Software Validation and

Verification
Suggested Readings

About this list

e These listis just our proposal

e You can choose among the proposed works, take inspiration about the topic,
or propose something different

e If you choose a work that is not from this list, send us the paper, and we will
approve it or suggest something similar (if possible)

About the oral exam

e Presentations are ~30min plus questions
e \Write us an email to schedule the oral exam when you are ready

Just Verification of Mutual Exclusion Algorithms, van Glabbeek et al

e Check correctness of a variety of mutual exclusion algorithms through model
checking

e Different memory models: registers can be atomic or non-atomic

e Different assumptions to eliminate spurious counterexamples

e Find violation of correctness properties by several algorithms

e 2025 at Concur

Specification and Verification of a Linear-Time Temporal Logic for Graph
Transformation, Gadducci et al

e First-order linear-time temporal logic for reasoning about the evolution of
directed graphs.
e creation, duplication, merging, and @ \\‘)@f--"'“'""_"T'T"‘""-/>;.f
deletion of elements of a graph as well / e
as how its topology changes over time) "

e Its semantics is based on counterparts | e\@ L
hy 52 i o
\\ \\\\ ’//’\/L‘ SIS Ak

e Formalization in Agda

Y :=true | e; =g ez | N1 =N N2

¢:=9|-¢|oVe|Ine.g|Tpx.g| 00| pUs | pWe,

Reactive Temporal Logic, van Glabbeek

e Standard temporal logic are adequate for closed systems

e Introduce reactive temporal logic, adapted for the study of reactive systems
that synchronize over actions — ingredients: labels and fairness

e From LTS to LTS with concurrency annotation

e relation validity relation = is parametrised with a set of blockable actions

& =FB. (_—(B)
L o 2

Example 3 Bart is the only customer in a bar in London,
At the same time, Alice and Cameron are in a bar in Tokyo.

Example 1 Alice. Bart and Cameron stand behind a bar,

Example 2 Bart is the only customer in a bar in London

Semantics for Linear-time Temporal Logic with Finite Observations,
Amijad et al

e Runtime verification: states as an infinite stream

e formulae that can be definitively said to be true or false, others are
indeterminate (require further states)

e Multi-valued variant of Linear-time Temporal Logic

e Correspondence with traditional LTL semantics

s te[Q)3T < YueX® tuecle] T
e te[@]3F < YueX® tuelp] F

e Proofs formalized in Isabelle/HOL.

From Natural Projection to Partial Model Checking and Back, Costa et al

e Control theory community: natural projection
simplifying systems built from multiple components, modeled as automata.
o synthesize local controllers from a global specification of asynchronous discrete-event system

e \erification community: partial model checking
o for mitigating the state explosion problem with parallel processes
o decomposing a specification, given as a formula of the p-calculus and analysis of the
individual processes independently.

e Natural projection reduces to partial model checking and, when cast in a
common setting, the two are equivalent
e Partial model checking algorithm applied to natural projection

Model Checking Spatial Logics for Closure Spaces, Ciancia et al

Traditional verification based on
temporal evolution of programs,
space is typically not considered @
Spatial logic, from topological
interpretations of modal logics

but generalized to closure

spaces, i.e. considering discrete.
graph-based structures.

Model checking procedures

—

OND
N

OSSP
OP P

ATOMIC PROPOSITION]|
'TRUE]

NOT]

[AND]

NEAR]

[SURROUNDED|
[PROPAGATION]

Automated Analysis of Diffie-Hellman Protocols and Advanced Security
Properties, Schmidt et al
(1) dec(enc{mn, k), k)=im

e Symbolic analysis of security protocols (2) fstl{e.y)) 2%
e Protocols are multiset rewriting systems (3) snd({z,y)) ~y
e Security properties as first-order formulas. (4) 2 (y*2)2(z*ry)*z
e Constraint-solving algorithm (5) zry~y*x
e unbounded number of protocol sessions. (6) z+l=z
(7) z+zt =1

(8} ™) s
(9) (z7y) " z=z"(y*2)
(10) &1 =5

Verifying liquidity of recursive Bitcoin contracts, Bartoletti

e Liquidity in smart contracts: assets must be redeemable by someone

e Ethereum have frozen hundreds of USD millions
e \erifying liquidity on BitML, a Domain Specific Language for smart contracts
with a secure compiler to Bitcoin, featuring primitives for currency transfers,

contract renegotiation and consensual recursion.

They:

e First turn infinite-state semantics of BitML into a finite-state one (sound)
e Then verify liquidity by model-checking the finite-state abstraction.

The Squirrel Prover and its Logic, Baelde et al

An interactive prover for the verification of cryptographic protocols

e Symbolic models: modeling cryptographic messages as first-order terms,
together with an equational theory that represents attacker capabilities.

Dolev-Yao Attacker — Tools like ProVerif and Tamarin

e Computational model: cryptographers’ standard model, attackers are
probabilistic polynomial-time Turing machines

More challenging but more precise

New sound logic-based method: instead of modeling attacker by stating what
the adversary can do, specify what the attacker cannot do (indistinguishablity)

Cryptographically-Masked Flows, Askarov et al

Information Flow Noninterference: no flow from secret to public data.

”4
-

Problem: encrypted output depends on secret inputs!

. new definition to allow safe encryption, decryption, and key generation.

Epistemic temporal logic for information flow security, Balliu et al

¢, n=e1 = ey | initz(e) | OAY [20 | K¢ | oUY

Noninterference: no information about initial values of high identifiers (which we
want to protect) can flow to final values of low identifiers (which the attacker can
observe)

Declassification: acceptable, needed information leakage

Security Properties through the Lens of Modal Logic, Soloviev et al

Standard Kripke Structure (LTS)

w E [R]g iff w E @ VW' st. (w,w') €R
w E (R)o iff 3w’ with (w,w’) e R and w' E ¢

Adapted to Security Kripke Structures (with Agents)

Models confidentiality, integrity, noninterference etc

The Hierarchy of Hyperlogics, Coenen et al

e Temporal logics only refer to a single trace or path at a time

e Temporal hyperlogics relate multiple traces or paths to each other

e Express information-flow properties such as noninterference and
observational determinism.

e Logics for hyperpropertieshave been proposed: LTL and CTL* with variables
for traces or paths.

e Comparison of expressivity and cost for the decision problem

vr.vr'. /\ @ S
acAP

Model Checking for a Probabilistic Branching Time Logic with Fairness,
Baier

e Non-deterministic choice between probability distributions
e The presence of non-determinism means that certain liveness properties

cannot be established unless fairness is assumed
e Probabilistic branching time logic PBTL and PCTL

=1 | a | D N Dy | —d | [ELX@]QP |
[VX 610, | [326=F &, 15, |

[&) V2=F &) 10, | [D) 32 H5 15, |
[&) V26 Dy 19,

Exploring probabilistic bisimulations, part |, Hennessy

Probabilistic and non-deterministic systems

PebpCCseE=0 | u.P,ggchct, | PP | PP, ne@.]1)
g€ bpCCS, =0 | p.P,uechct, | st+s

Give two bisimulations
Distinguishing logic
Contextual equivalence
Prove their correspondence

Model Checking for Verification of Quantum Circuits, Ying

Model quantum circuits as a transition system
Quantum logic for the state of the qubits (with uncertainty)
CTL for the temporal evolution

Tensor network for the implementation

A Calculus for Access Control in Distributed Systems, Abadi et al

Access Control with principals and their resources, logically:

e Trust, Role, Groups of Principals
e Delegation: principals on behalf of principals
e Distributed Systems: need to propagate requests and decisions

su:=true|(sVs)|(sAs)|(s—s)| Asayss

— F (A A B) says s = (A says s) A (B says s);
— F (B|A) says s = B says A says s;
—F (A= B) D ((A says s) D (B says s)).

Variations in Access Control Logic, Abadi

Analysis of Different Variants for a logic of Access Control, and discussion about
their adequacy w.r.t. What they should model

[C}] VX. (A says A says X — A says X)

[Unit] VX.(X — A says X)
[Bind] VX.Y.((X — AsaysY) — (Asays X) — (AsaysY))

(X —=Y)
| Control-monotonicity] VX.,Y. —
((A controls X) — (A controls Y))

Local Action and Abstract Separation Logic, Calcagno et al

Hoare Logic: {p} C {q} —if p is true before executing C then q is true after
executing C (if C terminates)

Separation logic: Hoare’s logic with mutating data structures in memory
{r} C{q}
{p}Ci{q} {4} Cofr} {pxr}C{gxr}

1P} G Ca P 1} Ci{ar} {p2} Ca {2}
{p1*p2} C1 || Co2{q1 * g2}

FrameRule

ConcurrencyRule

Abstracts from RAM and similar models in Separation Logic

Incorrectness Logic, O’Hearn

Logic for program incorrectness (dual of Hoare’s logic of correctness)

Correctness with over-approximation
{ pre-condition}code{ post-condition)

Incorrectness with under-approximation
[presumption]code|result]

{piC{g AT} [pIClq1V q2]
{p}Ciq) [p]Clq:]

Outcome Logic: A Unifying Foundation for Correctness and Incorrectness
Reasoning, Zilberstein et al

e Abstract over reachability (e.g. of faulty states)

e Approach parametric on results, kind of computations and assertion logic
Triple Name Syntax Semantics
Hoare Logic EfP}yC {0} if YeeP. V. rc|€lle) = e O

Incorrectness Logic (IL) / e [P]C[0] iff VerQ. Jo. re[C](c) and P
Reverse Hoare Logic (RHL) [[Q 2 [€]

Outcome Logic (OL) E(P)C(Q) iff Vm. mE P = [[C]]Jr(m) EQ

Fig. 1. Semantics of triples where P and Q are logical formulae, C is a program, X is the set of all program
states, 0,7 € 3,and [C] : & — 2% is the reachable states function. In the last line of the table, M is a monad,
m € M3 and [C]" : MS — M3 is the monadic lifting of [] : £ — MS.

Linear logic as a logic of computations, Kanovich

Linear Logic: constraints

on weakening and I Lo I HA B. Z5—-C
contraction rules A4 Z1,(A—B), Z,+C
2, A B+
L® C R® > A Z,—B
2. (A®B)-C 2,Z,F(A® B)
LL Fragment(s)
g L 2AFC IBHC S ARC
VS S (A®B)FC e
Z21A-C
Program (graphs)
VS C ZAlAEC wr _ZFC

Petri Nets BEY iate - LrC

Compositional Symbolic Execution for Correctness and Incorrectness
Reasoning, Loow et al

e Tool for symbolic execution

e Symbolic execution has scalability problem

e Separation logic can help in determining how to work compositionally on
smaller components of the system to verify

e Supports bot Correctness and Incorrectness reasoning

e Interesting details about the implementation of a real world verification tool

Compositional Symbolic Execution for the Next 700 Memory Models
(Extended Version), Loow et al

e compositional symbolic execution exploits separation logic for compositional
verification

e Separation logic speaks of memory accesses and modification

e Different assumptions on the memory model can change the result of the
analysis

e Formal foundation for memory-model-parametric composition symbolic
execution platforms.

e The model is mechanised in Rocq

e Model instantiating to concrete useful examples, e.g. C language

Non-Termination Proving: 100 Million LoC and Beyond, Vanegue et al

Halting problem: we cannot verify precisely if a program P terminates with input |

Tool for proving non-termination of programs (of course with approximation)
Focus on large programs by using a compositional approach

Look for repeating states (loops) but in an abstract semantics

Combines symbolic execution (for abstraction) and separation logic (for
compositionality)

For soundness, repeating states are under-approximated therefore
incorrectness logic is needed instead of traditional Hoare logic

