
Control-Flow Graph

Lorenzo Ceragioli
November 13, 2024

IMT Lucca

1



Control-Flow Graph

A direct graph where

• Nodes are basic blocks (sequence of simple statements)
• Edges are possible control flow

Building the CFG is an intermediate step for:

• Static Analysis (Data Flow)
• Compilation (we need to recover exact control flow)

2



Example

x1 ∶= 0
y1 ∶= 0

x2 ∶= x1 + x3 − 10
y2 ∶= y1 + y3
(x2 < 10)?

y3 ∶= y2 + x2
x3 ∶= x2

y2 ∶= y3

3



Formally

A directed graph (N, next, i , f , code) where

• N nodes are basic blocks
• next ∶ N ⟶ {none} ∪ N ∪ (N × N) edges are possible

control flow
• i ∈ N is the initial entry node
• f ∈ N is the final terminal node
• code ∶ N ⟶ L (where L is some language, usually sequences

of simple statements)

... Ours is a simple intraprocedural case.

4



MiniImp CFG

MiniImp simple statements s

s ≔ skip ∣ x ∶= a ∣ b?
b ≔ v ∣ b and b ∣ not b ∣ a < a
a ≔ x ∣ n ∣ a + a ∣ a − a ∣ a ∗ a

... while control flow constructs define the edges

5



Assumptions

Initial and final nodes of the CFG
• i has no incoming edges
• f has no outgoing edges

We will enforce (and preserve)
this constraints while building the
CFG inductively

CFG representation

i1

f1

. . .

6



Example: CFG of a simple MiniImp program

MiniImp Program

1 def main with input y
output x as

2 x := 2 ;
3 i f y < 0 then (
4 y := x + 3 ;
5 x := y
6 )
7 e l s e
8 x := 1 − y ;

MiniImp CFG

x ∶= 2
y < 0?

y ∶= x + 3
x ∶= y

x ∶= 1 − y

skip

7



Two Alternatives for CFG

Maximal Blocks

x ∶= 2
y < 0?

y ∶= x + 3
x ∶= y

x ∶= 1 − y

skip

Minimal Blocks

x ∶= 2

y < 0?

y ∶= x + 3

x ∶= y

x ∶= 1 − y

skip

8



Generating MiniImp CFG

Command
s ≔ skip ∣ x ∶= a

s

9



Generating MiniImp CFG

Sequence

c1; c2

i1

f1

. . .c1 ∶ c2 ∶

i2

f2

. . .

i1

f1

i2

f2

?

. . .

. . .

How to fill the box with the question mark ”?”?

– A block with a skip? An arrow? Merging f1 and i2?

10



Generating MiniImp CFG

Conditional

if b then c1 else c2

i1

f1

. . .c1 ∶ c2 ∶

i2

f2

. . .

b?

i1

f1

i2

f2

skip

. . .. . .

We need the skip block because we want a single final block.

11



Generating MiniImp CFG

Loop

while b do c

i1

f1

. . .c ∶

skip

b?

i1

f1

skip

. . .

We need the skip blocks because the initial node cannot have
incoming arrows and the final one cannot have outgoing arrows.

12



Generating MiniImp CFG

MiniImp Programs

def main with input x output y as c

Its CFG is simply the one of c

13



Project Fragment

(You should already have the module for MiniImp AST)

1. Define a module for control flow graphs
2. Define a function that given a MiniImp program (AST) returns

its CFG
3. Write in the report your implementation choices:

• which kind of blocks (maximal, minimal, something in between)
• how you have decided to generate the CFG for sequences
• any other detail that you consider important

14


