Control-Flow Graph

Lorenzo Ceragioli
November 13, 2024

IMT Lucca

Control-Flow Graph

A direct graph where

= Nodes are basic blocks (sequence of simple statements)

= Edges are possible control flow
Building the CFG is an intermediate step for:

= Static Analysis (Data Flow)

= Compilation (we need to recover exact control flow)

X1 =0
y1:=0

‘ Y

X2 :=X1+X3—]_O
Y2i=y1t+y3
(X2 < 10)?

Y3i=y2+ X
X3 1= Xp

Formally

A directed graph (N, next, i, f, code) where

= N nodes are basic blocks

» next : N — {none} U N U (N x N) edges are possible
control flow

= j € N is the initial entry node
= f € N is the final terminal node

= code : N — L (where L is some language, usually sequences
of simple statements)

... Ours is a simple intraprocedural case.

Minilmp CFG

Minilmp simple statements s

skip | x :=a | b?

o
ii

viband b|notb|a<a

a=x|n|la+ala—-alaxa

. while control flow constructs define the edges

Initial and final nodes of the CFG CRE e G

= j has no incoming edges

= f has no outgoing edges ﬁ
i

We will enforce (and preserve)

this constraints while building the [71‘17]
CFG inductively

Example: CFG of a simple Minilmp program

Minil CFG
Minilmp Program ot

[y

def main with input vy
output x as
R = 2¢
if y <0 then (
y = x + 3;
=y

0 ~N o O W
X

Two Alternatives for CFG

Minimal Blocks
Maximal Blocks

Generating Minilmp CFG

Command .
s
s:= skip|x:=a ,

Generating Minilmp CFG
Sequence m

1, &

! |
n 4] 1

a:| o ferf o lR)

How to fill the box with the question mark "7"7?

— A block with a skip? An arrow? Merging f; and i?

10

Generating Minilmp CFG

Conditional

if b then ¢ else o i i

‘ I ‘
,,@777 77@777 [~ ’fi - - - ;(27 .
= I Cy ¢

(Al | | [e]] (skip |

We need the skip block because we want a single final block.

11

Generating Minilmp CFG

'

Loop

while b do ¢

We need the skip blocks because the initial node cannot have
incoming arrows and the final one cannot have outgoing arrows.

12

Generating Minilmp CFG

Minilmp Programs

def main with input x output y as ¢

Its CFG is simply the one of ¢

13

Project Fragment

(You should already have the module for Minilmp AST)

1. Define a module for control flow graphs
2. Define a function that given a Minilmp program (AST) returns
its CFG

3. Write in the report your implementation choices:

= which kind of blocks (maximal, minimal, something in between)
= how you have decided to generate the CFG for sequences
= any other detail that you consider important

14

