL-fairness

~
ncy ncy y=1
/ \

(wait; nc, y=1 nc; wait, y=1)

enter;
(crit; ncy y=0) (ncy crit, y=0)
request, enten,
(crit; waitp, y=0) (waity critp y=0)

D = enabled({enten,})

TS for mutual exclusion with semaphore

286 /416

Ad-hoc: action fairness ~» LTL-fairness

~
ncy ncy y=1

— T~

wait; nc, y=1 nc; waity y=1
(enten, < e
(crity nc, y=0) (ncy crit, y=0)
request, enter,
(crit; wait, y=0) (wait; crity, y=0)
| | = taken({enten})
| | = enabled({enten})

TS for mutual exclusion with semaphore

287 /416

Ad-hoc: action fairness ~» LTL-fairness

~
ncy ncy y=1
/ \

(wait; nc, y=1 nc; wait, y=1)

enter;
(crit; ncy; y=0) (ncy crit, y=0)
request, enten,
(crit; wait, y=0) (wait; crity, y=0)

|
L

taken({enten })
enabled({enter, })

crity
wait; A —crity

I 1
I 1

288 /416

Ad-hoc: action fairness ~» LTL-fairness

~
ncy ncy y=1
(wait /1 o it y=1)
wait; nc, y= nc; wait, y=
enter;
(crit; ncy y=0) (ncy crit, y=0)
request, enten,
(crit; wait, y=0) (wait; crity, y=0)
[| = taken({enten}) = city
| | £ enabled({enter}) = wait; A —crity

strong {enter; }-fairness: LTL formula
0O enabled({enter;}) — [O¢ taken({enter,})

289 {416

Ad-hoc: action fairness ~» LTL-fairness

~
ncy ncy y=1
(wait /1 o it y=1)
wait; nc, y= nc; wait, y=
enter;
(crit; ncy y=0) (ncy crit, y=0)
request, enten,
(crit; wait, y=0) (wait; crity, y=0)
[| = taken({enten}) = city
| | £ enabled({enter}) = wait; A —crity

0O enabled({enter,}) — [taken({enten})
= OO (waity A —crity) — OO crity

2907216

Action-based fairness ~» LTL-fairness

LTLSF3.1-46A

idea: use new atomic propositions enabled(A) and
taken(A) and extend the labeling function:

enabled(A) € L(s) iff s ... for some a € A

taken(A) € L(s) iff for all transitions ... — s:
a€A

alternative 1: ad-hoc choice of “taken-predicate”

alternative 2: modify the given transition system

by adding an action component
to the states

291/416

Action-based fairness ~» LTL-fairness

LTLSF3.1-46A

idea: use new atomic propositions enabled(A) and
taken(A) and extend the labeling function:

enabled(A) € L(s) iff s ... for some a € A

taken(A) € L(s) iff for all transitions ... — s:
a€A

alternative 1: ad-hoc choice of “taken-predicate”

alternative 2: modify the given transition system

by adding an action component
to the states

292 /416

Action-based fairness ~~» LTL-fairness

transition system

T =(S,Act,—,...)

293 /416

Action-based fairness ~» LTL-fairness

transition system

T =(S,Act,—,...)

LTLS!

F3.1-47

transition system

T' = (SxAct,. .., AP, L")

/

-

(s, ...))
BN\
(s, B) (s", 1
............)

294 /416

Action-based fairness ~~» LTL-fairness

transition system transition system
T =(S,Act,—,...) T' = (SxAct,...,AP', L)
4 s h ((s, ...) h
B /Y B/\Y
s 5" (', B) (s",7)
AR L) T)
strong A-fairness strong LTL-fairness

for AC Act OQenabled(A) — O taken(A)

295 /416

Action-based fairness ~~» LTL-fairness

transition system transition system
T =(S,Act,—,...) T' = (SxAct,...,AP', L)
4 s h ((s, ...) h

B /Y B/\Y

s 5" (', B) (s",7)
AR L) T)
strong A-fairness strong LTL-fairness

for AC Act OQenabled(A) — O taken(A)

enabled(A) € L'({s,)) iff si. .. for some f € A
taken(A) € L'({s,a)) iff a €A

296 / 416

Example: action fairness ~» LTL-fairness

action-based fairness ~ LTL-fairness

297 /416

Example: action fairness ~» LTL-fairness

action-based fairness ~ LTL-fairness

298 /416

Example: action fairness ~» LTL-fairness

action-based fairness ~ LTL-fairness

299 /416

Example: action fairness ~» LTL-fairness

action-based fairness ~ LTL-fairness

300/ 416

Example: action fairness ~» LTL-fairness

action-based fairness ~ LTL-fairness

strong fairness for {3}
(00 enabled(3) — OO taken(S3)

301/416

Example: action fairness ~» LTL-fairness

action-based fairness ~ LTL-fairness

strong fairness for {3}
00 enabled(3) — O taken(S3)

302/416

Example: action fairness ~» LTL-fairness

action-based fairness ~ LTL-fairness

strong fairness for {3}
00 enabled(3) — O taken(S)

303 /416

Example: mutual exclusion with semaphore ...

add additional variable last_action with domain Act U {begin}

,e\nterl
.) .)
waity nc, Mfequest; requestyY ncy waito |—""
y=1 =1 enters
request; request,
ait; waity) Wwait; waity)

y= y=
request, request,
enter; >< enterp
crit; waity waity 8rit2

enter; enterp

304 /416

Example: mutual exclusion with semaphore

LTLSF3.1-49

add additional variable last_action with domain Act U {begin}

crit; nc

entery

crit; waito

request,

reYe:aslel

enter;
wait; nc

request;

ait; waity)
request,
enter;

crit; waity

enter;

- -
nci ncy

Nnc; ncy

request; request,

enter; enterp

release;

ncy crits
1

waity 1an
reYeasel reYeaseg

Nnci ncp
Voas
releases
ncy wilitg

enter
request,

ait; waity)
request;
enterp

releases

ncy critp

enterp

waity crit

request;

305 /416

Example: mutual exclusion with semaphore

LTLSF3.1-49

add additional variable last_action with domain Act U {begin}

crit; nc

entery

crit; waito

request,

reYe:aslel

entery
wait; ncy

request;

wait; waity
request,
enter;

crit; waity

- -
nci ncy

Nnci ncp

feas
ncy ncp release;
y=1
begin
request; request,™ ncy XVfitg
requ_est2

entery enterp

ait; waity

enter;

enter,

request,
7 "‘ enter,
4‘»

release;

ncy crito | [waity ncp
1 1 releases

reYea se; reYeasez

ncy critp

enterp

waity crit

request;

306 /416

