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Control-Flow Graph

A direct graph where

= Nodes are basic blocks (sequence of simple statements)

= Edges are possible control flow
Building the CFG is an intermediate step for:

= Static Analysis (Data Flow)

= Compilation (we need to recover exact control flow)
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Formally

A directed graph (N, next, i, f, code) where

= N nodes are basic blocks

» next : N — {none} U N U (N x N) edges are possible
control flow

= j € N is the initial entry node
= f € N is the final terminal node

= code : N — L (where L is some language, usually sequences
of simple statements)

... Ours is a simple intraprocedural case.



Minilmp CFG

Minilmp simple statements s
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. while control flow constructs define the edges



Initial and final nodes of the CFG CRE e G

= j has no incoming edges

= f has no outgoing edges ﬁ
i

We will enforce (and preserve)

this constraints while building the [ 71‘17 ]
CFG inductively




Example: CFG of a simple Minilmp program

Minil CFG
Minilmp Program ot
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def main with input vy
output x as
R = 2¢
if y <0 then (
y = x + 3;
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Two Alternatives for CFG

Minimal Blocks
Maximal Blocks




Generating Minilmp CFG
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Generating Minilmp CFG
Sequence m
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How to fill the box with the question mark "7"7?

— A block with a skip? An arrow? Merging f; and i?
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Generating Minilmp CFG

Conditional
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# ‘ I ‘
,,@777 77@777 [~ ’fi - - - ;(27 .
= I Cy ¢

(Al | | [e] ] (skip |

We need the skip block because we want a single final block.

11



Generating Minilmp CFG

'

Loop

while b do ¢

We need the skip blocks because the initial node cannot have
incoming arrows and the final one cannot have outgoing arrows.
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Generating Minilmp CFG

Minilmp Programs

def main with input x output y as ¢

Its CFG is simply the one of ¢
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Project Fragment

(You should already have the module for Minilmp AST)

1. Define a module for control flow graphs
2. Define a function that given a Minilmp program (AST) returns
its CFG

3. Write in the report your implementation choices:

= which kind of blocks (maximal, minimal, something in between)
= how you have decided to generate the CFG for sequences
= any other detail that you consider important
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