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Sommario

Il porting delle configurazioni da un sistema di firewall a un altro è un procedimento difficile e costoso.

Le configurazioni consistono in centinaia di regole scritte in linguaggi di basso livello, specifici della

piattaforma ed in cui l’ordine delle regole influenza la semantica della configurazione. Senza una

procedura automatica per il porting, un amministratore è tenuto a conoscere i dettagli delle politiche

di sicurezza implementate e a progettare da capo la configurazione per il nuovo sistema. Nel caso

in cui le politiche di sicurezza non siano state documentate accuratamente è necessario analizzare la

configurazione iniziale e tentare di creare una configurazione equivalente per il sistema target: questo

è un procedimento rischioso perché è possibile tralasciare dettagli significativi e produrre un firewall

non equivalente a quello di partenza. È possibile in questo modo compromettere la sicurezza della

rete in quanto si implementa senza accorgersene una politica diversa da quella originale e gli asset

potrebbero non essere protetti in modo corretto. In un lavoro recente è stata proposta una pipeline di

transcompilazione fra linguaggi di configurazione di firewall, composta da tre fasi: (i) decompilazione

della configurazione dal linguaggio di origine ad un linguaggio intermedio; (ii) estrazione del significato

della configurazione come insieme minimale di regole dichiarative che descrivono i pacchetti accettati

e le traduzioni in termini logici; (iii) compilazione delle regole dichiarative nel linguaggio target. Lo

strumento firewall synthesizer rappresenta l’implementazione delle prime due fasi in quanto permette,

facendo uso di un SAT solver, di derivare una rappresentazione ad alto livello della semantica di un

firewall. Per la fase (iii) è stato proposto un algoritmo che tuttavia non ha garanzie di conservare la

traduzione degli indirizzi (Network Address Translation o NAT) e che si basa sull’operazione di marking

dei pacchetti, la quale è soggetta a restrizioni differenti nei vari sistemi firewall.

In questa tesi presentiamo un nuovo algoritmo per la sintesi della semantica nella fase (ii) che

non necessita di un SAT solver e analizziamo formalmente la generazione della configurazione target

nella fase (iii), tenendo in considerazione il problema di NAT. A questo scopo studiamo la differente

espressività dei sistemi firewall riguardo la traduzione degli indirizzi dei pacchetti. Nel linguaggio

intermedio, che è dotato di una semantica formale, ogni sistema firewall è modellato tramite un

diagramma di controllo e ogni configurazione come un assegnamento di ruleset ai nodi del diagramma.

Per ogni linguaggio di configurazione individuiamo dei vincoli che caratterizzano quali assegnamenti

di ruleset ai nodi del diagramma di controllo possono essere espressi e sfruttiamo questi vincoli sia per

studiare l’espressività dei linguaggi di configurazione, sia per definire un algoritmo per la generazione

della configurazione finale.



Capitolo 1

Introduzione

I firewall sono uno dei meccanismi standard per la protezione di reti di computer, la loro funzione è

quella di ispezionare il traffico della rete, filtrandolo in accordo con la propria configurazione. Oltre

a fungere da filtro, i firewall contribuiscono a realizzare l’instradamento, effettuando delle traduzioni

sugli indirizzi dei pacchetti attraverso il NAT. Per decidere se consentire o meno il transito di un

pacchetto, e quali trasformazioni effettuare, il firewall si basa su un insieme di regole stabilite dal-

l’amministratore. Il linguaggio per la definizione delle regole e l’ordine nel quale queste sono valutate

dipendono dal sistema scelto.

Le configurazioni consistono comunemente in centinaia di regole scritte in linguaggi di basso livello,

in cui le regole interagiscono fra loro e il loro ordine influenza la semantica della configurazione. Spesso

l’ordine di valutazione delle regole è non banale, e può essere modificato da istruzioni dedicate, simili

alle chiamate di procedura dei linguaggi di programmazione imperativi. Inoltre questi linguaggi sono

del tutto privi di semantica formale, e in genere anche la caratterizzazione informale è piuttosto lasca.

Le regole possono essere statiche, se dipendono unicamente dalle proprietà del pacchetto, o dinami-

che se dipendono dallo stato del firewall stesso, che tiene traccia delle connessioni attive, permettendo

filtri e modifiche dipendenti dai pacchetti precedentemente osservati.

Il porting di un firewall è un compito oneroso e rischioso anche per amministratori esperti; è

infatti necessario conoscere a fondo sia il sistema di origine, sia quello di destinazione ed è possibile

introdurre accidentalmente delle vulnerabilità senza accorgersene. Attualmente infatti l’approccio

comune è quello di ripartire dalle politiche di sicurezza che si era deciso di implementare nel sistema

precedente e codificarle da capo nel linguaggio del sistema target, verificando infine con dei test

l’aderenza del comportamento del firewall rispetto a quello atteso. Questo procedimento è molto

dispendioso in termini di tempo e non si hanno garanzie che i due sistemi si comporteranno nella

stessa identica maniera di fronte agli stessi pacchetti. Presentiamo un metodo automatico per il

porting delle configurazioni, basato sulla transcompilazione, che garantisce la conservazione della

semantica del firewall, sia per quanto riguarda il filtro, sia per le trasformazioni.

Basiamo il nostro approccio su IFCL, un linguaggio formale per la definizione di firewall origina-

riamente presentato in [4, 5], che usiamo come linguaggio intermedio. IFCL evidenzia la struttura

bipartita tipica dei sistemi firewall, composta dalle regole in sé e dal meccanismo che stabilisce l’or-

dine di valutazione e la modalità di applicazione. La prima parte è modellata attraverso un insieme

di liste di regole scritte in un linguaggio formale che è stato progettato in modo tale da consentire

una compilazione relativamente facile da ogni sistema firewall, in quanto incorpora tutte le feature

dei linguaggi di firewall come il NAT, i salti, le invocazioni e l’accesso allo stato delle connessioni. La

seconda parte è modellata attraverso un diagramma di controllo, un grafo in cui ai nodi sono assegnate
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liste di regole, e gli archi sono etichettati da predicati e rappresentano la possibilità di passare da uno

stato ad un altro, nel processo di valutazione del pacchetto.

Il procedimento di transcompilazione è una pipeline composta da quattro stadi: (i) il firewall ini-

ziale viene rappresentato attraverso IFCL; (ii) si calcola una rappresentazione astratta e sintetica della

semantica della configurazione come funzione dall’insieme dei pacchetti alle possibili trasformazioni

(compreso l’essere scartato); (iii) si genera un firewall IFCL del tipo target avente semantica corri-

spondente a quella calcolata al punto precedente; (iv) si compila la configurazione IFCL nel linguaggio

target.

Valutiamo inoltre l’espressività dei linguaggi di configurazione, intesa come l’insieme delle funzioni

dall’insieme dei pacchetti alle possibili trasformazioni che possono essere espresse da una configurazione

per il sistema in esame. Dimostriamo che non tutti i sistemi firewall sono capaci di esprimere le stesse

funzioni su pacchetti. Questo studio ci fornisce dei limiti entro i quali il porting può essere effettuato

in maniera corretta.

La soluzione proposta supporta i sistemi iptables, pf e ipfw, che sono sfruttati per fornire esempi

concreti; tuttavia la procedura di transcompilazione è definita in modo tale da essere adattabile,

abbastanza semplicemente, a nuovi sistemi. Infatti, la parte centrale della pipeline è basata su IFCL,

e gli algoritmi impiegati sono parametrici rispetto alle specifiche del firewall, anziché limitarsi ai soli

sistemi supportati attualmente. Per estendere il supporto ad un nuovo sistema è quindi sufficiente

fornire una sua caratterizzazione attraverso IFCL. Il funzionamento dell’algoritmo che implementa la

fase (iii) della pipeline, per il momento, è garantito unicamente quando il sistema target non consente

di effettuare lo stesso tipo di trasformazione (SNAT o DNAT) in più momenti diversi della valutazione

di un pacchetto.

1.1 Background

Presentiamo i lavori correlati a quello esposto in questa tesi, facendo particolare attenzione al linguag-

gio di configurazione intermedio IFCL, presentato in [5] e [4], sul quale basiamo il nostro approccio di

transcompilazione, e che definiremo in dettaglio nel capitolo 2 (in una versione lievemente modificata).

Per ognuno dei sistemi attualmente supportati diamo una piccola introduzione che permetta al lettore

di comprendere gli esempi presentati nel resto della tesi. Concludiamo, infine, presentando alcune

definizioni che useremo in seguito.

1.1.1 Lavori correlati

I metodi formali sono stati impiegati per modellare il controllo degli accessi dei firewall seguendo

diversi metodi, si vedano ad esempio [6, 11, 9]; qui noi restringiamo la nostra attenzione agli approcci

che, come il nostro, si basano sui linguaggi.

Recentemente c’è stata una crescita di interesse riguardo linguaggi di alto livello per la program-

mazione di reti di computer come un tutt’uno. Il paradigma delle Software Defined Network (SDN)

separa il controllo della rete dalle funzioni di inoltro, astraendo dalle applicazioni e dai servizi di

rete i dettagli legati all’infrastruttura sottostante [16]. Un approccio unificato e di alto livello alla

configurazione delle reti e dei firewall è attraente e potrebbe rendere le configurazioni più semplici e

meno soggette ad errori. Tuttavia le SDN richiedono una infrastruttura adeguata e, nonostante la

rapidità di diffusione, non possiamo aspettarci che le “vecchie” tecnologie siano dismesse troppo rapi-

damente, anche per questioni legate alla conservazione di sistemi legacy. Negli anni a venire avremmo
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ancora bisogno di affrontare i problemi legati alla configurazione, verifica e porting di sistemi firewall

tradizionali.

In questo lavoro seguiamo un approccio antitetico rispetto a quello di SDN, consideriamo i linguaggi

di configurazione specifici delle diverse piattaforme dei linguaggi macchina, con i quali interagiamo

attraverso compilazioni e decompilazioni verso linguaggi di alto livello, che nel caso della pipeline di

transcompilazione fungono da linguaggi intermedi.

La transcompilazione è una tecnica ben nota nell’ambito del code refactoring, della parallelizzazione

automatica e del porting di codice legacy in nuovi linguaggi di programmazione. Recentemente questa

tecnica è stata ampiamente usata nel campo della programmazione web per implementare dei linguaggi

di programmazione di alto livello in JavaScript, si vedano ad esempio [2, 19]. Al meglio delle nostre

conoscenze, oltre a [4], non sono presenti in letteratura approcci per il porting automatico delle

configurazioni dei firewall. Esistono invece approcci che attraverso la definizione di una semantica

formale dei linguaggi di configurazione esistenti, permettono di fare refactoring e di verificare la

presenza di eventuali errori. Alcuni di questi approcci sono basati sulla traduzione delle configurazioni

analizzate in linguaggi ad alto livello, nei quali risulta più facile controllare l’aderenza alle policy di

sicurezza. Sono stati proposti anche approcci che a partire dalle specifiche di sicurezza espresse

attraverso linguaggi formali ad alto livello, permettono la generazione di configurazioni per sistemi

reali.

La proposta di [8] “pulisce” le regole, poi le analizza con uno strumento automatico; usa una

semantica formale di iptables (senza NAT) per descrivere delle trasformazioni per la semplificazione

che preservano la semantica. Il tool FIREMAN [24] localizza inconsistenze e inefficienze delle confi-

gurazioni firewall (senza NAT). Margrave [15] è un analizzatore di configurazioni per firewall IOS: è

estensibile ad altri linguaggi, ma si concentra sulla ricerca di errori specifici piuttosto che nella sintesi

di una specifica di alto livello del significato della configurazione. Un altro strumento per la ricerca

di anomalie è Fang [12, 13], che sintetizza anche una politica astratta. Mignis [14, 1] è un tool che

permette di definire policy ad alto livello, con un linguaggio dotato di semantica formale, e di compi-

larle in configurazioni iptables (senza possibilità immediata di generalizzazione). Fra gli articoli che

formalizzano la semantica dei linguaggi di firewall menzioniamo anche [3] che permette di specificare

delle politiche di filtro astratte da compilare nel sistema firewall reale.

Molti di questi approcci definisce il proprio linguaggio formale, ma la compilazione viene effettuata

sempre in una sola direzione: dal linguaggio di configurazione reale a quello ad alto livello per analisi

e correzione; oppure nel verso opposto per la generazione di configurazioni a partire dalle specifiche.

Inoltre molti dei lavori citati non supportano componenti essenziali del comportamento reale dei

firewall, come NAT e lo stato interno; e spesso si concentrano su un sistema firewall specifico. Nel

nostro approccio invece, IFCL funge da linguaggio intermedio fra i linguaggi reali source e target.

Pertanto la traduzione fra IFCL e i linguaggi di configurazione è definita in entrambe le direzioni.

Gestiamo inoltre sia i costrutti per la modifica dei pacchetti, sia lo stato interno del firewall.

Il nostro approccio differisce da quelli proposti precedentemente quindi in quanto allo stesso tem-

po: (i) è indipendente dal linguaggio; (ii) definisce una semantica formale capace di esprimere il

comportamento dei firewall; (iii) supporta NAT e stato interno; (iv) consente di derivare una rap-

presentazione ad alto livello, funzionale e concisa del comportamento del firewall; (v) permette di

generare una configurazione per un sistema dato, il cui comportamento sia coerente con la descrizione

ad alto livello.

Il nostro lavoro si basa soprattutto su [4], nel quale si propone una pipeline di transcompilazione

fra linguaggi di configurazione di firewall, e di cui questa tesi può essere considerata una prosecuzione.
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L’articolo [5] descrive la progettazione di un tool automatico per la sintesi della semantica di una

configurazione firewall, e la sua applicazione a casi reali. Il tool implementa i primi due stadi della

pipeline di transcompilazione proposta in [4] e supporta l’amministratore di sistema nella verifica delle

politiche data una configurazione. In particolare l’utente può verificare implicazione, equivalenza e

differenze fra configurazioni, e la raggiungibilità fra host. Il tool usa la stessa sintassi di [4] in cui però

IFCL viene presentato in maniera più approfondita, definendone la semantica operazionale e spiegando

in maniera approfondita e formale le fasi di sintesi della rappresentazione dichiarativa della semantica

del firewall, e dimostrandone la correttezza. Inoltre in [4] si affronta il problema della compilazione

della specifica dichiarativa nel linguaggio target, permettendo la transcompilazione. Per risolvere

automaticamente i problemi di porting e refactoring delle configurazioni, si propone una pipeline di

transcompilazione composta dalle seguenti fasi:

1. traduzione in IFCL della configurazione espressa nel linguaggio source;

2. estrazione della semantica della configurazione come insieme di regole dichiarative non sovrap-

poste che descrivono i pacchetti accettati e le loro trasformazioni in termini logici;

3. compilazione delle regole dichiarative nel linguaggio target.

La prima fase della pipeline è invariata rispetto alla versione che discutiamo in questa tesi. La seconda

fase si basa su una caratterizzazione logica della semantica di IFCL; la rappresentazione sintetica

consiste in una descrizione concisa, basata su multicubi, dell’insieme dei modelli del predicato che

rappresenta la semantica, ed è calcolata attraverso un SAT solver. Per quanto relativamente efficiente,

questa fase rappresenta il collo di bottiglia della transcompilazione; da qui il desiderio di studiare un

algoritmo alternativo.

Per l’ultima fase della pipeline viene proposto un algoritmo basato sui tag, che produce una con-

figurazione IFCL per il sistema target. In [4] si garantisce che il firewall prodotto accetta tutti e soli

i pacchetti accettati dal firewall di partenza. Tuttavia non non si danno garanzie sulla conservazione

delle trasformazioni NAT e non viene studiata la possibilità effettiva di ricompilare il firewall ottenuto

nel linguaggio target. La ricompilazione da IFCL al linguaggio reale potrebbe in effetti essere proble-

matica proprio a causa del largo uso che viene fatto dei tag, i quali sono soggetti a limitazioni diverse

nei vari sistemi, in contraddizione con l’intento di delineare un approccio il più generale possibile.

Nel capitolo 2, definiamo una versione lievemente modificata di IFCL e in generale presentia-

mo i risultati di [4] che ci servono come base per impostare la nostra rivisitazione della pipeline di

transcompilazione.

1.1.2 Sistemi supportati

Per il momento i sistemi supportati sono iptables, pf e ipfw. Dato che una volta tradotta la

configurazione in IFCL, la procedura di transcompilazione è indipendente dal sistema di origine, è

possibile supportare nuovi sistemi fornendo un compilatore da e per il linguaggio di configurazione

desiderato.

iptables

Si tratta del sistema firewall di default delle distribuzioni Linux [21]. Opera grazie a Netfilter, il

framework standard per la gestione di pacchetti implementato nel kernel di Linux [22]. Ogni regola di

iptables è assegnata ad una tabella e ad una catena. Intuitivamente, una catena è una lista ordinata

di regole, una tabella è una collezione di catene.

Le tabelle più comunemente usate sono:
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FILTER : per il filtro di pacchetti, nella quale è possibile scartare i pacchetti che non soddisfano

determinati vincoli;

NAT : per la traduzione degli indirizzi in accordo con un protocollo di NAT (Network Address Trans-

lation), nella quale è possibile modificare gli indirizzi dei pacchetti;

MANGLE : per l’alterazione dei pacchetti, dove si possono associare etichette ai pacchetti, aggiornare

contatori etc.

Ci sono cinque catene built-in che sono ispezionate in momenti specifici del ciclo di vita di un pacchetto,

e sulla base dell’interfaccia di destinazione e origine [23]:

prerouting : quando il pacchetto raggiunge l’host;

forward : quando il pacchetto viene instradato dall’host;

postrouting : quando il pacchetto sta per lasciare l’host;

input : quando il pacchetto è instradato verso l’host;

output : quando il pacchetto è generato dell’host.

Non tutte le tabelle contengono necessariamente tutte le catene. L’utente può inoltre definire delle

proprie catene, che saranno ispezionate solo se chiamate espressamente da quelle built-in. Ogni regola

è divisa in due parti: una condizione e un target. Se un pacchetto verifica la condizione allora

viene gestito in accordo con il target. I target possono essere quelli predefiniti oppure una catena

user-defined. I target predefiniti più comuni sono:

ACCEPT : permette al pacchetto di passare, continuando la valutazione delle altre catene;

DROP : scarta il pacchetto;

RETURN : interrompe la valutazione della catena corrente e ritorna alla valutazione della catena

precedente;

DNAT : permette di modificare l’indirizzo di destinazione del pacchetto (destination NAT), il pacchetto

viene immediatamente accettato dalla ruleset;

SNAT : permette di modificare l’indirizzo di origine del pacchetto (source NAT), il pacchetto viene

immediatamente accettato dalla ruleset.

Quando invece il target è un catena user-defined occorre specificare un metodo di invocazione fra:

call : che esegue la catena chiamata fino alla fine o al primo RETURN, e che successivamente ritorna

alla catena chiamante come se si fosse invocata una procedura in un linguaggio imperativo;

jump : che passa ad eseguire la nuova catena in modo definitivo, senza tornare alla catena chiamante,

come nei salti dei linguaggi assembly.

Le catene built-in hanno una policy di default configurabile, corrispondente ad ACCEPT o DROP: se un

pacchetto raggiunge la fine della catena built-in o di una catena invocata con metodo jump, senza che

il pacchetto sia accettato o scartato, allora si applica la policy di default.
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pf

Si tratta del firewall standard di OpenBSD [17], supportato anche da FreeBSD [10]. Differentemente

dagli altri firewall, l’azione applicata ad un pacchetto dipende dall’ultima regola in cui la condizione è

verificata dal pacchetto, non dalla prima, tranne dove specificato diversamente attraverso l’etichetta

quick.

pf ha una singola ruleset che viene ispezionata sia all’arrivo sull’host, sia alla partenza da esso.

Nella versione di FreeBSD le regole di traduzione, quelle che implementano NAT, sono applicate prima

di quelle di filtro, nella versione di OpenBSD si segue rigidamente l’ordine di definizione.

I pacchetti appartenenti a connessioni stabilite sono accettati di default, aggirando le regole di

filtro.

ipfw

Si tratta del sistema firewall standard per FreeBSD [20]. Come in pf, le regole sono inserite in un’unica

lista che viene valutata due volte, quando il pacchetto arriva all’host e quando lo lascia (un’etichetta

in o out può essere applicata alla regola se vogliamo che sia applicata solo in uno dei due casi); e come

in iptables queste sono valutate in ordine e la prima di cui è verificata la condizione viene applicata.

Il pacchetto viene scartato se nessuna condizione è verificata. L’ordine di valutazione sequenziale

può essere alterato da regole contenenti skipto e goto. goto è simile all’istruzione jump di iptables,

ma la destinazione invece di essere una catena separata, è una regola all’interno dell’unica lista di

regole. skipto è equivalente a goto, ma è valido solo se la destinazione è successiva alla regola

chiamante.

I pacchetti che appartengono a connessioni stabilite possono essere accettati usando regole apposite.

1.1.3 Definizioni preliminari

Chiamiamo IP l’insieme degli indirizzi IPv4, cioè i numeri interi da 0 a 232 − 1, che rappresenteremo

con la classica notazione composta da quattro numeri fra 0 e 255 separati da punti; Port l’insieme delle

porte, cioè numeri interi da 0 a 216−1; e Tag l’insieme dei possibili tag associabili ad un pacchetto dal

firewall. Sulla forma di Tag non facciamo assunzioni, in alcuni sistemi i tag sono stringhe arbitrarie,

in altri sono numeri interi (talvolta confrontabili per intervallo e usando maschere).

Definiamo P, l’insieme di tutti i pacchetti, come il prodotto cartesiano dei possibili valori per: IP

di origine, porta di origine, IP di destinazione, porta di destinazione, tag del pacchetto.

P = IP×Port× IP×Port×Tag

Per alcuni protocolli, come ad esempio ICMP, non sono definiti i campi relativi alle porte, per questo

assumiamo la presenza di un valore speciale � ∈ Port corrispondente alla mancanza del campo stesso.

Ogni predicato φ(port) diverso da true, presente nella condizione di una regola di firewall, dove

port ∈ Port, è falsificato da un assegnamento di valore che associa � a port.

Usiamo una notazione “ad oggetti” per accedere ai campi di un pacchetto p, scrivendo p.sIP ,

p.sPort, p.dIP , p.dPort e p.tag. Inoltre, per leggibilità, anziché usare la classica notazione per le

tuple, ci riferiamo al pacchetto (sIP, sPort, dIP, dPort, tag) come (sIP : sPort, dIP : dPort, tag).

I firewall possono modificare i pacchetti, ad esempio attraverso il NAT. Scriviamo p[da 7→ a] e

p[sa 7→ a], con a = (ip, port) ∈ IP × Port (rappresentato a sua volta come ip : port), per denotare

un pacchetto identico a p, tranne per l’IP e la porta relativamente di destinazione da e di origine sa,

che sono uguali ad ip e port. Allo stesso modo, p[tag 7→ m] denota un pacchetto identico a p, con il

campo tag uguale a m.
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1.2 Ipotesi di lavoro

Nonostante l’intento di non tralasciare aspetti fondamentali del comportamento dei firewall reali,

come NAT e stato interno, facciamo comunque delle semplificazioni rispetto al reale funzionamento

dei sistemi supportati. Delineiamo, attraverso queste assunzioni, un contesto abbastanza contenuto

da poter essere trattato in modo sufficientemente completo e in una forma adeguata, supportando

comunque la maggior parte dei casi di studio reali.

Imponiamo che le trasformazioni NAT applicate dai firewall possano modificare i campi stabiliti

solo in modo deterministico, escludendo quindi la possibilità di specificare per i campi del pacchetto,

trasformazioni con valori scelti non deterministicamente da intervalli o insiemi arbitrari. Questo serve

a garantire che il comportamento dei firewall stessi sia deterministico. Ad esempio in iptables,

normalmente, è possibile definire una trasformazione NAT secondo la quale l’IP di destinazione viene

modificato in uno fra i possibili indirizzi della sottorete 192.168.0.0/24; l’indirizzo viene selezionato

con una politica round robin (a meno di configurazioni differenti).

Assumiamo che questo genere di configurazione non siano legali, anche per evitare conseguenze

apparentemente contraddittorie, come il fatto che un pacchetto possa essere accettato o scartato non

deterministicamente. Alcune versioni di questa generalizzazione del NAT potrebbero essere definite

sfruttando lo stato interno, senza bisogno di estendere il modello per gestire il non determinismo; in

effetti per implementare una politica round robin, tutto quello che ci serve è la memoria riguardo

l’ultimo indirizzo assegnato.

È bene segnalare che, a meno di approssimazioni (come quelle fatte in [4], vedi 2.5), la mo-

dellazione delle trasformazioni dovute allo stato, ad esempio in un contesto di NAT dinamico, non

comportano problemi in quanto non si tratta di trasformazioni intrinsecamente non deterministiche,

ma semplicemente dipendenti dallo stato interno del firewall.

Nella modellazione dei linguaggi di configurazione attraverso IFCL, per quanto riguarda le azioni

su pacchetti che dipendono dallo stato interno del firewall, assumiamo l’esistenza di una funzione che,

dato lo stato interno e il pacchetto attuale, restituisce l’azione prescritta per il pacchetto. Questo

viene fatto senza dare dettagli relativi alla forma di questa funzione e senza descrivere espressamente

l’insieme delle azioni che possono essere applicate ai pacchetti. Il formalismo è quindi molto generale,

permettendo in teoria di modellare ogni genere di azione che dipenda dallo stato interno come NAT

dinamico, politiche di bilanciamento del carico e rate limit; ma demanda la formalizzazione della

caratteristica in sé all’utente interessato.

Per lo studio dell’espressività e per l’implementazione della pipeline di transcompilazione ci occu-

piamo unicamente dei pacchetti appartenenti a nuove connessioni, assumendo che il comportamento

di default del sistema target, per pacchetti appartenenti a connessioni stabilite, sia soddisfacente.

Infatti ogni sistema ha un modo lievemente diverso di gestire le connessioni stabilite, e non è detto

che configurare il sistema target perché simuli quello di origine sia in assoluto desiderabile.

Inoltre, per lo studio dell’espressività e la generazione di firewall tralasciamo l’uso dei tag. Questo

perché essi sono soggetti a vincoli diversi nei diversi sistemi di firewall ed è difficile tenere traccia di

queste limitazioni quando si parla della versione IFCL del firewall. Per permettere di implementare i

diversi sistemi reali in IFCL, infatti, abbiamo definito un sistema di tag il più permissivo possibile; e

questo chiaramente è un problema quando la configurazione IFCL deve essere compilata nel linguaggio

target, che potrebbe non permettere alcune operazioni adoperate.
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1.3 Contributo

Il contributo originale di questo lavoro, soprattutto rispetto alla versione precedente della pipeline di

transcompilazione, presentata in [4], può essere riassunto nei seguenti punti:

• definizione di una semantica denotazionale per i firewall IFCL;

• presentazione di un nuovo algoritmo di sintesi che si basa sulla semantica denotazionale e che

non richiede l’uso di un SAT solver;

• sviluppo di una teoria per lo studio dell’espressività di un sistema firewall, data la sua caratte-

rizzazione IFCL;

• definizione di una procedura di compilazione che a partire dalla semantica astratta genera un

nuovo firewall per il sistema target senza usare i tag;

• valutazione delle condizioni di correttezza dei firewall prodotti dall’algoritmo basato sui tag

presentato in [4];

• definizione formale della rappresentazione sintetica usata e dimostrazione di correttezza.

1.4 Schema della tesi

Nel capitolo 2 presentiamo IFCL, il linguaggio formale sul quale basiamo il nostro lavoro: mostriamo

come compilare i sistemi supportati in IFCL, ne definiamo la semantica operazionale, forniamo un

algoritmo di riscrittura che rimuove i costrutti che influenzano il flusso di controllo (mantenendo in-

variata la semantica) e forniamo una caratterizzazione dichiarativa della semantica mettendo in luce

anche l’approssimazione dello stato interno sulla quale è basata. Nel capitolo 3 definiamo l’insieme

delle possibili trasformazioni su pacchetti e diamo la semantica denotazionale di IFCL come funzione

da pacchetti a trasformazioni. Nel capitolo 4 ridefiniamo la pipeline di transcompilazione, modifican-

do quella originariamente proposta in [4] ed evidenziando i passi intermedi e le condizioni necessarie

affinché il firewall prodotto sia semanticamente equivalente a quello di partenza. Qui introduciamo

anche la rappresentazione sintetica usata ed enunciamo le condizioni sotto le quali il comportamento

degli algoritmi, che operano sulla rappresentazione sintetica, rispetta le condizioni formali di corret-

tezza espresse. Il capitolo 5 è dedicato al nuovo algoritmo per il calcolo della semantica astratta di una

configurazione; si presenta anche un algoritmo per la rimozione dei cicli dal diagramma di controllo

di un firewall. Nel capitolo 6 studiamo l’espressività dei diversi sistemi firewall basandoci sulla loro

formalizzazione IFCL, prima definiamo le configurazioni IFCL legali in un dato sistema, poi attraverso

queste deduciamo quali funzioni da pacchetti a trasformazioni sono esprimibili in quel sistema. Il ca-

pitolo 7 presenta l’algoritmo per la generazione della configurazione target, specificando in quali casi

abbiamo garanzie di successo e confrontandolo con quello presentato in [4]; per entrambi gli algoritmi

analizziamo anche la possibilità di compilare il firewall ottenuto da IFCL al linguaggio target. Infine,

nel capitolo 8 concludiamo tirando le somme sul lavoro svolto e parlando dei possibili sviluppi futuri

che ci aspettiamo, sia per quanto riguarda la produzione di uno strumento software che implementi

quanto descritto, sia rispetto a possibili estensioni della teoria e rilassamenti delle ipotesi di lavoro.
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Capitolo 2

IFCL

In questo capitolo presentiamo IFCL (Intermediate Firewall Configuration Language), un formalismo

per la definizione di firewall proposto originariamente in [5] e riportato con maggiore dettaglio in [4].

I firewall modellati in IFCL sono composti da due elementi: il diagramma di controllo, che rappresenta

un’astrazione dell’algoritmo di controllo del sistema firewall, e la configurazione, un assegnamento di

ruleset espresse in un linguaggio comune ai nodi del diagramma di controllo.

Mostreremo come modellare iptables, pf e ipfw in IFCL e daremo una definizione formale della

semantica operazionale di un firewall espresso in IFCL. Presenteremo anche una procedura di nor-

malizzazione delle configurazioni e una caratterizzazione logica del linguaggio, entrambe utili per la

realizzazione della pipeline di transcompilazione.

I contenuti presentati in questo capitolo sono una rivisitazione del materiale di [4], che è stato

adattato alle ipotesi di questa tesi, in particolare all’ipotesi secondo la quale il NAT possa essere

effettuato unicamente verso indirizzi singoli e non verso intervalli. Abbiamo inoltre cercato di rendere

più chiaro il ruolo dello stato interno del firewall e la differenza fra le proprietà di un firewall legate

al sistema firewall impiegato e quelle legate alla sua configurazione.

2.1 Fondamenti di IFCL

Presentiamo il linguaggio di configurazione intermedio IFCL. Non forniamo specifiche esatte del com-

portamento dello stato, preferendo rimanere parametrici rispetto a esso.

Assumiamo che una qualche nozione di stato s ∈ S sia definita, dove S è l’insieme di tutti gli stati

possibili, e che il sistema tenga traccia di quali pacchetti appartengono a una connessione stabilita

e quali no. Il comportamento del firewall rispetto allo stato interno è parametrizzato attraverso il

predicato astratto p `s α, vero se il pacchetto p appartiene a una connessione stabilita secondo lo

stato s, che prescrive un’azione α da applicare al pacchetto p. Se un pacchetto p non appartiene ad

alcuna connessione stabilita secondo lo stato s scriviamo p 6`s.
Per permettere la modifica di un pacchetto secondo lo stato della connessione introduciamo

un’azione dedicata nel linguaggio delle ruleset, il target CHECK-STATE.

Una regola firewall è composta di due parti: un predicato φ che esprime una condizione sui

pacchetti, e un target che definisce l’azione da applicare al pacchetto. Le regole possono predicare su

proprietà intrinseche del pacchetto, come indirizzo di origine o destinazione, ed eventualmente anche

sull’appartenenza o meno del pacchetto a una connessione stabilita. Pertanto il predicato φ ha come

parametri sia il pacchetto da valutare che lo stato s del firewall. Non diamo una specifica completa

dei predicati che possono comparire come condizione di una regola, ma imponiamo che questi possano
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Target Effetto

ACCEPT Il pacchetto viene accettato dalla ruleset, la valutazione della ruleset termina

DROP Il pacchetto viene scartato dal firewall, la valutazione del pacchetto termina

completamente

CALL(R) Invoca la ruleset R, questa verrà valutata al massimo fino all’invocazione di un

RETURN o alla fine della ruleset R, successivamente si ritornerà alla ruleset chiamante

GOTO(R) Salta alla ruleset R, il destino del pacchetto sarà quello assegnatogli da R

RETURN Ritorna dalla ruleset corrente a quella chiamante

NAT(nd, ns) Effettua una trasformazione sul pacchetto e lo accetta, la valutazione della ruleset

termina

MARK(m) Marca il pacchetto col tag m, la valutazione prosegue dalla regola successiva

CHECK-STATE(X) Esamina lo stato: se il pacchetto appartiene a una connessione stabilita effettua

le trasformazioni previste dallo stato, il pacchetto viene accettato e la valutazione

della ruleset termina; altrimenti la valutazione prosegue dalla regola successiva

Tabella 2.1: I target IFCL e loro semantica informale.

essere scomposti in una congiunzione di predicati tali che ciascuno di essi predica unicamente su uno dei

campi del pacchetto, più uno per lo stato. Questo vincolo è coerente con i linguaggi di configurazione

dei sistemi firewall reali e ci serve a garantire alcune proprietà sull’insieme dei pacchetti che verificano

la condizione di una regola. Alcune azioni comportano la fine della valutazione della ruleset da

parte del pacchetto, altre prevedono che il pacchetto prosegua la valutazione della ruleset dalla regola

successiva, altre ancora comportano la fine della valutazione del pacchetto da parte dell’intero firewall.

Consideriamo un insieme di azioni incluso in molti dei firewall reali. Queste azioni non determinano

solo il destino del pacchetto, ma influenzano anche il flusso di controllo in cui le regole sono applicate.

I target e la loro semantica informale sono presentati in Tabella 2.1.

I target CALL( ) e RETURN implementano un comportamento simile a una chiamata a procedura; GOTO( )

ha un comportamento simile a quello dei jump in assembly. Nell’azione NAT, nd e ns sono indirizzi

usati per tradurre rispettivamente la destinazione e l’origine.

Usiamo il simbolo ? per indicare la trasformazione identità, ad esempio n : ? rappresenta una

trasformazione in cui l’indirizzo IP è trasformato in n e la porta è lasciata inalterata. L’argomento

X ∈ {←,→,↔} dell’azione CHECK-STATE indica i campi del pacchetto che possono essere modificati dallo

stato. Più precisamente,→ riscrive solo la destinazione,← solo l’origine e↔ entrambi. Formalmente:

Definizione 1 (Regola di firewall). Una regola di firewall r è una coppia (φ, t) dove t è l’azione target

della regola e φ è una formula logica su un pacchetto e sullo stato tale che:

φ(p, s) = φsIP (p.sIP ) ∧ φsPort(p.sPort) ∧ φdIP (p.dIP ) ∧ φdPort(p.dPort) ∧ φtag(p.tag) ∧ φs(p, s)
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per qualche predicato φsIP , φsPort, φdIP , φdPort e φtag, e per un predicato φs(p, s) che può essere solo

∃α. p `s α oppure ¬∃α. p `s α.

Un pacchetto p si abbina a una regola r con target t, in uno stato s se φ vale.

Definizione 2 (Abbinamento di una regola). Data una regola r = (φ, t), diciamo che p si abbina a

r con target t, nello stato s, scritto p, s 
r t, se e solo se φ(p, s). Scriviamo p, s 6
r quando p non si

abbina a r nello stato s.

Per semplificare la trattazione assumeremo sempre che, per ogni regola del tipo (φ, CHECK-STATE(X)),

valga che

φ(p, s)⇒ ∃α . p `s α

Nella pratica questo può essere ottenuto imponendo che le condizioni φ delle regole con target

CHECK-STATE(X) siano sempre della forma φ′ ∧ (state = ENSTABLISHED) per un qualche predicato φ′

(eventualmente true). Si noti che l’applicazione di CHECK-STATE(X) in uno stato in cui la connessione

non è stabilita produce lo stesso risultato di quando la condizione non è verificata, quindi le due regole

(φ, CHECK-STATE(X)) e (φ′, CHECK-STATE(X)) hanno semantica equivalente. In pratica l’assunzione non limita

affatto l’espressività del formalismo, si tratta unicamente di una questione di forma.

Definiamo ora come un pacchetto viene elaborato da una lista di regole, da qui in poi chiamata

ruleset.

Definizione 3 (Ruleset). Un ruleset R è una lista di regole di firewall (anche vuota) corredata da

un target di default indicato come td ∈ {ACCEPT, DROP}, che specifica l’operazione da compiere quando un

pacchetto raggiunge la fine della ruleset e non ci sono ruleset chiamanti a cui tornare.

Quando non specificato diversamente assumeremo che il target di default sia sempre ACCEPT, inoltre

chiamiamo per convenienza Rε la ruleset vuota con default policy ACCEPT.

Le regole sono ispezionate una dopo l’altra, viene eseguita l’azione specificata dal target della

prima regola che si abbina al pacchetto e la valutazione della ruleset può proseguire o meno, e in

modi diversi, sulla base del target. Come abbiamo detto infatti, alcune azioni fanno s̀ı che l’ispezione

termini, altre prevedono che si continui a ispezionare la ruleset dalla regola immediatamente successiva,

e in altri casi ancora la valutazione delle regole prosegue in maniera diversa dal normale. Per sanità

non permettiamo che per mezzo di azioni GOTO(R) o CALL(R) si creino dei cicli nella catena delle ruleset

applicate. Il sistema tiene traccia delle ruleset invocate e nel caso si creino delle chiamate circolari

fra le ruleset scarta il pacchetto incriminato. Questo comportamento è implementato nella semantica

operazionale di IFCL e modella fedelmente il comportamento dei firewall reali supportati.

Definizione 4 (Abbinamento in una ruleset). Data una ruleset R = [r1, . . . , rn], diciamo che R

abbina p alla i-esima regola con target t, nello stato s, scritto p, s 
R (t, i), se e solo se

i ≤ n ∧ p, s 
ri t ∧ ∀j < i . p, s 6
rj

Dove ri = (φ, t).

Scriviamo anche p, s 6
R se p non si abbina a nessuna regola in R, nello stato s, formalmen-

te se ∀r ∈ R . p, s 6
r. Ci sentiremo liberi di omettere l’indice i quando non necessario, scrivendo

semplicemente p, s 
R t.

Nel nostro modello, astraendo dalle specifiche operazioni compiute dal sistema operativo per pro-

cessare un pacchetto, rappresentiamo l’algoritmo che valuta il pacchetto secondo le ruleset attraverso

un diagramma di controllo, cioè un grafo in cui i nodi rappresentano differenti fasi di valutazione e gli
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(a) Diagramma di controllo di iptables
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(c) Diagramma di controllo di pf

Figura 2.1: Diagrammi di controllo dei sistemi supportati.

archi i possibili passaggi da una fase all’altra. Gli archi sono etichettati da un predicato che descrive

i requisiti che un pacchetto deve soddisfare per poter passare alla fase di valutazione successiva. As-

sumiamo che i diagrammi di controllo siano deterministici, cioè che ogni pacchetto possa attraversa

uno ed uno solo degli archi uscenti da ogni nodo.

Definizione 5 (Diagramma di controllo). Sia Ψ un insieme di predicati sui pacchetti. Un diagramma

di controllo C è una tupla (Q,A, qi, qf ), dove

• Q è un insieme di nodi;

• A ⊆ Q×Ψ×Q è un insieme di archi tale che ∀p, q 6= qf . #{q′ | (q, ψ, q′) ∈ A ∧ ψ(p)} = 1;

• qi,qf ∈ Q sono nodi speciali che denotano l’inizio e la fine dell’elaborazione.

Dato che il diagramma di controllo è deterministico possiamo definire una funzione di transizione

che dato lo stato attuale e un pacchetto restituisce il prossimo stato della valutazione.

Definizione 6 (Funzione di transizione). Sia (Q,A, qi, qf ) un diagramma di controllo, la funzione di

transizione δ : Q× P 7→ Q è definita come

δ(q, p) = q′ sse ∃(q, ψ, q′) ∈ A. ψ(p)

Possiamo ora definire un firewall IFCL.

Definizione 7 (Firewall IFCL). Un firewall IFCL F è una coppia (C,Σ), dove C è un diagramma

di controllo; Σ = (ρ, c) è una configurazione in cui ρ è un insieme di ruleset e c : Q 7→ ρ è una

corrispondenza che mappa ogni nodo di C in una rulesets in ρ.

2.2 Modellazione dei sistemi reali supportati

Mostriamo come codificare tre sistemi di firewall standard in IFCL: iptables, pf1 e ipfw. Una

conseguenza immediata è che attraverso la codifica definiremo implicitamente una semantica formale

1Nella versione supportata da freeBSD [10].
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per i tre linguaggi, in termini della semantica formale di IFCL. Per ognuno di questi forniamo un

diagramma di controllo (si veda la Figura 4.1), mostriamo come tradurre il file di configurazione

in un insieme di ruleset e come assegnare queste ruleset ai nodi del diagramma. La traduzione della

configurazione dal linguaggio source è presentata in due fasi, per prima cosa spieghiamo come tradurre

le singole regole del linguaggio in IFCL e infine come distribuire le regole ottenute nelle varie ruleset e

come assegnarle ai nodi del diagramma.

Per economia di spazio e tempo, non specifichiamo completamente la traduzione da regole del

linguaggio di configurazione a IFCL, tralasciando alcuni dettagli non particolarmente delicati e che

richiederebbero la presentazione della sintassi completa dei linguaggi di configurazione supportati. In

particolare non descriviamo come tradurre le condizioni delle regole in predicati φ e diamo solo alcuni

accenni su come tradurre i parametri dei target. Crediamo che i dettagli tralasciati siano di immediata

comprensione per il lettore e che possano essere ricavati autonomamente senza particolari difficoltà.

2.2.1 Modellazione di iptables

La figura 4.1a mostra il diagramma di controllo Ciptables di iptables. In questo grafo e in tutti quelli

che seguono, assumiamo che gli archi senza etichetta siano implicitamente etichettati del predicato

“true”. Idealmente ogni nodo corrisponde a una chain built-in e il diagramma ricalca il modo in cui

un pacchetto viene valutato attraversando chain differenti a seconda se sia proveniente e diretto verso

indirizzi locali o non locali.

Ogni regola di iptables è immediatamente traducibile in una equivalente in IFCL da una semplice

elaborazione sintattica, si noti che il target CALL( ) di IFCL corrisponde al target jump di iptables

per l’invocazione di una chain user-defined. In iptables ogni regola è associata a una tabella e a

una chain built-in oppure è associata a una chain user-defined. Ogni coppia tabella chain built-in

e ogni chain user-defined corrisponde a una diversa ruleset. Ogni nodo del diagramma di controllo

corrisponde a una coppia tabella chain built-in.

Data la funzione di traduzione delle singole regole, la ruleset relativa a una coppia tabella chain

built-in o a una chain user-defined consiste semplicemente nella concatenazione della traduzione delle

regole a essa assegnate. L’ordine delle regole nelle ruleset deve essere lo stesso del file di configurazione

source in quanto l’ordine di valutazione delle regole è lo steso per IFCL e iptables (vengono applicate

dalla prima all’ultima).

In iptables ci sono dodici chain built-in, ognuna delle quali corrisponde a una singola ruleset.

Possiamo definire un insieme ρp ⊆ ρ di ruleset, che sono la traduzione delle ruleset built-in di iptables.

Chiamiamo queste ruleset Rman
Inp , Rnat

Inp , Rfil
Inp, Rman

Out , Rnat
Out, Rfil

Out, Rman
Pre , Rnat

Pre, Rman
For , Rfil

For, Rman
Post e

Rnat
Post, dove l’apice indica il nome della chain e il pedice il nome della tabella. Si noti che ρ \ρp contiene

le ruleset definite dall’utente, che entrano in gioco solo per mezzo di istruzioni CALL( ) o GOTO( ) .

Le rulesetRnat
Inp , Rnat

Out, Rnat
Pre, eRnat

Post contengono come prima regola (state = ENSTABLISHED, CHECK-STATE(↔)),

questo permette di modellare il comportamento reale di iptables, in cui se un pacchetto appartie-

ne a una connessione stabilita questo non passa per le chain della tabella NAT, ma subisce invece le

trasformazioni previste dallo stato.

La funzione di associazione delle ruleset ai nodi ciptables : Q 7→ ρ è definita come segue:

ciptables(qi) = Rε ciptables(qf ) = Rε ciptables(q0) = Rman
Pre

ciptables(q1) = Rnat
Pre ciptables(q4) = Rman

Inp ciptables(q3) = Rfil
For

ciptables(q5) = Rnat
Inp ciptables(q6) = Rfil

Inp ciptables(q7) = Rman
Out

ciptables(q8) = Rnat
Out ciptables(q9) = Rfil

Out ciptables(q2) = Rman
For
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ciptables(q3) = Rfil
For ciptables(q10) = Rman

Post ciptables(q11) = Rnat
Post

I target di default delle ruleset sono quelli delle default policy specificati dalla configurazione

iptables.

2.2.2 Modellazione di pf

Il diagramma di controllo Cpf di pf, è mostrato in figura 2.1c. I nodi q0 e q2 rappresentano la fase di

valutazione delle regole di trasformazione, i rimanenti nodi la fase di filtro.

Differentemente da iptables, pf non prevede la divisione delle regole in tabelle o chain differente.

Le regole sono valutate nell’ordine in cui compaiono. Quelle di trasformazione sono valutate prima

di quelle di filtro e l’algoritmo che stabilisce quale regola applicare è differente per i due tipi di regole.

Fra le regole di trasformazione viene applicata la prima regola che verifica la condizione φ. Fra le

regole di filtro invece viene applicata l’ultima regola fra quelle di cui le condizioni sono verificate,

tranne le regole contenenti l’opzione quick, che sono applicate immediatamente.

La traduzione di una singola regola pf in IFCL non comporta particolari difficoltà in quanto le

regole esprimibili in pf sono piuttosto semplici (nessun salto o chiamata).

La traduzione delle regole del file di configurazione sono divise nelle seguenti ruleset, che compon-

gono ρpf :

• nella ruleset Rdnat sono inserite le regole rdr;

• nella ruleset Rsnat sono inserite le regole nat;

• nella ruleset Rfinp sono inserite le regole di filtro quick che non hanno modificatore out;

• nella ruleset Rfinpr sono inserite, in ordine inverso rispetto a quello del file di configurazione, le

regole di filtro non quick che non hanno modificatore out;

• nella ruleset Rfout sono inserite le regole di filtro quick che non hanno modificatore in;

• nella ruleset Rfoutr sono inserite, in ordine inverso rispetto a quello del file di configurazione, le

regole di filtro non quick che non hanno modificatore in;

In aggiunta la ruleset Rdnat contiene come prima regola (state = ENSTABLISHED, CHECK-STATE(→)), Rsnat

contiene come prima regola (state = ENSTABLISHED, CHECK-STATE(←)), e le ruleset Rfinp e Rfout con-

tengono sempre come prima regola (state = ENSTABLISHED, ACCEPT). Questo permette di modellare il

comportamento di pf rispetto ai pacchetti appartenenti a una connessione stabilita, che sono accettati

automaticamente e che subiscono solo le traduzioni prescritte dallo stato.

Le ruleset di filtro sono collegate infine dall’inserimento della regola (true, GOTO(Rfinpr)) alla fine di

Rfout e (true, GOTO(Rfoutr)) alla fine di Rfout .

L’assegnamento delle ruleset ai nodi cpf è il seguente:

cpf (qi) = Rε cpf (q0) = Rdnat cpf (q2) = Rsnat

cpf (qf ) = Rε cpf (q1) = Rfinp cpf (q3) = Rfout

Il target di deafault delle ruleset è sempre ACCEPT in pf.
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2.2.3 Modellazione di ipfw

Il diagramma di controllo Cipfw di ipfw, mostrato in figura 4.1b, è più semplice di quelli analizzati

precedentemente. Abbiamo sostanzialmente un nodo per le operazioni effettuate sui pacchetti in input

(q0) ed uno per i pacchetti in output (q1).

La configurazione di un firewall ipfw consiste in una serie di regole etichettate con un numero

identificativo che ne indica l’ordine di valutazione. L’idea è quella di costruire una coppia di ruleset per

ogni regola della configurazione: una per i pacchetti in input, che sarà “vuota” per regole etichettate

con la keyword out; una per i pacchetti in output, che sarà “vuota” per regole etichettate con la

keyword in.

Più precisamente, siano rid1 , . . . , ridk le regole del file di configurazione ipfw, dove idi è l’iden-

tificativo numerico assegnato a ciascuna delle regole. ρipfw contiene 2k differenti ruleset: k ruleset

denominate RIi , una per ogni regola ridi e k denominate ROi , sempre una per ogni regola ridi . Se

la regola ridi contiene la keyword out, allora sarà RIi = [(true, GOTO(RI
i+1))]. Altrimenti, definiamo

RIi = (trs(ridi), (true, GOTO(R
I
i+1))), dove trs è definita come:

trs(r) =


(trs′(φ), GOTO(RI

n)) se r è skipto idn φ

(trs′(φ), CALL(RI
n)) se r è call idn φ

(trs′(φ), trs′(t)) se r è t φ

In cui la funzione trs′ realizza una semplice traduzione sintattica per target e condizioni.

La costruzione delle rulesets ROi è identica, ma in questo caso sono le regole etichettate con in a

essere tradotte in un ruleset “vuote”.

La funzione di assegnamento delle ruleset ai nodi cipfw è definita come segue:

cipfw (qi) = Rε cipfw (q0) = RI1

cipfw (q1) = RO1 cipfw (qf ) = Rε

ipfw permette di definire una policy di default, questa determinerà il target di default di tutte le

ruleset.

2.3 Semantica operazionale di IFCL

Esprimiamo la semantica di un firewall IFCL attraverso due sistemi di transizione operanti in un

modalità master-slave. Il sistema master definisce una relazione della forma s
p,p′−−→ s′, intuitivamente

significa che un firewall nello stato s che riceve un pacchetto p lo trasforma in p′ e modifica il suo

stato interno in s′.

Le configurazioni del sistema slave sono triple (q, s, p) dove: (i) q ∈ Q è un nodo del diagramma di

controllo; (ii) s è lo stato del firewall; (iii) p è il pacchetto. Una transizione (q, s, p)→ (q′, s, p′) descrive

come il nodo q del firewall nello stato s gestisce un pacchetto p trasformandolo in p′, e passandolo al

nodo q′ per la prosecuzione della valutazione. Lo stato non cambia in questo sistema in quanto viene

aggiornato solo alla fine della valutazione del pacchetto, e solo se non viene scartato.

Usiamo il predicato p, s |=S
R (t, p′) che definisce il risultato della valutazione (pacchetto risultante

p′ e destino associato t ∈ {ACCEPT, DROP}) di un pacchetto p da parte di una ruleset R nello stato s

con stack delle chiamate S. Il predicato cerca nella ruleset R una regola che si abbini al pacchetto

p attraverso p, s 
R (t, i). Se la trova, il target t è applicato a p per ottenere il nuovo pacchetto p′

(potenzialmente identico a p).
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(1)
p, s 
R (t, i) t ∈ {ACCEPT, DROP}

p, s |=S
R (t, p)

(2)
p, s 
R (CHECK-STATE(X), i) p `s α p′ = establ(α,X, p)

p, s |=S
R (ACCEPT, p′)

(3)
p, s 
R (CHECK-STATE(X), i) p 6`s p, s |=S

Ri+1
(t, p′)

p, s |=S
R (t, p′)

(4)
p, s 
R (NAT(dn, sn), i)

p, s |=S
R (ACCEPT, nat(p, dn, sn))

(5)
p, s 
R (GOTO(R’), i) R′ 6∈ S p, s |=R·S

R′ (t, p′)

p, s |=S
R (t, p′)

(6)
p, s 
R (GOTO(R’), i) R′ ∈ S

p, s |=S
R (DROP, p)

(7)
p, s 
R (CALL(R’), i) R′ 6∈ S p, s |=

Ri+1·S
R′ (t, p′)

p, s |=S
R (t, p′)

(8)
p, s 
R (CALL(R’), i) R′ ∈ S

p, s |=S
R (DROP, p)

(9)
p, s 
R (RETURN, i) pop∗(S) = (R′, S′) p, s |=S′

R′ (t, p
′)

p, s |=S
R (t, p′)

(10)
p, s 
R (RETURN, i) pop∗(S) = †

p, s |=S
R (td, p)

(11)
p, s 6
R S 6= ε pop∗(S) = (R′, S′) p, s |=S′

R′ (t, p
′)

p, s |=S
R (t, p′)

(12)
p, s 6
R (S = ε ∨ pop∗(S) = †)

p, s |=S
R (td, p)

(13)
p, s 
R (MARK(m), i) p[tag 7→ m], s |=S

Ri+1
(t, p′)

p, s |=S
R (t, p′)

Tabella 2.2: Predicato p, s |=S
R (t, p′).

Lo stack S serve a gestire le azioni CALL( ), RETURN e GOTO( ), e supplisce a una duplice funzione:

controllare che non ci siano chiamate cicliche e tenere traccia delle ruleset chiamanti nel caso si

incontri un’azione RETURN. Si noti che nel momento di dover tornare alla ruleset chiamante è necessario

ignorare le ruleset che sono state inserite in S da un GOTO( ), limitandosi a quelle inserite attraverso

una CALL( ). Distinguiamo dunque le ruleset inserite nella pila da un GOTO( ) sopralineandole: le ruleset

sopralineate sono ignorate quando si ritorna da una chiamata.

Chiamiamo ε la pila vuota e indichiamo con · la concatenazione di elementi sullo stack. Definiamo

la funzione pop? per trattare il ritorno da una ruleset invocata († segnala che non c’è nessuna ruleset

a cui tornare)

pop∗(ε) = † pop∗(R · S) = (R,S) pop∗(R · S) = pop∗(S)

Nella definizione di p, s |=S
R (t, p′) usiamo la notazione Rk per indicare la ruleset [rk, ..., rn] (k ∈

[1, n]) risultante dalla rimozione delle prime k − 1 regole dalla ruleset R = [r1, ..., rn].

In linea con l’idea di rimanere parametrici rispetto allo stato interno del firewall, assumiamo che

la funzione establ(α,X, p), data la trasformazione α prescritta dallo stato, un pacchetto p e i campi

X ∈ {←,→,↔} da modificare, restituisca un pacchetto possibilmente modificato p′, ad esempio nel

caso questo appartenga a una connessione stabilita.

Assumiamo infine di avere una funzione nat(p, dn, sn) che restituisce il pacchetto p modificato

secondo l’operazione NAT. L’argomento dn specifica la modifica alla destinazione di p, cioè il destination

NAT (DNAT), mentre sn specifica la modifica all’origine di p, cioè il source NAT (SNAT).

La tabella 2.2 mostra le regole che definiscono p, s |=S
R (t, p′). La prima regola gestisce il caso in cui

il pacchetto p si abbini a una regola con target ACCEPT o DROP; in questo caso la valutazione della ruleset

termina e vengono restituiti il pacchetto non modificato e il target. Quando un pacchetto p si abbina

a una regola con target CHECK-STATE, controlliamo lo stato s: se p appartiene alle connessioni stabilite,

restituiamo ACCEPT e un pacchetto p′ ottenuto dalla riscrittura di p. Se p non appartiene a nessuna

connessione stabilita allora proseguiamo con la valutazione della ruleset. Quando un pacchetto p si

abbina a una regola con target NAT, restituiamo ACCEPT e il pacchetto risultante ottenuto invocando la

funzione nat. Ci sono due casi corrispondenti alla situazione in cui p è associato a una regola con

target GOTO( ). Se la ruleset R′ non è ancora nello stack inseriamo la ruleset corrente R nello stack,
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sovralineandola in modo da ignorarla per il ritorno. Altrimenti, se R′ è già nello stack, abbiamo

trovato un loop e quindi scartiamo p assegnandogli il target DROP. Il caso di un pacchetto p associato a

una regola con target CALL( ) è simile, a parte per il fatto che la ruleset inserita nello stack non viene

sovralineata. Quando un pacchetto p è associato a una regola con target RETURN, chiamiamo la funzione

pop∗ sullo stack e confrontiamo il pacchetto con la ruleset ottenuta. Infine, quando nessuna regola si

associa al pacchetto, un implicito RETURN occorre: continuiamo dal top dello stack, se esiste. Una regola

con target MARK semplicemente modifica il tag del pacchetto a cui è associata. Se nessuna delle regole

è applicabile allora restituiamo l’azione di default td della ruleset corrente.

Possiamo ora definire la funzione di transizione slave come segue:

c(q) = R p, s |=ε
R (ACCEPT, p′) δ(q, p′) = q′

(q, s, p)→ (q′, s, p′)

La regola descrive come viene trattato il pacchetto p quando il firewall è nella fase di elaborazione

rappresentata dal nodo q e lo stato è s. Confrontiamo p con la ruleset R associata a q e se p è accettato

come p′, continuiamo considerando la prossima fase di elaborazione rappresentata dalla fase q′.

Il sistema di transizione master è basato sulla chiusura transitiva della relazione→ del sistema slave.

Tuttavia è necessario verificare che la sequenza dei nodi attraversati non contenga dei nodi ripetuti,

cioè dei cicli, in quanto in questo caso il sistema run time del firewall scarterebbe immediatamente il

pacchetto, in modo coerente col comportamento dei firewall supportati. Per questo definiamo →⊕,

una versione priva di cicli della chiusura transitiva della relazione →.

(qi, s, p)→+
{qi} (q, s, p′)

(qi, s, p)→⊕ (q, s, p′)

Dove la relazione →+
I è una versione della chiusura transitiva che tiene conto dell’insieme dei nodi

visitati I al fine di prevenire i cicli.

(q, s, p)→ (q′, s, p′) q′ /∈ I

(q, s, p)→+
I (q′, s, p′)

(q, s, p)→ (q′′, s, p′′) q′′ /∈ I (q′′, s, p′′)→+
I∪{q′′} (q′, s, p′)

(q, s, p)→+
I (q′, s, p′)

Infine definiamo il sistema di transizione master, che trasforma stati e pacchetti come segue:

(qi, s, p)→⊕ (qf , s, p
′)

s
p,p′−−→ s ] (p, p′)

Questa regola dice che quando un firewall è nello stato s e riceve un pacchetto p, elabora p a partire

dal nodo iniziale qi del suo diagramma di controllo. Se l’elaborazione ha successo, cioè p raggiunge

il nodo qf da cui viene accettato come p′, allora il sistema di transizione master accetta p come p′

e aggiorna lo stato s inserendo informazioni riguardanti p, la sua trasformazione in p′ e l’eventuale

connessione a cui appartiene, attraverso la funzione ], lasciata non specificata per generalità.

2.4 Normalizzazione

Il linguaggio di configurazione intermedio IFCL permette di gestire il flusso di controllo attraverso

i target GOTO( ), CALL( ) e RETURN. Questa proprietà del linguaggio permette di modellare fedelmente i

sistemi reali come iptables e ipfw, tuttavia rende difficile analizzare formalmente le configurazioni

per derivare una rappresentazione sintetica della loro semantica. Mostriamo come questi target pos-

sono essere eliminati automaticamente dalla configurazione di un firewall, mantenendo inalterata la

semantica.
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Chiamiamo normalizzata una ruleset in cui non siano presenti target per modificano il flusso di

controllo. Presentiamo un’operazione di normalizzazione $ % che data una ruleset ne produce una

normalizzata equivalente.

Nel seguito denotiamo con r;R una ruleset non vuota composta dalla regola r seguita dalla ruleset

(potenzialmente vuota) R; e indichiamo con R1@R2 la concatenazione di R1 e R2.

La normalizzazione di una ruleset R è definita come segue:

$R% =$R%true
{R}

$ε%f
I = ε

$(φ, t);R%f
I = (f ∧ φ, t);$R%f

I se t 6∈ {GOTO(R’), CALL(R’), RETURN}

$(φ, RETURN);R%f
I =$R%f∧¬φ

I

$(φ, CALL(R’));R%f
I =

$R′%
f∧φ
I∪{R′}@ $R%

f
I if R′ /∈ I

(f ∧ φ, DROP);$R%f
I altrimenti

$(φ, GOTO(R’));R%f
I =

$R′%
f∧φ
I∪{R′}@ $R%

f∧¬φ
I se R′ /∈ I

(f ∧ φ, DROP);$R%f∧¬φ
I altrimenti

La procedura ausiliaria $R%f
I ispeziona ricorsivamente la ruleset R. La formula f accumula con-

giunzioni di predicati φ e rappresenta la condizione sufficiente e necessaria perché la valutazione di un

pacchetto da parte della ruleset raggiunga la posizione attualmente in esame della ruleset; l’insieme

I tiene traccia delle ruleset attraversate dalla procedura e serve a riconoscere i loop. Se una regola

non modifica il flusso di controllo, allora modifichiamo solo la condizione, sostituendo φ con f ∧ φ, e

continuiamo ad analizzare il resto della ruleset. La sostituzione della condizione corrisponde intuitiva-

mente a specificare che nella ruleset normalizzata una regola deve essere applicata al pacchetto p se e

solo se (i) nella ruleset originaria il pacchetto p avrebbe visitato la regola e (ii) il pacchetto p verifica

la condizione originaria della regola.

Nel caso di una regola di return (φ, RETURN) non generiamo nessuna nuova regola, ma continuiamo

ad analizzare il resto della ruleset aggiornando f con la negazione di φ.

Per la regola (φ, CALL(R’)) abbiamo due casi, distinti in base all’esito del sanity check che verifica se

siamo in un loop o meno. Se la ruleset chiamata R′ non è in I, e quindi il sanity check è verificato,

allora sostituiamo la regola con la normalizzazione di R′, con f ∧ φ come predicato e aggiungendo

R′ all’insieme delle ruleset visitate. Se R′ invece è già in I, e quindi il sanity check non è verificato,

allora abbiamo un loop e quindi rimpiazziamo la regola con una avente DROP come target e f ∧ φ come

condizione. In entrambi i casi continuiamo la normalizzazione del resto della ruleset.

La regola (φ, GOTO(R’)) è trattata in maniera simile alla precedente, tranne che nella normalizzazione

del resto della ruleset abbiamo f ∧ ¬φ come predicato, in quanto non si torna indietro dalle ruleset

chiamate attraverso i target GOTO( ), condizione necessaria perché un pacchetto visiti le regole che

seguono il GOTO( ) è che questo non verifichi la condizione φ.

Chiamiamo firewall normalizzato un firewall in cui tutte le ruleset in ρ sono normalizzate. Un

firewall normalizzato è ottenuto dalla riscrittura attraverso l’operazione di unfolding delle ruleset

associate ai nodi del diagramma di controllo. Si noti che non essendo possibile invocare o chiamare

ruleset le uniche ruleset in ρ, per un firewall normalizzato, sono quelle associate ai nodi.

Formalmente:

Definizione 8 (Normalizzazione di un firewall). Dato un firewall F = (C,Σ), con Σ = (ρ, c), la

sua versione normalizzata $F% è (C,Σ′) con Σ′ = (ρ′, c′) dove ∀q ∈ C. c′(q) = $c(q)% e ρ′ =

{$c(q)% | q ∈ C}.

18



Pε(p, p̃, s) = dp(R) ∧ p = p̃

Pr;R(p, p̃, s) = (φ(p, s) ∧ p = p̃) ∨ (¬φ(p, s) ∧ PR(p, p̃, s)) se r = (φ, ACCEPT)

Pr;R(p, p̃, s) = ¬φ(p, s) ∧ PR(p, p̃, s) se r = (φ, DROP)

Pr;R(p, p̃, s) = (φ(p, s) ∧ p̃ ∈ tr(p, dn, sn,↔)) ∨ (¬φ(p, s) ∧ PR(p, p̃, s)) se r = (φ, NAT(dn, sn))

Pr;R(p, p̃, s) = (φ(p, s) ∧ p̃ ∈ tr(p, ∗:∗, ∗:∗, X)) ∨ (¬φ(p, s) ∧ PR(p, p̃, s)) se r = (φ, CHECK-STATE(X))

Pr;R(p, p̃, s) = (φ(p, s) ∧ PR(p[tag 7→ m], p̃, s)) ∨ (¬φ(p, s) ∧ PR(p, p̃, s)) se r = (φ, MARK(m))

Tabella 2.3: Traduzione delle ruleset in predicati logici.

Vale il seguente teorema che garantisce che ogni firewall è semanticamente equivalente alla sua

versione normalizzata:

Teorema 1 (Correttezza della normalizzazione). Sia F un firewall e$F% la sua versione normaliz-

zata. Chiamiamo s
p,p′−−→X s′ un passo del sistema di transizione master del firewall X ∈ {F ,$F%}.

Vale che

s
p,p′−−→F s′ ⇐⇒ s

p,p′−−→$F% s′.

2.5 Caratterizzazione dichiarativa

Mostriamo come costruire un predicato logico che caratterizza il comportamento di un firewall nor-

malizzato: quali pacchetti accetta e con quali trasformazioni in quale stato.

Per gestire il NAT, definiamo una funzione ausiliaria tr(p, dn, sn, X) che calcola il pacchetto risul-

tante dall’applicazione della trasformazione definita dagli indirizzi dn ed sn sul pacchetto in input p.

Il parametro X ∈ {←,→,↔} specifica se la trasformazione si applica all’origine, al destinatario o a

entrambi gli indirizzi, similmente a quanto avviene per CHECK-STATE(X).

tr(p, dn, sn,↔) , {p[da 7→ ad, sa 7→ as] | ad ∈ dn, as ∈ sn}

tr(p, dn, sn,→) , {p[da 7→ ad] | ad ∈ dn}

tr(p, dn, sn,←) , {p[sa 7→ as] | as ∈ sn}

Modelliamo la policy di default di una ruleset R con un predicato dp, vero se la policy è ACCEPT, falso

altrimenti.

Data una ruleset normalizzata R, costruiamo il predicato PR(p, p̃, s) che vale se e solo se il pacchetto

p è accettato come p̃ da R nello stato s. La sua definizione Tabella 2.3 è data induttivamente sulle

regole della ruleset R.

Facciamo una piccola digressione riguardo a come vogliamo studiare il comportamento del fi-

rewall in funzione dello stato s. In teoria il corretto modo di esprimere attraverso un predicato il

comportamento di una regola con target CHECK-STATE(X) sarebbe il seguente:

P(φ,CHECK-STATE(X));R(p, p̃, s) = (φ(p, s) ∧ p `s α ∧ p̃ = establ(α,X, p)) ∨ ((¬φ(p, s) ∨ p 6`s) ∧ PR(p, p̃, s))

Questo corrisponde esattamente al comportamento dinamico del firewall in cui dato un pacchetto p e

uno stato s, un solo pacchetto risultante è prodotto nel caso in cui p appartenga a una connessione

stabilita. Innanzitutto possiamo omettere p 6`s in quanto abbiamo assunto che φ(p, s)⇒ ∃α . p `s α.

Successivamente, dato che l’obiettivo è quello di rappresentare il comportamento di un firewall in
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modo sintetico, osserviamo che non possiamo analizzare uno per uno tutti i possibili stati del firewall.

Per questo astraiamo dal comportamento esatto dello stato, cioè del predicato p `s α e dalla funzione

establ(α,X, p), e consideriamo solo due possibilità per un pacchetto in uno stato s: il pacchetto

non appartiene a nessuna connessione stabilita e quindi il predicato φ non viene verificato e l’azione

CHECK-STATE(X) non viene mai applicata, oppure il pacchetto appartiene a una connessione stabilita e in

questo caso approssimiamo tutti i possibili esiti delle trasformazioni prescritte dallo stato in un unico

caso in cui la trasformazione produce non deterministicamente ogni possibile pacchetto ottenibile dalla

modifica dei campi specificati da X, esprimiamo questo per mezzo della funzione tr(p, ∗:∗, ∗:∗, X).

Dato che scegliamo di approssimare in questo modo il comportamento del firewall rispetto allo

stato, possiamo considerare una versione approssimata dello stato che si limita ad assegnare a ogni

possibile pacchetto un’etichetta che indica se questo appartiene o meno a una connessione stabilita

s : P → {ENSTABLISHED, NEW}. Notiamo che il fatto che un pacchetto p appartenga o meno a una

connessione stabilita non influenza in alcun modo il comportamento del firewall rispetto a un secondo

pacchetto p′ 6= p, pertanto non è necessario studiare il comportamento del firewall per ogni possibile

stato approssimato, ma è sufficiente ridursi alle due funzioni costanti sENSTABLISHED, stato nel quale

tutti i pacchetti appartengono a una connessione stabilita, e sNEW, stato nel quale nessun pacchetto

appartiene a una connessione stabilita.

Definiamo formalmente il concetto di stato approssimato del firewall come segue

Definizione 9 (Stato approssimato di un firewall). Dato uno stato di firewall s ∈ S definiamo la sua

versione approssimata ŝ : P→ {ENSTABLISHED, NEW} come:

ŝ(p) =

ENSTABLISHED se ∃α . p `s α

NEW altrimenti

Non abbiamo descritto formalmente come vengono valutate le condizioni φ delle regole, ma abbia-

mo assunto che una condizione del tipo state = ENSTABLISHED venga valutata correttamente su un

pacchetto p dato lo stato attuale del firewall s; estendiamo la stessa ipotesi per quanto riguarda lo

stato approssimato s nel predicato Tabella 2.3.

Commentiamo brevemente la costruzione del predicato PR(p, p̃, s), definita ricorsivamente su R,

per casi sulla prima regola. Intuitivamente, la ruleset vuota non trasforma il pacchetto e lo accetta

solo se lo prevede la policy di default, quindi solo coppie in cui vale p = p̃ possono verificare il predicato

e solo se vale dp(R). Se la ruleset inizia con la regola (φ, ACCEPT), seguita da R, consideriamo due casi:

quando φ(p, s) vale e quindi il pacchetto viene accettato com’è; e quando invece vale ¬φ(p, s), e p è

accettato come p̃ solo se il resto della ruleset R lo accetta. La ruleset che inizia con la regola (φ, DROP)

accetta p solo se è la continuazione a farlo e se non vale φ(p, s). La ruleset che inizia con la regola

(φ, NAT(dn, sn)) è trattata come quella che inizia con (φ, ACCEPT): la differenza è che quando φ(p, s) vale, il

pacchetto è accettato come p̃ = tr(p, dn, sn,↔), che è il risultato dell’applicazione delle trasformazioni

NAT al pacchetto p. La ruleset che inizia con la regola (φ, CHECK-STATE(X)) si comporta in modo simile a

NAT applicando la trasformazione al pacchetto, nei campi X (scritto come tr(p, ∗:∗, ∗:∗, X)). Questa

trasformazione dovrebbe avvenire solo se il pacchetto appartiene a una connessione stabilita. Per la

verifica di questa condizione ci affidiamo al predicato φ che, come abbiamo assunto, nel caso di regola

con target CHECK-STATE(X) deve comportare che il pacchetto appartenga a una connessione stabilita

φ(p, s)⇒ ∃α . p `s α. Infine, la regola (φ, MARK(m)), se φ(p, s) vale, trasforma il pacchetto in un nuovo

p′ = p[tag 7→ m], come in una NAT, ma il pacchetto non viene accettato una volta modificato, quindi

p, p′ non è una automaticamente una soluzione del predicato, ma la continuazione verrà valutata

usando p′ come pacchetto in arrivo.
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Il predicato Tabella 2.3 è semanticamente corretto: se un pacchetto p è accettato da una ruleset

R, nello stato s come p′, allora P ŝR(p, p′) vale, e vice versa.

Lemma 1. Data una ruleset R abbiamo che

1. ∀p, s. p, s |=ε
R (ACCEPT, p′) =⇒ PR(p, p′, ŝ);

2. ∀p, p′, s . PR(p, p′, s) =⇒ ∃s ∈ S . ŝ = s ∧ p, s |=ε
R (ACCEPT, p′)

Definiamo il predicato associato a un intero firewall come segue.

Definizione 10. Sia F = (C,Σ) un firewall con diagramma di controllo C = (Q,A, qi, qf ) e configu-

razione Σ = (ρ, c). Il predicato associato a F è definito come

PF (p, p̃, s) , P∅qi(p, p̃, s) where

PIqf (p, p̃, s) , p = p̃ PIq (p, p̃, s) , ∃p′.Pc(q)(p, p′, s) ∧

 ∨
(q,ψ,q′)∈A

q′ /∈I

ψ(p′) ∧ PI∪{q}
q′ (p′, p̃, s)


per ogni q ∈ Q tale che q 6= qf , a dove Pc(q) è il predicato costruito a partire dalla ruleset c(q), cioè

quella associata al nodo q del diagramma di controllo.

Intuitivamente, del nodo finale qf accettiamo p cos̀ı com’è. In tutti gli altri nodi q, p è accettato

come p̃ se e solo se viene accettato come un qualche pacchetto intermedio p′ dalla ruleset associata al

nodo q e se questo pacchetto intermedio viene accettato dal nodo successivo nel percorso di p, tutto

per un firewall nello stato s. Più precisamente, cerchiamo un pacchetto intermedio p′, per il quale

valga che (i) p è accettato come p′ dalla ruleset associata la nodo q; (ii) p′ verifica uno dei predicati ψ

degli archi del diagramma di controllo uscenti da q; e (iii) p′ è accettato come p′ dal nodo raggiunto

q′. Vogliamo chiaramente ignorare i percorsi contenenti loop, sia per essere aderenti alla semantica

operazionale data, sia perché questo è il comportamento reale dei firewall. Perciò il predicato usa un

insieme I nel quale tenere traccia dei nodi già attraversati ed esiste una quarta condizione che deve

essere verificata da p′: (iv) il nodo successivo che valuterà il pacchetto non deve appartenere già I,

cioè q′ /∈ I.

Concludiamo questa sezione stabilendo una connessione fra la caratterizzazione logica di un firewall

e la sua semantica operazionale.

Teorema 2 (Correttezza della caratterizzazione logica). Dato un firewall F ed il suo predicato

corrispondente PF abbiamo che

1. s
p,p′−−→ s ] (p, p′) =⇒ PF (p, p′, ŝ)

2. ∀p, p′, s. PF (p, p′, s) =⇒ ∃s ∈ S . ŝ = s ∧ s
p,p′−−→ s ] (p, p′)
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Capitolo 3

Caratterizzazione funzionale

In questo capitolo presentiamo una caratterizzazione funzionale della semantica di IFCL. Come per la

caratterizzazione dichiarativa dell’articolo [4], presentata precedentemente, ci interessa trattare solo i

firewall normalizzati, senza istruzioni CALL( ), RETURN o GOTO( ). Definiamo per prima cosa la semantica di

una ruleset e poi per composizione quella di un firewall. Introduciamo il concetto di trasformazione

su un pacchetto e presentiamo una seconda caratterizzazione funzionale basata su questo concetto.

Questa seconda versione della semantica funzionale è equivalente alla prima, ma risulta più comoda

per l’implementazione della fase di sintesi della pipeline di transcompilazione.

A differenza della caratterizzazione logica presentata precedentemente, quella funzionale non si

basa su un’approssimazione dello stato, alla fine del capitolo discuteremo le conseguenze di questa

scelta.

3.1 Semantica denotazionale

Definiamo la semantica di una ruleset R e di un firewall IFCL F come una funzione che dato uno stato

interno restituisce una funzione che associa ogni pacchetto al pacchetto nel quale viene trasformato

quando viene accettato o ⊥ se il pacchetto viene scartato.

La semantica di una ruleset R è definita da:

JRK : S → P→ P ∪ {⊥}

JRK(s) = JRKs : P→ P ∪ {⊥}

JεKs (p) =

p se dp = ACCEPT

⊥ altrimenti

J(φ, ACCEPT);RKs (p) =

p se φ(p, s)

JRKs (p) altrimenti

J(φ, DROP);RKs (p) =

⊥ se φ(p, s)

JRKs (p) altrimenti

J(φ, NAT(dn, sn));RKs (p) =

nat(p, dn, sn) se φ(p, s)

JRKs (p) altrimenti

J(φ, CHECK-STATE(X));RKs (p) =

establ(α,X, p) se φ(p, s) ∧ p `s α

JRKs (p) altrimenti
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J(φ, MARK(m));RKs (p) =

JRKs (p[tag 7→ m]) se φ(p, s)

JRKs (p) altrimenti

Dove ricordiamo che il predicato p `s α è vero se il pacchetto p appartiene ad una connessione stabilita

secondo lo stato s del firewall che prescrive per p l’azione α, e la funzione establ(α,X, p) effettua la

trasformazione α sul pacchetto p limitatamente ai campi specificati da X ∈ {←,→,↔}.
La funzione JRK, dato uno stato s, è definita attraverso la funzione ricorsiva JRKs, che a sua volta

è definita per casi sulla forma della prima regola di R. Se R è vuota allora ogni pacchetto viene

mappato in se stesso se la policy di default della ruleset dp è ACCEPT, in ⊥ se la policy di default è

DROP. Se R comincia con una regola con target ACCEPT e condizione φ allora ogni pacchetto che verifica

la condizione φ viene mappato in se stesso, ogni altro pacchetto viene trattato secondo la funzione

associata al resto della ruleset. Se la prima regola della ruleset R ha target DROP o NAT(dn, sn) allora

ci si comporta come nel caso precedente, ma i pacchetti che verificano la condizione sono mappati

rispettivamente in ⊥ o in un p′ ottenuto a partire da p modificano i campi secondo le specifiche di dn

e sn attraverso la funzione nat introdotta nel capitolo 2. Il caso in cui R cominci con una regola con

target CHECK-STATE(X) è piuttosto simile ai precedenti, dove però non è sufficiente che la condizione φ

sia verificata, serve anche che il pacchetto appartenga ad una connessione stabilita, cioè p `s α, e la

trasformazione applicata è α, quella prescritta dallo stato, e solo nei campi specificati da X. L’ultimo

caso, quello in cui la prima regola della ruleset ha target MARK(m) è particolare in quanto la valutazione

viene comunque demandata al resto della ruleset, con un pacchetto eventualmente modificato nel

campo tag se la condizione della regola è verificata.

La semantica appena definita per le ruleset è corretta rispetto alla semantica operazionale definita

attraverso la relazione |= nel capitolo 2.

Lemma 2. Sia R una ruleset normalizzata IFCL, abbiamo che

1. ∀p, p′, s. ( p, s |=ε
R (ACCEPT, p′) ⇐⇒ JRK(s)(p) = p′ )

2. ∀p, s. ( JRK(s)(p) = ⊥ ⇐⇒ ∃p′′. p, s |=ε
R (DROP, p′) )

La semantica di un firewall F in uno stato s è definita da

JFK : S → P→ P ∪ {⊥}

JFK(s) = JFKs : P→ P ∪ {⊥}

JFKs = JqiKF,∅s

Dove la funzione JqKF,Is : P → P ∪ {⊥}, per un firewall F , uno stato s e un insieme di ruleset I è

definita per ogni q ∈ Q, q 6= qf come:

JqKF,Is (p) =

Jq′KF,I∪{q}s (p′) se p′ 6= ⊥ ∧ q′ /∈ I

⊥ altrimenti

dove p′ = Jc(q)Ks (p) e se p′ 6= ⊥ allora q′ = δ(q, p′)

e per il nodo finale come:

Jqf KF,Is (p) = p
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La semantica di un firewall JFK, dato uno stato s è definita dalla funzione JqKF,Is in cui q è il nodo

del diagramma di controllo da cui parte la valutazione del pacchetto, I è l’insieme dei nodi visitati

e viene usato per individuare i loop. La funzione JqKF,Is è definita ricorsivamente sul diagramma di

controllo, dato il nodo di partenza q ed il pacchetto da valutare p, la funzione

• calcola qual è il risultato della valutazione del pacchetto p da parte della ruleset associata al

nodo q;

• se il risultato è un pacchetto p′ allora calcola il prossimo nodo del grafo che sarà visitato q′ =

δ(q, p′);

• se il risultato è ⊥ oppure se q′ è già stato visitato, cioè è in I, restituisce ⊥;

• se q′ non è in I allora JqKF,Is associa a p il risultato dell’applicazione di Jq′KF,I∪{q}s al pacchetto

p′.

Il nodo finale accetta ogni pacchetto senza modificarlo.

La caratterizzazione funzionale è corretta rispetto alla semantica operazionale.

Teorema 3 (Correttezza della caratterizzazione funzionale). Dato un firewall normalizzato F abbiamo

che

1. ∀p, p′, s. ( s
p,p′−−→ s ] (p, p′) ⇐⇒ JFK(s)(p) = p′ )

2. ∀p, s. ( JFK(s)(p) = ⊥ ⇐⇒ ¬∃p′. s p,p′−−→ s ] (p, p′) )

Si noti che il teorema 3 ha un corollario interessante, ovvero che il comportamento di un firewall

è deterministico. Questo è dovuto alla scelta dell’insieme di target che abbiamo deciso di introdurre

nel linguaggio, e in particolare al fatto che non abbiamo permesso di effettuare NAT verso intervalli

di indirizzi. Questa scelta potrebbe non rispettare il reale comportamento di alcuni firewall (esclusi

da questa trattazione), in cui il destino di un pacchetto è deciso non deterministicamente, ad esempio

per effettuare bilanciamento del carico. Meccanismi più evoluti di bilanciamento del carico possono

tuttavia essere modellati sfruttando lo stato interno del firewall.

Corollario 1 (Determinismo dei firewall). Dato un firewall IFCL F , il destino associato ad un

pacchetto p è unico, ovvero

∀p, s. (!∃p′. s p,p′−−→ s ] (p, p′)) ∨ (¬∃p′. s p,p′−−→ s ] (p, p′) )

3.2 Semantica a trasformazioni

Abbiamo espresso la semantica denotazionale del firewall nella maniera più naturale ovvero speci-

ficando per ogni pacchetto se questo può attraversare il firewall e quale è il suo stato dopo averlo

attraversato. Tuttavia, per gli algoritmi che implementano la pipeline di transcompilazione, lavora-

re con le coppie (pacchetto ricevuto, pacchetto trasformato) di questa semantica sarebbe costoso e

scomodo. Supponiamo ad esempio di voler rappresentare con una tabella tutte le coppie (p, JFK(p)),
avremmo bisogno di una tabella con #P righe. A poco servirebbe unire fra loro le righe con la stessa

immagine, in quanto ad esempio tutti i pacchetti che sono accettati senza alcuna modifica, avendo

immagine diversa, necessiterebbero di una riga dedicata.

Vogliamo associare ad ogni pacchetto accettato la trasformazione che gli viene applicata, anziché

il valore finale della trasformazione stessa. In questo modo ogni pacchetto che viene accettato senza
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modifica ha la stessa immagine, cos̀ı come anche ogni pacchetto che viene accettato modificando

solo l’indirizzo IP di destinazione in una data maniera e cos̀ı via. Abbiamo quindi la possibilità di

raccogliere i pacchetti che sono trattati alla stessa maniera dal firewall.

Vogliamo definire una nuova semantica, che opera su domini diversi e che associa ad ogni pacchetto

la trasformazione che il firewall applica ai suoi campi. In pratica per ogni campo del pacchetto abbiamo

due possibilità: il firewall può modificare il campo (attraverso un NAT ad esempio) o lasciarlo com’è. Il

concetto rimane lo stesso della semantica precedente, ma in questo modo tutti i pacchetti che vengono

“trattati alla stessa maniera” dal firewall hanno la stessa immagine nella funzione che definisce la

semantica e questo ci permetterà di trattarli come un unico insieme semplificando gli algoritmi della

pipeline.

Definizione 11 (Trasformazione su un campo del pacchetto). Dato A l’insieme di valori possibili per

il campo di un pacchetto, l’insieme delle trasformazioni possibili sull’insieme A è:

T (A) = {id} ∪ {cost(a) | a ∈ A}

Una trasformazione può essere quindi una funzione costante o una funzione identità. Abbiamo

dunque T (IP), T (Port) e T (Tag). T (P), l’insieme di tutte le possibili trasformazioni su pacchetti,

è definito come il prodotto cartesiano delle trasformazioni sui campi del pacchetto1.

Definizione 12 (Trasformazione su un pacchetto). L’insieme delle trasformazioni possibili sui pac-

chetti T (P) è:

T (P) := T (IP)× T (Port)× T (IP)× T (Port)× T (Tag)

Come per i pacchetti, anche per le trasformazioni di pacchetti assumiamo di poter accedere ai campi

del prodotto cartesiano con una notazione simile a quella per l’accesso ai campi di un oggetto, cioè

scrivendo t.sIP , t.dIP , t.sPort, t.dPort e t.tag. Inoltre rappresentiamo le trasformazioni di pacchetti

t ∈ T (P) in modo simile ai pacchetti, scrivendo per leggibilità (t.sIP : t.sPort, t.dIP : t.dPort, t.tag)

anziché (t.sIP, t.sPort, t.dIP, t.dPort, t.tag)

La scelta del dominio per esprimere le trasformazioni dei campi di un pacchetto è chiaramente

arbitraria, ogni alternativa che permetta di derivare la semantica originaria è accettabile. Questa

scelta è semplicemente un buon compromesso fra semplicità ed espressività che tiene conto sia del

fatto che un firewall spesso lascia passare i pacchetti senza modificarli, sia del fatto che spesso la

modifica è ristretta solo ad alcuni campi del pacchetto e imponendo un valore costante piuttosto che

una funzione arbitrariamente complicata. Di fatto il linguaggio nel quale esprimiamo le trasformazioni

è quello usato dal tool FireWall Synthesizer [5] per mostrare la sintesi della semantica di un firewall,

dove nella tabella mostrata dalla sintesi un valore esplicito nelle colonne relative al NAT rappresenta

la funzione costante e il carattere rappresenta la funzione identità.

Le trasformazioni possono chiaramente essere applicate ai pacchetti, in modo simile alle funzioni.

Useremo in effetti la stessa notazione usata per le funzioni. Data una trasformazione t ed un pacchetto

p, l’applicazione di t a p è definita come il risultato dell’applicazione delle trasformazioni dei campi di

t ai campi di p. Formalmente

t(p) = (t.sIP (p.sIP ) : t.sPort(p.sPort), t.dIP (p.dIP ) : t.dPort(p.dPort), t.tag(p.tag))

dove per il valore di un campo di un pacchetto val e per una trasformazione su quel campo t vale

t(val) =

val se t = id

c se t = cost(c)

1Useremo id ∈ T (P) per indicare id× id× id× id× id.
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Possiamo vedere l’insieme delle trasformazioni sui pacchetti T (P) come un preordine in cui t . t′

se e solo se t′ è una trasformazione che modifica ogni pacchetto almeno quanto t. Formalmente

la relazione d’ordine . è definita sulle trasformazioni del campo di tipo A ∈ {IP,Port,Tag} del

pacchetto come la chiusura riflessiva e transitiva di .0, dove

∀a ∈ A. id .0 cost(a)

∀a, a′ ∈ A. cost(a) .0 cost(a
′)

Per l’insieme delle trasformazioni sui pacchetti T (P) il preordine è definito nella seguente maniera:

t . t′ ⇐⇒ t.sIP . t′.sIP ∧ t.sPort . t′.sPort ∧ t.dIP . t′.dIP ∧ t.dPort . t′.dSort ∧ t.tag . t′.tag

Notiamo che (T (A),.) è un insieme diretto, per ogni A ∈ {IP,Port,Tag}, cioè per ogni coppia di

elementi t1, t2 ∈ T (A), esiste un t′ ∈ T (A) tale che t1 . t′ e t2 . t′. Lo stesso vale conseguentemente

per (T (P),.). La relazione . è totale su T (A), per A ∈ {IP,Port,Tag}. In questo insieme, il least

upper bound di un insieme di elementi esiste sempre, dato che per ogni coppia di trasformazioni (t,

t′) o vale t . t′ o vale t′ . t. Tuttavia il least upper bound non è sempre unico. Infatti data una

qualunque trasformazione t ∈ T (A), per A ∈ {IP,Port,Tag} l’insieme dei maggioranti di t in T (A)

comprende sempre almeno cost(a) per ogni a ∈ A, nei quali ogni elemento è “minore” di tutti gli

altri; se anche id appartiene ai maggioranti allora il minore dei maggioranti è unico e coincide con id,

altrimenti non abbiamo un unico least upper bound. La relazione . non è invece totale su T (P), infatti

le due trasformazioni t1 = cost(192.168.0.8)×id×id×id×id e t2 = id×id×cost(192.168.0.6)×id×id
non sono in relazione. Anche su T (A) esiste sempre un insieme di least upper bound di un insieme

di elementi, e anche qui spesso non si tratta di un unico valore. Ad esempio l’insieme dei least upper

bound dell’insieme {t1, t2} è {cost(ip)× id× cost(ip′)× id× id | ip, ip′ ∈ IP}.
Definiamo l’operazione di aggiornamento n tale che t′ n t è una aggiornamento della trasfor-

mazione t con una nuova trasformazione t′ ed è uguale a t′ nei campi del pacchetto in cui questa è

diversa da id, nei campi rimanenti la trasformazione risultante ha lo stesso valore di t (sostanzialmente

prendiamo fra i least upper bound dell’insieme {t, t′}, quello in cui i valori delle trasformazioni cost( )

sono presi da t′ e da t, dando precedenza ai valori di t′ su quelli di t). Formalmente

t′ n t = (t′.sIP ṅt.sIP, t′.sPortṅt.sPort, t′.dIP ṅt.dIP, t′.dPortṅt.dPort, t′.tagṅt.tag)

dove

val1ṅval2

val2 se val2 6= id

val1 altrimenti

L’idea è la stessa della composizione di funzioni, cioè applicare una trasformazione t, aggiornata con

t′ ad un pacchetto p ha lo stesso effetto di applicargli la trasformazione t e poi al pacchetto risultante

p′ = t(p) applicare t′, ovvero (tn t′)(p) = t(t′(p)).

Possiamo ora definire una nuova semantica che sfrutti le trasformazioni. Per prima cosa presen-

tiamo la semantica di una ruleset R:

LRM : S → P→ T (P) ∪ {⊥}

LRM(s) = LRMs : P→ T (P) ∪ {⊥}
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LRMs = LRMid
s

Dove la funzione LRMts : P → T (P) ∪ {⊥}, per un firewall F , uno stato s e una trasformazione su

pacchetti t ∈ T (P) è definita come:

LεMts (p) =

t se dp = ACCEPT

⊥ altrimenti

L(φ, ACCEPT);RMts (p) =

t se φ(p, s)

LRMts (p) altrimenti

L(φ, DROP);RMts (p) =

⊥ se φ(p, s)

LRMts (p) altrimenti

L(φ, NAT(dn, sn));RMts (p) =

trnat(dn, sn) n t se φ(p, s)

LRMts (p) altrimenti

L(φ, CHECK-STATE(X));RMts (p) =

trstato(α,X) n t se φ(p, s) ∧ p `s α

LRMts (p) altrimenti

L(φ, MARK(m));RMts (p) =

LRM(id:id, id:id, cost(m))nt
s (p[tag 7→ m]) se φ(p, s)

LRMts (p) altrimenti

La funzione trnat(dn, sn) restituisce la trasformazione applicata ad un pacchetto secondo i valori

indirizzo IP e porta specificati da dn ed sn, compresa l’identità se uno dei due valori contiene ?. Più

precisamente

trnat(dIP : dPort, sIP : sPort) = (tr′(dIP ) : tr′(dPort), tr′(sIP ) : tr′(sPort), id)

dove

tr′(add) =

id se add = ?

cost(add) altrimenti

La funzione trstato(α,X) restituisce la trasformazione rappresentata dall’azione α, prescritta dallo

stato per il pacchetto, ristretta ad i campi specificati da X. Lasciamo astratta questa funzione dato

che per generalità non abbiamo descritto in dettaglio quale sia la forma delle azioni α.

La semantica è espressa in modo simile a quella precedente, attraverso una funzione ricorsiva LRMts
definita per casi sulla prima regola di R. L’apice t serve a collezionare la trasformazione attuale

applicata al pacchetto, cioè l’eventuale modifica al campo tag, di modo che quando troviamo l’azione

che determina l’accettazione del pacchetto possiamo ricavare la trasformazione complessiva avendo sia

t, sia la trasformazione finale data dall’ultima regola applicata al pacchetto. Sfruttiamo l’operazione

di aggiornamento della trasformazione per unire la trasformazione data dall’ultima regola a quella

accumulata nell’apice.

Se la ruleset è vuota allora la trasformazione applicata al pacchetto p è quella accumulata t, tranne

nel caso in cui la policy di default della ruleset sia DROP, in quel caso restituiamo ⊥. Le ruleset che

cominciano con una regola con target ACCEPT o DROP restituiscono rispettivamente t o ⊥ se la condizione

è verificata, altrimenti restituiscono il risultato dell’applicazione della semantica del resto della ruleset

al pacchetto. Se la prima regola della ruleset ha target NAT(dn, sn) o CHECK-STATE(X) restituiscono la
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trasformazione t aggiornata con la loro trasformazione, se la condizione φ è verificata e, nel caso

di CHECK-STATE(X) se il pacchetto appartiene ad una connessione stabilita; associano al pacchetto la

trasformazione associatagli dalla semantica del resto della ruleset altrimenti. Se la ruleset comincia

con una regola con target MARK(m) allora la semantica restituisce il risultato dell’applicazione della

semantica della continuazione: se la condizione della regola è verificata allora la semantica della

continuazione è applicata al pacchetto modificato nel campo tag e con trasformazione accumulata

t aggiornata da una trasformazione identità su tutti i campi tranne sul campo tag, il cui valore

è cost(m); se la condizione della regola non è verificata allora la semantica della continuazione è

applicata al pacchetto originale e la trasformazione accumulata rimate t.

La semantica a trasformazioni definita per una ruleset R è equivalente a quella denotazionale

definita precedentemente.

Lemma 3. Per ogni ruleset normalizzata R, stato s e pacchetto p valgono

1. JRKs (p) = ⊥ ⇐⇒ LRMs (p) = ⊥

2. LRMs (p) 6= ⊥ ⇒ JRKs (p) = LRMs (p) (p)

La semantica di un firewall F è definita allora da

LFM : S → P→ T (P) ∪ {⊥}

LFM(s) = LFMs : P→ T (P) ∪ {⊥}

LFMs = LqiMF,∅s

Dove la funzione LqMF,Is : P → T (P) ∪ {⊥}, per un firewall F , uno stato s e un insieme di ruleset I è

definita per ogni q ∈ Q, q 6= qf come:

LqMF,Is (p) =

Lq′MF,I∪{q}s (p′) n t se t 6= ⊥ ∧ q′ /∈ I

⊥ altrimenti

dove t = Lc(q)Ms (p) e se t 6= ⊥ allora p′ = t(p) e q′ = δ(q, p′)

e per il nodo finale come:

Lqf MF,Is (p) = id

Questa parte della semantica rimane quasi invariata rispetto alla versione presentata precedente-

mente. La semantica della ruleset di un nodo q associa una trasformazione t al pacchetto p, quindi

per ottenere il pacchetto p′ prodotto dal nodo q devo applicare la trasformazione t al pacchetto p,

ottenendo cos̀ı p′ = t(p). Nella versione precedente della semantica, una volta stabilito che il pacchetto

p fosse trasformato in p′ dal nodo q, e che il nodo successivo ad essere visitato fosse q′, la semantica

associava al pacchetto p il risultato dell’applicazione della funzione associata a q′ al pacchetto p′. Nella

versione con trasformazioni, quando ho stabilito che il nodo successivo q′ associa la trasformazione

t′ al pacchetto p′ = t(p) non mi basta restituire t′, devo tenere traccia anche della trasformazione t

applicata al pacchetto da q e restituire quindi t aggiornata con t′, cioè t′ n t.

La semantica a trasformazioni è corretta rispetto alla semantica denotazionale, e quindi rispetto

alla semantica dichiarativa di IFCL. Cioè, dato un firewall F , per ogni pacchetto p ∈ P, se calcolo
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la trasformazione t associata a p dalla semantica a trasformazioni di F e la applico al pacchetto p,

ottengo un nuovo pacchetto p′ = t(p) che è uguale al pacchetto associato a p dalla semantica JFK.
Inoltre le due semantiche concordano sullo scarto dei pacchetti.

Teorema 4 (Correttezza della semantica a trasformazioni). Per ogni firewall F , stato s e pacchetto

p valgono

1. JFKs (p) = ⊥ ⇐⇒ LFMs (p) = ⊥

2. LFMs (p) 6= ⊥ ⇒ JFKs (p) = LFMs (p) (p)

Dove con la notazione LFMs (p) (p) rappresentiamo il risultato dell’applicazione della trasformazione

associata al pacchetto p da F (cioè LFMs (p)), al pacchetto p stesso.

Si noti che l’uso delle trasformazioni per esprimere il comportamento del firewall introduce un

certo grado di arbitrarietà: ad esempio un pacchetto p che viene accettato senza modifiche dal

firewall, ovvero tale che JFKs (p) = p, può essere associato a id ∈ T (P) dalla semantica, ma

anche a (cost(p.sIP ), cost(p.sPort), cost(p.dIP ), cost(p.dPort), cost(p.tag)) e a molte altre trasfor-

mazioni. Dato un firewall F , esistono infatti più funzioni f : S → P → T (P) ∪ {⊥} tali che

∀s, p. JFKs (p) = ⊥ ⇐⇒ f(s)(p) = ⊥ e ∀s, p. JFKs (p) 6= ⊥ ⇒ JFKs (p) = f(s)(p)(p). Non

consideriamo questo un problema in quanto la caratterizzazione del comportamento del firewall è

comunque corretta e la trasformazione associata ad un pacchetto dalla semantica può essere standar-

dizzata, dato che questa ambiguità si presenta unicamente nel caso in cui un pacchetto sia trasformato

da un NAT in se stesso. È quindi possibile riconosce questi casi e forzare una preferenza, ad esempio

nei confronti della trasformazione id.

Definiamo una relazione di equivalenza ≡ per le funzioni che assegnano trasformazioni ai pacchetti

P→ T (P)∪{⊥} che lega coppie di funzioni che hanno lo stesso risultato finale sull’insieme dei pacchetti

P. Formalmente f ≡ f ′ se e solo se ∀p ∈ P. f(p) = ⊥ ⇐⇒ f ′(p) = ⊥ e ∀p ∈ P. f(p) 6= ⊥ ⇒ f(p)(p) =

f ′(p)(p).

Si noti che la caratterizzazione funzionale della semantica non comprende un’approssimazione sul

comportamento dello stato del firewall, come invece accade per la caratterizzazione logica presentata

nella sezione 2.5. Questo è un problema, perché come abbiamo detto, nella sintesi non possiamo

aspettarci di studiare il comportamento del firewall per tutti i possibili stati analizzandoli uno ad uno.

Di fatto è possibile modificare la semantica appena espressa per gestire il target CHECK-STATE(X) con la

stessa approssimazione della caratterizzazione dichiarativa. La versione approssimata della semantica,

tuttavia, complica grandemente lo sviluppo degli algoritmi per l’implementazione della pipeline, ed è

troppo grossolana per la rappresentazione del comportamento reale di un firewall. Per questo abbiamo

deciso di basarci sulla versione esatta e deterministica della semantica nel resto della tesi, e di limitare

i requisiti sulla configurazione generata dalla transcompilazione alla gestione di pacchetti appartenenti

a nuove connessioni, assumendo che il comportamento di default del sistema target sia soddisfacente

per quanto riguarda i pacchetti appartenenti a connessioni stabilite (vedi capitolo 4). Presentiamo

comunque per completezza la versione approssimata della semantica nel capitolo 8.
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Capitolo 4

Pipeline di transcompilazione

Il problema che vogliamo affrontare è quello della transcompilazione fra linguaggi di configurazione di

firewall. L’idea è di avere una configurazione per un sistema e di volerne creare una equivalente, cioè

avente la stessa semantica, per un secondo sistema scelto.

Dal punto di vista dei sistemi firewall questo procedimento deve tenere conto sia della diversa

struttura dei diagrammi di controllo dei due sistemi, cioè degli algoritmi di controllo che applicano

le policy, sia del linguaggio di configurazione in sé. Sfruttiamo il linguaggio di modellazione comune

IFCL per esprimere delle condizioni sulla traduzione che garantiscano la conservazione della semantica

del firewall. Riformulando in questo modo, vogliamo, dato un sistema e una configurazione source e

dato un sistema target, calcolare una configurazione target tale che la formalizzazione IFCL del firewall

source e quella del firewall target abbiano la stessa semantica.

Basiamo la transcompilazione su una versione lievemente modificata della pipeline proposta in [4].

Come detto, l’approccio originale si basa su una pipeline composta da tre stadi: (i) formalizzazione del

firewall source in IFCL, (ii) derivazione della semantica del firewall in una forma sintetica ed esplicita,

(iii) generazione del firewall target avente la stessa semantica. Nella versione originale della pipeline

la semantica del firewall veniva rappresentata come un predicato PF (p, p̃, s) e la rappresentazione

sintetica era basata sui modelli del predicato: il secondo stadio della pipeline restituiva l’insieme delle

triplette (p, p̃, s) che verificano il predicato PF , espresso in maniera sintetica grazie ai multicubi.

Per convenienza nel trattare la parte finale del processo di transcompilazione, speziamo l’ultima

fase della pipeline originale in due parti: la prima, a partire dalla descrizione sintetica della semantica,

produce un firewall IFCL; la seconda lo traduce nel linguaggio di configurazione target (si può notare

una certa simmetria con le prime due fasi della pipeline originale). Questo ci permette di analizzare

con chiarezza il passaggio di traduzione da IFCL al linguaggio target, trascurato da [4].

Inoltre, anziché basarci sulla caratterizzazione logica della semantica del firewall usiamo la descri-

zione denotazionale presentata: la semantica astratta di un firewall non è rappresentata da un predica-

to ma da una funzione definita sul dominio dei pacchetti. È diversa pertanto anche la rappresentazione

sintetica della semantica del firewall.

Presentiamo la pipeline specificando una serie di passi intermedi per ciascuna fase e presentiamo per

ogni passaggio la specifica del comportamento: quali sono i dati in input e quali sono i dati calcolati

e restituiti alla fase successiva. Inoltre per ogni stadio della pipeline presentiamo i domini degli

elementi trattati e studiamo la loro rappresentazione sintetica, necessaria per questioni di efficienza.

Dimostriamo che la transcompilazione è corretta, cioè che la semantica del firewall è conservata, se

l’implementazione della pipeline rispetta le specifiche.

La ridefinizione della pipeline nella forma che presenteremo permette di
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• parametrizzare il processo di transcompilazione rispetto alla specifica dei sistemi firewall in modo

da facilitare l’estensione della teoria

• garantire la conservazione delle trasformazioni effettuate sui pacchetti

• fornire un algoritmo efficiente per il calcolo della rappresentazione sintetica del firewall

• evidenziare le scelte arbitrarie nella fase di generazione del firewall finale sulle quali è possibile

intervenire per ottimizzare il firewall prodotto

4.1 Transcompilazione di configurazioni firewall

Assumiamo, per ogni sistema firewall supportato, di avere una funzione che dato un file di configura-

zione source ne deriva la formalizzazione in IFCL, fork(file.conf) = Σ per k ∈ {iptables, pf, ipfw},
dove file.conf è il file di configurazione per il sistema source e Σ è una configurazione IFCL. Chiamia-

mo Ck il diagramma di controllo del sistema firewall k. Le funzioni di formalizzazione e i diagrammi

di controllo per i sistemi supportati sono presentati informalmente nella sezione 2.2.

Formalmente il problema che vogliamo affrontare è il seguente: dato un firewall source definito

come la coppia (k ∈ {iptables, pf, ipfw}, file.conf) e un sistema target desiderato k′, produrre

un file di configurazione file.conf′ per il sistema target tale che la semantica dei due firewall sia

equivalente, ovvero, chiamando s
p,p′−−→X s′ un passo del sistema di transizione master del firewall

X ∈ {F ,F ′}, dove F = (Ck, fork(file.conf)) e F ′ = (Ck′ , fork′(file.conf′)), deve valere:

∀s, s′ ∈ S, p, p′ ∈ P. s p,p′−−→F s′ ⇐⇒ s
p,p′−−→F ′ s′

In realtà, come abbiamo dichiarato precedentemente, tralasciamo dalla trattazione i pacchetti

appartenenti a connessioni stabilite. Consideriamo per questi pacchetti che il comportamento di

default dei sistemi sia quello corretto. Dato che lo stato associato ad un pacchetto non influenza il

destino di altri pacchetti, per studiare il comportamento di tutti i pacchetti quando non appartengono

a connessioni stabilite è sufficiente studiare il firewall in un solo stato: sNEW, lo stato in cui non esiste

nessuna connessione stabilita. Formalmente possiamo limitarci a questo stato in quanto per ogni

firewall F vale:

∀s ∈ S, p ∈ P. s 6`p =⇒ (∀p′. s p,p′−−→F s ] (p, p′) ⇐⇒ sNEW
p,p′−−→F sNEW ] (p, p′))

Inoltre per comodità preferiamo basarci sulla semantica denotazionale anziché sul sistema di

transizioni etichettate. Dati i teoremi 2.4, 3 e 4 vale il seguente lemma.

Lemma 4. Due firewall IFCL F e F ′ sono equivalenti secondo la semantica operazionale se e solo se

la loro normalizzazione è equivalente secondo la semantica denotazionale, ovvero

∀s ∈ S, p ∈ P. ∀p′, s′. s p,p′−−→F s′ ⇐⇒ s
p,p′−−→F ′ s′

se e solo se

L$F ′%M ≡ L$F ′%M

Riassumendo, dato un firewall source definito come la coppia composta dal sistema k ∈ {iptables, pf, ipfw}
e dal file di configurazione file.conf, e dato un sistema target desiderato k′, vogliamo produrre un

file di configurazione file.conf′ per il sistema target tale che:

L$(Ck, fork(file.conf))%M(sNEW) ≡ L$(Ck′ , fork′(file.conf′))%M(sNEW)

31



4.2 Presentazione della pipeline

La pipeline di transcompilazione è composta da quattro stadi: il primo riguarda la traduzione del

firewall source in IFCL, il secondo consiste nell’estrazione della semantica del firewall come funzione

da pacchetti a trasformazioni, il terzo genera un nuovo firewall IFCL del tipo scelto e infine il quarto

traduce il firewall IFCL in un file di configurazione per il sistema target.

Come abbiamo detto per la parte centrale della pipeline, quelle relativa a firewall IFCL, ci basia-

mo sulla semantica denotazionale presentata nel capitolo 3. La versione precedente della pipeline,

presentata in [4] si basava sulla caratterizzazione logica presentata nella sezione 2.5.

Gli stadi della pipeline sono i seguenti, per alcuni di loro abbiamo evidenziato una serie di passi

intermedi:

1. traduzione del firewall iniziale in IFCL

2. estrazione della semantica astratta del firewall

(a) normalizzazione del firewall IFCL

(b) astrazione delle ruleset associate ai nodi del diagramma di controllo del firewall IFCL

(c) astrazione del firewall come funzione sui pacchetti

3. generazione del firewall IFCL finale

(a) calcolo delle funzioni associate ai nodi del diagramma di controllo del firewall IFCL

(b) traduzione delle funzioni associate ai nodi in ruleset IFCL

4. traduzione in configurazione nel linguaggio target

4.2.1 Esempio di transcompilazione

Presentiamo un esempio di transcompilazione completo nel quale mostriamo una ad una le fasi della

pipeline. Consideriamo il caso di un firewall ipfw del quale vogliamo portare la configurazione in

iptables. Supponiamo che il file di configurazione ipfw sia il seguente:

ipfw -q nat 1 config redirect_port tcp 192.168.0.8:22 22

ipfw -q nat 2 config ip 151.15.185.183

ipfw -q add 0010 deny all from any to 8.8.8.8

ipfw -q add 0020 nat 1 all from not 192.168.0.0/24 to 151.15.185.183 22

ipfw -q add 0030 nat 2 all from 192.168.0.0/24 to not 192.168.0.0/24 80

ipfw -q add 0040 allow all from 127.0.0.1 to 192.168.0.8 22

ipfw -q add 0050 allow all from 151.15.185.183 to 192.168.0.8 22

ipfw -q add 0060 deny all from any to any

Seguendo la pipeline, effettuiamo la formalizzazione del firewall ipfw in IFCL (stadio 1.). Prendiamo

quindi il diagramma di controllo Cipfw di ipfw, in figura 4.1b. Sfruttando la procedura descritta in

2.2, costruiamo un insieme di ruleset ρ e un assegnamento c ai nodi del diagramma Cipfw. Il risultato

di questa prima fase della pipeline è la configurazione IFCL Σ = (ρ, c) dove:

ρ = {RI10, RI20, RI30, RI40, RI10, RO20, RO30, RO40}

c(qi) = c(qf ) = Rε, c(q0) = RI10, c(q1) = RO10

R
I/O
10 =
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qi

q0 q1 q2 q3

q4 q5 q6 qf

q7 q8 q9 q10 q11

p.sa /∈ L

p.sa ∈ L

p.da /∈ L

p.da ∈ L

p.da /∈ L

p.da ∈ L

(a) Diagramma di controllo di iptables

qi

q0

q1

qf

p.sa /∈ L

p.sa ∈ L

p.da /∈ L

p.da ∈ L

p.da /∈ L

p.da ∈ L

(b) Diagramma di controllo di ipfw

Figura 4.1: Diagrammi di controllo dei sistemi supportati.

(p.dIP = 8.8.8.8, DROP);

(true, GOTOR
I/O
20 )

R
I/O
20 =

(p.sIP /∈ 192.168.0.0/24 ∧ p.dIP = 151.15.185.183 ∧ p.dPort = 22, NAT(? : ?, 192.168.0.8 : ?));

(true, GOTOR
I/O
30 )

R
I/O
30 =

(p.sIP ∈ 192.168.0.0/24 ∧ p.dIP /∈ 192.168.0.0/24 ∧ p.dPort = 80, NAT(151.15.185.183 : ?, ? : ?));

(true, GOTOR
I/O
40 )

R
I/O
40 =

(p.sIP = 127.0.0.1 ∧ p.dIP = 192.168.0.8 ∧ p.dPort = 22, ACCEPT);

(true, GOTOR
I/O
50 )

R
I/O
50 =

(p.sIP = 151.15.185.183 ∧ p.dIP = 192.168.0.8 ∧ p.dPort = 22, ACCEPT);

(true, GOTOR
I/O
60 )

R
I/O
60 =

(true, DROP)

Lo stadio 2. della pipeline è composto da tre passi: per prima cosa normalizziamo il firewall attraverso

la procedura $ %. Otteniamo:

ρ = {RI , RO}

c(qi) = c(qf ) = Rε, c(q0) = RI , c(q1) = RO

RI = RO =

(p.dIP = 8.8.8.8, DROP);

(p.sIP /∈ 192.168.0.0/24 ∧ p.dIP = 151.15.185.183 ∧ p.dPort = 22, NAT(? : ?, 192.168.0.8 : ?));
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(p.sIP ∈ 192.168.0.0/24 ∧ p.dIP /∈ 192.168.0.0/24 ∧ p.dPort = 80, NAT(151.15.185.183 : ?, ? : ?));

(p.sIP = 127.0.0.1 ∧ p.dIP = 192.168.0.8 ∧ p.dPort = 22, ACCEPT);

(p.sIP = 151.15.185.183 ∧ p.dIP = 192.168.0.8 ∧ p.dPort = 22, ACCEPT);

(true, DROP)

Dove per questioni di leggibilità le regole con condizione equivalente a false sono state omesse, e le

condizioni della forma true ∧ φ sono riscritte come φ. Entrambe le semplificazioni non modificano la

semantica delle ruleset, si limitano a renderle più leggibili. A questo punto, a partire dalle ruleset,

usando L M(sNEW), calcoliamo per ogni nodo qi la funzione λi : P→ T (P) ∪ {⊥} (fase 2.b).

λ0(p) = λ1(p) =



id× id× cost(192.168.0.8)× id× id se p.sIP /∈ 192.168.0.0/24 ∧

p.dIP = 151.15.185.183 ∧

p.dPort = 22

cost(151.15.185.183)× id× id× id× id se p.sIP ∈ 192.168.0.0/24 ∧

p.dIP /∈ 192.168.0.0/24 ∪ {8.8.8.8} ∧

p.dPort = 80

id× id× id× id× id se p.sIP ∈ {127.0.0.1, 151.15.185.183} ∧

p.dIP = 192.168.0.8 ∧

p.dPort = 22

⊥ altrimenti

Nella fase 2 calcoliamo la funzione λ : P → T (P) ∪ {⊥} ottenuta combinando le funzioni λ0 e

λ1 sulla base del diagramma di controllo. Assumendo che l’insieme degli indirizzi locali sia L =

{ 127.0.0.1, 192.168.0.1, 151.15.185.183 } la funzione λ è:

λ(p) =



cost(151.15.185.183)× id× id× id× id se ( p.sIP ∈ 192.168.0.0/24 ∧

p.dIP ∈ {151.15.185.183, 127.0.0.1} ∧

p.dPort = 80 )

∨ ( p.sIP = 192.168.0.1 ∧

p.dIP /∈ 192.168.0.0/24 ∪ {8.8.8.8} ∧

p.dPort = 80 )

id× id× cost(192.168.0.8)× id× id se p.sIP ∈ {127.0.0.1, 151.15.185.183} ∧

p.dIP = 151.15.185.183 ∧

p.dPort = 22

id× id× id× id× id se p.sIP ∈ {127.0.0.1, 151.15.185.183} ∧

p.dIP = 192.168.0.8 ∧

p.dPort = 22

⊥ altrimenti
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A questo punto conosciamo la semantica del firewall e vogliamo generarne uno con semantica identica

per iptables. Per prima cosa prendiamo il diagramma di controllo di iptables (figura 4.1a). Vogliamo

assegnare ad ogni nodo qi del diagramma una funzione λi : P → T (P) ∪ {⊥} in modo tale che il

risultato complessivo sia coerente con la semantica attesa (fase 3.a). La descrizione di un metodo

efficace per derivare le funzioni λi a partire dalla funzione λ e dalla forma del diagramma di controllo

sarà oggetto del capitolo 7. Per il momento ci limitiamo ad osservare che non tutti i nodi possono

effettuare trasformazioni arbitrarie, questo è immediatamente evidente in iptables in quanto i nodi

corrispondono a coppie (ruleset, tabella) dove solo nella tabella NAT è possibile modificare gli indirizzi

dei pacchetti. Diamo senza ulteriori chiarimenti un’assegnazione di funzioni ai nodi:

λ0(p) = λ1(p) = λ2(p) = λ4(p) = λ7(p) = λ10(p) = id

λ3(p) = ⊥

λ5(p) =



cost(151.15.185.183)× id× id× id× id se p.sIP ∈ 192.168.0.0/24 ∧

p.dIP ∈ {127.0.0.1, 151.15.185.183} ∧

p.dPort = 80

id altrimenti

λ6(p) =



id se p.sIP = 151.15.185.183 ∧

p.dIP ∈ {127.0.0.1, 151.15.185.183} ∧

p.dPort = 80

⊥ altrimenti

λ8(p) =



id× id× cost(192.168.0.8)× id× id se p.sIP ∈ {127.0.0.1, 151.15.185.183} ∧

p.dIP = 151.15.185.183 ∧

p.dPort = 22

id altrimenti

λ9(p) =



id se ( p.sIP ∈ {127.0.0.1, 151.15.185.183} ∧

p.dIP = 192.168.0.8 ∧

p.dPort = 22 )

∨ ( p.sIP = 192.168.0.1 ∧

p.dIP /∈ 192.168.0.0/24 ∪ {8.8.8.8} ∧

p.dPort = 80 )

⊥ altrimenti

λ11(p) =



cost(151.15.185.183)× id× id× id× id se p.sIP = 192.168.0.1 ∧

p.dIP /∈ 192.168.0.0/24 ∪

{127.0.0.1, 151.15.185.183, 8.8.8.8} ∧

p.dPort = 80

id altrimenti

Dove la ruleset λi è assegnata al nodo qi. Il passaggio successivo, 3.b, prevede di generare una ruleset

IFCL Ri per ogni nodo qi del diagramma di controllo che abbia semantica corrispondente alla funzione
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λi.

R0 = R1 = R2 = R4 = R7 = R10 = Ri = Rf = Rε

R3 = (true, DROP)

R5 =

(p.sIP ∈ 192.168.0.0/24 ∧ p.dIP ∈ {127.0.0.1, 151.15.185.183} ∧ p.dPort = 80 , NAT(151.15.185.183 : ?, ? : ?))

R6 =

(p.sIP = 151.15.185.183 ∧ p.dIP ∈ {127.0.0.1, 151.15.185.183} ∧ p.dPort = 80 , ACCEPT);

(true , DROP)

R8 =

(p.sIP ∈ {127.0.0.1, 151.15.185.183} ∧ p.dIP = 151.15.185.183 ∧ p.dPort = 22 , NAT(? : ?, 192.168.0.8 : ?))

R9 =

( ( p.sIP ∈ {127.0.0.1, 151.15.185.183} ∧ p.dIP = 192.168.0.8 ∧ p.dPort = 22) ∨

( p.sIP = 192.168.0.1 ∧ p.dIP /∈ 192.168.0.0/24 ∪ {8.8.8.8} ∧ p.dPort = 80 ) , ACCEPT );

(true , DROP)

R11 =

( p.sIP = 192.168.0.1 ∧ p.dIP /∈ 192.168.0.0/24 ∪ {127.0.0.1, 151.15.185.183, 8.8.8.8} ∧ p.dPort = 80 ,

NAT(151.15.185.183 : ?, ? : ?))

Infine non ci resta che tradurre la configurazione ottenuta nel linguaggio target (stadio 4. della

pipeline):

*nat

:PREROUTING ACCEPT [0:0]

:INPUT ACCEPT [0:0]

:OUTPUT ACCEPT [0:0]

:POSTROUTING ACCEPT [0:0]

-A OUTPUT -s 127.0.0.1,151.15.185.183 -d 151.15.185.183 --dport 22 -j DNAT --to 192.168.0.8

-A INPUT -s 192.168.0.0/24 -d 127.0.0.1,151.15.185.183 --dport 80 -j SNAT --to 151.15.185.183

-A POSTROUTING -s 192.168.0.1 --dport 80 -j SNAT --to 151.15.185.183

COMMIT

*filter

:INPUT DROP [0:0]

:FORWARD DROP [0:0]

:OUTPUT DROP [0:0]

-A OUTPUT -s 127.0.0.1,151.15.185.183 -d 192.168.0.8 --dport 22 -j ACCEPT

-A OUTPUT -s 192.168.0.1 -d 8.8.8.8,192.168.0.0/24 --dport 80 -j DROP

-A OUTPUT -s 192.168.0.1 --dport 80 -j ACCEPT

-A INPUT -s 151.15.185.183 -d 127.0.0.1,151.15.185.183 --dport 80 -j ACCEPT

COMMIT
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4.3 Domini della pipeline

Possiamo considerare ogni fase della pipeline come una funzione che data una rappresentazione del

firewall ne produce una equivalente in un diverso dominio. In questo modo la transcompilazione può

essere vista come una composizione di più funzioni. Individuiamo cinque domini per la rappresentazio-

ne dei firewall, ognuno corrispondente ad un diverso livello di astrazione. Ad ogni livello distinguiamo

quali attributi di un firewall sono dovuti al sistema scelto e quali alla sua configurazione. Per semplifi-

care la notazione, dato che abbiamo deciso di concentrarci unicamente sullo stato sNEW, nelle definizioni

omettiamo l’eventuale parametro relativo allo stato.

Livello 0 (firewall concreti): A questo livello di astrazione un sistema firewall è rappresentato da

un processo di sistema e una configurazione da un file di configurazione.

Livello 1 (firewall IFCL): Un sistema firewall è un diagramma di controllo C, una configurazione

Σ è una coppia composta da un insieme di ruleset IFCL ρ e da un’assegnazione delle ruleset ai

nodi del diagramma c : Q→ ρ.

Livello 2 (firewall IFCL normalizzati): Un sistema firewall è un diagramma di controllo C, una

configurazione Σ è una coppia composta da un insieme di ruleset IFCL normalizzate ρ e da

un’assegnazione delle ruleset ai nodi del diagramma c : Q→ ρ.

Livello 3 (firewall semiastratti): Un sistema firewall è un diagramma di controllo C, una confi-

gurazione è una funzione f : Q → P → T (P) ∪ {⊥} che assegna ad ogni nodo una funzione su

pacchetti λ : P→ T (P) ∪ {⊥}.

Livello 4 (firewall astratti): Un firewall è la sua configurazione astratta, cioè una funzione che

associa ogni pacchetto al modo in cui viene trattato λ : P→ T (P) ∪ {⊥}.

Indichiamo per ogni firewall, il livello di astrazione a cui ci stiamo riferendo attraverso un pedice: F0

è un firewall concreto, F1 è un firewall IFCL, F2 è un firewall IFCL normalizzato, F3 è un firewall

semiastratto e F4 è un firewall astratto.

Abbiamo presentato i domini in ordine dal più concreto al più astratto. Le prime due fasi della

pipeline, corrispondenti al frontend, operano traduzioni dal dominio dei firewall concreti a quello dei

firewall astratti; le ultime due, corrispondenti al backend, operano nel verso opposto, dal dominio dei

firewall astratti ritornano al dominio dei firewall concreti.

La funzione di traduzione dal primo al secondo livello è la formalizzazione del linguaggio di con-

figurazione. Quella che traduce dal secondo al terzo è la normalizzazione (rimozione di CALL e GOTO e

RETURN). Chiamiamo la traduzione dal terzo al quarto livello semiastrazione ed infine la traduzione dal

quarto al quinto livello composizione.

Per realizzare le ultime due fasi della pipeline occorre definire delle funzioni di traduzione nel

verso opposto: dall’astratto al concreto. La funzione di traduzione dal quinto al quarto livello è la

decomposizione. Quella che traduce dal quarto al terzo è la codifica. Chiamiamo la traduzione dal terzo

al secondo livello rifattorizzazione ed infine la traduzione dal secondo al primo livello concretizzazione.

Tutte le funzioni di traduzione, ad eccezione di quelle fra il primo ed il secondo livello, sono

definite genericamente su ogni diagramma di controllo. Con questo approccio per estendere la teoria

includendo il supporto a nuovi linguaggi è sufficiente definirne la formalizzazione IFCL.

La figura 4.2 illustra le varie fasi della pipeline in relazione con i domini di riferimento. Assumiamo

di avere un file di configurazione file.conf per il sistema source k ∈ {pf, iptables, ipfw} e di avere

un sistema target k′, allora gli stadi della pipeline di configurazione possono essere formalizzati come

segue:
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1. formalizzazione del firewall concreto come firewall IFCL

• riceve F0 = (k, file.conf)

• prende Ck definito per il sistema se questo è supportato

• calcola Σ = fork(file.conf)

• restituisce F1 = (Ck,Σ)

2. estrazione della semantica astratta del firewall

(a) normalizzazione del firewall IFCL

• riceve F1 = (Ck,Σ)

• calcola e restituisce F2 =$F1%
(b) semiastrazione del firewall normalizzato

• riceve F2 = (Ck,Σn), dove Σn = (ρ, c)

• per ogni ruleset R ∈ ρ calcola LRM

• calcola f tale che per ogni q ∈ Qk vale f(q) = Lc(q)M(sNEW)

• restituisce F3 = (Ck, f)

(c) composizione del firewall astratto

• riceve F3 = (Ck, f)

• calcola e restituisce F4 = �F3

3. generazione del firewall IFCL finale

(a) decomposizione del firewall astratto in un firewall semiastratto del tipo target

• riceve F ′4 = F4 : P→ T (P) ∪ {⊥} e k′ il sistema target

• prende Ck′ definito per il sistema se questo è supportato

• calcola f ′ : Qk′ → P→ T (P) ∪ {⊥} tale che �(Ck′ , f ′) = F ′4
• restituisce F ′3 = (Ck′ , f ′)

(b) codifica del firewall IFCL normalizzato

• riceve F ′3 = (Ck′ , f ′)
• per ogni funzione λ ∈ Λ assegnato ai nodi da f (la definizione esatta di Λ è {f ′(q) | q ∈
Qk′}) genera una rulesetR tale che LRM(sNEW) = λ e colleziona queste ruleset nell’insieme

ρ′

• calcola c′ : Qk′ → ρ′ tale che per ogni q ∈ Qk′ vale Lc′(q)M(sNEW) = f ′(q)

• restituisce F ′2 = (Ck′ ,Σ′), dove Σ′ = (ρ′, c′)

(c) rifattorizzazione del firewall IFCL normalizzato in un generico firewall IFCL

• riceve F ′2 = (Ck′ ,Σ′)
• calcola una nuova configurazione Σ′r tale che $(Ck′ ,Σ′r)% = (Ck′ ,Σ′)
• restituisce F ′1 = (Ck′ ,Σ′r)

4. concretizzazione del firewall IFCL in un firewall concreto

• riceve F ′1 = (Ck′ ,Σ′r)

• calcola file.conf′ = conk′(Ck′ ,Σ′r)

• restituisce F0 = (k′, file.conf′)
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Dove nei passi 2.c e 3.a abbiamo usato la funzione di composizione �, che dato un firewall semiastratto

restituisce il firewall astratto ottenuto componendo le funzioni associate ai nodi secondo la semantica

denotazionale. Vale che �(Ck, f) = L(Ck,Σ)M(sNEW), con Σ = (ρ, c) se per ogni q ∈ Qk vale f(q) =

Lc(q)M(sNEW)1 .

Formalmente la funzione �, per un firewall semiastratto F = (C, f), è definita come �F∅ (qi). Dove

la funzione �FI (q) per un dato insieme di nodi I, è definita per ogni q ∈ Q, q 6= qf come:

�FI (q) (p) =

�FI∪{q}(q′) (p′) n t se t 6= ⊥ ∧ q′ /∈ I

⊥ altrimenti

dove t = f(q)(p) e se t 6= ⊥ allora p′ = t(p) e q′ = δ(q, p′)

e per il nodo finale come:

�FI (qf ) (p) = id

La funzione conk è la funzione di concretizzazione del sistema k che data una configurazione IF-

CL Σ restituisce un file di configurazione file.conf nel linguaggio di configurazione di k. Questa è

concettualmente la funzione inversa della funzione di formalizzazione fork, tuttavia è bene osservare

che non è necessariamente l’inversa dal punto di vista funzionale. Infatti la formalizzazione delle con-

figurazioni prodotta dalla funzione fork ha spesso una forma molto particolare (si prenda ad esempio

quella di ipfw presentata nella sezione 2.2.3); non vogliamo limitarci alla possibilità di concretizzare

solo configurazioni IFCL aventi una struttura cos̀ı particolare. L’idea è quella di definire una funzione

che per ogni configurazione IFCL per il diagramma di controllo del sistema k restituisca una confi-

gurazione nel linguaggio target “il più simile possibile”; esprimiamo questo concetto dicendo che la

normalizzazione del firewall IFCL e di quello ottenuto applicando conk e poi formalizzando di nuovo,

devono essere uguali: $(Ck,Σ)% = $(Ck, fork(file.conf))%. La forma di queste funzioni sarà

descritta in maggior dettaglio nel capitolo 7.

In questa trattazione trascuriamo la fase di rifattorizzazione, assumendo che il firewall restituito

da questa fase sia sempre quello ottenuto in input dello stadio di codifica (Σ′r = Σ′). Si ricordi

che è banalmente vero che ogni firewall normalizzato è anche un firewall IFCL. Inoltre, come già

annunciato, abbiamo trascurato il comportamento dei pacchetti appartenenti a connessioni stabilite,

concentrandoci unicamente sullo stato sNEW.

Teorema 5 (Correttezza della pipeline). Sia file.conf un firewall concreto in uno qualunque dei

sistemi k ∈ {iptables, ipfw, pf}. Il firewall target file.conf′ prodotto dalla pipeline di transcompi-

lazione, per il sistema target k′, ha la stessa semantica del firewall source per quanto riguarda pacchetti

non appartenenti a connessioni stabilite. Formalmente vale:

L$(Ck, fork(file.conf))%M(sNEW) ≡ L$(Ck′ , fork′(file.conf′))%M(sNEW)

4.4 Domini sintetici

Quella che è stata presentata è la versione concettuale della pipeline, con le specifiche per ogni fase dei

valori in input, di quelli calcolati e di quelli restituiti. Per alcune fasi abbiamo una descrizione accurata

1 Si noti che abbiamo definito la semantica denotazionale per firewall IFCL normalizzati, non semiastratti, il passaggio

intermedio dei firewall semiastratti ci è utile dal punto di vista pratico per l’implementazione degli algoritmi della pipeline

e per la ricompilazione.
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Livello 0 (firewall concreti)

sistema firewall (processo)

file di configurazione

Livello 1 (firewall IFCL)

diagramma di controllo C
configurazione (ρ, c)

Livello 2 (firewall IFCL normalizzati)

diagramma di controllo C
configurazione (ρ, c)

Livello 3 (firewall semiastratti)

diagramma di controllo C
configurazione f : Q→ P→ T (P) ∪ {⊥}

Livello 4 (firewall astratti)

configurazione λ : P→ T (P) ∪ {⊥}
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Figura 4.2: schema della pipeline di transcompilazione
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dell’algoritmo da applicare, come per la fase di normalizzazione che sfrutta la procedura $ %. Per

dare un’implementazione della pipeline occorre definire le funzioni di traduzione del backend, delle

quali abbiamo solo una descrizione non operativa.

La parte complicata da implementare è quella relativa alle fasi 2.b, 2.c, 3.a e 3.b. Questo perché

abbiamo a che fare con firewall astratti e semiastratti, che sono basati su funzioni da pacchetti a tra-

sformazioni P → T (P) ∪ {⊥}. Queste funzioni devono essere rappresentate in un modo che consenta

di effettuare le operazioni della fase 3.a e 3.b. Una rappresentazione sintattica come quella prodotta

dalla semantica denotazionale sarebbe molto difficile da maneggiare, quindi abbiamo optato per una

rappresentazione esplicita, basata su una visione delle funzioni come insiemi di coppie (pacchetto,

trasformazione). Ovviamente dato che abbiamo un enorme numero di input possibili per le funzioni,

#P = 296, non è possibile calcolare e memorizzare le coppie una ad una. Ci affidiamo ad una rappre-

sentazione sintetica dell’insieme delle coppie, basata su multicubi. Implementiamo la parte centrale

della pipeline di transcompilazione attraverso un algoritmo di sintesi e un algoritmo di generazione,

corrispondenti rispettivamente alle fasi 2.b e 2.c, e alle fasi 3.a e 3.b.

Definiamo una rappresentazione sintetica ed esplicita dei domini dei firewall semiastratti e astratti,

che sarà la forma dei dati realmente gestiti dagli algoritmi. Stabiliamo ovviamente una corrispondenza

fra domini di specifica e sintetici, definendo l’interpretazione teorica di ogni elemento dei domini

sintetici e basandoci su di questa per dimostrare la correttezza degli algoritmi di sintesi e generazione.

Come abbiamo detto la rappresentazione sintetica si basa su multicubi. Il multicubo è una gene-

ralizzazione del concetto di cubo: dove un cubo di dimensione n può essere visto come il prodotto

cartesiano di n intervalli, un multicubo è il prodotto cartesiano di n unioni di intervalli. Ad esempio,

in R3, il cubo di lato 1 con uno spigolo sull’origine degli assi e resto dei punti nel sottospazio di coor-

dinate positive, può essere rappresentato come [0, 1] × [0, 1] × [0, 1], mentre è un multicubo l’insieme

([0, 1] ∪ [2, 3])× [0, 1]× ([0, 1] ∪ [2, 3] ∪ [6, 7]).

Definizione 13 (Multicubo). Dato un insieme A, prodotto cartesiano di n insiemi A = A1×· · ·×An,

un suo sottoinsieme M ⊆ A è un multicubo se e solo se esistono n insiemi M1 ⊆ A1, · · · ,Mn ⊆ An

tali che M = M1 × · · · ×Mn. Solitamente gli insiemi M1, · · · ,Mn sono rappresentati come unioni di

intervalli disgiunti.

In particolare un multicubo nel nostro sistema sarà un insieme di pacchetti P ⊆ P per il quale

esistono IPs, IPd ⊆ IP, Ports, Portd ⊆ Port e Tag ⊆ Tag tali che P = IPs×Ports× IPd×Portd×
Tag. Denotiamo l’insieme dei multicubi in P con M(P), formalmente

M(P) = 2IP × 2Port × 2IP × 2Port × 2Tag

Un firewall sintetizzato di un qualunque livello è una rappresentazione sintetica del firewall, in

cui ogni funzione P → T (P) ∪ {⊥} è espressa come insieme di coppie (P, t) dove t ∈ T (P) è una

trasformazione e P è un multicubo di pacchetti che hanno t come immagine. Rappresentiamo a volte

queste funzioni come una tabella con una riga per ogni coppia (P, t) in cui t 6= ⊥ (lasciando implicito

che il destino di tutti i pacchetti non rappresentati nella tabella è quello di essere scartati).

Per prima cosa definiamo formalmente cosa intendiamo per rappresentazione sintetizzata di una

funzione su pacchetti, successivamente definiamo di conseguenza firewall semiastratti sintetizzati e

firewall astratti sintetizzati (non essendo presenti funzioni da pacchetti a trasformazioni nei firewall

ad altri livelli di astrazione, non ha senso parlare di loro versioni sintetizzate).

Definizione 14 (Funzione sintetizzata su pacchetti). Chiamiamo funzione sintetizzata su pacchetti

un insieme di coppie λ̃ ∈ 2M(P)×T (P)∪{⊥} tale che l’insieme delle parti sinistre delle coppie di λ̃ è una
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partizione di P. Formalmente:

1. ∀(P, t) ∈ λ̃. P 6= ∅

2. ∀(P1, t1), (P2, t2) ∈ λ̃. P1 ∩ P2 = ∅

3.
⋃

(P,t)∈λ̃

P = P

Chiamiamo firewall semiastratto sintetizzato una coppia F̃3 = (C, f̃) dove C è un diagramma di

controllo e f̃ : Q → 2M(P)×T (P)∪{⊥} assegna ad ogni nodo q una funzione sintetizzata su pacchetti

λ̃. Allo stesso modo chiamiamo firewall astratto sintetizzato una funzione sintetizzata su pacchetti.

Definiamo l’interpretazione di una funzione sintetizzata su pacchetti i(λ̃) : P → T (P) ∪ {⊥} come

segue:

i(λ̃)(p) = t ⇐⇒ ∃(P, t) ∈ λ̃. p ∈ P

Dato che l’insieme delle parti sinistre di λ̃ è una partizione di P, è immediato verificare che la definizione

appena data non è ambigua e definisce davvero una funzione del tipo dichiarato. L’interpretazione

di un firewall semiastratto sintetizzato F̃3 = (C, f̃) è un firewall semiastratto F3 = (C, f) dove per

ogni nodo q, f(q) = i(f̃(q)). L’interpretazione di un firewall astratto sintetizzato F̃4 = λ̃ è un firewall

astratto F4 = i(λ̃).

Gli algoritmi di sintesi e generazione del firewall, che realizzano le fasi di semiastrazione (2.b),

composizione (2.c), decomposizione (3.a) e codifica (3.b), operano dunque sulla versione sintetizzata

dei domini. Perché siano corretti è sufficiente che l’interpretazione dei firewall prodotti corrisponda

sempre alla specifica della pipeline nello stadio di riferimento. Più precisamente: l’algoritmo di sintesi

prende come input un firewall IFCL normalizzato e restituisce un firewall astratto sintetizzato F̃4 ∈
2M(P)×T (P)∪{⊥}, mentre l’algoritmo di generazione prende come input un firewall astratto sintetizzato

F̃ ′4 e restituisce un firewall IFCL normalizzato.

Per applicare il teorema 5 è sufficiente che, nell’implementazione della pipeline in cui i domini

sintetizzati sostituiscono quelli normali, siano garantite le seguenti condizioni: (i) l’interpretazione del

firewall astratto sintetizzato restituito dall’algoritmo di sintesi verifica le condizioni dell’output della

fase 2.c della pipeline, (ii) se l’interpretazione del firewall astratto sintetizzato in input all’algoritmo

di generazione verifica le condizioni dell’input della fase 3.a della pipeline, allora il firewall IFCL

normalizzato prodotto dall’algoritmo di sintesi verifica le condizioni dell’output della fase 3.b della

pipeline. Se queste condizioni valgono allora vale anche il risultato del teorema 5. Formalmente,

perché valga il risultato del teorema 5, che garantisce la conservazione della semantica del firewall, è

sufficiente che siano verificate dagli algoritmi di sintesi e generazione le due condizioni seguenti:

1. Sia F2 un firewall normalizzato, sia λ̃ il risultato dell’algoritmo di sintesi con input F2, allora

LF2M(sNEW) = i(λ̃)

2. Sia λ̃ un firewall astratto sintetizzato, sia F ′2 il risultato dell’algoritmo di generazione con input

λ̃ e sia λ = i(λ̃), allora che LF ′2M(sNEW) = λ
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Capitolo 5

Algoritmo di sintesi

L’algoritmo di sintesi realizza le ultime due fasi dello stadio 2 della pipeline di transcompilazione:

prende in input un firewall IFCL normalizzato e restituisce un firewall astratto, cioè una funzione

P → T (P) ∪ {⊥}, rappresentato come un firewall astratto sintetizzato. Dividiamo l’algoritmo in due

parti, la prima realizza la semiastrazione, fase 2.b della pipeline, ovvero a partire dal firewall IFCL

genera un firewall semiastratto in cui ad ogni nodo del diagramma di controllo è associata una funzione

P→ T (P)∪{⊥}. La seconda parta realizza la fase 2.c, componendo le funzioni associate ai nodi sulla

base del diagramma di controllo, calcola una rappresentazione sintetica della funzione corrispondente

alla semantica del firewall.

L’esatta implementazione degli algoritmi, e la scelta delle strutture dati verranno discussi nel

capitolo 8.

5.1 Semiastrazione

La prima parte della sintesi, corrispondente alla semiastrazione, è realizzata nell’algoritmo 1 dalla fun-

zione FIREWALL SEMI ABSTRACTION (riga 1), che attraverso la funzione RULESET SYNTHESIS, dato un

firewall normalizzato F2 in input, calcola la funzione su pacchetti corrispondente alla semantica della

ruleset associata ad ognuno dei nodi del diagramma di controllo. L’output è un firewall semiastratto

sintetizzato F̃3.

Nell’implementazione abbiamo usato la funzione SPLIT(P : insieme di pacchetti, t: trasformazione,

φ: predicato), che divide l’insieme di pacchetti P in due parti: la prima, Ps, è composta dai pacchetti

che dopo aver subito la trasformazione t verificano il predicato φ; la seconda, Pn, da quelli che non

lo verificano. Il primo insieme viene restituito com’è, il secondo insieme invece viene restituito come

insieme di multicubi disgiunti non vuoti.

SPLIT(P, t, φ) = (Ps,Pn)

Ps = { p ∈ P | φ(t(p)) } ∈ M(P)

Pn = {Pn1, Pn2, . . . Pnm} ∈ 2M(P) tale che 1. ∀P in ∈ Pn. P
i
n 6= ∅

2. ∀P in, P jn ∈ Pn. P
i
n ∩ P jn = ∅

3.
⋃

P i
n∈Pn

P in = { p ∈ P | ¬φ(t(p)) }
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Algorithm 1

1: function firewall semi abstraction(F2: firewall normalizzato)

2: (C,Σ)← F2

3: (ρ, c)← Σ

4: (Q,A, qi, qf )← C
5: f̃ ← [ ]

6: for all q ∈ Q do

7: f̃ [q]← ruleset synthesis(c(q))

8: F̃3 ← (C, f̃)

9: return F̃3

10:

11: function ruleset synthesis(R: ruleset)

12: return ruleset synthesis rec(P, R, id)

13:

14: function ruleset synthesis rec(P : insieme di pacchetti, R: ruleset, t: trasformazione)

15: if R = [ ] then return {(P, t)}

16: (φ,Action) ·R′ ← R

17: (Ps,Pn)←split(P , t, φ)

18: λ̃′ ←
⋃
P ′n∈Pn

( ruleset synthesis rec(P ′n, R′, t) )

19: if Action = ACCEPT then

20: return {(Ps, t)} ∪ λ̃′

21: if Action = DROP then

22: return {(Ps,⊥)} ∪ λ̃′

23: if Action = NAT(sn, dn) then

24: return {(Ps, trnat(dn, sn) n t)} ∪ λ̃′

25: if Action = CHECK-STATE(X) then

26: return ruleset synthesis rec(P , R′, t)

27: if Action = MARK(m) then

28: return ruleset synthesis rec(Ps, R
′, (id : id, id : id, cost(m)) n t) ∪ λ̃′

Il motivo dietro a questa scelta è che, assumendo che P sia un multicubo, Ps è sicuramente un

multicubo, mentre Pn può non esserlo. Daremo dettagli maggiori sulla forma di Ps e Pn alla fine di

questa sezione.

La funzione FIREWALL SEMI ABSTRACTION itera sui nodi del diagramma di controllo C (riga 6),

per ogni nodo q calcola la funzione sintetizzata λ̃ applicando la funzione RULESET SYNTHESIS alla

ruleset associata al nodo q da c, e aggiorna l’array f in modo tale che f [q] restituisca λ̃ (riga 7).

La funzione RULESET SYNTHESIS, applicata ad una ruleset R, restituisce una funzione su pacchetti

sintetizzata λ̃ tale che la sua interpretazione è uguale alla semantica della ruleset nello stato sNEW, cioè

tale che i(λ̃) = LRM(sNEW). La sua definizione è simile a quella della semantica denotazionale di una

ruleset, e sfrutta una funzione ricorsiva ausiliaria RULESET SYNTHESIS REC che calcola la sintesi di

una parte di ruleset, dato l’insieme dei pacchetti che non sono stati gestiti dalle regole precedenti P e

la trasformazione t già subita per via delle regole precedenti. Inizialmente la funzione viene chiamata

con parametri corrispondenti all’insieme di tutti i pacchetti P, l’intera ruleset R e la trasformazione

identità id (riga 12).
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La ricorsione è sulla porzione di ruleset ancora da analizzare R. Se è vuota allora tutti i pacchetti

che ancora non sono stati gestiti saranno accettati con trasformazione t, restituiamo dunque un singo-

letto contenente (P, t) (riga 15). Abbiamo infatti assunto una politica di default ACCEPT per semplicità,

l’estensione al caso generale è banale. Altrimenti si estrae la prima regola della ruleset (φ,Action) e

si chiama R′ il resto della ruleset (riga 16). Dividiamo P nei due insiemi di pacchetti Ps e Pn per

mezzo della funzione SPLIT(P, t, φ) (riga 17). Ps è un multicubo e contiene tutti e soli i pacchetti in

P che dopo aver subito la trasformazione t verificano la condizione φ della regola, Pn è un insieme di

multicubi che contengono tutti gli altri pacchetti di P . Si calcola la funzione su pacchetti sintetizzata

λ̃′ corrispondente alla semantica del resto della ruleset R′ riguardo l’insieme di pacchetti Pn, facendo

una chiamata ricorsiva per ognuno dei multicubi nell’insieme (con trasformazione invariata) e unendo

i risultati fra loro (riga 18). La prosecuzione dell’algoritmo dipende dal target della regola. Se il target

è ACCEPT allora tutti i pacchetti che verificano la condizione sono accettati con trasformazione t e di tutti

gli altri sono trattati secondo λ̃′ (riga 20). Il caso in cui Action è uguale a DROP è simile, i pacchetti in

Ps sono associati a ⊥ e Pn viene trattato alla stessa maniera con λ̃′ (riga 22). Se la ruleset comincia

con una regola con target NAT allora l’insieme Ps viene associato a t aggiornata con il risultato della

funzione trnat (riga 24), che restituisce la trasformazione specificata dai parametri del target e che

abbiamo definito formalmente in 3.2. Il target CHECK-STATE è trattato in maniera molto particolare in

quanto ci stiamo concentrando sullo stato sNEW e quindi nessun pacchetto appartiene a connessioni

stabilite: nessuna pacchetto viene trasformato per effetto dello stato, Ps e Pn non servono, passiamo

alla chiamata ricorsiva l’insieme P , tutti i suoi pacchetti sono gestiti sulla base del resto della ruleset

R′ (riga 26). Se il target è MARK(m) allora la valutazione di Ps procede con una chiamata ricorsiva in

cui la trasformazione t viene aggiornata con la trasformazione relativa alla scrittura del campo tag

con il valore m; come negli altri casi Pn viene gestito con λ̃′ (riga 28).

Osserviamo che per poter chiamare il risultato prodotto dall’algoritmo un firewall semiastratto

sintetizzato occorre che l’array f rappresenti una funzione Q→ 2M(P)×T (P)∪{⊥}, perciò gli insiemi di

pacchetti nella parte sinistra delle coppie associate ai nodi devono essere dei multicubi. L’insieme di

tutti i pacchetti P è banalmente un multicubo, tutti gli altri insiemi di pacchetti coi quali lavoriamo

sono prodotti dalla funzione SPLIT. Abbiamo detto che questa funzione restituisce una coppia (Ps,Pn),

dove Ps è un multicubo e Pn è insieme di multicubi, se l’insieme P in input è un multicubo. Ogni

insieme finito può essere espresso come unione di finiti multicubi, pertanto Pn non dà problemi da

questo punto di vista. In generale non è vero, per una generica funzione φ, che l’insieme {p ∈
P | φ(p, sNEW)} è un multicubo se P lo è. Tuttavia dato che il predicato φ è la condizione di una regola

IFCL, deve essere possibile scomporlo nella seguente maniera:

φ(p, s) = φsIP (p.sIP ) ∧ φsPort(p.sPort) ∧ φdIP (p.dIP ) ∧ φdPort(p.dPort) ∧ φtag(p.tag) ∧ φs(p, s)

per qualche predicato φsIP , φsPort, φdIP , φdPort e φtag, e per un predicato φs(p, s) che può essere solo

∃α. p `s α oppure ¬∃α. p `s α, corrispondenti rispettivamente a false e true nei casi in questione,

dato che abbiamo assunto che s = sNEW. La scomposizione garantisce che Sn sia un multicubo, in

quanto {p ∈ P | φ(p, sNEW)} è un multicubo e l’intersezione di due multicubi è sempre un multicubo.

Questa scomposizione del predicato φ(p, s) suggerisce anche un metodo per calcolare Pn
1: è

sufficiente prendere i predicati φ1(p) = φsIP (p.sIP ), φ2(p) = φsPort(p.sPort), φ3(p) = φdIP (p.dIP ),

φ4(p) = φdPort(p.dPort) e φ5(p) = φtag(p.tag) e combinarli per calcolare degli insiemi P 1
n , P 2

n , . . . ,

Pmn ∈M(P) tali che:

1. ∀P in ∈ Pn. P
i
n 6= ∅

1 Assumiamo qui che il predicato φs(p, s) possa essere ignorato in quanto valuta a true (e quindi elemento neutro

della congiunzione); nel caso contrario il congiunto stesso vale false, quindi Pn = {P} e Ps = ∅.
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2. ∀P in, P jn ∈ Pn. P
i
n ∩ P jn = ∅

3.
⋃
P i

n∈Pn
P in = { p ∈ P | ¬φ(t(p)) }

Possiamo comporre i predicati in modo diverso per ottenere un risultato che soddisfi i requisiti, il

più semplice probabilmente è quello di prendere fra gli elementi dell’insieme {φ1, φ2, φ3, φ4, φ5} tutti

i predicati diversi da true, chiamiamo questi predicati ϕ1, ϕ2, . . . , ϕm. A seconda della condizione

originale della regola, m può essere un qualunque numero naturale minore o uguale di 5. A questo

punto possiamo costruire gli m multicubi nella seguente maniera:

∀i ∈ {1, . . .m}. P in = { p ∈ P | ¬ϕi(p) ∧ ∀j < i. ϕj(p) }

Si noti che per leggibilità non abbiamo trattato esplicitamente il caso in cui l’insieme Ps sia

l’insieme vuoto, assumiamo che il controllo sia effettuato al momento dell’aggiunta della coppia (Ps, t)

all’insieme λ̃′; la versione completa dell’algoritmo è immediatamente derivabile da quella presentata.

Il risultato dell’algoritmo è un firewall semiastratto sintetizzato la cui interpretazione corrisponde

alle specifiche della pipeline di transcompilazione.

Teorema 6. Sia F2 = (C,Σ) con Σ = (ρ, c) il firewall normalizzato in input all’algoritmo di

semiastrazione. L’algoritmo produce un firewall F̃3 = (C, f̃) tale che

• F̃3 è un firewall semiastratto sintetizzato

• la funzione sintetizzata f̃ è tale che per ogni q ∈ Qk vale i(f̃)(q) = Lc(q)M(sNEW)

5.2 Composizione

La fase di composizione (2.c) a partire dal firewall semiastratto sintetizzato F̃3 calcola il firewall

astratto sintetizzato relativo, F̃4. Per semplificare questa fase ci basiamo su una versione del firewall

avente diagramma di controllo aciclico. Sebbene sia possibile in teoria comporre le funzioni sintetiz-

zate associate ai nodi su un grafo aciclico, questo richiederebbe di tener traccia per ogni multicubo

che valutiamo, del percorso fatto all’interno del diagramma di controllo, in modo da scoprire quando

siamo in presenza di un ciclo e da assegnare correttamente il valore ⊥. In un firewall con diagramma

di controllo aciclico invece possiamo effettuare la composizioni in ordine, dal nodo finale al primo,

propagando all’indietro il valore ottenuto per un nodo e combinandolo con la semantica della ruleset

associata al nodo precedente. A livello algoritmico questo si traduce nella possibilità di usare, per ogni

nodo, una ricorsione sui nodi successori (cioè raggiunti da un arco uscente), e di avere automaticamente

garanzia di terminazione.

Presentiamo dunque un algoritmo per la trasformazione di un firewall IFCL in una sua versione

aciclica, garantendo la conservazione della semantica nel processo. Successivamente forniamo l’algo-

ritmo di composizione in sé, che a partire da un firewall semiastratto sintetizzato con diagramma di

controllo aciclico calcola la rappresentazione sintetizzata del firewall astratto.

5.2.1 Firwall aciclici

L’obiettivo è quello di calcolare la versione aciclica di un firewall, trasformando il diagramma di

controllo C in una versione equivalente aciclica e aggiornando la funzione c di conseguenza. Un

diagramma di controllo aciclico è un digramma di controllo in cui non esiste un percorso π = qi, · · · , qf
tale che un nodo q compare più di una volta in π, dove in un percorso possiamo passare dal nodo q al
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nodo, q′ se e solo se esiste un arco (q, ψ, q′) per qualche ψ 6= false. La versione aciclica di un firewall

F = (C,Σ) è un firewall Fu = (Cu,Σu) tale che: il diagramma di controllo Cu è aciclico e i due firewall

hanno la stessa semantica, ovvero LFM = LFuM.
Consideriamo l’uguaglianza della semantica dei due firewall, LFM = LFuM, come la congiunzione

di due condizioni, la prima relativa alla simulazione del firewall F da parte di F ′, la seconda a quei

pacchetti che in F percorrono un ciclo nel diagramma di controllo.

Il firewall prodotto dall’algoritmo simula il firewall in input, ovvero per ogni percorso legale, cioè

aciclico, nel firewall originale esiste un percorso legale nel firewall prodotto tale che i predicati sugli

archi e le ruleset associate ai nodi sono le stesse.

Definizione 15 (Simulazione di un firewall). Il firewall F ′ simula il firewall F , scritto F � F ′, se e

solo se (F , qi, {qi}) � (F ′, q′i, {q′i}) dove � è una relazione fra triple (firewall, nodo, insieme di nodi)

definita come:

(F , q, I)� (F ′, q′, I ′) ⇐⇒ c(q) = c′(q′) ∧

(q = qf ⇐⇒ q′ = q′f ) ∧

∀q1 ∈ Q \ I . ∃(q, ψ, q1) ∈ A ⇒

(∃q′1 ∈ Q′ \ I ′, (q′, ψ, q′1) ∈ A′ ∧ (F , q1, I ∪ {q1})� (F ′, q′1, I ′ ∪ {q′1}))

dove F = (C,Σ) e F ′ = (C′,Σ′), con C = (Q,A, qi, qf ), Σ = (ρ, c) e C′ = (Q′, A′, q′i, q
′
f ), Σ′ = (ρ′, c′).

Chiamiamo pacchetto ciclante per un firewall un pacchetto la cui valutazione comporta la visita

di uno stesso nodo più volte per un qualche stato.

Definizione 16 (Pacchetti ciclanti). L’insieme dei pacchetti ciclanti in un dato firewall F , pc(F), è

l’insieme {p ∈ P | ∃q ∈ Q, p′, p′′ ∈ P, s ∈ S. (qi, s, p)→∗ (q, s, p′) ∧ (q, s, p′)→+ (q, s, p′′)}.

Non è una sorpresa che due firewall simili abbiano la stessa semantica per quanto riguarda i

pacchetti non ciclanti.

Teorema 7. Se due firewall sono simili allora hanno semantica equivalente per quanto riguarda i

pacchetti non ciclanti di F , ovvero: F � F ′ =⇒ ( ∀p /∈ pc(F), s ∈ S. LFM(s)(p) = LF ′M(s)(p) ).

L’idea è dunque quella di generare un firewall che simuli quello originale, replicando alcuni nodi in

modo tale da “srotolare” il diagramma di controllo ed evitare che ci siano cicli. La procedura si basa sul

fatto che ogni pacchetto in un diagramma di controllo può passare per ogni nodo al massimo una volta

prima di essere scartato automaticamente. Occorre un trattamento ad hoc per i pacchetti ciclanti,

che nel firewall originale verrebbero scartati. Perché il grafo risultante sia un diagramma di controllo

occorre che da ogni nodo diverso da quello finale si possa sempre passare ad un nodo successivo, per

ogni pacchetto. Pertanto i pacchetti ciclanti del firewall originale non possono bloccarsi nell’ultimo

nodo prima della fine del ciclo, devono essere mandati verso un nodo che li gestisca in modo opportuno,

cioè scartandoli. Creiamo per questo un nodo ad hoc, q⊥, nel quale ridirigiamo tutti i pacchetti ciclanti

del firewall originale e che è configurato in modo tale da scartare ogni pacchetto. Chiamiamo la ruleset

che gli è assegnata R⊥, questa è composta da un unica istruzione (true, DROP).

La funzione UNLOOP(F) dell’algoritmo 2 (riga 1) calcola la versione aciclica del firewall F attraverso

la funzione ricorsiva UNLOOP REC(F , q, qu, I) che visita il diagramma nodo per nodo, seguendo gli

archi e costruendo man mano il nuovo firewall. Il parametro F è il firewall originale, q è il nodo di

F che stiamo considerando, qu è il nodo del firewall prodotto che stiamo considerando e I è l’insieme

dei nodi visitati per raggiungere q nel firewall originale, e ci serve a riconoscere i cicli. La funzione
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UNLOOP REC(F , q, qu, I) restituisce una tripla (Qu, Au, cu) dove Qu sono i nodi del diagramma

del firewall prodotto dall’algoritmo, Au sono gli archi e cu è un insieme di coppie che rappresenta la

funzione di assegnamento di ruleset ai nodi (riga 5). Nella definizione della funzione UNLOOP REC

(riga 10), per prima cosa si inizializzano Qu e Au come insiemi vuoti e cu come la funzione che associa

a qu la stessa ruleset associata a q nel firewall originale: qu è una “copia” del nodo q del firewall

originale (righe 13, 14 e 15). Si noti che nel firewall aciclico prodotto dall’algoritmo possono esistere

più “copie” diverse del nodo q del firewall originale. Assumiamo di avere una funzione SUCCESSORI

(q: nodo, A: archi) che dato un nodo e l’insieme degli archi restituisce la lista di coppie (q′, ψ) tale

che (q, ψ, q′) appartiene ad A. Attraverso la funzione SUCCESSORI, itero sui nodi q′ raggiungibili da q

con predicato ψ, nel firewall F (riga 16): se il nodo causa un ciclo nel firewall (riga 17) allora aggiungo

nel firewall prodotto il nodo q⊥ e un arco con predicato ψ fra qu e q⊥, e associo al nodo q⊥ la ruleset

R⊥ in cu; per la definizione che abbiamo dato di diagramma di controllo non è possibile che il nodo

q⊥ non abbia archi uscenti, pertanto aggiungiamo anche un arco uscente con predicato true verso il

nodo qf (righe 18, 19 e 20).

Se il nodo q′ non causa un ciclo (riga 21) allora devo aggiungerlo al firewall prodotto, se q′ = qf

allora lo aggiungo com’è (riga 23), altrimenti genero e aggiungo una sua “copia” (riga 25), cioè un

nuovo nodo che avrà nel diagramma finale lo stesso ruolo che q′ ha nel diagramma originale per

quanto riguarda i percorsi di cui ci stiamo occupando, ma che sarà separato dagli altri nodi del

diagramma finale generati a partire dallo stesso nodo q′. La generazione di un nuovo nodo viene

effettuata dalla funzione GENERA NODO() che assumiamo generi sempre nodi differenti. Aggiungo il

nuovo nodo q′u a Q e copio in Au l’arco (q, ψ, q′), che diventa (qu, ψ, q
′
u) (righe 26 e 27). Effettuo una

chiamata ricorsiva sul nodo q′ in F e su q′u sul firewall che sto costruendo, aggiungendo il nodo q′ in I

(riga 28). Unisco il risultato della chiamata ricorsiva alla tripla (Qu, Au, cu) ottenuta dalle iterazioni

precedenti e proseguo con il successivo fra i nodi raggiungibili da q nel firewall iniziale (righe 29, 30 e

31). Alla fine restituisco la tripla (Qu, Au, cu).

La semantica del firewall aciclico prodotto è equivalente a quella del firewall di partenza.

Teorema 8. Sia F un firewall IFCL, sia Fu il risultato dell’applicazione della funzione UNLOOP al

firewall F :

1. Fu è un firewall IFCL aciclico

2. F � Fu

3. ∀p ∈ pc(F), s ∈ S. LFuM(s)(p) = ⊥

Il diagramma di controllo di iptables non contiene cicli, perciò non c’è necessità di applicare

l’algoritmo ai firewall iptables. I diagrammi di controllo di pf e ipfw, invece, contengono cicli: la

loro versione aciclica, restituita dall’algoritmo, è mostrata in figura 5.1b e 5.1a.
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Figura 5.1: Versione aciclica dei diagrammi di controllo

Algorithm 2

1: function unloop(F : firewall)

2: (C,Σ)← F
3: (ρ, c)← Σ

4: (Q,A, qi, qf )← C
5: (Qu, Au, cu)← unloop rec(F , qi, qi, {qi})
6: Cu ← (Qu, Au, qi, qf )

7: Σu ← (ρ ∪ {R⊥}, cu)

8: return (Cu, Σu)

9:

10: function unloop rec(F : firewall, q: nodo, qu: nodo , I: insieme di nodi)

11: (C, ρ, c)← F
12: (Q,A, qi, qf )← C
13: Qu ← ∅
14: Au ← ∅
15: cu ← {(qu, c(q))}
16: for all (q′, ψ) ∈ successiori(q, A) do

17: if q′ ∈ I then

18: Qu ← Qu∪ {q⊥}
19: Au ← Au ∪ {(qu, ψ, q⊥), (q⊥, true, qf )}
20: cu ← cu ∪ {(q⊥, R⊥)}
21: else

22: if q′ = qf then

23: q′u ← qf

24: else

25: q′u ← genera nodo( )

26: Qu ← Qu∪ {q′u}
27: Au ← Au∪ {(qu, ψ, q′u)}
28: (Q′, A′, c′ ← unloop rec(F , q′, q′u, I ∪ {q′})
29: Au ← Au ∪A′

30: Qu ← Qu ∪Q′

31: cu ← cu ∪ c′

32: return (Qu, Au, cu)
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5.2.2 Algoritmo di composizione

La seconda parte dell’algoritmo di sintesi realizza la fase di composizione della pipeline. In questa

fase le funzioni sintetizzate associate ai vari nodi del diagramma di controllo sono composte fra loro

in modo da ottenere la semantica del firewall source. L’algoritmo 3 realizza questa fase attraverso

la funzione COMPOSITION (riga 1) che dato un firewall semiastratto sintetizzato F̃3 restituisce un

firewall astratto sintetizzato equivalente F̃4. L’algoritmo termina solo se il firewall in input è aciclico,

condizione garantita dall’applicazione dell’algoritmo 2.

La funzione COMPOSITION è definita attraverso la funzione ricorsiva COMPOSITION REC che ha

come parametri il firewall semiastratto sintetizzato F̃3 e il nodo q a partire dal quale calcolare la

semantica, inizialmente qi. La funzione COMPOSITION REC(F̃3, q) (riga 6) calcola la semantica del

firewall considerando il diagramma di controllo solo dal nodo q in avanti. La semantica di un firewall

composto da un unico nodo, il nodo finale qf , è la semantica della ruleset associata al nodo stesso,

ovvero avendo assunto che in ogni firewall IFCL debba valere c(qf ) = Rε, la funzione sintetizzata (P, id)

(riga 9). Se invece non siamo nel nodo qf , prediamo la funzione sintetizzata su pacchetti associata a q,

λ̃ = f(q) (riga 10). Inizializziamo λ̃q con le coppie (P,⊥) di λ̃ (riga 11). Per ogni nodo q′ raggiungibile

da q con arco etichettato dal predicato ψ:

• usando la funzione FILTER prendiamo λ̃(q,q′), la parte di λ̃ relativa ai pacchetti che attraversano

l’arco, cioè che verificano ψ (riga 13);

• calcoliamo λ̃q′ , la semantica del firewall dal nodo q′ in poi, attraverso una chiamata ricorsiva

COMPOSITION REC(F̃3, q′) (riga 14);

• concateniamo in maniera opportuna le due funzioni sintetizzate λ̃(q,q′) e λ̃q′ usando la funzione

CONCAT (riga 15).

Collezioniamo gli insiemi di coppie ottenuti per ognuno dei nodi raggiungibili q′ e creiamo e restituiamo

la funzione sintetizzata finale.

Nell’implementazione abbiamo assunto di avere a disposizione le funzioni DROPPER, FILTER e

CONCAT. La funzione DROPPER(λ̃: funzione su pacchetti sintetizzata) dato un insieme di coppie

(multicubo di pacchetti, trasformazione) restituisce l’insieme ottenuto togliendo tutte le coppie in cui

la trasformazione è diversa da DROP.

DROPPER(λ̃) = {(P,⊥) | (P,⊥) ∈ λ̃}

La funzione FILTER(λ̃: funzione su pacchetti sintetizzata, ψ: predicato) dato un insieme di coppie

(multicubo di pacchetti, trasformazione) e un predicato, filtra ogni termine sinistro delle coppie del

primo parametro λ̃ togliendo tutti i pacchetti che non verificano ψ dopo aver subito la trasformazione

specificata dalla parte destra della coppia.

FILTER(λ̃, ψ) = { (P ′, t) | (P, t) ∈ λ̃ ∧ P ′ = t−1(ψ(t(P ))) ∧ P ′ 6= ∅ }

Dove ci siamo permessi un piccolo abuso di notazione e abbiamo scritto t(P ) per {t(p) | p ∈ P} e ψ(P )

per {p ∈ P | ψ(p)}; e con t−1(P ′′) intendiamo la preimmagine di P ′′ nell’insieme P tramite t. In ordine

quindi per calcolare P ′: applichiamo la trasformazione t, filtriamo i pacchetti secondo il predicato ψ

e infine torniamo indietro dalla trasformazione. Formalmente t−1(ψ(t(P ))) = {p ∈ P | ψ(t(p))}.
Per poter chiamare il risultato della funzione FILTER occorre che le parti sinistre delle coppie P ′

dell’insieme prodotto siano multicubi di pacchetti. Assumendo che λ̃ sia una funzione sintetizzata, se

il predicato ψ è scomponibile in una congiunzione di predicati secondo la formula

ψ(p) = ψsIP (p.sIP ) ∧ ψsPort(p.sPort) ∧ ψdIP (p.dIP ) ∧ ψdPort(p.dPort) ∧ ψtag(p.tag)
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Algorithm 3

1: function composition(F̃3: firewall semiastratto sintetizzato aciclico)

2: (C, f̃)← F̃3

3: (Q,A, qi, qf )← C
4: return composition rec(F̃3, qi)

5:

6: function composition rec(F̃3: firewall semiastratto sintetizzato aciclico, q: nodo)

7: (C, f̃)← F̃3

8: (Q,A, qi, qf )← C
9: if q = qf then return {(P, id)}

10: λ̃← f̃(q)

11: λ̃q ← dropper(λ̃)

12: for all (q′, ψ) ∈ successori(q, A) do

13: λ̃(q,q′) ← filter(λ̃, ψ)

14: λ̃q′ ← composition rec(F̃3, q′)

15: λ̃q ← λ̃q ∪ concat(λ̃(q,q′), λ̃q′)

16: return λ̃q

allora il risultato della funzione è una funzione sintetizzata su pacchetti, ovvero se P ∈ M(P) allora

t−1(ψ(t(P ))) ∈M(P).

La funzione CONCAT(λ̃1: funzione su pacchetti sintetizzata, λ̃2: funzione su pacchetti sintetizzata)

concatena due funzioni sintetizzate espresse come coppie (multicubo di pacchetti, trasformazione).

L’idea è quella di prendere il primo insieme e calcolare per ogni coppia (P1, t1) quali coppie (P2, t2)

sono associate a t(P1) nel secondo insieme e restituire delle coppie in cui il primo termine è composto

dagli elementi di P1 che trasformati da t1 appartengono a P2 (preimmagine di P2 in P1 tramite t1) e

il secondo termine è la trasformazione t1 aggiornata con t2.

CONCAT(λ̃1, λ̃2) = { (P ′, t2 n t1) | (P1, t1) ∈ λ̃1 ∧ (P2, t2) ∈ λ̃2 ∧ P ′ = t−11 (P2 ∩ t1(P1)) ∧ P ′ 6= ∅ }

Anche qui occorre controllare che il risultato della funzione sia effettivamente una funzione su

pacchetti sintetizzata, cioè che le parti sinistre delle coppie che contiene siano in effetti multicubi di

pacchetti. Non occorre nessuna assunzione in quanto se P1 e P2 sono multicubi di pacchetti e t è una

trasformazione su pacchetti allora anche t−11 (P2 ∩ t1(P1)) è un multicubo.

L’algoritmo di sintesi è corretto: dato un firewall IFCL normalizzato aciclico, calcola un firewall

astratto sintetizzato la cui interpretazione corrisponde alla semantica del firewall nello stato sNEW.

Teorema 9 (Correttezza dell’algoritmo di sintesi). thm:sintesi Sia F2 un firewall IFCL normalizzato

aciclico, sia F̃4 il firewall astratto sintetizzato restituito dall’algoritmo di sintesi, allora vale:

i(F̃4) = LF2M(sNEW)

5.3 Esempio di sintesi in pf

Presentiamo un esempio di sintesi di un firewall pf. Si consideri la seguente configurazione:

rdr from any to 151.15.185.183 port 22 -> 192.168.0.8

nat from 192.168.0.0/24 to ! 192.168.0.0/24 -> 151.15.185.183
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p ∈ P t ∈ T (P)
sIP sPort dIP dPort tag sIP sPort dIP dPort tag

∗ ∗ ∗ ∗ ∗ id id id id id

(a) λ̃ε

p ∈ P t ∈ T (P)
sIP sPort dIP dPort tag sIP sPort dIP dPort tag

192.168.0.8/24 ∗ ¬192.168.0.8/24 ∗ ∗ cost(151.15.185.183) id id id id

¬192.168.0.8/24 ∗ ∗ ∗ ∗ id id id id id

∗ ∗ 192.168.0.8/24 ∗ ∗ id id id id id

(b) λ̃snat

p ∈ P t ∈ T (P)
sIP sPort dIP dPort tag sIP sPort dIP dPort tag

∗ ∗ 151.15.185.183 22 ∗ id id cost(192.168.0.8) id id

∗ ∗ ¬151.15.185.183 ∗ ∗ id id id id id

∗ ∗ ∗ ¬22 ∗ id id id id id

(c) λ̃dnat

p ∈ P t ∈ T (P)
sIP sPort dIP dPort tag sIP sPort dIP dPort tag

151.15.185.183 ∗ ∗ 80 ∗ id id id id id

192.168.0.0/24 ∗ 192.168.0.0/24 ∗ ∗ id id id id id

¬192.168.0.0/24 ∗ 192.168.0.8 22 ∗ id id id id id

(d) λ̃filt

Tabella 5.1: Rappresentazione tabellare delle funzioni su pacchetti sintetizzate.

block all

pass from any to 192.168.0.8 port 22

pass from 192.168.0.0/24 to 192.168.0.0/24

pass from 151.15.185.183 to any port 80

La traduzione in IFCL della configurazione è la seguente:

ρ = {Rsnat, Rdnat, Rfinp, Rfinpr, Rfout, Rfoutr, Rε}

c(qi) = c(qf ) = Rε, c(q0) = Rsnat, c(q1) = Rfinp c(q2) = Rdnat, c(q3) = Rfout

Rsnat =

(p.sIP ∈ 192.168.0.0/24 ∧ p.dIP /∈ 192.168.0.0/24 , NAT(151.15.185.183 : ?, ? : ?))

Rdnat =

(p.dIP = 151.15.185.183 ∧ p.dPort = 22 , NAT(? : ?, 192.168.0.8 : ?))

Rfinp =

(true , GOTO(Rfinpr))

Rfout =

(true , GOTO(Rfoutr))

Rfinpr = Rfoutr

(p.sIP = 151.15.185.183 ∧ p.dPort = 80 , ACCEPT))

(p.sIP ∈ 192.168.0.0/24 ∧ p.dIP ∈ 192.168.0.0/24 , ACCEPT)
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p ∈ P t ∈ T (P)
sIP sPort dIP dPort tag sIP sPort dIP dPort tag

∗ ∗ 192.168.0.8 22 ∗ id id id id id

192.168.0.0/24 ∗ 192.168.0.0/24 ∗ ∗ id id id id id

151.15.185.183 ∗ ∗ 80 ∗ id id id id id

192.168.0.1 ∗ ¬192.168.0.0/24 80 ∗ cost(151.15.185.183) id id id id

∗ ∗ 151.15.185.183 22 ∗ id id cost(192.168.0.8) id id

Tabella 5.2: Rappresentazione tabellare del firewall astratto sintetizzato.

(p.dIP = 192.168.0.8 ∧ p.dPort = 22 , ACCEPT)

(true, DROP)

Il grafico è quello di pf, in figura 2.1c. La normalizzazione consiste semplicemente nella rimozione

delle GOTO.

ρ = {Rsnat, Rdnat, Rfinp, Rfout, Rε}

c(qi) = c(qf ) = Rε, c(q0) = Rsnat, c(q1) = Rfinp c(q2) = Rdnat, c(q3) = Rfout

Rsnat =

(p.sIP ∈ 192.168.0.0/24 ∧ p.dIP /∈ 192.168.0.0/24 , NAT(151.15.185.183 : ?, ? : ?))

Rdnat =

(p.dIP = 151.15.185.183 ∧ p.dPort = 22 , NAT(? : ?, 192.168.0.8 : ?))

Rfinp = Rfout =

(p.sIP = 151.15.185.183 ∧ p.dPort = 80 , ACCEPT))

(p.sIP ∈ 192.168.0.0/24 ∧ p.dIP ∈ 192.168.0.0/24 , ACCEPT)

(p.dIP = 192.168.0.8 ∧ p.dPort = 22 , ACCEPT)

(true, DROP)

Il passaggio alla versione aciclica del firewall può essere fatto in ogni momento, in questo caso per

semplicità lo rimandiamo a dopo la fase di semiastrazione. Applichiamo l’algoritmo 1 e calcoliamo la

versione semiastratta sintetizzata del firewall IFCL, con configurazione f tale che:

f(qi) = f(qf ) = λ̃ε, c(q0) = λ̃snat, c(q2) = λ̃dnat, c(q1) = c(q3) = λ̃filt

Dove le funzioni su pacchetti sintetizzate λ̃ε, λ̃snat, λ̃dnat e λ̃filt sono presentate nella tabella 5.1

come tabelle in cui ogni riga corrisponde ad una coppia (multicubo, trasformazione) e dove le coppie

in cui la parte destra è ⊥ sono lasciate implicite.

A questo punto, grazie all’algoritmo 2, passiamo alla versione aciclica: il diagramma di controllo

diventa come quello in figura 5.1b, e la configurazione f diventa:

f(qi) = f(qf ) = λ̃ε, c(q0) = c(q′0) = λ̃snat, c(q2) = c(q′2) = λ̃dnat, c(q1) = c(q′1) = c(q3) = c(q′3) = λ̃filt

Possiamo infine comporre le tabelle grazie all’algoritmo 3: assumendo che l’insieme L degli indirizzi

locali sia {127.0.0.1, 192.168.0.1, 151.15.185.183}, la funzione su pacchetti sintetizzata risultante λ̃ è

espressa dalla tabella 5.2.
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Capitolo 6

Espressività dei sistemi firewall

Come abbiamo anticipato, i diversi sistemi firewall non sono ugualmente espressivi. La forma dei

diagrammi di controllo e i vincoli legati al linguaggio di configurazione source inducono delle condizioni

sulle configurazioni esprimibili, rendendo alcune funzioni su pacchetti impossibili da codificare.

Ci interessa caratterizzare dunque per ogni sistema quali sono le configurazioni esprimibili e stu-

diarle nel dominio dei firewall astratti, per poter meglio confrontare l’espressività di diversi sistemi

fra loro. Ci basiamo in effetti sulla parte della pipeline di transcompilazione relativa alla sintesi: per

prima cosa caratterizziamo i diversi sistemi supportati a livello di firewall IFCL, e quindi di firewall

semastratti. Successivamente a partire da questi cerchiamo di derivare quali firewall astratti possono

essere prodotti dalla fase di composizione.

Formalmente, dato un sistema firewall k ∈ {iptables, pf, ipfw}, chiamiamo Confk l’insieme dei

file di configurazione legali per il sistema k. L’insieme dei firewall astratti esprimibili nel sistema k è

dunque:

Λk = {L$(Ck, fork(file.conf))%M | file.conf ∈ Confk}

Sostanzialmente chiamiamo esprimibili da un sistema i firewall le configurazioni ottenibili a partire da

file di configurazione legali per quel sistema, tramite le funzioni di formalizzazione e trasformazione

della parte di sintesi della pipeline.

Per prima cosa introduciamo l’assegnamento di etichette, un meccanismo per rappresentare le

configurazioni IFCL esprimibili di un sistema e ne diamo una descrizione per i sistemi supportati.

Successivamente descriviamo l’insieme dei firewall astratti esprimibili da un sistema, sulla base dei

firewall IFCL esprimibili dallo stesso.

In questo capitolo e nel successivo trascuriamo completamente il campo tag dei pacchetti, questo

perché il target MARK, nei diversi sistemi firewall supportati, è soggetto a vincoli diversi e difficili

da modellare usando IFCL. Solo per questo capitolo e per il successivo ridefiniamo dunque P come

IP×Port× IP×Port e T (P) come T (IP)× T (Port)× T (IP)× T (Port).

6.1 Configurazioni IFCL esprimibili

A livello di IFCL ogni firewall è una coppia composta da un diagramma di controllo e da una confi-

gurazione. Per ogni sistema k è definito il relativo diagramma di controllo Ck e la funzione fork che

traduce un file di configurazione source nella sua formalizzazione IFCL. Non tutte le possibili configu-

razioni IFCL Σ sono esprimibili dal linguaggio di configurazione di k, ovvero la funzione fork non è una

funzione surgettiva. Chiamiamo Γk l’insieme delle configurazioni IFCL ottenibili dalla formalizzazione
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di file di configurazione legali del sistema k, formalmente:

Γk = {fork(file.conf) | file.conf ∈ Confk}

L’insieme Γk potrebbe essere studiato partendo dai file di configurazione legali per i sistemi iptables,

pf e ipfw, e delle relative funzioni di formalizzazione fork che abbiamo definito nel capitolo 2. Tut-

tavia in mancanza di una formalizzazione ufficiale di questi linguaggi di configurazione, preferiamo

caratterizzare direttamente l’insieme Γk all’interno del dominio di IFCL.

Inoltre, dato l’obiettivo finale è quello di caratterizzare Λk, e dato che la forma dei firewall prodotti

da fork è piuttosto complessa (si pensi ad esempio al modo con il quale abbiamo rappresentato i firewall

ipfw, presentato nella sezione 2.2.3) e anche decisamente arbitraria in quanto avremmo potuto definire

delle funzioni di formalizzazione diverse ma equivalenti (ad esempio decidendo di modellare in modo

diverso i salti di ipfw), evitiamo di caratterizzare esattamente Γk, concentrandoci immediatamente

sull’insieme dei firewall normalizzati ottenibili da esso. Nel seguito chiamiamo esprimibili da un

sistema k le configurazioni IFCL ottenibili dalla normalizzazione di una configurazione in Γk.

Dobbiamo quindi tener conto del fatto che non tutti gli assegnamenti di ruleset ai nodi del dia-

gramma di controllo di un sistema sono esprimibili. In particolare risulta, nei sistemi analizzati, che

non sia possibile associare ruleset contenenti determinate operazioni ad alcuni dei nodi. In alcuni nodi

è possibile scartare pacchetti, in altri no; in alcuni i pacchetti possono solo essere scartati o accettati

senza modifiche mentre altri possono trasformare i pacchetti modificando alcuni campi e cos̀ı via.

Assumendo che ogni nodo possa accettare i pacchetti senza modificarli diciamo che l’insieme delle

operazioni interessanti sono {SNAT,DNAT,DROP}. Dove SNAT e DNAT indicano che un nodo

può modificare rispettivamente i campi sIP e sPort, e dIP e dPort di un pacchetto; e DROP indica

che nel nodo i pacchetti possono essere scartati.

Forniamo uno strumento per caratterizzare l’insieme delle configurazioni IFCL esprimibili da un

sistema k sulla base delle operazioni che si possono associare ai nodi del suo diagramma di controllo.

Un assegnamento di etichette per un diagramma di controllo è una funzione che assegna a ogni nodo

del diagramma un sottoinsieme delle etichette {SNAT,DNAT,DROP}; le etichette associate a un

nodo specificano quali operazioni possono essere effettuate sui pacchetti che passano da quel nodo.

Definizione 17 (Assegnamento di etichette a un diagramma di controllo). Un assegnamento di

etichette a un diagramma di controllo C = (Q,A, qi, qf ) è una funzione v : Q→ 2{SNAT,DNAT,DROP}

che associa un insieme di etichette L ∈ 2{SNAT,DNAT,DROP} a ogni nodo del diagramma di controllo.

Una configurazione normalizzata Σ = (ρ, c) di un diagramma di controllo C è legale secondo un

assegnamento di etichette v a C se e solo se per ogni nodo q ∈ Q la ruleset associatagli c(q) contiene

solo target permessi dalle etichette v(q). Scriviamo Σ |= v per dire che la configurazione Σ è legale

per l’assegnamento di etichette v.

Definizione 18 (Configurazione IFCL normalizzata legale). La configurazione normalizzata Σ di un

firewall IFCL con diagramma di controllo C = (Q,A, qi, qf ) è legale secondo un assegnamento di eti-

chette v, scritto Σ |= v, se e solo se ∀q ∈ Q. c(q) |= v(q), dove Rε |= L per ogni insieme di etichette

L, altrimenti sia R = r ·R′:

• se r = (φ, ACCEPT), r = (φ, CHECK-STATE( )) o r = (φ, MARK( )) allora R |= L se e solo se R′ |= L

• se r = (φ, DROP) allora R |= L se e solo se DROP ∈ L e R′ |= L

• se r = (φ, NAT(ip : port, ? : ?)) allora R |= L se e solo se SNAT ∈ L e R′ |= L
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• se r = (φ, NAT(? : ?, ip : port)) allora R |= L se e solo se DNAT ∈ L e R′ |= L

• se r = (φ, NAT(ip1 : port1, ip2 : port2)) allora R |= L se e solo se SNAT ∈ L e DNAT ∈ L e

R′ |= L

Chiamiamo M2(C, v) l’insieme delle configurazioni normalizzate Σ per il diagramma di controllo

C, legali secondo v, dove l’assegnamento di etichette v è definito su C 1. Formalmente M2(C, v) =

{Σ | Σ |= v}
Assumiamo il seguente risultato (senza poterlo dimostrare dato che non abbiamo formalmente

introdotto sintassi e semantica dei linguaggi di configurazione dei firewall concreti).

Ipotesi 1. Per ogni sistema firewall k ∈ {iptables, pf, ipfw}, esiste un assegnamento di etichette

vk per il diagramma di controllo Ck tale che una configurazione IFCL Σ è esprimibile in k se e solo se

Σn è legale secondo vk, dove $(Ck,Σ)% = (Ck,Σn). Formalmente:

M2(Ck, vk) = {Σn | Σ ∈ Γk ∧$(Ck,Σ)% = (Ck,Σn)}

Assegnamento di etichette per i sistemi supportati

Presentiamo gli assegnamenti di etichette che caratterizzano le configurazioni IFCL esprimibili nei

sistemi supportati: iptables, pf e ipfw. Nella figura 6.1 mostriamo i diagrammi dei sistemi firewall,

con le etichette assegnate a ognuno dei nodi, dove l’assenza di etichette indica che l’insieme vuoto è

assegnato al nodo.

In iptables l’assegnamento è rappresentato in figura 6.1a.

viptables(qi) = viptables(qf ) = ∅

viptables(q0) = viptables(q2) = viptables(q4) = viptables(q7) = viptables(q10) = ∅

viptables(q1) = viptables(q8) = {DNAT}

viptables(q3) = viptables(q6) = viptables(q9) = {DROP}

viptables(q5) = viptables(q11) = {SNAT}

Ogni nodo nel diagramma di controllo di iptables corrisponde a una coppia (tabella, chain); le

etichette associate a un nodo dipendono dalla tabella in quanto solo nella tabella NAT è possibile

effettuare traduzioni di indirizzi, e solo nella tabella FILTER è possibile scartare dei pacchetti. Inoltre

nel caso della tabella NAT, a seconda della chain associata al nodo possiamo fare solo NAT sugli indirizzi

di origine o su quelli di destinazione.

Nel linguaggio di configurazione di pf non è presente una nozione simile a quella di ruleset, tutte

le regole fanno parte di un unico insieme che viene letto più volte. È la funzione forpf che realizza

la divisione delle regole fra i nodi del diagramma di controllo Cpf. Il modo in cui le regole vengono

divise fa śı che solo nei nodi q1 e q3 si possa scartare un pacchetto, solo nel nodo q0 si possa modificare

l’indirizzo di destinazione e in q2 quello di origine. L’assegnamento di etichette, rappresentato in 6.1b

è dunque:

vpf(qi) = vpf(qf ) = ∅

vpf(q1) = vpf(q3) = {DROP}

vpf(q0) = {DNAT}

vpf(q2) = {SNAT}
1Il pedice in M2(C, v) dipende dal dominio di riferimento, che è quello dei firewall IFCL normalizzati.
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{DNAT} {DROP}

{SNAT} {DROP}

{DNAT} {DROP} {SNAT}

qi

q0 q1 q2 q3

q4 q5 q6 qf

q7 q8 q9 q10 q11

p.sa /∈ L

p.sa ∈ L

p.da /∈ L

p.da ∈ L

p.da /∈ L

p.da ∈ L

(a) iptables

{DNAT} {DROP}

{SNAT} {DROP}

qf

q1q0

qi

q2 q3

p.sa /∈ L

p.sa ∈ L

p.da /∈ L

p.da ∈ L

p.da ∈ L
p.da /∈ L

(b) pf

{DNAT, SNAT,DROP}

{DNAT, SNAT,DROP}

qi

q0

q1

qf

p.sa /∈ L

p.sa ∈ L

p.da /∈ L

p.da ∈ L

p.da /∈ L

p.da ∈ L

(c) ipfw

Figura 6.1: Diagrammi di controllo dei sistemi supportati con etichette associate ai nodi.

Il diagramma di controllo di ipfw è minimale: come in pf, le regole di filtro e di traduzione sono

mischiate, ma a differenza di pf l’ordine di applicazione non dipende dal tipo della regola. Le regole

sono divise solo sulla base dell’eventuale presenza delle keyword in e out. Ogni tipo di regola può

essere etichettata con entrambe le keyword, pertanto nei due nodi q0 e q1 possiamo trovare ogni genere

di regola, le etichette assegnate sono le seguenti:

vipfw(qi) = vipfw(qf ) = ∅

vipfw(q0) = vipfw(q1) = {SNAT,DNAT,DROP}

La figura 6.1c mostra le etichette a fianco dei relativi nodi del diagramma di controllo.

6.2 Configurazioni astratte esprimibili

Dati i vincoli sulle configurazioni IFCL esprimibili da un sistema k, rappresentati dall’assegnamento di

etichette sul diagramma di controllo, vogliamo studiare quali sono i firewall astratti esprimibili dallo

stesso sistema.

Definizione 19 (Firewall astratto esprimibile). L’insieme dei firewall astratti esprimibili nel sistema

k è:

Λk = {L$(Ck,Σ)%M | Σ ∈ Γk}

Dato che abbiamo assunto nell’ipotesi 1 che la normalizzazione dei firewall con configurazioni in Γk

sia esattamente l’insieme di firewall con configurazioni legali secondo vk per il sistema k, M2(Ck, vk),
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Livello 0 (firewall concreti)

sistema firewall (processo)

file di configurazione

Livello 1 (firewall IFCL)

diagramma di controllo C
configurazione Σ = (ρ, c)

Livello 2 (firewall IFCL normalizzati)

diagramma di controllo C
configurazione Σ = (ρ, c)

Livello 3 (firewall semiastratti)

diagramma di controllo C
configurazione f : Q→ P→ T (P) ∪ {⊥}

Livello 4 (firewall astratti)

configurazione λ : P→ T (P) ∪ {⊥}

Confk

Γk

M2(Ck, vk)Σ |= vk

M3(Ck, vk)f |= vk

ΛkM4(Ck, vk)
ε0(λ, Ck, vk)

ε1(λ, Ck, vk)

Figura 6.2: Schema delle configurazioni esprimibili e legali nei vari livelli di astrazione: le relazioni

che abbiamo assunto per ipotesi sono rappresentate tratteggiate, quelle che valgono per definizione

sono delle frecce e quelle che abbiamo dimostrato sono delle linee doppie.

possiamo basarci su questi per calcolare Λk. Chiamiamo M3(Ck, vk) le configurazioni dei firewall

risultanti dalla semiastrazione dei firewall normalizzati con diagramma di controllo Ck e configurazione

Σ ∈ M2(Ck, vk). I firewall astratti ottenuti combinando i firewall semiastratti con diagramma di

controllo Ck e configurazione f ∈ M3(Ck, vk) saranno infine chiamati M4(Ck, vk). Dall’ipotesi 1 segue

che M4(Ck, vk) = Λk.

L’obiettivo è quello di caratterizzare gli insiemi M3(Ck, vk) ed M4(Ck, vk) sulla base dell’assegna-

mento di etichette vk, in modo da avere una descrizione degli insiemi Λk per k ∈ {iptables, pf, ipfw}
tramite la quale sia agevole:

• confrontare l’espressività di due sistemi firewall

• verificare se una funzione λ : P→ T (P) ∪ {⊥} appartiene o meno a Λk

In realtà per il confronto ci accontentiamo al momento di definire una condizione necessaria per

l’uguaglianza di espressività di due sistemi, facile da verificare e sufficientemente espressiva, che ci

permette di dimostrare che pf è meno espressivo di iptables e ipfw.

Per descrivere l’insieme M3(Ck, vk) definiamo, per ogni possibile insieme di etichette assegnato a un

nodo, l’insieme delle possibili funzioni λ : P→ T (P) ∪ {⊥} che possono essere assegnate a quel nodo.

Usiamo la stessa notazione f |= v per dire che l’assegnamento f di funzioni λ : P→ T (P)∪{⊥} ai nodi

del diagramma di controllo del firewall semiastratto è legale secondo l’assegnamento di etichette v.

Scriviamo sempre λ |= L per dire che la funzione λ può essere assegnata a un nodo a cui sia assegnato

l’insieme di etichette L.

Per prima cosa definiamo per ogni etichetta l ∈ {SNAT,DNAT,DROP} l’insieme Λ2l delle

funzioni P → T (P) ∪ {⊥} che corrispondono alla semantica delle ruleset che non possono essere

assegnate a un nodo che non abbia l’etichetta l. Formalmente Λ2l = {λ : P→ T (P)∪ {⊥} | λ |= L⇒
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l ∈ L}.

Λ2SNAT = {λ : P→ T (P) ∪ {⊥} | ∃p ∈ P. λ(p) = t ∧ t 6= ⊥ ∧ (t.sIP 6= id ∨ t.sPort 6= id)}

Λ2DNAT = {λ : P→ T (P) ∪ {⊥} | ∃p ∈ P. λ(p) = t ∧ t 6= ⊥ ∧ (t.dIP 6= id ∨ t.dPort 6= id)}

Λ2DROP = {λ : P→ T (P) ∪ {⊥} | ∃p ∈ P. λ(p) = ⊥}

Definizione 20 (Configurazione semiastratta legale). La configurazione f di un firewall semiastratto

con diagramma di controllo C = (Q,A, qi, qf ) è legale secondo un assegnamento di etichette v, scritto

f |= v, se e solo se ∀q ∈ Q. c(q) |= v(q) dove per una funzione λ : P → T (P) ∪ {⊥} e un insieme di

etichette L vale λ |= L se e solo se λ non appartiene a nessuno degli insiemi Λ2l per una etichetta l

che non appartiene a L. Formalmente:

λ |= L ⇐⇒ λ /∈
⋃
l/∈L

Λ2l

Teorema 10. L’insieme delle configurazioni semiastratte di un diagramma di controllo C = (Q,A, qi, qf ),

legali secondo un assegnamento di etichette v, è l’insieme delle configurazioni di firewall ottenute dalla

semiastrazione di firewall IFCL normalizzati legali secondo v.

M3(C, v) = {f : Q→ P→ T (P) ∪ {⊥} | f |= v}

Per caratterizzare M4(C, v) ci basiamo sulla coppia di predicati ε0(λ, C, v) e ε1(λ, C, v). I due

predicati sono i seguenti:

• ε0(λ, C, v), che chiamiamo fattibilità locale, è vero se ogni pacchetto p viene trattato dal firewall

secondo una trasformazione t tale che l’assegnamento di t a p è singolarmente esprimibile dal

sistema, ovvero

∀p ∈ P. ∃f ∈M3(C, v). (�(C, f)) (p) = λ(p)

• ε1(λ,C, v), che chiamiamo compatibilità, è vero se, assumendo che gli assegnamenti di trasfor-

mazioni ai pacchetti siano singolarmente esprimibili dal sistema, esiste una configurazione che li

verifica tutti contemporaneamente, ovvero

(∀p ∈ P. ∃f ∈M3(C, v). (�(C, f)) (p) = λ(p))⇒

(∃f ∈M3(C, v). ∀p ∈ P. (�(C, f)) (p) = λ(p))

La prima proprietà riguarda l’espressività del diagramma di controllo e dell’assegnamento di etichette

in senso stretto. Ad esempio un pacchetto con origine locale e destinazione non locale in pf non

può subire una trasformazione che modifichi i campi destinazione in quanto non attraversa mai, nel

diagramma di controllo Cpf, un nodo etichettato con DNAT . Per questo motivo un firewall astratto

che preveda una trasformazione di questo tipo per uno di questi pacchetti non si può esprimere in pf.

La seconda proprietà riguarda la coerenza fra i diversi assegnamenti (pacchetto, trasformazione)

del firewall astratto da esprimere ed è legata al fatto che il comportamento dei nodi del diagramma

di controllo nei confronti di un dato pacchetto possa dipendere unicamente dalla forma attuale del

pacchetto stesso. Se nel sistema in esame per accettare il pacchetto p1 con trasformazione t1 è

necessario che la funzione λn associata al nodo qn accetti il pacchetto p′ con trasformazione t′1 e per

accettare il pacchetto p2 con trasformazione t2 è necessario che la stessa funzione λn accetti il pacchetto

p′ con trasformazione t′2 6= t′1, allora un firewall astratto F4 tale che F4(p1) = t1 e F4(p2) = t2 non è

esprimibile dal sistema.
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Teorema 11. Un firewall astratto λ è legale secondo un diagramma di controllo C e un assegnamento

di etichette v se e solo se valgono ε0(λ,C, v) e ε1(λ,C, v).

M4(C, v) = {λ : P→ T (P) ∪ {⊥} | ε0(λ,C, v) ∧ ε1(λ,C, v)}

La figura 6.2 sintetizza le relazioni fra i vari insiemi e predicati che abbiamo definito, evidenziando

sia il livello di astrazione di ciascun elemento, sia la natura della relazione: se vale per definizione

allora è rappresentata come una freccia, se dipende da un’assunzione che abbiamo fatto è una linea

tratteggiata, infine se è dimostrata la rappresentiamo come una linea doppia. Gli elementi sono

distribuiti su cinque righe, a seconda del livello di astrazione, e su tre colonne: la colonna più a

destra contiene le configurazioni esprimibili dal sistema; la colonna centrale contiene le configurazioni

legali secondo l’assegnamento di etichette vk; la colonna a sinistra contiene i predicati che usiamo per

caratterizzare le configurazioni legali a un dato livello di astrazione.

In pratica ε0 ed ε1 sono i vincoli che abbiamo sul firewall astratto dati i vincoli imposti sul dia-

gramma di controllo del firewall IFCL. Per controllare se una funzione λ sia esprimibile da un sistema,

e per poter confrontare l’espressività di diversi sistemi, vogliamo esprimere i due predicati senza fare

riferimento a M3(C, v).

Per fare questo studiamo i percorsi che attraversano il diagramma di controllo C. Chiamiamo

Π̈(C) = {π̈1, π̈2, π̈3 . . . , π̈m} i percorsi che partono da qi e terminano in qf , questi sono i percorsi che

un pacchetto può fare prima di essere accettato. Chiamiamo Π̄(C) = {π̄1, π̄2, π̄3 . . . , π̄n} i percorsi

che partono da qi e terminano in un qn dove qn o è etichettato con DROP oppure compare più di

una volta nel percorso, questi sono i percorsi che un pacchetto può fare prima di essere scartato.

Chiamiamo Π(C) = {π1, π2, π3, . . . , πn+m} i percorsi che attraversano il diagramma di controllo (di

qualunque tipo siano, ovvero: Π(C) = Π̈(C) ∪ Π̄(C)).
Ridefiniamo le proprietà sulla base dei percorsi:

• la fattibilità locale è verificata se e solo se per ogni pacchetto p l’insieme dei percorsi che p può

seguire all’interno del diagramma di controllo permette una trasformazione t = λ(p).

• la compatibilità è verificata se e solo se per ogni coppia (p, t) tale che p ∈ P e t = λ(p) ∈ T (P) ∪
{⊥}, le condizioni che dobbiamo imporre sulle funzioni associate ai nodi del diagramma affinché

uno dei percorsi del diagramma di controllo trasformi p secondo t non sono in contraddizione

con il resto della funzione λ.

Se esprimiamo il firewall astratto come una tabella allora possiamo pensare a ε0(λ,C, v) come a

una condizione di validità delle singole righe, mentre a ε1(λ,C, v) come a una condizione riguardo il

rapporto fra più righe.

6.2.1 Fattibilità locale

La fattibilità locale di un firewall astratto λ rispetto a un diagramma di controllo C e un assegnamento

di etichette v può essere espressa considerando i percorsi del diagramma come segue:

ε0(λ, C, v) = ∀p ∈ P. ∃π ∈ Π(C). (p, λ(p)) ∈ E(π, C, v)

dove la funzione E, dato un percorso π, un diagramma di controllo C e un assegnamento di vincoli

v, restituisce un insieme di coppie (p, t) tale che esiste una configurazione coerente con il diagramma

di controllo C e con le etichette v per la quale il pacchetto p percorre il percorso π nel diagramma

e viene trattato secondo t. Si tratta sostanzialmente di una funzione che associa a ogni percorso in
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un diagramma di controllo la sua espressività, in relazione ai vincoli espressi dall’assegnamento di

etichette. Formalmente:

E(π, C, v) = { (p, t) | ∃f ∈M3(C, v). (�(C, f)) (p) = t ∧∆((C, f), p) = π }

Nella definizione abbiamo usato la funzione ∆ che dato un firewall associa a ogni pacchetto p ∈ P il

percorso π che questi compie all’interno del diagramma di controllo. Poiché i diagrammi di controllo

sono deterministici la funzione ∆ è ben definita; e può essere espressa in modo standard sulla base

della funzione δ che dato un nodo del diagramma di controllo e un pacchetto restituisce il prossimo

nodo a essere visitato.

Caratterizziamo la funzione E in termini delle etichette del diagramma di controllo. Per prima

cosa definiamo una funzione `(π, C, v) che dato un percorso π all’interno di un diagramma di controllo

C etichettato secondo v, restituisce l’insieme delle etichette presenti sui nodi del percorso.

`(π, C, v) =
⋃
q∈Q

v(q) dove C = (Q,A, qi, qf )

Definiamo una funzione µ che dato un insieme di etichette restituisce l’insieme dei campi di un

pacchetto che possono essere modificati da un nodo da esso etichettato.

µ(L) = µSNAT (L) ∪ µDNAT (L)

µSNAT (L)

{sIP, sPort} se SNAT ∈ L

∅ altrimenti
µDNAT (L)

{dIP, dPort} se DNAT ∈ L

∅ altrimenti

A questo punto, per verificare che una coppia (p, t) sia esprimibile da un percorso, per ogni campo

del pacchetto controlliamo che il valore del campo verifichi i predicati sugli archi attraversati dal

pacchetto. Dal nodo iniziale, fino al primo nodo in cui avviene una modifica al valore di quel campo,

è il valore dal campo del pacchetto p a dover verificare le condizioni; dall’ultimo nodo in cui avviene

una modifica al valore del campo fino al nodo finale, è invece il valore del campo ottenuto applicando

t al pacchetto p a dover verificare i predicati sugli archi. Nel caso di un pacchetto scartato occorre

verificare solo la prima parte, cioè occorre verificare per ogni campo del pacchetto che questo verifichi

i predicati sugli archi, dal nodo iniziale fino al primo nodo capace di modificare quel campo (dopo la

trasformazione, che è arbitraria, ogni predicato diverso da false può essere verificato da ogni pacchetto

iniziale dopo una trasformazione ad hoc).

Per prima cosa ci serve una notazione per esprimere una condizione sull’arco fra due nodi q, q′,

che predichi unicamente sul valore associato a un campo specifico x ∈ {sIP, sPort, dIP, dPort}. Se

ψ è il predicato sull’arco fra q e q′, cioè (q, ψ, q′) ∈ A, allora scriviamo ψxq,q′(a) per la versione di ψ

che predica unicamente sul campo x del pacchetto, formalmente:

ψxq,q′(a) = ∃p ∈ P. p.x = a ∧ ψ(p)

Possiamo ora definire la funzione E(π, C, v).

E(π, C, v) =


{ (p,⊥) | ∀x ∈ {sIP, sPort, dIP, dPort}.

−→
V x(p.x, π, C, v) } se π ∈ Π̄(C)

{ (p, t) | t 6= ⊥ ∧ ∀x ∈ {sIP, sPort, dIP, dPort}.
←→
V x(p.x, t.x, π, C, v) } se π ∈ Π̈(C)

dove

⇒
V x(a, π, C) =

ψxq,q′(a) ∧
⇒
V x(a, q′ · π′, C) se π = q · q′ · π′

true altrimenti
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−→
V x(a, π, C, v) =

ψxq,q′(a) ∧
−→
V x(a, q′ · π′, C, v) se π = q · q′ · π′ ∧ x /∈ µ(v(q))

true altrimenti

←−
V x(a, π, C, v) =

ψxq,q′(a) ∧
←−
V x(a, π′ · q′, C, v) se π = π′ · q′ · q ∧ x /∈ µ(v(q))

true altrimenti

←→
V x(a, ta, π, C, v) =


⇒
V x(a, π, C) se ta = id

x ∈ µ(`(π)) ∧
−→
V x(a, π, C, v) ∧

←−
V x(a′, π, C, v) se ta = cost(a′)

Data una coppia (p, t), per verificare se questa appartiene a E(π, C, v), come prima cosa verifichiamo

se il percorso è uno che porta a scartare il pacchetto o ad accettarlo: nel primo caso, dato che π ∈ Π̄,

t deve essere ⊥ e il pacchetto p deve poter percorrere il percorso π. Esprimiamo la seconda condizione

attraverso il predicato
−→
V x(a, π, C, v), che è verificato da un valore a per il campo x, da un percorso

π e da un diagramma di controllo C se e solo se a verifica tutte le condizioni presenti sugli archi del

percorso π a partire dal nodo iniziale qi, fino al primo nodo capace di modificare il campo x, cioè tale

che x ∈ µ(v(q)). Questo perché, dal primo nodo capace di modificare il campo in poi, ogni condizione

sugli archi può essere verificata da un assegnamento ad hoc: la forma che assume il pacchetto non è

importante infatti, dato che alla fine verrà scartato.

Nel caso invece in cui il percorso sia in Π̈, il pacchetto p può essere trattato secondo t se e solo se

t 6= ⊥ e per ogni campo x il valore del pacchetto per quel campo, subite le trasformazioni apportate

dai vari nodi, verifica tutte le condizioni sugli archi del percorso, cioè deve valere
←→
V x(a, ta, π, C, v).

Il predicato
←→
V x(a, ta, π, C, v) è vero se il valore a del campo x può attraversare il percorso π del

diagramma di controllo C etichettato secondo v e subire una trasformazione complessiva ta. La

definizione del predicato dipende dalla trasformazione ta: se questa è id allora è necessario che il

valore iniziale del campo del pacchetto verifichi tutte le condizioni sugli archi, cioè
⇒
V x(a, π, C); se invece

viene applicata una trasformazione è necessario che questa sia consentita dalle etichette associate al

percorso, cioè x ∈ µ(`(π)) e che il valore a del campo x consenta al pacchetto di attraversare tutti

gli archi fino al primo capace di trasformare il campo x, cioè
−→
V x(a, π, C, v), e che il valore finale del

campo, a′, ottenuto applicando la trasformazione ad a, consenta di attraversare gli archi a partire

dall’ultimo nodo capace di trasformare il campo x in poi, cioè
←−
V x(a′, π, C, v). Si noti che fra il primo

e l’ultimo nodo capace di trasformare il campo x non imponiamo alcuna condizione, questo perché

per ogni coppia (a, cost(a′)), qualunque sia il predicato da verificare, possiamo assegnare al campo un

valore a′′ che lo verifichi e sovrascrivere la trasformazione con cost(a′) nell’ultimo nodo disponibile.

Come detto, il predicato
⇒
V x(a, π, C) è verificato se e solo se a verifica tutte le condizioni presenti

sugli archi del percorso π. Il predicato
−→
V x(a, π, C, v) invece è verificato da un valore a per il campo

x, da un percorso π e da un diagramma di controllo C se e solo se a verifica tutte le condizioni

presenti sugli archi del percorso π, ma solo a partire dal nodi iniziale fino al primo nodo capace di

modificare il campo x, cioè tale che x ∈ µ(v(q)). Entrambi i predicati sono definiti iterativamente

attraverso una condizione sui primi due nodi del percorso e lo stesso predicato applicato al percorso

ottenuto rimuovendo il primo nodo; se i nodi del percorso non sono almeno due non c’è nessun arco

da verificare e quindi il predicato è vero automaticamente. La definizione di
←−
V x(a, π, C, v) ricorre

in modo diverso sul percorso, si controlla la condizione sull’arco che collega gli ultimi due nodi e la

ricorsione è sul percorso a partire dal nodo iniziale fino al penultimo. Il predicato è vero se e solo

se il valore a, assegnato al campo x verifica le condizioni sugli archi del percorso π dall’ultimo nodo

capace di modificare x in poi. L’iterazione avviene nel verso opposto rispetto a
−→
V x(a, π, C, v) proprio

per riconoscere facilmente l’ultimo nodo tale che x ∈ µ(v(q)).
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Per semplificare ulteriormente la verifica di ε0, anziché basarci sull’insieme di coppie (p, t) esprimibi-

li da un particolare percorso, calcolato dalla funzione E(π, C, v), riformuliamo l’espressività calcolando

per ogni coppia (p, t) quale sia l’insieme dei percorsi capaci di esprimerla.

P(C, v, p, t) = {π ∈ Π(C) | (p, t) ∈ E(π, C, v)}

Quindi ridefiniamo ε0 nella seguente maniera:

ε0(λ, C, v) = ∀p ∈ P. P(C, v, p, λ(p)) 6= ∅

La rappresentazione di P(C, v, p, t) è adeguata a verificare l’appartenenza o meno di una coppia (p, t)

all’insieme E(π, C, v). Per quanto riguarda un firewall astratto λ : P → T (P) ∪ {⊥}, la verifica di

ε0(λ, C, v) dovrebbe procedere verificando una a una tutte le coppie (p, λ(p)). Chiaramente possiamo

supporre di avere a che fare con la versione sintetizzata di λ, pertanto il numero di controlli non

è intrattabile essendo limitato dal numero di multicubi e quindi legato al numero di regole della

configurazione IFCL.

Il confronto dell’espressività di due sistemi diversi, k e k′, quindi dell’insieme delle λ che verificano

ε0(λ, Ck, vk) rispetto a quelle che verificano ε0(λ, Ck′ , vk′), non è invece immediatamente trattabi-

le. Chiaramente, data la formulazione, è evidente che la capacità di un sistema di esprimere una

funzione che associa un dato pacchetto a una trasformazione è indipendente dall’eventuale capacità

di esprimere altre associazioni. Pertanto anziché verificare una a una quali delle possibili funzioni

λ : P → T (P) ∪ {⊥} verificano il predicato ε0(λ, Ck, vk) possiamo considerare le coppie (p, t) sepa-

ratamente e considerare quali verifichino P(Ck, vk, p, t) 6= ∅ per un dato sistema k. Dal punto di

vista generale possiamo solo affidarci a un risolutore automatico, non potendo fare assunzioni sulle

condizioni che etichettano gli archi.

Dato però che le condizioni ψ nei sistemi analizzati sono tutte molto simili e riguardano unica-

mente l’appartenenza o meno dell’indirizzo di origine o destinazione all’insieme degli indirizzi locali

L, forniamo una procedura semplificata che funziona per i sistemi supportati. Vogliamo caratteriz-

zare l’insieme delle coppie (p, t) che verificano P(Ck, vk, p, t) 6= ∅ per un dato sistema k in maniera

abbastanza sintetica da permettere il confronto con un secondo sistema k′. Non è necessario calcolare

il risultato della funzione coppia per coppia, è sufficiente calcolare il risultato per tutte le possibili

combinazioni di alcuni valori canonici per i campi del pacchetto e della trasformazione.

L’insieme P viene suddiviso in quattro classi di equivalenza in base alla località o meno dell’indirizzo

IP di origine e destinazione, l’insieme delle trasformazioni viene suddiviso in 32 · 22 = 36 sulla base

delle trasformazioni sui campi: per gli indirizzi IP consideriamo tre tipi di trasformazioni id, cost(L)

e cost(¬L) mentre per le porte consideriamo solo id e cost. In aggiunta dobbiamo considerare anche

⊥ come possibile destino di un pacchetto. Definiamo dunque degli insiemi di valori canonici:

• per i campi sIP e dIP del pacchetto definiamo la coppia di valori pIP = {L, ¬L}, corrispondenti

a un generico indirizzo appartenente a L e a un generico indirizzo non appartenente a L (la porta

non è importante ai fini della verifica dei predicati ψ);

• per i campi sIP e dIP della trasformazione abbiamo invece tre valori tIP = {id, cost(L), cost(¬L)}
corrispondenti rispettivamente a una trasformazione id, a una trasformazione in un indirizzo

appartenente a L e a una trasformazione non appartenente a L;

• per i campi sPort e dPort della trasformazione i valori possibili sono tPort = {id, cost} a

seconda se la trasformazione sia id o meno.

Modelliamo quindi l’insieme P come il prodotto cartesiano P̃ = (pIP × pIP ) e l’insieme T (P) come

T̃ (P) = tIP ×tPort×tIP ×tPort. La definizione della funzione αP(p) che dato un pacchetto p ∈ P resti-

tuisce un pacchetto con i valori canonici corrispondenti, p̃ ∈ P̃, e quella della funzione αT (P)∪{⊥}(t) che
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data una trasformazione T (P)∪{⊥} restituisce una trasformazione con i valori canonici corrispondenti,

t̃ ∈ T̃ (P) ∪ {⊥}, sono banali.

αP(p) = (αpIP (p.sIP ), αpIP (p.dIP )) αpIP (a) =

L se a ∈ L

¬L altrimenti

αT (P)∪{⊥}(t) =

⊥ se t = ⊥

(αtIP (t.sIP ), αtPort(t.sPort), αtIP (t.dIP ), αtPort(t.dPort)) altrimenti

αtIP (ta) =


id se ta = id

cost(L) se ta = cost(a) ∧ a ∈ L

cost(¬L) altrimenti

αtPort(ta) =

id se ta = id

cost altrimenti

Definiamo la funzione P̃C,v(p̃, t̃) con p̃ ∈ P̃ e t̃ ∈ T̃ (P) ∪ {⊥} come la versione definita sui valori

canonici di P, in particolare vale:

∀p ∈ P, t ∈ T (P) ∪ {⊥}. P(C, v, p, t) = P̃C,v(α(p), α(t))

Dell’insieme delle coppie (p̃, t̃) che verificano il predicato P̃Ck,vk(p̃, t̃), per un dato sistema k, pos-

siamo ora dare una descrizione completa in tempo ragionevole in quanto il numero di combinazioni da

provare non è troppo alto (22 · (22 ·32 +1) = 148 per la precisione). Per i sistemi supportati definiremo

la funzione P̃ in forma tabellare, per leggibilità e facilità di confronto dei sistemi.

Fattibilità locale nei sistemi supportati

Per ognuno dei sistemi supportati k ∈ {iptables, pf, ipfw} calcoliamo come prima cosa l’insieme

dei percorsi nel diagramma di controllo. Successivamente per ogni percorso π calcoliamo la funzione

E(π, Ck, vk). Infine, basandoci sulla funzione E ottenuta, forniamo in formato tabellare il risultato

della funzione P̃Ck,vk(p̃, t̃) per ogni possibile coppia di input (p̃, t̃). Per risparmiare spazio, laddove il

valore di un campo non sia rilevante per il risultato della funzione usiamo il carattere ed evitiamo

di ripetere righe identiche. Sempre per risparmiare spazio usiamo una tabella a parte per le coppie in

cui t = ⊥.

pf

I percorsi π ∈ Π(Cpf) sono i seguenti:

π̈1 = qi; q0; q1; qf π̈2 = qi; q2; q3; qf

π̈3 = qi; q0; q1; q2; q3; qf π̈4 = qi; q2; q3; q0; q1; qf

π̄1 = qi; q0; q1 π̄2 = qi; q2; q3

π̄3 = qi; q0; q1; q2; q3 π̄4 = qi; q2; q3; q0; q1

π̄5 = qi; q0; q1; q2; q3; q0 π̄6 = qi; q2; q3; q0; q1; q2

Abbiamo quindi che la funzione E per i percorsi vale:

E(π̈1, Cpf, vpf) = {(p, t) | p.sIP /∈ L ∧ t.sIP = t.sPort = id ∧ t(p).dIP ∈ L ∧ t 6= ⊥}

E(π̈2, Cpf, vpf) = {(p, t) | p.sIP ∈ L ∧ t(p).dIP /∈ L ∧ t.dIP = t.dPort = id ∧ t 6= ⊥}
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p.sIP p.dIP t.sIP : t.sPort t.dIP : t.dPort π

L L : id : {π̈4}
L L : cost(L) : {π̈4}
L L : cost(¬L) : ∅

L ¬L : id : id {π̈2}
L ¬L : cost( ) : ∅
L ¬L : : cost ∅

¬L L id : id id : {π̈1}
¬L L id : id cost(L) : {π̈1}
¬L L : cost(¬L) : {π̈3}
¬L L id : cost id : ∅
¬L L id : cost cost(L) : ∅
¬L L cost( ) : id : ∅
¬L L cost( ) : cost(L) : ∅

¬L ¬L id : id cost(L) : {π̈1}
¬L ¬L : id : {π̈3}
¬L ¬L : cost(¬L) : {π̈3}
¬L ¬L cost( ) : cost(L) : ∅
¬L ¬L id : cost cost(L) : ∅

(a) t̃ 6= ⊥

p.sIP p.dIP t π

L L ⊥ {π̄2, π̄4, π̄6}

L ¬L ⊥ {π̄2}

¬L ⊥ {π̄1, π̄3, π̄5}

(b) t̃ = ⊥

Tabella 6.1: Rappresentazione tabellare della funzione P̃Cpf,vpf(p̃, t̃).

E(π̈3, Cpf, vpf) = {(p, t) | p.sIP /∈ L ∧ t(p).dIP /∈ L ∧ t 6= ⊥}

E(π̈4, Cpf, vpf) = {(p, t) | p.sIP ∈ L ∧ p.dIP ∈ L ∧ t(p).dIP ∈ L ∧ t 6= ⊥}

E(π̄1, Cpf, vpf) = {(p,⊥) | p.sIP /∈ L}

E(π̄2, Cpf, vpf) = {(p,⊥) | p.sIP ∈ L}

E(π̄3, Cpf, vpf) = {(p,⊥) | p.sIP /∈ L}

E(π̄4, Cpf, vpf) = {(p,⊥) | p.sIP ∈ L ∧ p.dIP ∈ L}

E(π̄5, Cpf, vpf) = {(p,⊥) | p.sIP /∈ L}

E(π̄6, Cpf, vpf) = {(p,⊥) | p.sIP ∈ L ∧ p.dIP ∈ L}

La funzione P̃Cpf,vpf(p̃, t̃) è definita per casi su ogni possibile input dalla tabella 6.1. Si noti che

alcune coppie (p̃, t̃) non sono esprimibili dal sistema, pertanto pf non è del tutto generale.
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p.sIP p.dIP t.sIP : t.sPort t.dIP : t.dPort π

L : cost(L) : {π̈4}
L : cost(¬L) : {π̈2}

L L : id : {π̈4}

L ¬L : id : {π̈2}

¬L : cost(L) : {π̈1}
¬L : cost(¬L) : {π̈3}

¬L L : id : {π̈1}

¬L ¬L : id : {π̈3}

(a) t̃ 6= ⊥

p.sIP p.dIP t π

L ⊥ {π̄2, π̄4}

¬L ⊥ {π̄1, π̄3}

(b) t̃ = ⊥

Tabella 6.2: Rappresentazione tabellare della funzione P̃Ciptables,viptables(p̃, t̃).

iptables

Definiamo i percorsi π ∈ Π(Ciptables) nella seguente maniera:

π̈1 = qi; q0; q1; q2; q3; q10; q11; qf π̈2 = qi; q7; q8; q9; q10; q11; qf

π̈3 = qi; q0; q1; q4; q5; q6; qf π̈4 = qi; q7; q8; q9; q4; q5; q6; qf

π̄1 = qi; q0; q1; q2; q3 π̄2 = qi; q7; q8; q9

π̄3 = qi; q0; q1; q4; q5; q6 π̄4 = qi; q7; q8; q9; q4; q5; q6

Abbiamo quindi che la funzione E per i percorsi vale:

E(π̈1, Ciptables, viptables) = {(p, t) | p.sIP /∈ L ∧ t(p).dIP ∈ L ∧ t 6= ⊥}

E(π̈2, Ciptables, viptables) = {(p, t) | p.sIP ∈ L ∧ t(p).dIP /∈ L ∧ t 6= ⊥}

E(π̈3, Ciptables, viptables) = {(p, t) | p.sIP /∈ L ∧ t(p).dIP /∈ L ∧ t 6= ⊥}

E(π̈4, Ciptables, viptables) = {(p, t) | p.sIP ∈ L ∧ t(p).dIP ∈ L ∧ t 6= ⊥}

E(π̄1, Ciptables, viptables) = {(p,⊥) | p.sIP /∈ L}

E(π̄2, Ciptables, viptables) = {(p,⊥) | p.sIP ∈ L}

E(π̄3, Ciptables, viptables) = {(p,⊥) | p.sIP /∈ L}

E(π̄4, Ciptables, viptables) = {(p,⊥) | p.sIP ∈ L}

La funzione P̃Ciptables,viptables(p̃, t̃) è definita per casi su ogni possibile input dalla tabella 6.2. Si noti

che per ogni coppia (p̃, t̃) la funzione restituisce un insieme non vuoto, pertanto iptables, a differenza

di pf, è generale, almeno per quanto riguarda la condizione di fattibilità locale.
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ipfw

Definiamo i percorsi di ipfw nella seguente maniera:

π̈1 = qi; q0; qf π̈2 = qi; q1; qf π̈3 = qi; q0; q1; qf π̈4 = qi; q1; q0; qf

π̄1 = qi; q0 π̄2 = qi; q1 π̄3 = qi; q0; q1 π̄4 = qi; q1; q0

π̄5 = qi; q0; q1; q0 π̄6 = qi; q1; q0; q1

Abbiamo

E(π̈1, Cipfw, vipfw) = {(p, t) | p.sIP /∈ L ∧ t(p).dIP ∈ L ∧ t 6= ⊥}

E(π̈2, Cipfw, vipfw) = {(p, t) | p.sIP ∈ L ∧ t(p).dIP /∈ L ∧ t 6= ⊥}

E(π̈3, Cipfw, vipfw) = {(p, t) | p.sIP /∈ L ∧ t(p).dIP /∈ L ∧ t 6= ⊥}

E(π̈4, Cipfw, vipfw) = {(p, t) | p.sIP ∈ L ∧ t(p).dIP ∈ L ∧ t 6= ⊥}

E(π̄1, Cipfw, vipfw) = {(p,⊥) | p.sIP /∈ L}

E(π̄2, Cipfw, vipfw) = {(p,⊥) | p.sIP ∈ L}

E(π̄3, Cipfw, vipfw) = {(p,⊥) | p.sIP /∈ L}

E(π̄4, Cipfw, vipfw) = {(p,⊥) | p.sIP ∈ L}

E(π̄5, Cipfw, vipfw) = {(p,⊥) | p.sIP /∈ L}

E(π̄6, Cipfw, vipfw) = {(p,⊥) | p.sIP ∈ L}

La funzione P̃Cipfw,vipfw(p̃, t̃) è definita per casi su ogni possibile input dalla tabella 6.3. Si noti che

per ogni coppia (p̃, t̃) la funzione restituisce un insieme non vuoto, pertanto ipfw, come iptables, è

generale, almeno per quanto riguarda la condizione di fattibilità locale.

Confronto

Come abbiamo notato iptables e ipfw sono generali, cioè è possibile configurarli in modo tale da

creare qualunque assegnamento possibile fra uno specifico pacchetto e una specifica trasformazione.

Infatti la tabella non ha “buchi”, tutte le coppie sono esprimibili. Chiaramente questo non basta a

garantire che tutti i possibili firewall astratti siano esprimibili, dato che non abbiamo ancora trattato

la coerenza. Tuttavia quanto descritto è sufficiente ad affermare che alcuni firewall iptables e ipfw

hanno una semantica impossibile da replicare esattamente in pf. In particolare, non sono esprimibili

in pf quelle funzioni λ : P → T (P) ∪ {⊥} per le quali esiste un p ∈ P tale che la coppia (p, λ(p)) è

relative a una delle righe della tabella 6.1 in cui il campo π è ∅.
Portiamo un esempio di firewall astratto λ : P→ T (P)∪{⊥} che non è esprimibile da pf, non veri-

ficando ε0(λ, Cpf, vpf). Si supponga che l’insieme degli indirizzi locali sia L = {192.168.0.0, 127.0.0.0}.
Il firewall astratto non esprimibile è il seguente:

λ(p) =

(id : id, cost(4.3.2.1) : id) se p = (192.168.0.0 : 80, 1.2.3.4 : 80)

⊥ altrimenti

Notiamo che P(Cpf, vpf, (192.168.0.0 : 80, 1.2.3.4 : 80), (id : id, 4.3.2.1 : id)) = ∅. Questo segue dal

fatto che α(192.168.0.0 : 80, 1.2.3.4 : 80) = (L,¬L), α(id : id, cost(4.3.2.1) : id) = (id : id, cost(¬L) :

id) e dal risultato della funzione in tabella 6.1: P̄Cpf,vpf((L,¬L), (id : id, cost(¬L) : id)) = ∅.
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p.sIP p.dIP t.sIP : t.sPort t.dIP : t.dPort π

L : cost(L) : {π̈4}
L : cost(¬L) : {π̈2}

L L : id : {π̈4}

L ¬L : id : {π̈2}

¬L : cost(L) : {π̈1}
¬L : cost(¬L) : {π̈3}

¬L L : id : {π̈1}

¬L ¬L : id : {π̈3}

(a) t̃ 6= ⊥

p.sIP p.dIP t π

L ⊥ {π̄2, π̄4, π̄6}

¬L ⊥ {π̄1, π̄3, π̄5}

(b) t̃ = ⊥

Tabella 6.3: Rappresentazione tabellare della funzione P̃Cipfw,vipfw(p̃, t̃).

6.2.2 Coerenza

La coerenza è la proprietà di un firewall astratto λ, rispetto a un diagramma di controllo C e a un

assegnamento di etichette v, secondo la quale per nessuna coppia (p, t) tale che t = λ(p), imporre che

la configurazione del firewall f sia tale che �(C, f)(p) = t causa delle restrizioni sulla configurazione

stessa che siano contraddittorie con altre coppie (p′, t′) tali che t′ = λ(p′). Formalmente ε1(λ,C, v)

può essere espressa considerando i percorsi del diagramma nella seguente maniera:

ε1(λ, C, v) = (∀p ∈ P. ∃π ∈ Π(C). (p, λ(p)) ∈ E(π, C, v))

⇒ (∃f ∈M3(C, v). ∀p ∈ P. ∃π ∈ Π(C). ∆((C, f), p) = π ∧ �(π, f)(p) = λ(p))

dove ci siamo concessi un piccolo abuso di notazione e abbiamo scritto �(π, f) per intendere la

concatenazione delle funzioni P→ T (P) ∪ {⊥} associate ai nodi del percorso π da f . Formalmente:

� (π, f)(p) =


�(π′, f)(p′) n t se π = q · π′ ∧ t 6= ⊥

⊥ se π = q · π′ ∧ t = ⊥

id altrimenti

dove t = f(q)(p) e p′ = t(p)

In effetti, dato che abbiamo a disposizione la funzione P(C, v, p, t), possiamo sfruttarla per limitare la

scelta del percorso π ∈ Π(C) scrivendo:

ε1(λ, C, v) = (∀p ∈ P. ∃π ∈ Π(C). (p, λ(p)) ∈ E(π, C, v))

⇒ (∃f ∈M3(C, v). ∀p ∈ P. ∃π ∈ P(C, v, p, λ(p)). ∆((C, f), p) = π ∧ �(π, f)(p) = λ(p))

Inoltre, se la funzione P(C, v, p, λ(p)) restituisce un singoletto, allora la condizione ∆((C, f), p) è

automaticamente soddisfatta e possiamo riscrivere la coerenza come:

ε1(λ, C, v) = (∀p ∈ P. ∃π ∈ Π(C). (p, λ(p)) ∈ E(π, C, v))

⇒ (∃f ∈M3(C, v). ∀p ∈ P. ∃π ∈ P(C, v, p, λ(p)). � (π, f)(p) = λ(p))
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L’algoritmo di generazione, che realizza la fase 3. della pipeline di transcompilazione, si occupa

sostanzialmente di trovare una f che verifichi la seconda parte del predicato, possibilmente generandola

ad hoc perché verifichi �(π, f)(p) = λ(p), tenendo f ∈M3(C, v) come vincolo.

L’idea è quella di calcolare per ogni coppia (p, t), le restrizioni cui un firewall del sistema studiato è

soggetto accettando il pacchetto p con trasformazione t. Una policy è esprimibile solo se le restrizioni

causate da ciascuna delle coppie non impedisce il firewall dal realizzare il resto della funzione λ.

La formula proposta non è la più vantaggiosa per il confronto dell’espressività di diversi sistemi,

ma fornisce un predicato che data una funzione λ : P→ T (P)∪ {⊥} consente in teoria di verificare se

questa può o meno essere la semantica di un firewall del sistema in esame.

Forniamo un esempio di firewall astratto λ che nel sistema pf verifica la condizione di fattibi-

lità locale ε0(λ, Cpf, vpf) ma che non è esprimibile in quanto non verifica la condizione di coerenza

ε1(λ, Cpf, vpf). Supponiamo L = {192.168.0.0, 127.0.0.0}, si consideri la funzione λ : P→ T (P) ∪ {⊥}
definita come:

λ(p) =


(cost(1.2.3.4) : id, id : id) se p = (192.168.0.0 : 22, 192.168.0.0 : 23) (1)

(id : id, cost(4.3.2.1) : id) se p = (1.2.3.4 : 22, 192.168.0.0 : 23) (2)

⊥ altrimenti

Riguardo al caso (1), π̈4 è l’unico percorso che il pacchetto (192.168.0.0 : 22, 192.168.0.0 : 23) può

percorrere se gli deve essere associata la trasformazione (cost(1.2.3.4) : id, id : id); formalmente:

P(Cpf, vpf, (192.168.0.0 : 22, 192.168.0.0 : 23), (cost(1.2.3.4) : id, id : id)) = {π4}

Quindi è necessario, perché ε1(λ, Cpf, vpf) sia verificato, che esista una configurazione f tale che

�(π4, f)(192.168.0.0 : 22, 192.168.0.0 : 23) = (cost(1.2.3.4) : id, id : id). Nel percorso π4 esiste

un solo nodo con etichetta SNAT , adatto ad applicare la trasformazione cost(1.2.3.4) al campo sIP

del pacchetto, questo nodo è q2. Dunque il nodo q2 applicherà questa trasformazione e il resto dei

nodi del percorso assocerà la trasformazione identità al risultato:

f(q2)(192.168.0.0 : 22, 192.168.0.0 : 23) = (cost(1.2.3.4) : id, id : id)

f(q3)(1.2.3.4 : 22, 192.168.0.0 : 23) = (id : id, id : id)

f(q0)(1.2.3.4 : 22, 192.168.0.0 : 23) = (id : id, id : id)

f(q1)(1.2.3.4 : 22, 192.168.0.0 : 23) = (id : id, id : id)

Nel caso (2) invece, π̈1 è l’unico percorso che il pacchetto (1.2.3.4 : 22, 192.168.0.0 : 23) può percorrere

se deve essergli associata la trasformazione (id : id, cost(4.3.2.1) : id); formalmente:

P(Cpf, vpf, (1.2.3.4 : 22, 192.168.0.0 : 23), (id : id, cost(4.3.2.1) : id)) = {π1}

È quindi necessario, perché ε1(λ, Cpf, vpf) sia verificato, che la stessa configurazione f del caso prece-

dente sia tale che �(π3, f)(1.2.3.4 : 22, 192.168.0.0 : 23) = (id : id, cost(4.3.2.1) : id). Nel percorso

π3 esiste un solo nodo con etichetta DNAT , adatto ad applicare la trasformazione cost(4.3.2.1) al

campo dIP del pacchetto, questo nodo è q0. Dunque il nodo q0 applicherà questa trasformazione e il

resto dei nodi del percorso assocerà la trasformazione identità al risultato:

f(q0)(1.2.3.4 : 22, 192.168.0.0 : 23) = (id : id, cost(4.3.2.1) : id)

f(q1)(1.2.3.4 : 22, 4.3.2.1 : 23) = (id : id, id : id)
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Il firewall astratto λ non è esprimibile dunque, dato che non è possibile che la funzione di trasforma-

zione associata al nodo q0 sia tale che f(q0)(1.2.3.4 : 22, 192.168.0.0 : 23) = (id : id, cost(4.3.2.1) : id)

e contemporaneamente f(q0)(1.2.3.4 : 22, 192.168.0.0 : 23) = (id : id, id : id).

In particolare il problema di questo firewall astratto in pf è legato al fatto che se un pacchetto p

viene accettato con trasformazione t dal percorso π4, allora il pacchetto p′ tale che p′.sIP = t(p).sIP ,

p′.sPort = t(p).sPort, p′.dIP = p.dIP e p′.dPort = p.dPort deve essere accettato con trasformazione

t′ = (id : id, t.dIP : t.dPort). Altri vincoli simili possono essere individuati dall’analisi del predicato

ε1(λ, Cpf, vpf), sulla base del percorso associato a una coppia (p, t).

70



Capitolo 7

Generazione di un firewall

La generazione è la terza fase della pipeline di transcompilazione, relativa alla creazione di un firewall

IFCL, del tipo designato, che abbia una semantica equivalente a quella del firewall astratto di partenza.

Dato un firewall astratto sintetizzato λ̃, l’obiettivo è dunque quello di produrre una configurazione

IFCL Σ per il sistema k tale che:

L$(Ck,Σ)%M(sNEW) = i(λ̃)

Nonostante avvenga in un’altra fase della pipeline, dobbiamo occuparci anche della concretizzazione:

cioè la procedura che, a partire dalla configurazione per il firewall IFCL, restituisce il file di configura-

zione del sistema target. La quarta ed ultima fase della pipeline è realizzata per mezzo di una funzione

conk; questa funzione non può essere definita su tutte le possibili configurazione IFCL assegnabili al

diagramma di controllo del sistema target, Ck. In effetti per poter implementare la fase finale della

pipeline è necessario che la configurazione Σ prodotta dall’algoritmo di sintesi appartenga al dominio

della funzione conk. Alcune configurazione potrebbero non essere compilabili perché la loro semantica

non è esprimibile dal sistema target, come abbiamo dimostrato nel capitolo precedente infatti non

tutti i sistemi possono esprimere tutte le funzioni P → T (P) ∪ {⊥}. In questo caso non possiamo

fare niente, il fallimento non dipende dall’algoritmo che scegliamo per la fase 3. della pipeline o dalla

funzione di concretizzazione. Tuttavia, se la funzione di concretizzazione conk non è definita su tutte

le configurazioni Σ tali che L(Ck,Σ)M è una funzione esprimibile dal sistema k, è possibile produrre dei

firewall IFCL che non possono essere concretizzati anche quando la funzione di partenza è esprimibile

dal sistema target.

Per prima cosa forniremo qualche dettaglio sulla funzione di concretizzazione, specificando quali tipi

di configurazioni IFCL sono concretizzabili nei vari sistemi; successivamente forniremo due approcci

alternativi per la fase di generazione: uno che segue passo passo le fasi intermedie della pipeline

proposta nel capitolo 4; l’altro proposto inizialmente in [4] basato sulla generazione in un passo solo

della configurazione IFCL per il sistema target, basato sull’uso intensivo del campo tag dei pacchetti.

Dato un firewall astratto sintetizzato λ̃ e un sistema k, vorremmo verificare in anticipo se sia

possibile ottenere un firewall con semantica equivalente a λ = i(λ̃) per il sistema k, cioè λ ∈ Λk, ma

come abbiamo visto la procedura per un controllo è tanto complessa quanto tentare la generazione

in sé. Verifichiamo comunque la condizione necessaria ε0(λ, Ck, vk), se questa non è verificata allora

sicuramente non potremo generare il firewall target, in caso contrario c’è comunque la possibilità che la

generazione non vada a buon fine, nel qual caso ce ne accorgeremo durante l’applicazione dell’algoritmo

e la generazione terminerà segnalando errore.

Come detto decidiamo di analizzare i sistemi solo per quanto riguarda il modo di trattare pacchetti

appartenenti a nuove connessioni, pertanto assumeremo sempre che il firewall sia nello stato sNEW.
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7.1 Concretizzazione

L’ultima traduzione effettuata dalla pipeline è la concretizzazione del firewall IFCL come file di con-

figurazione del sistema target. Concettualmente la funzione conk è l’inversa della funzione di forma-

lizzazione fork, ma questo non è strettamente vero a livello funzionale. Non vale infatti in genere

che fork(conk(Σ)) = Σ; quello che abbiamo è che data un configurazione IFCL Σ, per il sistema k, la

sua concretizzazione restituisce un file di configurazione file.conf la cui semantica sia equivalente a

quella di Σ. Formalmente:

L$(Ck, fork(conk(Σ)))%M ≡ L$(Ck,Σ)%M

Per una funzione di concretizzazione chiamiamo correttezza la proprietà di produrre sempre un file di

configurazione legale e la cui semantica sia equivalente a quella della configurazione di partenza.

La funzione conk non può essere definita su ogni possibile configurazione, si tratta di una funzione

parziale. Ad esempio tutte le configurazioni per le quali la semantica del firewall non è esprimibile dal

sistema k non saranno concretizzabili in file di configurazione per k. Chiamiamo Γ′k l’insieme delle

configurazioni Σ sulle quali è definita la funzione conk. Si noti che Γk non è affatto equivalente a Γ′k.

Idealmente vorremmo poter concretizzare ogni configurazione con semantica esprimibile. Chiamiamo

conk completa se e solo se:

∀λ ∈ Λk. ∀Σ. L$(Ck,Σ)%M = λ⇒ Σ ∈ Γ′k

In realtà ci accontentiamo di una proprietà più debole:

∀λ ∈ Λk. ∃Σ. L$(Ck,Σ)%M = λ ∧ Σ ∈ Γ′k

E ci sincereremo che la configurazione prodotta dall’algoritmo di generazione sia proprio una dei Σ che

appartengono a Γ′k. In particolare la funzione conk per k ∈ {iptables, pf, ipfw} è definita sull’insieme

Γ′k = M2(Ck, vk).

La concretizzazione per i sistemi supportati è relativamente banale se ci limitiamo a supportare le

configurazioni in M2(Ck, vk). Trattandosi di configurazioni normalizzate infatti, e non dovendo quindi

trattare salti, tag e chiamate, è sufficiente applicare una trasformazione sintattica immediatamente

derivabile dalla definizione delle funzioni di formalizzazione fork.

7.2 Generazione per livelli

Presentiamo l’algoritmo di generazione per livelli, che funziona attraverso una serie di trasformazioni,

dal dominio dei firewall astratti fino a quello dei firewall concreti, passando per livelli intermedi e

mantenendo inalterata la semantica. Per realizzare la traduzione fra due sistemi firewall differenti è

necessario definire delle funzioni di traduzione che vadano nel verso opposto rispetto a quelle dell’al-

goritmo di sintesi, dal livello più astratto a quello più concreto. Lo studio dell’espressività dei sistemi

di firewall ci serve anche a capire il dominio delle funzioni e a guidare l’implementazione. L’algoritmo

di generazione implementa le fasi 3.a e 3.b della pipeline di transcompilazione.

Come per la sintersi anche nella generazione è importante mantenere una rappresentazione sintetica

delle funzioni per questioni di trattabilità. Prima di passare alla fase di generazione, viene controllato

che la funzione su pacchetti sintetizzata λ̃ da compilare verifichi ε0(i(λ̃), Ck, vk).

Notiamo che la fase complicata è la decomposizione (fase 3.a), la quale prevede di generare una

configurazione semiastratta sintetizzata f̃ , legale secondo l’assegnamento di etichette del sistema,

tale che la composizione della sua interpretazione, secondo il diagramma di controllo Ck, corrisponda
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all’interpretazione del firewall astratto sintetizzato di partenza.

i(f̃) ∈M3(Ck, vk) ∧ ∀p ∈ P. � (Ck, i(f̃))(p) = i(λ̃)(p)

Infatti, una volta calcolata una f̃ adeguata, la compilazione delle funzioni sintetizzate assegnate ai

nodi in ruleset IFCL si riduce semplicemente ad una procedura sintattica banale, il cui risultato è un

firewall IFCL normalizzato. Dato che il risultato è un firewall IFCL normalizzato, se il firewall astratto

è esprimibile allora la configurazione prodotta appartiene sicuramente all’insieme Γ′k su cui la funzione

di concretizzazione è definita.

Per prima cosa analizziamo la generazione di f̃ dal punto di vista teorico, concentrandoci quindi

su λ e f , successivamente passiamo alla versione reale con funzioni sintetizzate.

7.3 Generazione del firewall semiastratto

Formalmente il problema che vogliamo affrontare è quello, dato un sistema k e un firewall astratto λ

tale che ε0(λ, Ck, vk), di trovare una configurazione semiastratta f tale che:

1. f sia legale secondo l’assegnamento di etichette che caratterizza il sistema k: f ∈M3(C, v)

2. f imponga una semantica coerente con la funzione λ: ∀p ∈ P. � (Ck, f)(p) = λ(p)

Ovvero, facendo riferimento ai percorsi all’interno del diagramma di controllo:

f ∈M3(C, v) ∧ ∀p ∈ P. ∃π ∈ Π(C). ∆((C, f), p) = π ∧ �(π, f)(p) = λ(p) (i)

Per prima cosa definiamo una proprietà dei diagramma di controllo e degli assegnamenti di etichette

che garantisce la possibilità di individuare, per ogni coppia (p, t), un preciso percorso all’interno del

diagramma di controllo. Chiamiamo sistemi uniterali i sistemi con diagrammi di controllo tali per

cui, in ogni possibile configurazione legale secondo l’assegnamento di etichette, il percorso che un dato

pacchetto p può percorrere, dato che la trasformazione finale risultante deve essere t, è unico.

Definizione 21 (Sistema uniterale). Un sistema uniterale è un sistema firewall k tale che per ogni

coppia (p, t), con p ∈ P e t ∈ T (P), esiste un percorso π ∈ Π(Ck) tale che per ogni possibile configura-

zione semiastratta f legale secondo vk par la quale vale �(Ck, f)(p) = t, il percorso di p nel firewall è

π, cioè ∆((Ck, f), p) = π.

Si noti che la definizione non comprende vincoli riguardo i pacchetti che vengono scartati, questi

infatti verranno trattati in maniera particolare dall’algoritmo di generazione. Si noti inoltre che i

sistemi iptables, pf e ipfw sono tutti uniterali, come testimonia la funzione P del capitolo precedente,

la quale restituisce sempre singoletti o insiemi vuoti per coppie in cui t 6= ⊥.

Se il sistema in questione è uniterale e la funzione λ da compilare verifica la fattibilità locale,

allora per ogni coppia (p, t) tale che t = λ(p) 6= ⊥, vale che P(Ck, vk, p, t) è un singoletto. In questo

caso possiamo fare a meno della quantificazione esistenziale sui percorsi, quando parliamo di pacchetti

accettati; possiamo scrivere quindi:

∀p ∈ P. λ(p) 6= ⊥ ⇒ f ∈M3(C, v) ∧∆((Ck, f), p) = π ∧ �(π, f)(p) = λ(p) dove {π} = P(Ck, vk, p, λ(p))

Occorre ancora la condizione ∆((Ck, f), p) = π in quanto, sebbene il percorso adeguato sia uno

solo, è comunque necessario verificare non solo che la composizione delle funzioni di trasformazione

associate ai pacchetti mappino p in λ(p), ma anche che la configurazione scelta imponga al pacchetto

di percorrere il percorso corretto.
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Diverso è il caso in cui la sequenza di trasformazioni che permettono ai nodi del percorso di mappare

p in λ(p) sia unica. Chiamiamo compatto un sistema k per il quale se due pacchetti subiscono la stessa

trasformazione t 6= ⊥ per una data configurazione, percorrendo lo stesso percorso nel diagramma di

controllo, allora i due pacchetti subiscono esattamente le stesse trasformazioni negli stessi nodi.

Definizione 22 (Sistema compatto). Un sistema k con diagramma di controllo Ck, etichettato secondo

vk, è detto compatto se

∀f ∈M3(Ck, vk). ∀p, p′ ∈ P.

(∆((Ck, f), p) = ∆((Ck, f), p′) = π ∧ �(π, f)(p) = �(π, f)(p′) 6= ⊥) =⇒ p ∼=
(π,f)

p′

Dove la relazione ∼= è definita come:

p ∼=
(π,f)

p′ =


t = t′ ∧ t(p) ∼=

(π′,f)
t′(p′) se π = q · π′

true altrimenti
Dove t = f(q)(p) e t′ = f(q)(p′)

Definiamo dunque la versione semplificata del predicato sui pacchetti accettati:

∀p ∈ P. λ(p) 6= ⊥ ⇒ f ∈M3(C, v) ∧ �(π, f)(p) = λ(p) dove {π} = P(Ck, vk, p, λ(p)) (ii)

Definiamo inoltre un predicato vero se e solo se i pacchetti per i quali λ(p) = ⊥ siano gestiti

correttamente, cioè:

∀p ∈ P. λ(p) = ⊥ ⇒ f ∈M3(C, v) ∧ ∃π ∈ Π(C). ∆((C, f), p) = π ∧ �(π, f)(p) = ⊥ (iii)

Vale allora il seguente teorema.

Teorema 12. Se il sistema k è uniterale e compatto, e se la funzione λ : P→ T (P) ∪ {⊥} verifica la

fattibilità locale, ε0(λ, Ck, vk), allora (i) ⇐⇒ (ii) ∧ (iii)

L’obiettivo del resto della sezione è definire una forma equivalente per il predicato (ii) che dia una

traccia per l’implementazione dell’algoritmo in sé. Definiamo un nuovo predicato χ(Ck, vk, π, p, t, f)

equivalente a f ∈ M3(C, v) ∧ �(π, f)(p) = λ(p) se t 6= ⊥, dove π = P(Ck, vk, p, λ(p)), del quale diamo

una caratterizzazione operativa che sarà la base della parte dell’algoritmo di generazione che si occupa

dei pacchetto accettati.

χ(Ck, vk, π, p, t, f) =



∃ t′, t′′. t′ n t′′ = t ∧ t′ ∈ ν(v(q)) ∧ t′′ ∈ ν(`(π, Ck, vk)) ∧

f(q)(p) = t′ ∧ t′(p) = p′ ∧

χ(Ck, vk, π′, p′, t′′, f) se π = q · π′

t = id altrimenti

Dove la funzione ν dato un inseme di etichette restituisce l’insieme delle trasformazioni consentite su

un generico pacchetto: ν : 2{SNAT,DNAT,DROP} → 2T (P).

ν(L) =
∏

x∈{sIP,sPort,dIP,dPort}

νx(L)

ν(L) =

{cost(a) | a ∈ Domx} ∪ {id} se x ∈ µ(L)

{id} altrimenti
dove Domx =

IP se x ∈ {sIP, dIP}

Port se x ∈ {sPort, dPort}
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Ridefiniamo dunque il predicato (ii) come ∀p ∈ P. λ(p) 6= ⊥ ⇒ χ(Ck, vk, π, p, t, f).

Anziché considerare il predicato χ(Ck, vk, π, p, t, f) per ogni coppia (p, t) tali che t = λ(p) = ⊥ come

una condizione da verificare per una data configurazione f , la consideriamo una descrizione operativa

dei vincoli che abbiamo sulla selezione della configurazione f . In particolare questi vincoli sono della

forma f(q)(p) = t per qualche nodo q, pacchetto p e trasformazione t, e sono generati a partire dal

percorso π, dal pacchetto p e dalla trasformazione t. Idealmente un algoritmo per la generazione di

f potrebbe cercare di verificare il predicato con un assegnamento di valore per la variabile libera f ,

aggiornandola di volta in volta quando trova una condizione esplicita del tipo f(q)(p) = t, scegliendo

arbitrariamente i valori in caso di quantificazione esistenziale e facendo backtrack quando ci si trova

di fronte ad una contraddizione. La realizzabilità dell’algoritmo cambia drasticamente sulla base delle

soluzioni di ∃ t′, t′′. t′ n t′′ = t ∧ t′ ∈ ν(v(q)) ∧ t′′ ∈ ν(`(π, Ck, vk)). A seconda di quanti modi legali

ho per scomporre la trasformazione t in due parti: t′ e t′′, posso avere più o meno casi da verificare.

Il caso ideale è quello in cui t′ e t′′ sono uniche data t, in questo modo la scomposizione è unica e

la verifica del predicato può essere fatta senza backtrack; in questo caso, se si trova un’inconsistenza

allora la compilazione fallisce in quanto non può esistere una configurazione che verifichi il predicato

χ.

Consideriamo la trasformazione t campo per campo. L’idea è che, per ogni campo che non rimale

invariato, vorremmo che solo uno dei nodi del percorso fosse capace di modificarlo, in questo modo

la trasformazione t può essere scomposta in una trasformazione costante su quel nodo e id in tutti

gli altri; quando invece la trasformazione può essere applicata in più nodi abbiamo libertà di scelta,

possiamo applicare la modifica prima o dopo, e possiamo anche modificare il campo in più nodi

sovrascrivendo la prima modifica con la seconda.

Formalmente, dati una trasformazione t, un percorso π = q · π′ in un diagramma di controllo Ck e

un assegnamento di etichette vk; per ogni campo x ∈ {sIP, sPort, dIP, dPort}, le scomposizioni che

devo provare per la verifica di χ(Ck, vk, π, p, t, f) sono:

• se la trasformazione t.x è id allora la scomposizione è unica: t′ = t′′ = id;

• se si tratta di una trasformazione costante, t.x = cost(a) per un qualche a, e x ∈ µ(v(q)) e

x /∈ µ(`(π′, Ck, vk)), allora la scomposizione è sempre unica: t′.x = cost(a) e t′′.x = id;

• se si tratta di una trasformazione costante, t.x = cost(a) per un qualche a, e x /∈ µ(v(q)) e

x ∈ µ(`(π′, Ck, vk)), allora la scomposizione è unica e deve essere: t′.x = id e t′′.x = cost(a);

• se si tratta di una trasformazione costante, t.x = cost(a) per un qualche a, e x ∈ µ(v(q)) e

x ∈ µ(`(π′, Ck, vk)), allora la scomposizione non è unica, sono possibili in totale:

– t′.x = cost(a) e t′′.x = id;

– t′.x = id e t′′.x = cost(a);

– t′.x = cost(b) e t′′.x = cost(a) per ogni possibile valore b.

Qualche chiarimento: per prima cosa il caso in cui x /∈ µ(v(q)) e x /∈ µ(`(π′, Ck, vk)) non è possibile in

quanto la fattibilità locale è garantita per ipotesi e abbiamo scelto il percorso restituito dalla funzione

P; secondariamente è bene notare che la libertà di scelta in questo contesto non è una cosa positiva,

infatti vuol dire che abbiamo più alternative da provare. Non possiamo limitarci a prendere solo

alcune delle alternative possibili perché, a causa dell’interferenza fra la verifica di diverse coppie (p, t),

legata al problema della coerenza, ε1, rischieremmo di escludere valori che si combinano bene fra loro

e quindi la soluzione.

Nel caso quindi in cui, in nessun percorso π ∈ Π(Ck), vi siano più di un etichetta NAT dello stesso

tipo (due SNAT o due DNAT ), la scomposizione di t in t′ e t′′ è unica. Chiaramente infatti, per ogni
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campo x della trasformazione, per ogni nodo q del percorso π, non possono valere entrambi x ∈ µ(v(q))

e x ∈ µ(`(π′, Ck, vk)), dove π′ è la parte di π che segue q.

Definizione 23 (Sistema senza NAT ripetuti). Chiamiamo sistema senza NAT ripetuti un sistema k

con diagramma di controllo Ck e assegnamento di etichette vk tale che per ogni percorso π ∈ Π(Ck), il

numero di occorrenze dell’etichetta SNAT in π è al più uno e lo stesso vale per DNAT .

È immediato verificare che iptables e pf sono sistemi senza NAT ripetuti; ipfw invece no.

Notiamo inoltre che, in un sistema senza NAT ripetuti, non c’è alternativa sul nodo nel quale

effettuare una traduzione per due pacchetti che debbano subire la stessa trasformazione seguendo lo

stesso percorso, infatti solo un nodo è disponibile. Vale infatti il seguente teorema:

Teorema 13. Se un sistema è senza NAT ripetuti, allora è compatto.

7.4 Decomposizione sintetizzata

Passiamo quindi a considerare la vera forma dei dati che sarà trattata dall’algoritmo, ovvero le funzioni

su pacchetti sintetizzate. In effetti, il firewall astratto da compilare sarà fornito come funzione sinte-

tizzata λ̃ ∈ 2M(P)×T (P)∪{⊥} e il firewall semiastratto prodotto sarà esso stesso sintetizzato, pertanto

la sua configurazione sarà f̃ : Q→ 2M(P)×T (P)∪{⊥}.

I pacchetti scartati dal firewall saranno trattati separatamente, consideriamo quindi le coppie

(p, t) tali che t = i(λ̃)(p) 6= ⊥. Definiamo l’equivalente dell’espressione (ii), verificata se e solo se la

configurazione sintetizzata f̃ è legale e rispetta la semantica attesa per quanto riguarda i pacchetti

accettati.

∀(P, t) ∈ λ̃. t 6= ⊥ ⇒ ∀p ∈ P. χ(Ck, vk, π, p, t, i(f̃)) dove {π} = P(Ck, vk, p, t) (iv)

Dove abbiamo assunto che il sistema target sia uniterale e compatto.

Vogliamo definire un predicato χ̃, equivalente del predicato χ per i firewall sintetizzati, che carat-

terizzi operativamente le configurazioni f̃ desiderate, attraverso una serie di vincoli sulle coppie (P, t)

appartenenti alle funzioni sintetizzate f̃(q). Ogni coppia (P, t) ∈ λ̃ comporta la generazione di un

certo numero di questi vincoli, per i nodi appartenenti al percorso π seguito dai pacchetti p ∈ P . Per

prima cosa vogliamo la garanzia che tutti i pacchetti in un insieme P tale che (P, t) ∈ λ̃ percorrano

lo stesso percorso π ∈ Π(Ck). Non si tratta di una proprietà strettamente legata al diagramma di

controllo, quanto piuttosto alla forma stessa della funzione sintetizzata, in particolare alla divisione

dei pacchetti fra i vari multicubi.

Definizione 24 (Funzione sintetizzata disgiunta). Una funzione sintetizzata su pacchetti λ̃ ∈ 2M(P)×T (P)∪{⊥}

è detta disgiunta rispetto ad un sistema uniterale k, con diagramma di controllo Ck e assegnamento

di etichette vk, se e solo se il percorso associato ai pacchetti p nella parte sinistra di ogni coppia

(P, t) ∈ λ̃, con t 6= ⊥, è sempre lo stesso. Formalmente:

∀(P, t) ∈ λ̃. t 6= ⊥ ⇒ ∀p, p′ ∈ P. P(Ck, vk, p, t) = P(Ck, vk, p′, t)

Nella pratica è possibile ottenere una funzione sintetizzata disgiunta a partire da una funzione

sintetizzata qualunque, per i sistemi iptables, pf e ipfw, spezzando ogni coppia (P, t) ∈ λ̃ in quattro

parti con trasformazione t e multicubo di pacchetti uguale al sottoinsieme di P in cui gli indirizzi di

origine e destinazione sono rispettivamente tutti locali, il primo locale e il secondo non locale, il primo

non locale e il secondo locale, e infine tutti non locali. La divisione presentata funziona in quanto gli

insiemi prodotti sono tutti dei multicubi (l’intersezione di multicubi è un multicubo) e in quanto la

funzione P̃ restituisce solo insiemi vuoti o singoletti per i sistemi supportati (vedi capitolo 6).
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Se la funzione sintetizzata da compilare è disgiunta rispetto al sistema k allora possiamo definire

un nuovo predicato χ̃ tale che la formula seguente sia equivalente all’espressione (iv):

∀(P, t) ∈ λ̃. t 6= ⊥ ⇒ χ̃(Ck, vk, π, P, t, f̃) dove ∀p ∈ P. {π} = P(Ck, vk, p, t)

Definiamo formalmente il predicato χ̃ come segue:

χ̃(Ck, vk, π, P, t, f̃) = ∀p ∈ P. χ(Ck, vk, π, p, t, i(f̃))

Vogliamo una caratterizzazione operativa del predicato χ̃, tuttavia stavolta non vale direttamente

un’equivalente fra il predicato e la caratterizzazione operativa, che chiamiamo quindi ˜̃χ.

˜̃χ(Ck, vk, π, P, t, f̃) =



∃ t′, t′′. t′ n t′′ = t ∧ t′ ∈ ν(v(q)) ∧ t′′ ∈ ν(`(π, Ck, vk)) ∧

(P, t′) ∈̃ f̃(q) ∧ t′(P ) = P ′ ∧
˜̃χ(Ck, vk, π′, P ′, t′′, f̃) se π = q · π′

t = id altrimenti

Dove (P, t) ∈̃ λ̃ è vero se e solo se ∀p ∈ P. i(λ̃)(p) = t; ovvero secondo una qualche divisione degli

elementi di P in multicubi vale che a tutti gli elementi di P è associata la trasformazione t da λ̃. La

notazione evidenzia il fatto che l’operazione più semplice per garantire che (P, t′) ∈̃ f̃(q) sia verificato,

consiste nell’aggiungere la coppia (P ′, t) all’insieme f̃(q); in effetti questo è più o meno quello che fa

l’algoritmo di generazione che presenteremo.

È immediato verificare che ˜̃χ(Ck, vk, π, P, t, f̃) ⇒ χ̃(Ck, vk, π, P, t, f̃); tuttavia se k è un sistema

uniterale compatto allora vale anche l’opposto.

Teorema 14. Per ogni sistema uniterale e compatto k con diagramma di controllo Ck, etichettato

secondo vk, percorso π ∈ Π(Ck), multicubo P e trasformazione t vale che

∀f̃ .χ̃(Ck, vk, π, P, t, f̃) ⇐⇒ ˜̃χ(Ck, vk, π, P, t, f̃)

L’algoritmo di generazione che segue è sostanzialmente una riscrittura in pseudocodice di una

valutazione del predicato ∀(P, t) ∈ λ̃. t 6= ⊥ ⇒ ˜̃χ(Ck, vk, π, P, t, f̃), in cui la verifica delle condizioni

del tipo (P, t) ∈ f̃(q) viene usata costruttivamente per determinare il valore di f̃ .

Ma prima di presentare l’algoritmo dobbiamo risolvere il problema dei pacchetti scartati, i quali

non verificano nessuna delle proprietà necessarie ad essere trattati attraverso il predicato ˜̃χ. Quello

che proponiamo è di costruire f̃ in quattro passaggi: (i) inizializzazione di f̃ come funzione che

associa ad ogni nodo un insieme vuoto di coppie (multicubo, trasformazione); (ii) per ogni coppia

(P, t) ∈ λ̃ in cui t 6= ⊥ inserimento in f̃ delle coppie (multicubo trasformazione) necessarie affinché

˜̃χ(Ck, vk, π, P, t, f̃) sia verificato; (iii) per ogni nodo q, completamento di f̃(q) affinché definisca una

trasformazione per ogni pacchetto in P, dove la trasformazione è scelta in modo tale da scartare il

maggior numero possibile di pacchetti; (iv) verifica che tutti i pacchetti che devono essere scartati

siano effettivamente scartati dalla configurazione ottenuta, terminazione con errore in caso contrario.

Nella fase (ii), dichiariamo un fallimento quando occorrono assegnamenti contrastanti per un

qualche nodo q, come (P, t) ∈ f̃(q) e (P ′, t′) ∈ f̃(q) con t 6= t′ e P ∩ P ′ 6= ∅. Assumiamo inoltre che

ogni aggiornamento della funzione sintetizzata associata ad un nodo q sia effettuato in modo tale da

non inserire coppie (P, t) tali che P ∩ P ′ 6= ∅ per un qualche (P ′, t) ∈ f̃(q). Per questo definiamo una

funzione di aggiornamento che nell’aggiungere una coppia (P, t) ad una funzione sintetizzata controlla

le coppie già presenti, terminando con fallimento se verifica delle incompatibilità e “ritagliando” P se
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si verificano delle sovrapposizioni non contraddittorie. Dato che la fase in cui configuriamo il firewall

per gestire i pacchetti da accettare viene prima di quella in cui completiamo la configurazione per

scartare più pacchetti possibile, e dato che nella fase (iii) non tocchiamo nessuna coppia già inserita

in f̃ , non è possibile che vengano scartati per errore dei pacchetti da accettare.

Alla fine della fase (ii), la configurazione f̃ è tale che assegna ad ogni nodo q ∈ Q un insieme di

coppie (P, t); dato che sono inserite solo le coppie necessarie a realizzare il corretto comportamento

riguardo ai nodi accettati, è possibile che questi insiemi non contengano, per ogni p, una coppia (P, t)

tale che p ∈ P : cioè ci possono essere dei pacchetti per i quali non abbiamo deciso come il nodo q li

debba gestire. Chiamiamo P# l’insieme dei multicubi contenenti i pacchetti a cui f̃(q) non associa

trasformazioni. Associamo dunque ai pacchetti in P# delle trasformazioni in modo tale da scartare più

pacchetti possibili: chiamiamo P⊥ l’insieme dei multicubi contenenti i pacchetti che vengono scartati

in q. I pacchetti in P⊥ possono essere scartati direttamente o passati ad un nodo che li scarta a sua

volta.

Quello che possiamo fare per scartare i pacchetti in q dipende da vk(q). Se DROP ∈ vk(q) allora

aggiungiamo a f̃ una coppia (P,⊥) per ogni P in P#; cioè scartiamo direttamente tutto il possibile,

abbiamo dunque che P⊥ = P#. Altrimenti, se DROP /∈ vk(q), l’unico modo che abbiamo per scartare

un pacchetto p di P# è quello di trasformarlo in un pacchetto che venga scartato nel prossimo nodo

q′ (direttamente o a sua volta attraverso una trasformazione ed un passaggio ad un nodo successivo).

Il problema è che il pacchetto p potrebbe visitare nodi diversi in base alla trasformazione associatagli

da q, ed è possibile che solo in alcuni dei cammini possa finire per essere scartato, quindi dovremmo

considerare tutte le alternative possibili.

Anziché seguire questo approccio, sfruttiamo il fatto che tutti i pacchetti, per essere scartati devono

visitare prima o poi un nodo etichettato con DROP . Quindi completiamo le funzioni f̃(q) partendo da

questi nodi e seguendo gli archi in A a ritroso, occupandoci per primi dei nodi etichettati con DROP ,

poi dei loro predecessori, dei predecessori dei predecessori e cos̀ı via. Dato un nodo q per cui abbiamo

completato f̃(q), con P⊥ non vuoto, per ognuno dei predecessori q′ di q, tale che (q′, ψ, q) ∈ A,

filtriamo i multicubi di P⊥ in modo da eliminare i pacchetti che non verificano ψ, chiamiamo l’insieme

ottenuto P′.⊥. Nel nodo q′ vogliamo applicare ad ogni pacchetto p una trasformazione t tale che t(p)

appartiene ad un multicubo in P′.⊥.

Se v(q′) non contiene né SNAT , né DNAT , allora l’unica possibilità è quella di associare id ai

multicubi in P′#; occorre comunque calcolare P′⊥, l’insieme dei multicubi che, se lasciati identici, sono

passati al nodo q e poi scartati. Questi possono essere calcolati facendo l’intersezione fra i multicubi

di P′# e quelli di P′.⊥.

Se v(q′) contiene sia SNAT che DNAT allora è possibile prendere un pacchetto qualsiasi p⊥ di

un multicubo qualsiasi di P′.⊥ e trasformare ogni pacchetto di P′# in p⊥ attraverso la trasformazione

cost(p⊥) = (cost(p⊥.sIP ) : cost(p⊥.sPort), cost(p⊥.dIP ) : cost(p⊥.dPort)). In questo caso dunque,

per ogni P ∈ P′#, aggiungiamo (P, cost(p⊥)) a f̃(q′) e abbiamo che P′⊥ = P′#.

Se v(q′) contiene solo SNAT allora per ogni multicubo di pacchetti P1 ∈ P′#, e per ogni mul-

ticubo P2 ∈ P.⊥ prendiamo un pacchetto qualsiasi p⊥ ∈ P2, definiamo una trasformazione t =

(cost(p⊥.sIP ) : cost(p⊥.sPort), id : id) e calcoliamo P ′1 l’insieme dei pacchetti di P1 che una volta

trasformati secondo t appartengono a P2, formalmente P ′1 = {p ∈ P1 | t(p) ∈ P2}; se P ′1 6= ∅ allora

aggiungiamo la coppia (P ′1, t) in f̃(q′), e P ′1 all’insieme P′⊥.

Il caso in cui v(q′) contenga solo DNAT è identico al precedente, dove però la trasformazione

t è (id : id, cost(p⊥.sIP ) : cost(p⊥.sPort)). Una volta completata la configurazione f̃ per quanto

riguarda q′, proseguiamo passando ai nodi predecessori di q′, sfruttando l’insieme P′⊥ che abbiamo

calcolato.
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Figura 7.1: Esempio di come vengono completati gli insiemi di coppie (multicubo, trasformazione)

assegnate ai nodi del diagramma di controllo: in ogni nodi rappresentiamo l’insieme dei pacchetti P
prima e dopo l’applicazione delle trasformazioni.

Si veda ad esempio la figura 7.1, contenente quattro nodi di un diagramma di controllo, con i

relativi nomi e l’insieme delle etichette assegnate loro da vk. In ogni nodo abbiamo rappresentato la

funzione di trasformazione dei pacchetti, assegnatagli dalla configurazione astratta alla fine della fase

(ii): a sinistra abbiamo il dominio della funzione, l’insieme P rappresentato su due dimensioni per

comodità (indirizzo di origine e di destinazione), a destra abbiamo il codominio costituito dall’insieme

P stesso più ⊥. Nel dominio di ogni nodo, abbiamo rappresentato con delle linee orizzontali l’insieme

P# dei pacchetti per i quali non c’è trasformazione assegnata, e con una quadrettatura l’insieme P⊥

dei pacchetti che riusciamo a scartare. Nei nodi che non sono etichettati con DROP , l’insieme di

pacchetti P.⊥ nei quali vogliamo trasformare i pacchetti da scartare, affinché siano scartati dal nodo

successivo, è rappresentato da linee verticali. Nel codominio rappresentiamo anche le immagini di P#

e P⊥, secondo la solita notazione.

Il nodo q0 è etichettato con DROP , pertanto possiamo scartare direttamente tutti i pacchetti in

P# assegnando loro la trasformazione ⊥; poiché tutti i pacchetti in P# sono scartati, essi sono anche

in P⊥; abbiamo usato quindi la quadrettatura. Nel codominio del nodo q1, abbiamo rappresentato con

le righe verticali P.⊥, cioè i pacchetti dell’insieme P⊥ di q0 che verificano ψ1. Il nodo è etichettato

soltanto con SNAT , pertanto riusciamo a scartare solo i pacchetti in P# che hanno indirizzo di

destinazione presente anche in P.⊥, mentre ogni indirizzo di origine va bene in quanto è possibile

trasformarlo in quello di un pacchetto qualsiasi appartenente a P.⊥. Il nodo q2 è etichettato sia con

SNAT , sia con DNAT , pertanto riusciamo a scartare tutti i pacchetti in P# trasformandoli in un

pacchetto qualsiasi appartenente a P.⊥. Nel nodo q3 non abbiamo etichette, quindi possiamo solo

assegnare l’identità come trasformazione ai pacchetti in P#; verranno scartati solo quelli che hanno

indirizzo di origine e destinazione all’interno di P.⊥, ovvero l’intersezione fra i due insiemi.

La configurazione ottenuta scarta ogni pacchetto possibile; tuttavia non abbiamo alcuna garanzia
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che vengano scartati tutti i pacchetti che devono esserlo. Per questo alla fine della generazione di f̃ ,

nella fase (iv), verifichiamo che ogni coppia (P,⊥) ∈ λ̃ sia rispettata dal firewall prodotto, in caso

contrario terminiamo segnalando errore.

Si noti che nella fase (iii) ignoriamo la possibilità di scartare i pacchetti dirottandoli verso un

percorso che contenga un loop. È possibile per questo che l’algoritmo fallisca anche in casi in cui

esiste una configurazione corretta. Il comportamento dei firewall rispetto ai pacchetti ciclanti serve a

gestire una situazione di errore (il loop), pertanto preferiamo non sfruttarlo deliberatamente in fase

di configurazione.

La funzione FIREWALL GENERATION dell’algoritmo 4 realizza l’algoritmo di generazione (riga 1).

Gli input sono il firewall astratto sintetizzato λ̃, il diagramma di controllo Ck e l’assegnamento di eti-

chette vk. L’obiettivo della funzione è quello di restituire una configurazione semiastratta sintetizzata

f̃ . Come prima cosa si inizializza questa funzione, assegnando ad ogni nodo del diagramma l’insieme

vuoto di coppie (multicubo di pacchetti, trasformazione), righe 3 e 4. Usiamo una notazione ad array

per la funzione f̃ per comodità. Le righe 5, 6, 7 e 8 corrispondono alla generazione della parte di f̃ che

verifica le coppie di λ̃ in cui t 6= ⊥. La riga 9 realizza invece il riempimento delle funzioni sintetizzate

associate ai nodi, attraverso la funzione FILL che scarta tutto il possibile e assegna id come trasfor-

mazione di default ai pacchetti che non riesce a scartare. Questa funzione è definita nell’algoritmo 5.

Infine le righe 10 e 11 verificano che la configurazione prodotta rispetti le coppie (P,⊥) ∈ λ̃.

Alla riga 7 assumiamo di aver accesso alla funzione P; in realtà per i sistemi supportati consul-

teremo la tabella relativa a P̃ presentata nel capitolo 6. La costruzione di f̃ è effettuata grazie alla

funzione ricorsiva CHI, che implementa la verifica del predicato ˜̃χ. I parametri sono: una configura-

zione semiastratta sintetizzata f̃ , un assegnamento di etichette vk, un percorso π, un multicubo di

pacchetti P e una trasformazione t.

Alla riga 11 usiamo una funzione PASS che dato un diagramma di controllo Ck, una configurazione

semiastratta sintetizzata f̃ e un multicubo di pacchetti P , restituisce true se e solo se almeno uno

dei pacchetti p ∈ P passa attraverso il firewall (Ck, i(f̃)) (cioè non viene scartato). Usiamo questa

funzione per verificare che i pacchetti da scartare siano gestiti correttamente.

La funzione CHI copia la funzione sintetizzata ricevuta in input (riga 14), successivamente, se il

percorso non è vuoto, divide la trasformazione t in due parti t′ e t′′ tali che t′′nt′ = t (riga 18), aggiorna

f̃ ′ con la coppia (P, t′), controllando se la coppia contraddice altre coppie inserite precedentemente

attraverso la funzione update (riga 19), calcola l’insieme di pacchetti che deve gestire il prossimo nodo

del cammino1 ed effettua una chiamata ricorsiva aggiornando la configurazione, l’insieme di pacchetti

e la trasformazione (riga 21).

La funzione DIVIDE prende come input una trasformazione da scomporre t e un insieme di etichette

L (riga 24), e restituisce una coppia di trasformazioni, di cui la prima sarà applicata dal nodo a cui fa

riferimento l’insieme di etichette e la seconda sarà applicata dal resto del percorso. Le trasformazioni

sono ricavate campo per campo (riga 25): per ognuno di questi, se la trasformazione t è id allora

entrambe t′ e t′′ sono id (righe 26, 27 e 28); altrimenti, se la trasformazione è cost(a) per qualche a,

se le etichette del nodo permettono la trasformazione del campo allora t′ trasforma il campo e t′′ è id

(righe 32 e 33), altrimenti vale il contrario (righe 35 e 36).

La funzione update prende come input una funzione sintetizzata λ̃, un multicubo di pacchetti

P e una trasformazione t (riga 39), e restituisce la funzione sintetizzata aggiornata con la nuova

coppia (P, t), controllando però che P non intersechi nessun insieme di pacchetti già trattato da

λ̃. La procedura scorre tutto l’insieme di coppie λ̃ in modo ricorsivo, se trova una coppia (P ′, t′)

tale che P e P ′ hanno degli elementi in comune e t 6= t′ allora c’è una contraddizione e l’algoritmo

1Con un abuso di notazione abbiamo scritto t(P ) per intendere {t(p) | p ∈ P}.
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Algorithm 4

1: function firewall generation(λ̃: funzione su pacchetti sintetizzata, Ck: diagramma di

controllo, vk: assegnamento di etichette)

2: (Q,A, qi, qf ) = Ck
3: for all q ∈ Q do

4: f̃ [q]← ∅

5: for all (P, t) ∈ λ̃ do

6: if t 6= ⊥ then

7: {π} ← P(Ck, vk, P, t)
8: f̃ ← chi(f̃ , vk, π, P , t)

9: f̃ ← fill(f̃ , Ck, vk)

10: for all (P, t) ∈ λ̃ do

11: if t = ⊥ ∧ pass(f̃ , Ck, P ) then fail

12: return f̃

13:

14: function chi(f̃ : configurazione, vk: assegnamento di etichette, π: percorso, P : multicubo di

pacchetti, t: trasformazione)

15: f̃ ′ ← f̃

16: if length(π) > 0 then

17: q · π′ ← π

18: (t′, t′′)←divide(t, vk(q))

19: f̃ ′[q]←update(f̃ [q], P , t′)

20: P ′ ← t′(P )

21: f̃ ′ ← chi(f̃ ′, vk, π′, P ′, t′′)

22: return f̃ ′

23:

24: function divide(t: trasformazione, L: insieme di etichette)

25: for all x ∈ {sIP, sPort, dIP, dPort} do

26: if t.x = id then

27: t′.x← id

28: t′′.x← id

29: else

30: cost(a)← t.x

31: if x ∈ µ(L) then

32: t′.x← cost(a)

33: t′′.x← id

34: else

35: t′.x← id

36: t′′.x← cost(a)

37: return (t′, t′′)

38:

39: function update(λ̃: funzione sintetizzata, P : multicubo, t: trasformazione)

40: if λ̃ = ∅ then return {(P, t)}
41: else

42: (P ′, t′) ∪ λ̃′ ← λ̃

43: (Ps,Pn)←split(P , id, ∈ P ′)
44: if Ps 6= ∅ ∧ t 6= t′ then fail

45: return {(P ′, t′)} ∪
⋃
P ′′∈Pn

update(λ̃′, P ′′, t)
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Algorithm 5

1: function fill(f̃ : configurazione semiastratta sintetizzata, Ck: diagramma di controllo, vk:

assegnamento di etichette)

2: (Q,A, qi, qf ) = Ck
3: f̃ ′ ← f̃

4: for all q ∈ Q do

5: if DROP ∈ v(q) then

6: P⊥ ←rest(f̃ ′(q))

7: if P⊥ 6= ∅ then

8: for all P ∈ P⊥ do

9: f̃ ′ ← f̃ ′ ∪ {(P,⊥)}

10: f̃ ′ ←back fill(f̃ , q, Ck, vk, P⊥)

11: f̃ ′ ← fill all(f̃ ′, id)

12: return f̃ ′

13:

14: function back fill(f̃ : configurazione semiastratta sintetizzata, q: nodo, Ck: diagramma di

controllo, vk: assegnamento di etichette, P⊥: insieme di multicubi)

15: (Q,A, qi, qf ) = Ck
16: f̃ ′ ← f̃

17: for all (q′, ψ) ∈ predecessori(q, A) do

18: P′# ←rest(f̃ ′(q′))

19: P′.⊥ ←filter back(P⊥, ψ)

20: P′⊥ ← ∅
21: if DROP ∈ v(q′) ∧P′.⊥ 6= ∅ ∧P′# 6= ∅ then

22: if SNAT ∈ v(q′) ∧DNAT ∈ v(q′) then

23: p⊥ ← take one(take one(P′′⊥))

24: f̃ ′ ← f̃ ′ ∪ (
⋃
p∈P′#

{(P, cost(p⊥))})
25: P′⊥ ← P′#
26: else

27: while P′# 6= ∅ do

28: P ′ ← head(P′#)

29: P′# ← tail(P′#)

30: for all P ′′ ∈ P′.⊥ do

31: p⊥ ← take one(P ′′)

32: if SNAT ∈ v(q′) ∧DNAT /∈ v(q′) then

33: t← (cost(p⊥.sIP ) : cost(p⊥.sPort), id : id)

34: else if SNAT /∈ v(q′) ∧DNAT ∈ v(q′) then

35: t← (id : id, cost(p⊥.dIP ) : cost(p⊥.dPort))

36: else

37: t← id

38: (Ps,PN )← split(P ′, t, p ∈ P ′′)
39: if Ps 6= ∅ then

40: f̃ ′ ← f̃ ′ ∪ {(PS , t)}
41: P′# ← P′# ∪PN

42: P′⊥ ← P′⊥ ∪ {PS}
43: break

44: if P′⊥ 6= ∅ then

45: f ′ ← back fill(f̃ ′, q′, Ck, vk, P′⊥)

46: return f̃ ′
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segnala fallimento; altrimenti l’insieme P viene filtrato per togliere i pacchetti a cui λ̃ assegna già

la trasformazione t, e a quello che rimane viene assegnata la trasformazione t aggiungendo nuove

coppie alla funzione λ̃. Per prima cosa si controlla se siamo nel caso base, ovvero se non esistono più

coppie all’interno dell’insieme λ̃, in questo caso (riga 40) si inserisce semplicemente la nuova coppia

(P, t). Altrimenti si prende una coppia (P ′, t′) da λ̃ e si divide P nel multicubo Ps, corrispondente

all’intersezione con P ′, e nell’insieme di multicubi Pn, che non intersecano P ′. Per fare questo si usa

la funzione SPLIT introdotta nel capitolo 5 (riga 43), controllando che la parte a comune fra P e P ′

associ la stessa trasformazione e in caso contrario terminando con fallimento (riga 44). Alla fine viene

restituita l’unione della coppia (P ′, t′) con i risultati delle chiamate ricorsive, una per ogni multicubo

in Pn, sul resto delle coppie di λ̃ (riga 45). Si noti che la coppia (P ′, t′) viene appunto reinserita cos̀ı

com’è nel risultato, infatti la funzione update non modifica nessuna coppia già presente nel parametro

λ̃, adegua le coppie nuove che inserisce a quelle già presenti.

La funzione FILL, dell’algoritmo 5 (riga 1), ha lo scopo di aggiungere coppie a f̃ per scartare

quanti più pacchetti possibile, e completare la configurazione assegnando ai pacchetti rimanenti la

trasformazione id.

Partiamo sequenzialmente da ogni nodo etichettato con DROP (riga 5), assumiamo alla riga 6

di avere una funzione REST(λ̃: funzione sintetizzata su pacchetti) che dato un insieme di coppie

(multicubo di pacchetti, trasformazione) λ̃, restituisce un insieme di multicubi contenenti tutti e soli i

pacchetti di P che non compaiono in nessuna parte sinistra di λ̃. Se l’insieme dei multicubi contenenti

pacchetti non trattati da f̃ ′(q) non è vuoto allora aggiungiamo a f̃ ′(q) una coppia (P,⊥) per ogni

multicubo P di pacchetti non trattati (riga 9), e propaghiamo l’aggiornamento di f̃ ′ all’indietro nel

diagramma di controllo, attraverso la funzione ricorsiva BACK FILL (riga 10). Dopo aver aggiornato

la configurazione per scartare quanti più pacchetti possibile, potrebbero ancora esistere dei pacchetti

non trattati, pertanto invochiamo la funzione FILL ALL(f̃ ′, id) (riga 11). Assumiamo che la funzione

FILL ALL(f̃ , t) assegni la trasformazione t ad ogni pacchetto libero nella configurazione f̃ .

La funzione BACK FILL(f̃ : configurazione semiastratta sintetizzata, q: nodo, Ck : diagramma di

controllo, vk : assegnamento di etichette, P⊥ : insieme di multicubi), definita alla riga 14, dato un

nodo q e l’insieme dei multicubi P⊥ contenenti i pacchetti che vengono scartati da q, restituisce una

versione della configurazione f̃ aggiornata in modo tale che i predecessori di q assegnino ai propri

pacchetti delle trasformazioni tali da far s̀ı che più pacchetti possibili siano ridiretti verso P⊥ in q.

Assumiamo (riga 17) di avere a disposizione una funzione PREDECESSORI(q: nodo, A: insieme di

archi) che restituisce l’insieme delle coppie (q′, ψ) tale che (q′, ψ, q) ∈ A. Inoltre, assumiamo (riga 17)

di avere a disposizione una funzione FILTER BACK(P: insieme di multicubi di pacchetti, ψ: condizione

sui pacchetti) che restituisce una copia di P nella quale in ogni multicubo sono rimossi i pacchetti che

non verificano ψ.

FILTER BACK(P, ψ) = {P ′ | P ∈ P ∧ P ′ = ψ(P ) ∧ P ′ 6= ∅}

Come nel capitolo 5 assumiamo che ψ possa essere scomposta in una congiunzione di predicati, uno

per ogni campo del pacchetto; pertanto l’insieme dei pacchetti che verificano ψ è un multicubo e

quindi l’operazione alla base della funzione FILTER BACK è l’intersezione fra multicubi.

La funzione TAKE ONE(X: insieme) è una funzione di utilità che dato un insieme restituisce

uno qualunque fra i suoi elementi. Per quanto riguarda P′# usiamo le funzioni HEAD e TAIL per

specificare che seguiamo un ordine nella valutazione dei multicubi, e l’unione alla riga 41 inserisce

infondo all’insieme. Il risultato è che i multicubi in PN sono valutati all’interno del ciclo while.

Teorema 15 (Correttezza del firewall generato). Se il sistema k è senza NAT ripetuti e la funzio-

ne sintetizzata λ̃ è disgiunta, se esiste una configurazione Σ ∈ Γk tale che i(λ̃) = L$(Ck,Σ)%M e
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tale che non esistono pacchetti ciclanti in (Ck,Σ), allora l’algoritmo 4 restituisce una configurazione

semiastratta sintetizzata f̃ tale che

i(f̃) ∈M3(Ck, vk) ∧ ∀p ∈ P. � (Ck, i(f̃))(p) = i(λ̃)(p)

altrimenti l’algoritmo termina segnalando errore.

7.5 Generazione diretta della configurazione IFCL usando i

tag

Il metodo seguente prevede una generazione diretta della configurazione IFCL, senza passare da firewall

semiastratti, e si basa sul campo tag dei pacchetti. Più nel dettaglio, la generazione segue tre fasi:

• a partire dalla configurazione astratta λ̃, generiamo una ruleset IFCL Rλ che ne è la traduzione

coppia per coppia;

• creiamo quattro ruleset IFCL derivate da Rλ: Rfil, Rsnat, Rdnat e Rnat;

• assegniamo ad ogni nodo del diagramma di controllo del sistema target una ruleset composta a

partire da quelle prodotte dal passo precedente o Rε, la rulset vuota.

Parleremo della correttezza della configurazione prodotta in termini di semantica della configurazione

IFCL e della sua concretizzazione come file di configurazione per il sistema target.

7.5.1 Generazione delle ruleset

Per prima cosa a partire dalla funzione astratta sintetizzata λ̃ generiamo la ruleset Rλ in modo tale

che la valutazione semantica della ruleset corrisponda all’interpretazione della funzione astratta:

LRλM(sNEW) = i(λ̃)

Questo viene ottenuto concatenando, per ogni coppia (P, t) ∈ λ̃, una regola (p ∈ P, target(t)), dove

target(t) è un target la cui applicazione realizza la trasformazione t.

target(t) =


ACCEPT se t = id

DROP se t = ⊥

NAT(dn, sn) altrimenti

dove dn e sn tali che trnat(dn, sn) = t

Per definizione di funzione astratta sintetizzata, nessuna delle regole si sovrappone con le altre, e

quindi l’ordine è completamente irrilevante.

A questo punto a partire dalla ruleset Rλ, attraverso la funzione RULESET GENERATION dell’algo-

ritmo 6 (riga 1), creiamo quattro ruleset: Rfil, Rsnat, Rdnat e Rnat. L’obiettivo è quello di produrre

una ruleset Rmark che assegni ad ogni multicubo P presente in λ̃ un’etichetta diversa per il campo

tag; di fare in modo che questa ruleset sia sempre la prima ad essere valutata per ogni pacchetto; e

di far dipendere le modifiche effettuate al pacchetto unicamente sulla base del campo tag. Per ogni

riga della ruleset Rλ, se il target è ACCEPT allora la regola viene inserita nella ruleset Rfil (riga 5).

Altrimenti, se siamo di fronte ad una regola di NAT, viene generato un nuovo tag m, attraverso la

procedura NEW TAG che assumiamo restituire sempre nomi freschi (riga 7); si aggiunge a Rmark una

regola che associa il tag generato ai pacchetti che verificano la condizione e che non sono ancora stati
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Algorithm 6

1: function ruleset generation(Rλ)

2: Rnat = Rdnat = Rfil = Rsnat = Rmark = ε

3: for r in Rλ do

4: if r = (φ, ACCEPT) then

5: Rfil ← Rfil · r
6: else if r = (φ, NAT(dn, sn)) then

7: m← new tag( )

8: Rmark ← Rmark · (φ ∧ tag(p) = •, MARK(m))

9: Rdnat ← Rdnat · (tag(p) = m, NAT(dn, ?))

10: Rsnat ← Rsnat · (tag(p) = m, NAT(?, sn))

11: Rnat ← Rnat · (tag(p) = m, NAT(dn, sn))

12: Rfil ← Rfil · (tag(p) 6= •, ACCEPT) · (true, DROP)
13: Rdnat ← Rmark ·Rdnat
14: Rfil ← Rmark ·Rfil
15: Rsnat ← Rmark ·Rsnat
16: Rnat ← Rmark ·Rnat
17: return (Rfil, Rsnat, Rdnat, Rnat)

etichettati (riga 8), e si aggiunge una regola che applica la trasformazione ai pacchetti etichettati con

m alle rimanenti ruleset, applicando per ogni ruleset solo la parte di trasformazione corrispondente

(righe 9, 10 e 11). Nella condizione tag(p) = •, assumiamo che • sia il valore di default per il campo

tag, verificano la condizione tutti e soli i pacchetti che non sono ancora stati etichettati.

La condizione tag(p) = • serve perché altri pacchetti, non in P , dopo aver subito qualche tra-

sformazione in altri nodi, potrebbero verificare la condizione φ, ma su loro non voglio applicare la

trasformazione legata all’etichetta m. Per concludere, se ad un pacchetto è associato un tag allora

non lo dobbiamo scartare, altrimenti, se nessuna regola con target ACCEPT si applica al pacchetto e

questi non ha alcun tag assegnato, lo scartiamo con un’ultima regola (true, DROP) (riga 12). La ruleset

Rmark viene preposta a tutte le altre ruleset (righe 13, 14, 15 e 16), come abbiamo già detto infatti,

l’algoritmo funziona se l’assegnamento di etichette è la prima cosa che facciamo su ogni pacchetto in

transito sul firewall.

7.5.2 Assegnamento delle ruleset ai nodi

In [4] si propone un assegnamento delle ruleset ai nodi di iptables e pf. Daremo un metodo per la

generazione di un assegnamento di ruleset sulla base dell’assegnamento di etichette vk coerente con i

sistemi già trattati ed applicabile anche a ipfw.

Assumiamo di avere un assegnamento di etichette per il sistema target vk, la funzione c : Q → ρ

vale dunque:

c(q) = cnat(q) · cfil(q)

cnat(q) =



Rsnat se SNAT ∈ vk(q) ∧DNAT /∈ vk(q)

Rdnat se SNAT /∈ vk(q) ∧DNAT ∈ vk(q)

Rnat se SNAT ∈ vk(q) ∧DNAT ∈ vk(q)

Rε altrimenti

cfil(q) =

Rfil se DROP ∈ vk(q)

Rε altrimenti
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Da notare che per quanto riguarda pf ed iptables l’assegnamento di ruleset ai nodi del diagramma è

lo stesso descritto nell’articolo.

7.5.3 Correttezza della configurazione generata

Nell’articolo [4] si dimostra che se ogni percorso π ∈ Π(Ck) passa da almeno un nodo a cui è assegnato

Rfil (quindi nel nostro caso un nodo con etichetta DROP ), allora il firewall generato accetta tutti e

soli i pacchetti accettati dal firewall originale. Notiamo che, oltre a quelli presentati precedentemente,

anche l’assegnamento di ruleset che abbiamo dato per ipfw rispetta la condizione.

Dimostriamo qualcosa di più forte, se la funzione su pacchetti da compilare è localmente fattibile

e non ci sono NAT ripetuti sul diagramma di controllo allora la semantica del firewall prodotto è

esattamente la stessa del firewall di partenza.

Teorema 16. Sia ρ = {Rsnat, Rdnat, Rnat, Rfil, Rsnat · Rfil, Rdnat · Rfil, Rnat · Rfil, Rε}, dove Rfil,

Rsnat, Rdnat e Rnat sono prodotto dall’algoritmo 6 con input Rλ. Sia c : Q → ρ l’assegnamento di

ruleset ai nodi del diagramma di controllo del sistema target Ck, generato secondo vk. Se il sistema

target k è senza NAT ripetuti, se ogni percorso da qi a qf comprende almeno un nodo etichettato

con DROP , se l’interpretazione di λ̃ è localmente fattibile dal sistema target, ε0(i(λ̃), Ck, vk), e se le

etichette sugli archi non predicano sul campo tag, allora la semantica del firewall (Ck,Σ) con Σ = (ρ, c)

per lo stato sNEW è identica all’interpretazione di λ̃.

L(Ck,Σ)M(sNEW) = i(λ̃)

Notiamo che questo non vale per ipfw che però ha un forma abbastanza peculiare in quanto ogni

percorso π ∈ Π(Cipfw) contiene solo nodi con assegnate tutte le etichette possibili (a eccezione del

nodo iniziale e di quello finale).

Questo secondo teorema garantisce la correttezza della generazione della configurazione per ipfw.

Teorema 17. Sia ρ = {Rsnat, Rdnat, Rnat, Rfil, Rsnat · Rfil, Rdnat · Rfil, Rnat · Rfil, Rε}, dove Rfil,

Rsnat, Rdnat e Rnat sono prodotto dall’algoritmo 6 con input Rλ. Sia c : Q → ρ l’assegnamento

di ruleset ai nodi del diagramma di controllo del sistema target Ck, generato secondo vk. Se tutti

i percorsi del sistema target k, Π(Ck), sono tali che `(π̈) = {SNAT,DNAT,DROP}, e se nessun

pacchetto a cui siano applicate trasformazioni SNAT e DNAT al massimo una volta percorre dei loop

nel diagramma di controllo, allora la semantica del firewall (Ck,Σ) con Σ = (ρ, c) per lo stato sNEW è

identica all’interpretazione di λ̃.

L(Ck,Σ)M(sNEW) = i(λ̃)

7.5.4 Problemi di concretizzazione

Come mai abbiamo deciso di progettare un algoritmo che non facesse uso di tag se quello proposto

nell’articolo [4] funziona correttamente? Il motivo principale è legato al fatto che il campo tag stesso,

e l’operazione MARK nei vari linguaggi di configurazione, sono soggetti a vincoli differenti, rendendo

difficile la concretizzazione della configurazione IFCL in un file di configurazione per il sistema target.

Per i sistemi attualmente supportati abbiamo individuato delle tecniche di compilazione ad hoc, questo

però è un problema da risolvere singolarmente per ogni nuovo sistema da supportare, e spesso per

permettere le operazioni di cui abbiamo bisogno è necessario produrre delle configurazioni bizantine.

Le parti delle ruleset prodotte dall’algoritmo 6 immediatamente individuabili come potenzialmente

problematiche da implementare nei linguaggi di configurazione target sono:
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1. La condizione tag(p) = •, in quanto non è definito il tag nullo in nessuno dei linguaggi di

configurazione supportato. Questa condizione può essere sostituita chiaramente con un controllo

del tipo tag(p) ∈ M dove M è l’insieme dei tag creati dall’algoritmo, ma solo se il linguaggio

permette di esprimere condizioni come l’appartenenza del tag ad un insieme.

2. La condizione tag(p) 6= •, che soffre dello stesso problema che può però essere risolto in questo

caso creando più regole, una per ogni m ∈M con condizione tag(p) = m e aventi tutte l’azione

associata alla regola iniziale (ovvero ACCEPT).

3. Il fatto di dover modificare il campo tag dei pacchetti, attraverso il target MARK in ogni nodo del

diagramma di controllo, o comunque di dover eseguire la ruleset Rmark come prima cosa per

ogni pacchetto.

4. Il fatto che in IFCL, dopo aver compiuto l’operazione MARK, la valutazione della ruleset prose-

gue, mentre in alcuni linguaggi l’operazione di modifica del tag corrisponde necessariamente

all’accettazione immediata. La traduzione deve tener conto di questo usando un’istruzione del

linguaggio target che scrive il campo tag ma che lascia che il pacchetto continui la valutazione

della ruleset, oppure deve garantire la preservazione della semantica associando, già al momento

dell’applicazione del tag, l’azione corretta.

Valutiamo questi potenziali problemi nei sistemi attualmente supportati e proponiamo soluzioni

adeguate. Per risolvere questi problemi è necessario in alcuni casi modificare le ruleset prodotte. La

mancanza di un approccio unificato, estendibile a nuovi sistemi è il motivo principale che ci ha portati

a sviluppare un nuovo algorimo per la generazione di configurazioni IFCL che, anche se per il momento

non supporta tutti i sistemi, crediamo vada nella direzione più corretta per individuare una soluzione

generale al problema della transcompilazione fra linguaggi di configurazione.

ipfw

In ipfw i tag sono numeri interi ed è supportato il filtro su intervalli di tag, quindi se generiamo i tag

in ordine e teniamo traccia del massimo possiamo risolvere i punti 1 e 2 usando not tagged 0-max

per esprimere tag(p) = • e tagged 0-max per esprimere tag(p) 6= •. L’ordine delle regole in ipfw

non è soggetto a restrizioni quindi non abbiamo nessun problema per quanto riguarda il punto 3.

L’applicazione di un tag al pacchetto non è un’azione di per sé in ipfw ma un’opzione associata ad

un’azione. Pertanto in ipfw non è direttamente esprimibile un’istruzione del tipo (φ, MARK(m)). Questo

ci crea un problema con il punto 4, che possiamo risolvere in due modi:

• possiamo sfruttare l’azione count, che non ha effetti sulla valutazione del pacchetto da parte della

ruleset, ed esprimere (φ, MARK(m)) come ipfw -q add count tag m φ. Questa è sicuramente la

soluzione più semplice ma usa l’azione count in modo sicuramente diverso da quello atteso e

rende la configurazione prodotta poco leggibile e potrebbe interferire con gli strumenti che usano

count, per esempio per monitorare o debuggare la configurazione.

• possiamo, attraverso una fase di preprocessing, verificare quale sarà la regola successiva a

(φ, MARK(m)) che stabilirà il destino del pacchetto e riscrivere la regola combinando i due tar-

get. Osserviamo che, dato che non vale tag(p) = •, nessuna altra regola di Rmark sarà applicata

al pacchetto. La regola che sarà successivamente applicata al pacchetto nella ruleset sarà ne-

cessariamente una della forma (tag(p) = m, NAT(dn, sn)) dalla ruleset Rnat. Quindi l’azione

corrispondente, insieme alla MARK, può essere scritta come target della regola.
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Algorithm 7

1: function ruleset generation(Rλ)

2: Rnat = Rdnat = Rfil = Rsnat = Rmark = ε

3: for r in Rλ do

4: if r = (φ, ACCEPT) then

5: Rfil ← Rfil · r
6: else if r = (φ, NAT(dn, sn)) then

7: m← new tag( )

8: Rmark ← Rmark · (φ, MARK(m))

9: Rdnat ← Rdnat · (tag(p) = m, NAT(dn, ?))

10: Rsnat ← Rsnat · (tag(p) = m, NAT(?, sn))

11: Rnat ← Rnat · (tag(p) = m, NAT(dn, sn))

12: Rfil ← Rfil ·Rmark ·Rfil · (tag(p) 6= •, ACCEPT) · (true, DROP)
13: Rdnat ← Rdnat ·Rmark ·Rdnat
14: Rsnat ← Rsnat ·Rmark ·Rsnat
15: Rnat ← Rnat ·Rmark ·Rnat
16: return (Rfil, Rsnat, Rdnat, Rnat)

iptables

In iptables i tag sono numeri interi e le condizioni sui tag possono comprendere la specifica di una

maschera, in questo caso ogni numero che è identico a quello specificato dalla condizione, modulo la

maschera, verifica la condizione. Possiamo quindi risolvere i problemi dei punti 1 e 2 decidendo di

usare solo tag dispari e usando una maschera /1. Esprimiamo quindi tag(p) = • come ! --mark 1/1

e tag(p) 6= • come --mark 1/1. In iptables MARK è un taget a sé e una volta applicato la valutazione

della ruleset prosegue dalla regola successiva, esattamente come in IFCL, quindi non abbiamo problemi

per quanto riguarda il punto 4. Per quanto riguarda il punto 3 sembrano esserci indicazioni contrastanti

su dove possono essere inserite regole con target MARK: in molte fonti si raccomanda di usarle solo

nella tabella mangle, talvolta dicendo che altrimenti il tag non viene associato al pacchetto [18]; nel

manuale di iptables invece non c’è traccia di vincoli simili [21]. Che si tratti di una questione di

stile o di un requisito necessario per il corretto funzionamento della configurazione, una semplice fase

di preprocessing è sufficiente a spostare il contenuto della ruleset Rmark nei nodi del diagramma di

controllo relativi alla tabella MANGLE (i nodi relativi alle ruleset PREROUTING e OUTOUT della tabella

MANGLE dovrebbero essere sufficienti).

pf

In pf i tag sono stringhe arbitrarie, confrontate unicamente per identità: non è supportata nessuna

forma di controllo su insieme, lista o intervallo. Questo rende molto difficile realizzare il controllo

tag(p) = • del punto 1. A complicare ulteriormente le cose concorre il fatto che le regole di tra-

sformazione siano separate da quelle di filtro, pertanto la traduzione di Rmark per le ruleset Rsnat

e Rdnat deve produrre una lista di regole di trasformazione, che hanno una sintassi più limitata di

quelle di filtro [10]. Un limite importante per quanto riguarda i tag nelle regole di traduzione, è

che la condizione tagged non può essere negata usando ! come succede invece nelle regole di filtro.

Proponiamo un algoritmo alternativo per la generazione delle configurazioni, molto simile a quello

originale: l’algoritmo 7.
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La ruleset Rλ è tale che le condizioni delle regole sono tutte mutualmente esclusive. Il controllo

tag(p) = • nell’algoritmo 6 quindi non serve a impedire che un tag sovrascriva un altro precedente-

mente assegnato dalla stessa ruleset, ma ad impedire che siano assegnati nuovi tag a pacchetti già

trasformati da una ruleset precedente. Poiché per essere modificato un pacchetto deve prima essere

taggato, il controllo tag(p) = • serve allo scopo. Possiamo quindi rimuovere il controllo tag(p) = •
dalle regole se prima di controllare se il pacchetto verifica le condizioni ci sinceriamo che il pacchetto

non sia già stato taggato. Aggiungiamo quindi una parte iniziale alle ruleset Rsnat , Rdnat e Rfil che

controlla se il pacchetto è già stato taggato e in quel caso gli associa il destino previsto dall’algoritmo;

questo corrisponde esattamente a replicare le regole del tipo (tag(p) = m, NAT(dn, ds)) all’inizio della

ruleset.

Come detto, il problema del punto 2 è facilmente risolvibile producendo una regola della forma

(tag(p) = m, ACCEPT) per ogni tag m creato dal programma. Il punto 3 non rappresenta alcun problema:

i tag possono essere scritti sia dalle regole di filtro che da quelle di traduzione. Anche in pf, come

in ipfw, l’operazione di associare un tag a un pacchetto non è un’azione, ma un’opzione associata ad

un’altra azione. Per il punto 4 occorre fare un distinguo: nelle regole di filtro l’azione a cui associamo

l’opzione di tag può essere solo block o pass, quindi non è possibile tradurre direttamente il target

MARK; per le regole di traduzione la questione non è altrettanto chiara. Dalla grammatica presente

nel manuale notiamo che la parte delle istruzioni di trasformazione che specifica la traduzione da

applicare al pacchetto (["->" ( redirhost | "" redirhost-list "") [ portspec ] [ pooltype

] [ "static-port" ] ]) è opzionale. Tuttavia non è espressamente definito il comportamento di

una regola di traduzione che non preveda alcuna traduzione. Ad ogni modo sia per le regole di

traduzione, sia per quelle di filtro è possibile applicare la stessa fase di postprocessing proposta per

ipfw: combinare la regola da tradurre (con target MARK) con la successiva la cui condizione viene

verificata dal pacchetto. Inoltre dal diagramma di controllo (o dal fatto che le regole di traduzione

siano sempre considerate prima di quelle di filtro) risulta evidente che in realtà sia sufficiente associare

i tag ai pacchetti in Rsnat e Rdnat, tralasciando la cosa in Rfil.
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Capitolo 8

Conclusioni

Abbiamo presentato una pipeline di transcompilazione fra linguaggi di configurazione di sistemi fi-

rewall differenti, che al momento supporta i sistemi iptables, pf e ipfw. Abbiamo dimostrato entro

quali limiti sia garantita l’equivalenza fra il firewall di partenza e quello prodotto, e attraverso uno

studio dell’espressività dei sistemi firewall abbiamo valutato il risultato ottenuto rispetto a quanto

teoricamente possibile.

Il cuore del nostro approccio è il linguaggio IFCL, un linguaggio intermedio che permette di rappre-

sentare firewall definiti con i vari linguaggi supportati e del quale è definita una semantica operazionale.

IFCL astrae dai dettagli dei sistemi rappresentati, usando un linguaggio standard per la definizione

delle regole di filtro e traduzione e modellando il procedimento di applicazione delle regole del sistema

attraverso un diagramma di controllo. Il lavoro presentato estende quello esposto in [4], definendo una

nuova semantica denotazionale per il linguaggio intermedio IFCL, che caratterizza il comportamento

di un firewall rappresentandolo come una funzione dall’insieme dei pacchetti a quello delle trasfor-

mazioni possibili. In base a questa caratterizzazione funzionale vengono ridefiniti gli algoritmi che

implementano il processo di astrazione del firewall source, e la rappresentazione sintetica della sua

semantica; vengono studiati i limiti teorici della transcompilazione e viene presentato un algoritmo

per la generazione della configurazione IFCL target.

Il primo stadio della pipeline corrisponde alla formalizzazione del firewall source, usando IFCL;

questa fase è semplificata molto dal fatto che IFCL sia definito in modo tale che ogni azione dei

linguaggi supportati abbia un corrispettivo diretto in IFCL.

Nello stadio due vogliamo calcolare una rappresentazione sintetica della semantica del firewall IFCL:

per prima cosa rimuoviamo i target che modificano il flusso di controllo, come CALL e GOTO; poi astraiamo

le ruleset calcolando la funzione da pacchetti a trasformazioni associata ad ogni nodo del diagramma

di controllo, in forma sintetica; infine procediamo a comporre fra loro le funzioni per ottenere la

semantica stessa del firewall (per semplificare il calcolo trasformiamo prima il diagramma di controllo

in una versione equivalente aciclica). La correttezza della semantica denotazionale rispetto a quella

operazionale e le condizioni poste sulla rappresentazione sintetica, basata su multicubi, garantiscono

la conservazione della semantica del firewall nei vari passaggi. Prima di applicare la terza fase della

pipeline, e derivare un firewall IFCL del tipo target, controlliamo che sia verificata la fattibilità locale,

una condizione necessaria (ma non sufficiente) perché il sistema target sia in grado di replicare il

comportamento del firewall di origine.

Se la condizione è verificata, nella fase tre scomponiamo la funzione sintetizzata, ottenuta dall’a-

strazione del firewall di origine, in una serie di funzioni, una per ogni nodo del diagramma di controllo

del sistema target; successivamente traduciamo le funzioni in ruleset IFCL. La scomposizione può fallire

qualora il firewall da implementare non sia esprimibile nel sistema target, in caso contrario il firewall
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IFCL prodotto e quello di partenza hanno la stessa semantica, sia per quanto riguarda i pacchetti

accettati, sia per quanto riguarda i pacchetti scartati.

L’algoritmo che abbiamo definito purtroppo non dà garanzie di trovare una scomposizione se nel

diagramma di controllo del sistema target sono presenti più nodi, consecutivi in almeno un percorso,

che siano capaci di effettuare le stesse trasformazioni su un campo del pacchetto (due nodi capaci

di fare SNAT o due nodi capaci di fare DNAT). Per questi sistemi, come ipfw, rimane applicabile

l’algoritmo basato sull’uso del campo tag dei pacchetti, definito inizialmente in [4] per iptables e

pf, e riproposto qui in versione lievemente modificata per essere applicabile a ipfw. Inoltre, abbiamo

studiato i problemi legati alla traduzione delle configurazioni IFCL generate da questo algoritmo verso

i linguaggi dei sistemi target, mostrando in particolare come questi possano essere risolti almeno per

iptables e ipfw.

Infine, nella fase quattro della pipeline, il firewall IFCL viene tradotto nel linguaggio di configura-

zione target; la traduzione è banale in quanto il firewall prodotto dalla fase precedente è normalizzato

e quindi privo di azioni complesse come CALL e GOTO.

La necessità di trovare strumenti affidabili per la gestione dei firewall, definendo possibilmente

soluzioni applicabili a diversi sistemi, è fuor di dubbio. I nostri risultati sono a nostro avviso molto

promettenti, in quanto basati su un approccio formale e generale, sebbene risultino incapaci di trat-

tare adeguatamente alcuni casi importanti, come la generazione di firewall qualora il sistema target

consenta di applicare lo stesso tipo di trasformazione ad un pacchetto in più momenti diversi nel corso

della valutazione.

Presentiamo qualche accenno riguardo all’implementazione effettiva della pipeline, dando qualche

dettaglio in più dal punto di vista degli algoritmi e delle strutture dati, con l’obiettivo principale di

mostrare che quanto esposto è realizzabile in modo efficiente. Presentiamo infine una serie di lavori

futuri che prevedono di estendere la teoria modellando ulteriori aspetti del comportamento di un

firewall e rilassando alcune delle assunzioni fatte.

8.1 Implementazione

Per la produzione di uno strumento software, che concretizzi quanto esposto in questa tesi, occorre

valutare alcuni aspetti implementativi e algoritmici tralasciati fino a qui. Nel capitolo 5 abbiamo

parlato della rappresentazione sintetica delle funzioni λ : P → T (P) ∪ {⊥}, definite come insiemi di

coppie (P, t) ∈ λ̃ con P ∈M(P) e t ∈ T (P)∪{⊥}, quindi abbiamo già un modello di dato abbastanza

preciso per le coppie; manca da discutere il modello di dati per l’insieme stesso.

Fra le operazioni che la nostra rappresentazione delle funzioni sintetizzate deve supportare, quelle

potenzialmente problematiche di cui ci occuperemo sono:

• la funzione FILTER(λ̃, ψ) che restituisce una nuova funzione sintetizzata in cui la parte sinistra

delle coppie contiene solo elementi che verificano ψ:

{ (P ′, t) | (P, t) ∈ λ̃ ∧ P ′ = t−1(ψ(t(P ))) ∧ P ′ 6= ∅ }

• la funzione CONCAT(λ̃1, λ̃2) che restituisce la funzione sintetizzata corrispondente alla concate-

nazione delle due funzioni sintetizzate:

{ (P ′, t2 n t1) | (P1, t1) ∈ λ̃1 ∧ (P2, t2) ∈ λ̃2 ∧ P ′ = t−11 (P2 ∩ t1(P1)) ∧ P ′ 6= ∅ }

• l’unione di due funzioni sintetizzate λ̃1 ∪ λ̃21

1 Della funzione SPLIT(P , t, ∅) abbiamo descritto già brevemente nel capitolo 5.
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La soluzione banale consiste nel rappresentare λ̃ come una lista di coppie (P, t). È possibile comunque

usare anche strutture dati differenti, fra le varie possibili mostriamo una proposta che sfrutta i segment

tree [7].

8.1.1 Implementazione banale

Supponiamo di rappresentare le funzioni sintetizzate λ̃ come liste di coppie (P, t) ∈M(P)×T (P)∪{⊥}.
L’implementazione della funzione FILTER(λ̃, ψ) prevede allora di calcolare sequenzialmente, per ogni

(P, t) di λ̃:

1. il multicubo t(P ), che viene calcolato come

(t.sIP (P.sIP ) : t.sPort(P.sPort), t.dIP (P.dIP ) : t.dPort(P.dPort), t.tag(P.tag))

dove t.x(A) è {a} se t.x = cost(a), altrimenti, se t.x = id, è A.

2. il multicubo ψ(t(P )) = {p ∈ t(P ) | ψ(p)} dove abbiamo assunto che la funzione ψ possa essere

scomposta secondo

ψ(p) = ψsIP (p.sIP ) ∧ ψsPort(p.sPort) ∧ ψdIP (p.dIP ) ∧ ψdPort(p.dPort) ∧ ψtag(p.tag)

quindi possiamo calcolare ψ(t(P )) semplicemente come

ψsIP (t(P ).sIP )× ψsPort(t(P ).sPort)× ψdIP (t(P ).dIP )× ψdPort(t(P ).dPort)× ψtag(t(P ).tag)

dove scriviamo ψ(P ) per {p ∈ P | ψ(p)}, possiamo verificare a questo punto se ψ(t(P )) = ∅, nel

qual caso scartiamo la coppia (P, t) e passiamo alla successiva.

3. il multicubo t−1(ψ(t(P ))) viene ottenuto prendendo il risultato dalla fase precedente ψ(t(P ))

che chiamiamo P ′, e invertendo la trasformazione t, lavorando su ogni campo separatamente:

(t.sIP−1(P ′.sIP ) : t.sPort−1(P ′.sPort), t.dIP−1(P ′.dIP ) : t.dPort−1(P ′.dPort), t.tag−1(P ′.tag))

dove t.x−1(P ′.x) è uguale a P ′.x se t.x = id, altrimenti è uguale a P.x se t.x = cost(a) per un

qualche a.

In modo simile, la funzione CONCAT(λ̃1, λ̃2) prevede, per ogni coppia (P1, t1) di λ̃1, per ogni coppia

(P2, t2) di λ̃2 (quindi in totale O(n2) volte, se n è il numero di coppie in una funzione sintetizzata),

di calcolare in ordine:

1. il multicubo t1(P1), seguendo lo stesso procedimento del primo passaggio della funzione FILTER.

2. il multicubo P2 ∩ t1(P1) che viene calcolato campo per campo, essendo entrambi gli operandi

dei multicubi possiamo infatti calcolare per ogni x:

(P2 ∩ t1(P1)).x = P2.x ∩ t1(P1).x

anche in questo caso possiamo verificare a questo punto se il risultato è ∅ oppure no (e nel caso

scartare la coppia e passare alla successiva).

3. il multicubo t−11 (P2 ∩ t1(P1)) viene calcolato come nell’ultimo passo della funzione FILTER, dove

P ′ è però P2 ∩ t1(P1) e t1.x
−1(P ′.x) è uguale a P ′.x se t1.x = id, altrimenti è uguale a P1.x se

t1.x = cost(a) per un qualche a.

Infine, l’unione di due funzioni sintetizzate può essere realizzata semplicemente concatenando le due

liste.
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S1 = [1, 3]

S2 = [0, 0]

S3 = [2, 5]

{0} {1} {2} {3} {5} {9}

[0, 1] [2, 3] [5, 9]

[0, 3]

[0, 9]

S2 S1 S3

S1

S3

(a)

S1 = [0, 2]

S2 = [1, 5]

S3 = [3, 9]

{0} {1} {2} {3} {5} {9}

[0, 1] [2, 3] [5, 9]

[0, 3]

[0, 9]

S′2 S′1 S′3 S′2

S′1 S′2 S′3

(b)

S1 ∩ S′1 = [1, 2]

S2 ∩ S′2 = [1, 3]

S3 ∩ S′3 = {3}
S1 ∩ S′1 = {0}
S2 ∩ S′2 = ∅
S3 ∩ S′3 = ∅
S1 ∩ S′1 = {2}
S2 ∩ S′2 = [2, 5]

S3 ∩ S′3 = [3, 5] {0} {1} {2} {3} {5} {9}

[0, 1] [2, 3] [5, 9]

[0, 3]

[0, 9]

S2 ∩ S′1 S1 ∩ S′1

S1 ∩ S′2

S3 ∩ S′1

S1 ∩ S′1

S3 ∩ S′3

S1 ∩ S′3

S3 ∩ S′3

S3 ∩ S′2

S1 ∩ S′2

S3 ∩ S′2

(c)

Figura 8.1: due esempi di segment tree 8.1a, 8.1b e i relativi insiemi di segmenti rappresentati,

e segment tree relativo all’insieme delle possibili intersezioni fra elementi del primo insieme e del

secondo 8.1c.

8.1.2 Implementazione con segment tree

Come abbiamo visto nella sezione precedente, la parte algoritmicamente più complessa è sicuramente

l’applicazione della funzione CONCAT, in quanto l’operazione descritta dai tre passi deve essere ripetuta

mettendo in relazione ogni coppia del primo insieme con ogni coppia del secondo insieme. Questo è uno

spreco in molti casi: data una coppia (P1, t1) ∈ λ̃1, non vorremmo considerare la sua concatenazione

con tutte le coppie (P2, t2) ∈ λ̃2, ma solo con quelle per cui t1(P1) ∩ P2 6= ∅. In altre parole, dato

t1(P1) = P ′ vorremmo poter cercare in λ̃2 tutte e solo le coppie (P2, t2) in cui P2 interseca P ′. Se

rappresentiamo le funzioni sintetizzate λ̃ come liste di coppie l’unico modo per determinare questo

insieme è quello di valutare uno ad una tutte le coppie, come in effetti abbiamo fatto quando abbiamo

discusso l’implementazione banale.

Possiamo tuttavia considerare una rappresentazione di λ̃ più adeguata a questo tipo di ricerca.

Perché sia vero che t1(P1)∩P2 6= ∅, è necessario che, per ogni campo x ∈ {sIP, sPort, dIP, dPort, tag},
t1.x(P1.x) ∩ P2.x 6= ∅. L’idea è quella di usare, per ogni campo dei pacchetti, una struttura dati che

permetta una ricerca per intervalli in maniera efficiente, come un albero binario di ricerca, in modo

da poter trovare in tempo logaritmico il sottoinsieme di valori per i quali l’intersezione non è vuota.

In realtà le cose sono lievemente più complicate in quanto: (i) non abbiamo a che fare con valori unici

ma con insiemi arbitrari rappresentati come unioni di segmenti; (ii) non abbiamo in P un ordinamento

totale, in particolare non ci interessa un ordinamento lessicografico in cui l’ordine dipende dal primo
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campo e in caso di equivalenza dipende dal secondo e cos̀ı via: vogliamo un ordinamento separato per

ogni campo del pacchetto.

Per quanto riguarda il punto (i), una soluzione possibile, che approfondiamo qui, consiste nell’ap-

plicazione di segment tree, alberi specializzati per la rappresentazione di intervalli chiusi (segmenti)

[7]. Per il punto (ii) invece proponiamo di considerare i campi in cui i pacchetti sono divisi, in modo

indipendente, usando un albero per ogni campo.

Dato un insieme di segmenti, un segment tree può essere costruito prendendo la lista ordinata degli

estremi dei segmenti e costruendo un albero binario accoppiando i valori a due a due e costruendo

all’insù finché possibile, in modo tale che la lista degli estremi da cui si è partiti siano le foglie dell’albero

binario. L’altezza dell’albero è O(log(n)) con n numero degli intervalli di partenza, il numero di nodi

O(n log(n)).

Ad ogni nodo viene assegnato il segmento che sottende, dove alle foglie è assegnato il singoletto

contenente il valore dal quale sono state create e ad ogni nodo interno viene assegnato il segmento

[m,M ] dove m è l’estremo sinistro del segmento assegnato al figlio sinistro del nodo e M è l’estremo

destro del segmento assegnato al figlio destro. In questo modo ad ogni nodo è associato un segmento

che contiene i segmenti dei nodi figli. Chiamiamo Seg(q) = S il segmento assegnato al nodo q. L’idea

è che un segmento S = [m,M ], all’interno del segment tree, è rappresentato da un insieme di nodi Q

tali che m = min {m′ | q ∈ Q∧Seg(q) = [m′,M ′]}, M = max {M ′ | q ∈ Q∧Seg(q) = [m′,M ′]} e che

per ogni valore a ∈ [m,M ], se a è il valore di una foglia, allora esiste un q ∈ Q tale che a ∈ Seg(q).

L’insieme Q definito non è unico, fra quelli possibili prendiamo sempre il minore; è possibile dimostrare

che per ogni livello dell’albero servono al massimo due nodi.

Più in dettaglio, la procedura per etichettare i nodi del segment tree, per rappresentare il segmento

S = [m,M ] è la seguente. A partire dalla radice, dato il nodo q:

1. se Seg(q) ⊆ S allora etichettiamo il nodo con S;

2. altrimenti:

• se Seg(q′) ∩ S 6= ∅, dove q′ è il figlio sinistro di q, allora proseguiamo l’etichettatura

ricorsivamente dal nodo q′;

• se Seg(q′′) ∩ S 6= ∅, dove q′′ è il figlio destro di q, allora proseguiamo l’etichettatura

ricorsivamente dal nodo q′′.

Le figure 8.1a e 8.1b mostrano due esempi di segment tree, creati a partire da insiemi di segmenti

diversi, rappresentati a loro volta come etichette sugli alberi.

Per il seguito ci sarà utile definire, dati due insiemi di intervalli S = {S1, S2, . . . , Sn} e S′ =

{S′1, S′2, . . . , S′m}, come calcolare l’insieme delle possibili intersezioni fra un intervallo del primo insieme

e uno del secondo: {Si ∩ S′j | Si ∈ S∧ S′j ∈ S′}. Come prima cosa si noti che per ogni possibile scelta

di i e j, l’intersezione Si ∩ S′j restituisce un segmento oppure l’insieme vuoto. Osserviamo anche che

gli estremi dei segmenti risultanti possono essere solo fra quelli dei segmenti di S o S′. La procedura

per calcolare tutte le possibili intersezioni prevede di ispezionare i nodi del segment tree uno ad uno,

dalla radice alle foglie, seguendo una visita in profondità per mezzo di una procedura ricorsiva. Nella

visita ci ricorderemo all’interno di quali segmenti ci troviamo (cioè quali etichette abbiamo incontrato

nella discesa). Più precisamente, a partire dalla radice e da due insiemi vuoti di etichette, uno per S,

l’altro per S′, applichiamo il seguente algoritmo, dove q è il nodo nel quale ci troviamo, e gli insiemi

I e I′ sono le etichette incontrate:

1. per ogni etichetta Si di S assegnata al nodo q:
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• aggiungiamo Si a I per ricordarci che da questo nodo in poi siamo dentro Si;

• per ogni S′j in I′, scriviamo l’etichetta Si ∩ S′j sul nodo q.

2. per ogni etichetta S′j di S′ assegnata al nodo q:

• aggiungiamo S′j a I′ per ricordarci che da questo nodo in poi siamo dentro S′j ;

• per ogni Si in I, scriviamo l’etichetta Si ∩ S′j sul nodo q.

3. proseguiamo ricorsivamente su entrambi i nodi figli di q con gli insiemi aggiornati.

Il risultato dell’intersezione degli intervalli del segment tree in figura 8.1a con quelli del segment tree

in figura 8.1b è mostrato in figura 8.1c.

L’idea dunque è quella di usare una serie di segment tree per ognuna delle funzioni sintetizzate λ̃,

in particolare uno per ogni dimensione di P. Consideriamo di avere un nome per ogni multicubo P tale

che (P, t) ∈ λ̃, la funzione sintetizzata λ̃ viene rappresentata come una coppia (D,T ) dove D è una

rappresentazione efficiente della funzione che associa al nome di P la trasformazione t per ogni coppia

(P, t) ∈ λ̃ (ad esempio una tabella hash), e T = TsIP ×TsPort×TdIP ×TdPort×Ttag è la lista di alberi,

uno per ogni campo dei pacchetti, all’interno dei quali sono inserite le etichette che rappresentano i

segmenti dei campi nei multicubi. Come nome per il multicubo P useremo P̆ . Consideriamo anche,

per ogni campo x, di ogni multicubo P , di avere un nome (una numerazione) per ogni segmento di cui

P.x è composto. Scriveremo P̆ .x.1, P̆ .x.2 e cos̀ı via, assumendo quindi che dal nome del segmento sia

sempre immediatamente derivabile il nome del multicubo. Per indicare il segmento in sé scriveremo

invece P.x.1, P.x.2 e cos̀ı via. Per ogni multicubo P , per ogni campo x, rappresentiamo dunque ogni

segmento P.x.i nel segment tree Tx etichettandolo con il nome P̆ .x.i. mi sono perso

Supponiamo quindi di voler calcolare CONCAT(λ̃1, λ̃2), supponiamo inoltre che le funzioni λ̃1 e

λ̃2 siano rappresentate come (D1, T1) e (D2, T2), dove gli alberi che compongono T1 e quelli che

compongono T2 sono uguali tranne che per i nomi di segmenti associati ai nodi. Il risultato della

funzione sarà λ̃3, rappresentata come (D3, T3), sempre con T3 avente la stessa forma degli altri. Per

motivi che saranno chiari dopo, supponiamo di avere una funzione ⊕ che dato il nome di due multicubi

restituisce un nuovo nome per la loro intersezione, assumendo sempre che data l’intersezione posso

ottenere il nome dei due multicubi. Ricordiamo che vogliamo calcolare t−11 (P2 ∩ t1(P1)), o meglio, per

ogni campo x vogliamo t1.x
−1(P2.x ∩ t1.x(P1.x)). Esprimendo gli insiemi P1.x e P2.x come unioni di

segmenti, abbiamo

t1.x
−1(

⋃
i

(P2.x.i) ∩ t1.x(
⋃
j

(P1.x.j))) = t1.x
−1(

⋃
i,j

(P2.x.i ∩ t1.x(P1.x.j)))

Consideriamo due casi distinti:

• se t1 = id allora la formula precedente diventa⋃
i,j

(P2.x.i ∩ P1.x.j)

quindi per ogni coppia di segmenti, uno relativo a P1 nell’albero T1.x e l’altro relativo a P2

nell’albero T2.x, calcoliamo l’intersezione, che è un segmento che chiamiamo (P̆2 ⊕ P̆1).x.(i, j),

e la inseriamo nell’albero T3.x;

• se t1 = cost(a) allora dobbiamo verificare se a ∈
⋃
i(P2.x.i) (possiamo farlo con una visita

sull’albero in O(log(n))), in questo caso allora la formula restituisce semplicemente
⋃
j(P1.x.j),

cioè tutti i segmenti che compongono P1.x sono da ricopiare in T3.x; altrimenti nessun segmento

è da aggiungere a T3.x.
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Il grande vantaggio di questa rappresentazione è che ora possiamo calcolare il risultato di CONCAT(λ̃1,

λ̃2) visitando in parallelo, per ogni dimensione x, i due alberi T1.x e T2.x e collezionando il risultato

in T3.x una volta sola, e non una volta per ogni coppia di multicubi (P1, P2). Il procedimento è molto

simile a quello per il calcolo dell’intersezione fra due insiemi di intervalli presentato precedentemente e

mostrato in figura 8.1; qui però è necessaria una trattazione delle etichette un po’ particolare in quanto

lavoriamo con insiemi scomposti in segmenti anziché direttamente con segmenti, inoltre occorre tenere

conto anche della trasformazione associata all’intervallo (se non è id).

L’algoritmo per il calcolo di CONCAT(λ̃1, λ̃2) prevede, per ogni dimensione x:

1. per ogni elemento (P1, t1) di λ̃1 per cui t1.x = cost(a), per qualche a, verificare se a appartiene a

qualche P2.x.j in T2.x, se questo è vero allora si inserisce P̆1 nell’insieme, inizialmente vuoto, Cx

contenente i multicubi di cui il campo x va copiato invariato in T3.x, e per ogni P2.x si aggiorna

D3 in modo tale che D3(P̆1).x = D2(P̆2).xn cost(a) (questa operazione complessivamente costa

O(log(n)) per ogni elemento di λ̃1, quindi un totale di O(n log(n)));

2. scorrere parallelamente gli alberi T1.x e T3.x, nodo per nodo, copiando in T3.x le etichette P̆1.x.i

se e solo se P̆1 appartiene a Cx (questa operazione prevede di scorrere l’albero T1.x una ed una

sola volta, quindi costa O(n log(n)));

3. scorre parallelamente gli alberi T1.x, T2.x e T3.x, leggendo dai primi due e scrivendo nel terzo,

attraverso una procedura ricorsiva che implementa una visita in profondità degli alberi; per ogni

nodo visitato teniamo conto dei segmenti all’interno dei quali ci troviamo. Più precisamente

assumiamo di essere al nodo q degli alberi, di sapere di essere dentro i segmenti I1 per quanto

riguarda λ̃1 e dentro i segmenti I2 per quanto riguarda λ̃2, allora quello che facciamo è:

• per ogni P1.x.i assegnato al nodo q in T1.x:

– segniamo di essere all’interno del segmento P1.x.i d’ora in poi, per il passo successivo

e le chiamate ricorsive (cioè aggiungiamo P1.x.i a I1)

– per ogni P2.x.j all’interno del quale ci troviamo in T2.x (cioè in I2), scriviamo (P̆1 ⊕
P̆2).x.(i, j) nel nodo q di T3.x, e aggiorniamo D3 in modo tale che D3(P̆1 ⊕ P̆2).x =

D2(P̆2).xn id

• per ogni P2.x.i assegnato al nodo q in T2.x:

– segniamo di essere all’interno del segmento P2.x.i d’ora in poi, nelle chiamate ricorsive

(cioè aggiungiamo P2.x.i a I2)

– per ogni P1.x.j all’interno del quale ci troviamo in T1.x (cioè in I1), scriviamo (P̆1 ⊕
P̆2).x.(i, j) nel nodo q di T3.x, e aggiorniamo D3 in modo tale che D3(P̆1 ⊕ P̆2).x =

D2(P̆2).xn id

• facciamo una chiamata ricorsiva per ogni nodo figlio di q rispettivamente nei tre alberi, con

I1 e I2 aggiornati.

(il calcolo prevede operazioni dal costo costante applicate su ogni tripletta di nodi corrispondenti

nei tre alberi, ogni nodo degli alberi è valutato una ed una sola volta, quindi il costo totale è

O(n log(n))).

Il risultato è quindi calcolato in un tempo totale O(n log(n)).

L’assunzione secondo cui tutti gli alberi hanno la stessa forma può essere verificata tenendo conto

di tutte le funzioni sintetizzate con cui dobbiamo lavorare durante la fase di creazione degli stessi, ad

esempio attraverso una fase di preprocessing. Questi ed altri dettagli, relativi all’eventualità in cui il

componente di un multicubo risulti essere vuoto, sono rimandati a future trattazioni; l’intento di questa
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digressione era infatti unicamente quello di mostrare che strutture dati adeguate possono essere im-

piegate per eliminare il costo quadratico della funzione CONCAT, che si presenta nell’implementazione

banale con liste.

8.2 Sviluppi futuri

La pipeline presentata qui può essere estesa in molti modi: è possibile aumentare il numero di sistemi

supportati attraverso compilatori dedicati per e da IFCL; possiamo inoltre approfondire maggiormente

la formalizzazione dello stato interno del firewall modellando fedelmente le feature più avanzate di-

sponibili nei firewall, come il bilanciamento del carico e i rate limit. Sebbene infatti, come abbiamo

detto, non sia sempre desiderabile per il porting forzare lo stesso comportamento rispetto allo stato,

possiamo comunque studiare il comportamento del firewall sulla base dello stato al fine di analizzare

le differenze fra la configurazione originale e quella generata.

La versione precedente di IFCL permetteva la modellazione di sistemi non deterministici, in cui

ad un dato pacchetto in input corrispondevano diversi esiti possibili. Anche lo stato interno veniva

modellato in un modo simile.

Abbiamo inoltre definito senza sfruttarla, la fase di refactoring della pipeline, atta a rimodellare la

configurazione IFCL dal punto di vista dello stile, mantenendo inalterata la semantica. Questa fase in

particolare offre numerose possibilità dal punto di vista della qualità del codice prodotto, ma complica

il lavoro dal punto di vista della traduzione delle configurazioni IFCL nel linguaggio target, pertanto

meriterebbe un’indagine a parte.

8.2.1 NAT non deterministico

Nelle versioni precedenti di IFCL, il target NAT aveva come argomenti insiemi arbitrari di indirizzi anziché

singoli valori. La semantica attesa era quella di una trasformazione non deterministica secondo la quale

la riscrittura del pacchetto p potesse avvenire secondo uno qualunque degli indirizzi specificati.

Questo genere di trasformazioni può essere specificata in iptables, dove però la semantica pre-

vede che la trasformazione venga selezionata fra quelle possibili attraverso una politica round robin,

quindi non proprio in modo non deterministico, ma in funzione dei pacchetti precedentemente trattati.

Opzioni avanzate con effetti simili sono disponibili in molti linguaggi, di solito la trasformazione può

essere selezionata attraverso una politica round robin o secondo il bilanciamento del carico.

In effetti quindi, secondo questi esempi un modello non deterministico non è necessario in quanto la

trasformazione scelta è funzione dei pacchetti precedentemente osservati e quindi lo stato interno può

essere applicato per decidere deterministicamente il trattamento da riservare al prossimo pacchetto.

Inoltre consentire di definire NAT non deterministici complicherebbe molto l’analisi delle configu-

razioni. Si assuma ad esempio di avere in un percorso due nodi successivi: uno nel quale possiamo

fare NAT e l’altro nel quale possiamo scartare alcuni pacchetti; se nel primo nodo modifico l’indirizzo

di origine di un pacchetto p scrivendo non deterministicamente 0.0.0.0 oppure 1.1.1.1, e nel secondo

nodo scarto ogni pacchetto in cui l’IP di origine è 0.0.0.0 e accetto ogni pacchetto in cui l’IP di origine

è 1.1.1.1, allora complessivamente il firewall si comporterà rispetto a p scartandolo o accettandolo

non deterministicamente. Questo genere di comportamenti sarebbe sicuramente presente solo in con-

figurazioni “sbagliate”, in loro presenza sarebbe perfettamente accettabile rifiutare la compilazione;

tuttavia altre difficoltà di modellazione sono più difficili da risolvere.

Ad esempio non sempre è facile tenere traccia dei vincoli sugli insiemi di indirizzi. In iptables è

possibile specificare traduzioni non deterministiche solo verso insiemi di pacchetti che siano equivalenti
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a prodotti cartesiani di intervalli di valori, cioè cubi della forma ([sIP, sIP ′] : [sPort, sPort′], [dIP, dIP ′] :

[dPort, dPort′], [tag, tag′]); questo è dovuto alla sintassi attraverso la quale si definiscono le regole.

Tuttavia, avendo due nodi consecutivi in un percorso all’interno del diagramma di controllo, il pri-

mo capace di fare SNAT e il secondo DNAT, è possibile che la concatenazione delle trasformazioni

produca un insieme di alternative non esprimibile come cubo. Si supponga ad esempio che il pri-

mo dei nodi, quello capace di fare SNAT, trasformi un pacchetto p non deterministicamente in uno

fra un insieme di pacchetti uguali a p tranne per sIP , preso non deterministicamente all’interno

di [192.168.0.0, 192.168.0.10]. Supponiamo anche che il secondo nodo applichi a tutti i pacchetti

p[sIP 7→ 192.168.0.0] . . . p[sIP 7→ 192.168.0.9] la trasformazione (id : id, cost(1.1.1.1) : id, id), e a

p[192.168.0.10] la trasformazione (id : id, cost(2.2.2.2) : id, id). Allora la composizione delle due

funzioni associa non deterministicamente al pacchetto p, una fra le trasformazioni

( [cost(192.168.0.0), cost(192.168.0.9)]× {id} × {cost(1.1.1.1)} × {id} × {id} )

∪ ( {cost(192.168.0.10) : id, cost(1.1.1.1) : id, id} )

che, evidentemente, non può essere espresso come cubo (né come multicubo).

8.2.2 Stato interno

Lo stato interno è stato modellato in IFCL in un modo molto generale, tralasciando per il momento

ogni dettaglio riguardo alle informazioni effettivamente memorizzate riguardo il traffico osservato e

al loro uso per determinare il destino dei pacchetti in arrivo. Si è semplicemente assunto di avere

una funzione p `s α che associ ad ogni pacchetto p e stato s l’azione prescritta α, ed una funzione

s] (p, p′) che aggiorna lo stato interno s con le informazioni rilevanti riguardo ad un nuovo pacchetto

p accettato come p′. Gli sviluppi futuri rispetto allo stato possono andare nella direzione di modellare

uno ad uno i diversi strumenti che fanno uso dello stato interno, come il NAT dinamico e i limit rate;

oppure possono andare nella direzione di migliorare la rappresentazione sintetica della semantica di

un firewall per includere informazioni sul comportamento in funzione dello stato.

Nella caratterizzazione logica della semantica, formulata originariamente in [4] e presentata nella

sezione 2.5, il funzionamento dello stato è approssimato assumendo che un pacchetto appartenen-

te ad una qualunque connessione stabilita possa essere trasformato non deterministicamente in ogni

pacchetto possibile. Si noti che la caratterizzazione funzionale della semantica non comprende in-

vece un’approssimazione sul comportamento dello stato del firewall. Di fatto è possibile modificare

la semantica per gestire il target CHECK-STATE(X) con la stessa approssimazione della caratterizzazione

dichiarativa. La versione approssimata della semantica denotazionale, dato uno stato, associa ogni

pacchetto ad un insieme di trasformazioni possibili. A causa del non determinismo dato dall’appros-

simazione che abbiamo fatto sulla semantica dell’operazione CHECK-STATE( ) infatti non possiamo più

associare un pacchetto ad un destino deterministicamente. Come già detto riguardo al NAT, dover

gestire il non determinismo complica molto la progettazione di algoritmi che implementino la pipeli-

ne di compilazione; per questo abbiamo deciso di basarci sulla versione esatta e deterministica della

semantica in questa tesi.

In generale scoraggiamo dunque l’uso di approssimazioni come quella della caratterizzazione logica

in quanto eccessivamente grossolane e complicate da gestire. Presentiamo comunque per completezza

la versione approssimata non deterministica della semantica denotazionale di un firewall. Come per

la caratterizzazione logica, ci baseremo su stati approssimati S, che assegnano ad ogni pacchetto

un’etichetta di stato s ∈ {NEW, ENSTABLISHED}. Come al solito definiamo inizialmente la semantica di
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una ruleset e successivamente quella di un firewall.

LRM : S→ P→ 2T (P)∪{⊥}

LRM(s) = LRMs : P→ 2T (P)∪{⊥}

LRMs = LRMid
s

Dove la funzione LRMts : P → 2T (P)∪{⊥}, per un firewall F , uno stato s e una trasformazione su

pacchetti t ∈ T (P) è definita come:

LεMts (p) =

{t} se dp = ACCEPT

{⊥} altrimenti

L(φ, ACCEPT);RMts (p) =

{t} se φ(p, s)

LRMts (p) altrimenti

L(φ, DROP);RMts (p) =

{⊥} se φ(p, s)

LRMts (p) altrimenti

L(φ, NAT(dn, sn));RMts (p) =

{trnat(dn, sn) n t} se φ(p, s)

LRMts (p) altrimenti

L(φ, CHECK-STATE(X));RMts (p) =

trnondet(X) n t se φ(p, s)

LRMts (p) altrimenti

L(φ, MARK(m));RMts (p) =

LRM(id,id,id,id,cost(m))nt
s (p[tag 7→ m]) se φ(p, s)

LRMts (p) altrimenti

La funzione trnondet(X) per X ∈ {←,→,↔} restituisce tutte le possibili trasformazioni di pacchetti

che agiscono sui campi specificati da X. Formalmente:

trnondet(X) =


any(IP)× any(Port)× {id} × {id} × {id} se X =←

{id} × {id} × any(IP)× any(Port)× {id} se X =→

any(IP)× any(Port)× any(IP)× any(Port)× {id} se X =↔

Dove any(A) = {id} ∪ {cost(a) | a ∈ A}. Abbiamo abusato della notazione per quanto riguarda n,

intendendo con trnondet(X)n t l’insieme {t′n t | t′ ∈ trnondet(X)}. Per il resto non c’è niente di parti-

colare da notare, la semantica è molto simile alla versione deterministica in cui i valori restituiti dalla

funzione sono però inseriti in dei singoletti. L’unica eccezione è la sola operazione non deterministica

(o meglio, approssimata in modo non deterministico), cioè CHECK-STATE(X).

Definiamo la semantica di un firewall F come:

LFM : S → P→ 2T (P)∪{⊥}

LFM(s) = LFMs : P→ 2T (P)∪{⊥}

LFMs = LqiMF,∅s
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Dove per ogni q ∈ Q, q 6= qf

LqMF,Is (p) =

T ∪ {⊥} se ∃t ∈ Lc(q)Ms(p) . t = ⊥ ∨ δ(q, t(p)) ∈ I

T altrimenti

dove T =
⋃

t∈Lc(q)Ms(p)
t6=⊥

δ(q,t(p))/∈I

Lδ(q, t(p))MF,I∪{q}s (t(p)) n t

e per il nodo finale

Lqf MF,Is p = {id}

Notiamo che, poiché la semantica della ruleset associata ad un nodo q, dato un pacchetto p

restituisce un insieme di possibili trasformazioni Tq è necessario considerare separatamente il risultato

di ognuna delle trasformazioni t ∈ Tq. Se esiste almeno una trasformazione ti ∈ Tq che è uguale a ⊥
oppure tale che il prossimo nodo da visitare dato q e il pacchetto p′ = ti(p) creerebbe un loop, allora

sappiamo che ⊥ è una delle possibili trasformazioni associate a p dal firewall. Esclusa la possibilità

di essere scartato nel nodo q, tutte le possibili trasformazioni associate a p sono elementi dell’insieme

T , che viene costruito prendendo ogni trasformazione t ∈ Tq che permetta al pacchetto p di essere

passato ad un nuovo nodo q′ (dipendente da t) e collezionando le trasformazioni associate a p′ = t(p)

dalla semantica del nodo q′.
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Appendice A

Dimostrazioni

Presentiamo la dimostrazione di teoremi, lemmi e corollari presentati nella tesi, divisi seguendo i

capitoli di riferimento.

A.1 Correttezza della normalizzazione e della caratterizzazio-

ne logica di IFCL

Teorema 1 (Correttezza della normalizzazione). Sia F un firewall e$F% la sua versione normaliz-

zata. Chiamiamo s
p,p′−−→X s′ un passo del sistema di transizione master del firewall X ∈ {F ,$F%}.

Vale che

s
p,p′−−→F s′ ⇐⇒ s

p,p′−−→$F% s′.

Dimostrazione. Si veda [4] per la dimostrazione di questo teorema.

Lemma 1. Data una ruleset R abbiamo che

1. ∀p, s. p, s |=ε
R (ACCEPT, p′) =⇒ PR(p, p′, ŝ);

2. ∀p, p′, s . PR(p, p′, s) =⇒ ∃s ∈ S . ŝ = s ∧ p, s |=ε
R (ACCEPT, p′)

Dimostrazione. Si veda [4] per la dimostrazione di questo teorema.

Teorema 2 (Correttezza della caratterizzazione logica). Dato un firewall F ed il suo predicato

corrispondente PF abbiamo che

1. s
p,p′−−→ s ] (p, p′) =⇒ PF (p, p′, ŝ)

2. ∀p, p′, s. PF (p, p′, s) =⇒ ∃s ∈ S . ŝ = s ∧ s
p,p′−−→ s ] (p, p′)

Dimostrazione. Si veda [4] per la dimostrazione di questo teorema.

A.2 Correttezza della caratterizzazione funzionale

Lemma 2. Sia R una ruleset normalizzata IFCL, abbiamo che

1. ∀p, p′, s. ( p, s |=ε
R (ACCEPT, p′) ⇐⇒ JRK(s)(p) = p′ )

2. ∀p, s. ( JRK(s)(p) = ⊥ ⇐⇒ ∃p′′. p, s |=ε
R (DROP, p′) )

Dimostrazione. La dimostrazione procede per induzione sulla lunghezza della ruleset R:
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caso base: R = ε, secondo la semantica denotazionale applico la default policy restituendo p o ⊥;

in entrambi i casi viene applicata la regola (12) della semantica operazionale. Quindi l’enunciato

vale, dove nel caso di pacchetto scartato, p′′ = p.

passo induttivo: Assumo vero l’enunciato per ogni ruleset di lunghezza n, sia R = r ·R′ una ruleset

di lunghezza n+1. Sia r = (φ(p, s), a), se φ(p, s) non è verificato allora JRK(s)(p) è definita come

JR′K(s)(p) e banalmente, per ogni t, p, s 
R (t, i) per qualche i se e solo se p, s 
R′ (t, j) per

qualche j. Essendo R′ di lunghezza n, l’enunciato da dimostrare è valido per ipotesi induttiva.

Altrimenti, se φ(p, s) è verificato procediamo per casi in base al target a:

• se a = ACCEPT allora

JRK(s)(p) = p e p, s |=ε
R (ACCEPT, p), per la regola (1) della semantica operazionale, dato che

p, s 
R (ACCEPT, i);

• se a = DROP allora

JRK(s)(p) = ⊥ e p, s |=ε
R (DROP, p), per la regola (1) della semantica operazionale, dato che

p, s 
R (DROP, i);

• se a = NAT(dn, sn) allora

JRK(s)(p) = nat(p, dn, sn) e p, s |=ε
R (ACCEPT, nat(p, dn, sn)), per la regola (4) della semantica

operazionale, dato che p, s 
R (NAT(dn, sn), i);

• se a = CHECK-STATE(X) e vale p `s α, allora

JRK(s)(p) = enstabl(α,X, p) e p, s |=ε
R (ACCEPT, enstabl(α,X, p)), per la regola (2) della

semantica operazionale, dato che p, s 
R (CHECK-STATE(X), i);

• se a = CHECK-STATE(X) ma non vale p `s α, allora

JRK(s)(p) = JR′K(s)(p) e, per la regola (3) della semantica operazionale, p, s |=ε
R (t, p′′) se

e solo se p, s |=ε
R′ (t, p′′);

• se a = MARK(m) allora

JRK(s)(p) = JR′K(s)(p) = p[tag 7→ m] e, per la regola (13) della semantica operazionale,

p, s |=ε
R (t, p′′) se e solo se p[tag 7→ m], s |=ε

R′ (t, p′′).

Teorema 3 (Correttezza della caratterizzazione funzionale). Dato un firewall normalizzato F abbiamo

che

1. ∀p, p′, s. ( s
p,p′−−→ s ] (p, p′) ⇐⇒ JFK(s)(p) = p′ )

2. ∀p, s. ( JFK(s)(p) = ⊥ ⇐⇒ ¬∃p′. s p,p′−−→ s ] (p, p′) )

Dimostrazione. 1. segue banalmente da (q, s, p)→+
I (qf , s, p

′) ⇐⇒ JqKF,I(s)(p) = p′, che dimostria-

mo per induzione sul numero di passi nel sistema di transizione slave di IFCL.

caso base: (q, s, p)→+
I (qf , s, p

′) in un passo se e solo se (q, s, p)→ (qf , s, p
′) e qf /∈ I, dove (q, s, p)→

(qf , s, p
′) a sua volta è vero se e solo se p, s |=ε

c(q) (ACCEPT, p′) e δ(q, p′) = qf ; JFK(s)(p) = p′ in

un passo se e solo se Jc(q)K(s)(p) = p′, δ(q, p′) = qf , qf /∈ I e p′ = Jqf K(s)(p′). La tesi segue dal

fatto che ∀p ∈ P. Jqf K(s)(p) = p e dal lemma 2.

passo induttivo: (q, s, p) →+
I (qf , s, p

′) in n passi se e solo se (q, s, p) → (q′′, s, p′′), q′′ /∈ I e

(q′′, s, p′′)→+
I∪{q′′} (qf , s, p

′); dove (q, s, p)→ (q′′, s, p′′) a sua volta è vero se e solo se p, s |=ε
c(q)

(ACCEPT, p′′) e δ(q, p′′) = q′′; JFK(s)(p) = p′ in n passi se e solo se Jc(q)K(s)(p) = p′′′, δ(q, p′′′) = q′,
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q′ /∈ I e p′ = Jq′KF,I∪{q
′}(s)(p′′′). Dal lemma 2 deriva che p′′′ = p′′ e di conseguenza q′ = q′′;

dall’ipotesi induttiva, essendo il cammino da q′′ a qf lungo n−1, deriva che Jq′KF,I∪{q
′′}(s)(p′′) =

p′ ⇐⇒ (q′′, s, p′′)→+
I∪{q′′} (qf , s, p

′).

Per punto 2., dimostriamo che la parte sinistra implica la destra per contropositiva: assumiamo

∃p′. s p,p′−−→ s] (p, p′), allora per il punto 1. vale che JFK(s)(p) = p′ 6= ⊥. Dimostriamo anche l’inverso

per contropositiva: assumiamo che JFK(s)(p) 6= ⊥, ma allora ∃p′. JFK(s)(p) = p′ e quindi per il punto

1. vale che ∃p′. s p,p′−−→ s ] (p, p′).

Corollario 1 (Determinismo dei firewall). Dato un firewall IFCL F , il destino associato ad un

pacchetto p è unico, ovvero

∀p, s. (!∃p′. s p,p′−−→ s ] (p, p′)) ∨ (¬∃p′. s p,p′−−→ s ] (p, p′) )

Dimostrazione. Possiamo assumere che F sia normalizzato, senza perdita di generalità dato il teorema

2.4. Prendiamo il risultato di JFK(s)(p) e consideriamo i due casi possibili:

• se il risultato è ⊥ allora per il teorema 3 abbiamo che ¬∃p′. s p,p′−−→ s ] (p, p′).

• se il risultato è p′ 6= ⊥ allora per il teorema 3 abbiamo che s
p,p′−−→ s ] (p, p′), quindi ∃p′. s p,p′−−→

s ] (p, p′); supponiamo che ∃p′, p′′. s p,p′−−→ s ] (p, p′) ∧ s p,p′′−−−→ s ] (p, p′′), allora, sempre per il

teorema 3 p′ = JFK(s)(p) = p′′.

Lemma 3. Per ogni ruleset normalizzata R, stato s e pacchetto p valgono

1. JRKs (p) = ⊥ ⇐⇒ LRMs (p) = ⊥

2. LRMs (p) 6= ⊥ ⇒ JRKs (p) = LRMs (p) (p)

Dimostrazione. Dimostriamo 1. per induzione sulla lunghezza di R:

caso base: R è la ruleset vuota, in questo caso entrambe le semantiche si comportano in accordo

a dp: se dp = ACCEPT allora JRKs(p) = p e LRMs(p) = id, con id(p) = p; altrimenti dp = DROP e

JRKs(p) = LRMs(p) = ⊥.

passo induttivo: R = r ·R′, con r = (φ, a): JRKs(p) = ⊥ se φ(p, s) e a = DROP, oppure se ¬φ(p, s) e

JR′Ks(p) = ⊥; LRMs(p) = ⊥ se φ(p, s) e a = DROP, oppure se ¬φ(p, s) e LR′Ms(p) = ⊥, l’enunciato

segue banalmente dall’ipotesi induttiva.

Per ii. dimostriamo per induzione sulla lunghezza diR che vale JRKs(t(p)) = p′ ⇐⇒ LRMts(t(p))(p) =

p′:

caso base: R è la ruleset vuota, dp 6= DROP per assunzione, quindi JRKs(t(p)) = t(p) e LRMts(t(p))(p) =

id.

passo induttivo: assumiamo che l’enunciato valga per ogni ruleset di lunghezza n − 1, sia R =

r · R′ una ruleset di lunghezza n, dove r = (φ, a); se ¬φ(p, s) allora JRKs(t(p)) = JR′Ks(t(p)) e

LRMts(t(p)) = LR′Mts(t(p)), che sono uguali per ipotesi induttiva. Se invece φ(p, s) vale allora per

casi su a

• se a = ACCEPT allora LRMts(t(p)) = t e JRKs(t(p)) = t(p);

• a = DROP non può essere perché abbiamo assunto che il pacchetto non viene scartato;
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• se a = NAT(dn, sn) allora LRMts(t(p)) = trnat(dn, sn) n t e JRKs(t(p)) = nat(t(p), dn, sn);

(trnat(dn, sn) n t)(p) = trnat(dn, sn)(t(p)) = nat(t(p), dn, sn);

• se a = CHECK-STATE(X) e p `s α allora LRMts(t(p)) = trstato(α,X)nt e JRKs(t(p)) = enstabl(α,X, t(p));

(trstato(α,X) n t)(p) = trstato(α,X)(t(p)) = enstabl(α,X, t(p));

• se a = CHECK-STATE(X) e p 6`s allora JRKs(t(p)) = JR′Ks(t(p)) e LRMts(t(p)) = LR′Mts(t(p)), che

sono uguali per ipotesi induttiva;

• se a = MARK(m) allora

JRKs(t(p)) =

JR′Ks((id : id, id : id, cost(m))(t(p))) =

JR′Ks(((id : id, id : id, cost(m)) n t)(p)))

LRMts(t(p))(p) =

LR′M(id:id, id:id,cost(m))nt
s ((id : id, id : id, cost(m))(t(p))) =

LR′M(id:id, id:id,cost(m))nt
s ((id : id, id : id, cost(m)) n t)(p)

che sono uguali per ipotesi induttiva.

Teorema 4 (Correttezza della semantica a trasformazioni). Per ogni firewall F , stato s e pacchetto

p valgono

1. JFKs (p) = ⊥ ⇐⇒ LFMs (p) = ⊥

2. LFMs (p) 6= ⊥ ⇒ JFKs (p) = LFMs (p) (p)

Dimostrazione. Dimostriamo per induzione sulla lunghezza del cammino che JqKF,Is (p) = p′ 6= ⊥ se e

solo se LqMF,Is (p) = t 6= ⊥ ∧ t(p) = p′.

caso base: consideriamo un cammino composto da un unico nodo q, se il pacchetto non viene

scartato allora q = qf e quindi Jqf KF,Is (p) = p 6= ⊥, Lqf MF,Is (p) = id 6= ⊥ ∧ id(p) = p; altrimenti

JqKF,Is (p) = ⊥ vale se e solo se Jc(q)K(s)(p) = ⊥ oppure Jc(q)K(s)(p) = p′ e δ(q, p′) ∈ I, il primo

caso, per il lemma 3, è vero se e solo se Lc(q)M(s)(p) = ⊥, il secondo caso invece, sempre per il

lemma 3, è vero se e solo se Jc(q)K(s)(p) = t 6= ⊥ e δ(q, t(p)) ∈ I, dove uno dei due casi è vero

se e solo se LqMF,Is (p) = ⊥.

passo induttivo: assumiamo l’enunciato per cammini lunghi n− 1, sia il cammino da q a q′, dove

q′ = qf oppure il pacchetto viene scartato al nodo q′ da F . Non può essere che JqKF,Is (p) = ⊥
in quanto il cammino non sarebbe lungo n, per il caso base quindi anche LqMF,Is (p) è diverso

da ⊥. JqKF,Is (p) = p′ se e solo se Jc(q)K(s)(p) = (p′′), δ(q, p′′) = q′ e Jq′KF,Is (p′′) = p′. Per il

lemma 3 Jc(q)K(s)(p) = (p′′) è vero se e solo se Lc(q)M(s)(p) = t con t(p) = p′′ e per ipotesi

induttiva Jq′KF,Is (p′′) = p′ è vero se e solo se Lq′MF,Is (p′′) = t′ e t′(p′′) = p′. Infine si noti che vale

LqMF,Is (p)(p) = p′ se e solo se LqMF,Is (p) = t′ e t′(p) = p′; dove LqMF,Is (p) = t′ è vero se e solo se

Lc(q)M(s)(p) = t, se t(p) = p′′ e se Lq′MF,Is (p′′) = t′ e t′(p′′) = p′.
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A.3 Correttezza della pipeline di transcompilazione

Lemma 4. Due firewall IFCL F e F ′ sono equivalenti secondo la semantica operazionale se e solo se

la loro normalizzazione è equivalente secondo la semantica denotazionale, ovvero

∀s ∈ S, p ∈ P. ∀p′, s′. s p,p′−−→F s′ ⇐⇒ s
p,p′−−→F ′ s′

se e solo se

L$F ′%M ≡ L$F ′%M

Dimostrazione. Per il teorema 2.4 abbiamo che s
p,p′−−→F s′ se e solo se s

p,p′−−→$F% s′. Per il teorema

3 abbiamo che s
p,p′−−→$F% s′ se e solo se JFK(s)(p) = p′ e s′ = s ] (p, p′). Per il teorema 4 abbiamo

che JFK(s)(p) = p′ se e solo se LFM(s)(p)(p) = p′. Per definizione di ≡, LFM ≡ LFM se e solo se per ogni

p e s, LFM(s)(p)(p) = LFM(s)(p)(p). Il teorema segue per transitività.

Teorema 5 (Correttezza della pipeline). Sia file.conf un firewall concreto in uno qualunque dei

sistemi k ∈ {iptables, ipfw, pf}. Il firewall target file.conf′ prodotto dalla pipeline di transcompi-

lazione, per il sistema target k′, ha la stessa semantica del firewall source per quanto riguarda pacchetti

non appartenenti a connessioni stabilite. Formalmente vale:

L$(Ck, fork(file.conf))%M(sNEW) ≡ L$(Ck′ , fork′(file.conf′))%M(sNEW)

Dimostrazione. Per definizione di conk′ ,$(Ck′ , fork′(file.conf’))% è uguale a (Ck′ ,Σ′) alla fine del

passo 3.b della pipeline. Sia $(Ck, fork(file.conf))% uguale a (Ck,Σ).

L(Ck,Σ)M =

� (Ck, f) = dove ∀q ∈ Q. f(q) = Lc(q)M(sNEW)

� (Ck′ , f ′) = dove ∀q ∈ Q′. f ′(q) = Lc′(q)M(sNEW)

L(Ck′ ,Σ′)M

Dove la seconda uguaglianza vale per ipotesi della pipeline, in particolare il fatto che F4 = F ′4, e le

altre due valgono banalmente in quanto i due termini sono sintatticamente identici.

A.4 Correttezza della sintesi di un firewall

Teorema 6. Sia F2 = (C,Σ) con Σ = (ρ, c) il firewall normalizzato in input all’algoritmo di

semiastrazione. L’algoritmo produce un firewall F̃3 = (C, f̃) tale che

• F̃3 è un firewall semiastratto sintetizzato

• la funzione sintetizzata f̃ è tale che per ogni q ∈ Qk vale i(f̃)(q) = Lc(q)M(sNEW)

Dimostrazione. F̃3 è un firewall semiastratto sintetizzato in quanto:

• ∀(P, t) ∈ f̃(q). P ∈ M(P), come abbiamo mostrato nel capitolo 5, in quanto le funzioni usate

preservano la forma del parametro della funzione che inizialmente è un multicubo;

• ∀(P, t), (P ′, t′) ∈ f̃(q). P ∩ P ′ = ∅, per assurdo assumiamo che esista un p tale che p ∈ P e

p ∈ P ′, allora esistono un t e un φ tali che φ(t(p), s) ∧ ¬φ(t(p), s);

•
⋃

(P,t)∈f̃(q) P = P, ovvero ∀p ∈ P. ∃(P, t) ∈ f̃(q). p ∈ P , per assurdo, se non fosse vero, allora

avremmo che esistono un t e un φ tali che ¬φ(t(p), s) ∧ ¬¬φ(t(p), s);
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• per quanto riguarda il fatto che ∀(P, t) ∈ f̃(q). P 6= ∅, abbiamo assunto di controllare ogni

coppia prima di inserirla, il controllo non è mostrato nell’algoritmo per leggibilità.

∀q ∈ Qk. i(f̃)(q) = Lc(q)M(sNEW) deriva dal fatto che per ogni ruleset R, trasformazione t e multicubo

di pacchetti P , se p ∈ P allora LRMtsNEW(p) = i(RULESET SYMTHESIS(P,R, t))(p), che dimostriamo per

induzione sulla lunghezza della ruleset R.

caso base: LRMtsNEW(p) = t,

i(RULESET SYMTHESIS(P, R, t))(p) = i({(P, t)})(p) = t.

passo induttivo: si assuma che l’enunciato sia vero per ogni ruleset di lunghezza n − 1, sia R =

(φ, a) · R′ una ruleset lunga n: se ¬φ(p, sNEW) oppure a = CHECK-STATE(X) e p 6`s, allora LRMtsNEW(p)
e i(RULESET SYMTHESIS(P,R, t))(p) sono rispettivamente uguali a

LR′MtsNEW(p) e i(RULESET SYMTHESIS(Pn, R, t))(p),

per un Pn ∈ Pn tale che p ∈ Pn, i quali sono uguali per ipotesi induttiva.

Altrimenti, se φ(p, sNEW) allora p ∈ Ps; analizziamo l’enunciato per casi su a:

• se a = ACCEPT allora LRMtsNEW(p) = t,

i(RULESET SYMTHESIS(P,R, t))(p) = i({(Ps, t)} ∪ . . . )(p) = t;

• se a = DROP allora LRMtsNEW(p) = ⊥,

i(RULESET SYMTHESIS(P,R, t))(p) = i({(Ps,⊥)} ∪ . . . )(p) = ⊥;

• se a = NAT(dn, sn) allora LRMtsNEW(p) = trnat(dn, sn),

i(RULESET SYMTHESIS(P, R, t))(p) = i({(Ps, trnat(dn, sn))} ∪ . . . )(p) = trnat(dn, sn);

• il caso in cui a = CHECK-STATE(X) e p `sNEW α non è contemplato in quanto impossibile per

definizione nello stato sNEW;

• se a = MARK(m) allora LRMtsNEW(p) = LR′M(id:id, id:id, cost(m))nt
sNEW (p[tag 7→ m]),

mentre RULESET SYMTHESIS(Ps, R, (id : id, id : id, cost(m)) nt))⊆ RULESET SYMTHESIS(P ,

R, t));

quindi da p ∈ Ps segue che i(RULESET SYMTHESIS(P,R, t))(p) sia uguale a

i(RULESET SYMTHESIS(Ps, R, (id : id, id : id, cost(m)) n t))(p) e quindi l’enunciato è vero

per ipotesi induttiva.

Teorema 7. Se due firewall sono simili allora hanno semantica equivalente per quanto riguarda i

pacchetti non ciclanti di F , ovvero: F � F ′ =⇒ ( ∀p /∈ pc(F), s ∈ S. LFM(s)(p) = LF ′M(s)(p) ).

Dimostrazione. Il teorema segue dal predicato

(F , q, I)� (F ′, q′, I ′)⇒ (∀p /∈ pc(F), s ∈ S. LqMF,Is (p) = Lq′MF
′,I′

s (p))

che dimostriamo per induzione sulla lunghezza del cammino del pacchetto p in F .

base induttiva: il cammino comprende un solo nodo, sono possibili due alternative

• q = qf , allora assumendo l’antecedente abbiamo che q′ = q′f e quindi Lqf MF,Is (p) =

Lq′f M
F ′,I′
s (p) = id;

• altrimenti l’unica alternativa è che LqMF,Is (p) = ⊥, che è vero se e solo se Lc(q)Ms(p) = ⊥
(il pacchetto non può essere ciclante per ipotesi). Ma allora per l’antecedente vale che

c(q) = c′(q′) e quindi Lc′(q′)Ms(p) = ⊥ e Lq′MF
′,I′

s (p) = ⊥.
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passo induttivo: assumiamo che l’enunciato sia vero per percorsi lunghi n − 1, assumiamo l’an-

tecedente dell’enunciato, sia q un nodo dal quale il pacchetto p impiega n − 1 passi per essere

accettato o scartato.

Lc(q)Ms(p) non può essere ⊥ in quanto altrimenti il cammino non sarebbe lungo n; per l’an-

tecedente vale c(q) = c′(q′). Chiamiamo t il risultato di Lc(q)Ms(p), p̄ = t(p) e q1 = δ(q, p̄).

Vale che LqMF,Is (p) = Lq1M
F,I∪{q1}
s (p̄). Da (F , q, I) � (F ′, q′, I ′) deriva che esiste un q′1 tale che

q′1 = δ(q′, p̄) e (F , q1, I ∪ {q1}) � (F ′, q′1, I ′ ∪ {q′1}) dal quale deriva per ipotesi induttiva che,

per ogni p′′ non ciclante in F , Lq1M
F,I∪{q1}
s (p′′) = Lq′1M

F ′,I′∪{q′1}
s (p′′). Infine osserviamo che

Lq′MF
′,I′

s (p) = Lq′1M
F ′,I′∪{q′1}
s (p̄), e che p̄ non è ciclante in F .

Teorema 8. Sia F un firewall IFCL, sia Fu il risultato dell’applicazione della funzione UNLOOP al

firewall F :

1. Fu è un firewall IFCL aciclico

2. F � Fu

3. ∀p ∈ pc(F), s ∈ S. LFuM(s)(p) = ⊥

Dimostrazione. Dimostriamo i punti uno per uno:

1. Per assurdo, assumiamo che un pacchetto percorre un percorso contenente un nodo ripetuto q.

Distinguiamo due casi: se q = qi abbiamo una contraddizione perché nell’algoritmo il nodo qi

non compare mai come destinazione di un arco in Au; altrimenti perché sia possibile un loop

servono almeno due archi diversi (q1, ψ1, q) e (q2, ψ1, q), ma questo è impossibile per ogni nodo

diverso da qf e q⊥ in quanto ogni nodo viene generato fresco ad una iterazione ed usato solo in

quella come nodo destinazione di un unico arco, ed è impossibile anche per q⊥ in quanto non ha

archi uscenti e per q⊥ il cui unico arco uscente ha come destinazione q⊥.

2. Per prima cosa notiamo che a partire da UNLOOP REC(F , qi, qi, {qi}), per ogni chiamata UN-

LOOP REC(F , q, qu, I), q = qf se e solo se qu = qf . Per induzione sul numero di chiamate

ricorsive alla funzione UNLOOP REC dimostriamo allora che

UNLOOP REC(F , q, qu, I) = (Qu, Au, cu)⇒ (F , q, I)� (Fu, qu, I)

dove Fu = (Cu,Σu), Cu = (Qu, Au, cu, cf ),Σu = (cu, ρu)

caso base: È sufficiente una sola applicazione della funzione se non esistono archi uscenti da

q verso nodi q′ /∈ I, quindi vale (F , q, I)� (Fu, qu, I) in quanto q = qf se e solo se qu = qf

e l’algoritmo setta cu(qu) uguale a c(q).

passo induttivo: Assumiamo che sia vero per n − 1 applicazioni della funzione, sia UN-

LOOP REC(F , q, qu, I) un’applicazione che richiede n chiamate, allora (F , q, I)�(Fu, qu, I)

in quanto:

• l’algoritmo modifica cu affinché cu(qu) = c(q);

• q = qf ⇐⇒ qu = qf ;

• dall’algoritmo risulta che per ogni q′ /∈ I e ψ tali che (q, ψ, q′) ∈ A, esiste un q′u tale che

(qu, ψ, q
′
u) ∈ Au e tale che UNLOOP REC(F , q′, q′u, I∪{q′}) = (Q′u, A

′
u, c
′
u) con Q′u ⊆ Qu,

A′u ⊆ Au e ∀q′′′ ∈ Q′u. c′u(q′′′) = cu(q′′′).

Per ipotesi induttiva vale quindi che, per F ′u = (C′u,Σ′u), dove C′u = (Q′u, A
′
u, c
′
u, cf ) e

Σ′u = (c′u, ρ
′
u), vale (F , q′, I ∪ {q′})� (F ′u, q′u, I ∪ {q′}).
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Dato che per ogni q′ tale che (q, ψ, q′) ∈ A si ha che Q′u ⊆ Qu, A′u ⊆ Au e ∀q′′′ ∈
Q′u. c

′
u(q′′′) = cu(q′′′), possiamo scrivere (F , q′, I ∪ {q′}) � (Fu, q′u, I ∪ {q′}) da cui la

tesi.

Teorema 9 (Correttezza dell’algoritmo di sintesi). thm:sintesi Sia F2 un firewall IFCL normalizzato

aciclico, sia F̃4 il firewall astratto sintetizzato restituito dall’algoritmo di sintesi, allora vale:

i(F̃4) = LF2M(sNEW)

Dimostrazione. Dimostriamo per induzione sul numero di nodi massimi attraversati che

∀I. ∀p ∈ P. i(COMPOSITION REC(F̃3, q))(p) = LqMF2,∅
sNEW (p)

caso base: Se il numero massimo di nodi visitati è uno allora siamo nel nodo finale qf , dunque vale

che Lqf MF2,∅
sNEW (p) = id e COMPOSITION REC(F̃3, qf = {(P, id)}, con i({(P, id)})(p) = id.

passo induttivo: Assumiamo vero l’enunciato per cammini lunghi fino a n− 1, supponiamo che il

cammino dal nodo q in poi sia lungo al più n passi.

• se LqMF2,∅
sNEW (p) = ⊥, allora c(q)(p) = ⊥ e per il teorema 6, i(f̃(q))(p) = ⊥ e quindi, per la

semantica della funzione DROPPER, esiste una coppia (P,⊥) in COMPOSITION REC(F̃3, q)

tale che p ∈ P e quindi

i(COMPOSITION REC(F̃3, q))(p) = ⊥ = LqMF2,∅
sNEW (p)

• se invece LqMF2,∅
sNEW (p) 6= ⊥ allora

LqMF2,∅
sNEW (p) = Lq′MF2,{q}

sNEW (p′) n t

dove t = c(q)(p), p′ = t(p) e q′ = δ(q, p′). Essendo che q è appena stato visitato e che il

grafo è aciclico per ipotesi, possiamo scrivere equivalentemente:

LqMF2,∅
sNEW (p) = Lq′MF2,∅

sNEW (p′) n t

Per il teorema 6, da t = c(q)(p) abbiamo che i(f̃(q))(p) = t, dal quale, considerando anche

che q′ = δ(q, p′), per p′ = t(p), deriviamo che esiste un P , tale che (P, t) ∈FILTER(f̃(q), ψ)

con p ∈ P e dove ψ è il predicato sull’arco fra q e q′.

Per ipotesi induttiva

Lq′MF2,∅
sNEW (p′) = i(COMPOSITION REC(F̃3, q

′))(p′)

quindi abbiamo una coppia (P ′, t′) ∈ i(COMPOSITION REC(F̃3, q
′)), tale che p′ ∈ P ′ e

t′ = Lq′MF2,∅
sNEW (p′).

Ma allora, chiamando λ̃(q,q′) l’insieme FILTER(f̃(q), ψ) e λ̃q′ l’insieme i(COMPOSITION REC(F̃3, q
′));

vale che i(CONCAT(λ̃(q,q′), λ̃q′))(p
′) = t′ n t da cui la tesi.
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A.5 Correttezza dell’espressività di un sistema firewall

Teorema 10. L’insieme delle configurazioni semiastratte di un diagramma di controllo C = (Q,A, qi, qf ),

legali secondo un assegnamento di etichette v, è l’insieme delle configurazioni di firewall ottenute dalla

semiastrazione di firewall IFCL normalizzati legali secondo v.

M3(C, v) = {f : Q→ P→ T (P) ∪ {⊥} | f |= v}

Dimostrazione. Formalmente

M3(C, v) = {f | ∀q ∈ Q. f(q) = Lc(q)M(sNEW) ∧ (c, ρ) ∈M2} =

M3(C, v) = {f | ∀q ∈ Q. c(q) |= v(q) ∧ f(q) = Lc(q)M(sNEW)}

Il teorema è vero in quanto ∀L ⊆ {SNAT,DNAT,DROP} vale

(R |= L⇒ LRM |= L) ∧ (λ |= L⇒ ∃R. LRM = λ ∧R |= L)

Per primo dimostriamo R |= L ⇒ LRM |= L; chiamiamo λ = LRM. Assumiamo per assurdo che

R |= L, ma che non valga λ |= L. Allora per definizione esiste un l /∈ L. λ ∈ Λ2l.

• se l = SNAT allora deve esistere un p ∈ P, tale che λ(p) = t con t.sIP 6= id o t.sPort 6= id.

Dalla semantica denotazionale è evidente che l’unico modo per avere una trasformazione del

genere è usare un target NAT(sn, dn) con sn 6= ? : ?, ma allora SNAT deve appartenere a L.

• il caso di DNAT è identico, con dn 6= ? : ? al posto di sn.

• se l = DROP allora deve esistere un p ∈ P, tale che λ(p) = ⊥, ma dalla semantica denotazionale

è evidente che l’unico modo per avere una trasformazione del genere è usare un target DROP, ma

allora DROP deve appartenere a L.

Passiamo a λ |= L ⇒ ∃R. LRM = λ ∧ R |= L. Definiamo, data λ, come costruire la ruleset R che

verifica il predicato: semplicemente per ogni coppia (p′, t) tale che λ(p′) = t scriviamo una regola

(φ, a) dove φ(p, s) è vera se e solo se il pacchetto passato per parametro è p′ e il target a è tale che

L(φ, a) · R′M(p) = t. Il target a può essere calcolato in maniera banale: se t = id allora a = ACCEPT, se

t = ⊥ allora a = DROP altrimenti a = anat(dn, sn) con dn e sn adeguati. Vale banalmente per la ruleset

R costruita che LRM = λ.

Assumiamo dunque λ |= L e che R sia costruita come detto a partire da λ; vogliamo provare che

R |= L. Procediamo per contraddizione assumendo che R |= L sia falso. Allora deve sussistere uno

dei seguenti casi

• esiste una regola r = (φ, DROP) nella ruleset e DROP /∈ L;

ma questo non è possibile per costruzione in quanto inseriamo un target DROP solo se λ(p) = ⊥
per qualche p, e questo è possibile solo se λ ∈ Λ2DROP , ma allora DROP ∈ L.

• esiste una regola r = (φ, NAT(ip : port, ? : ?)) nella ruleset e SNAT /∈ L

ma questo non è possibile per costruzione in quanto inseriamo un target NAT(ip : port, ip′ : port′)

con ip o port diversi da ? solo se λ(p).sIP 6= id o λ(p).sPort 6= id per qualche p, e questo è

possibile solo se λ ∈ Λ2SNAT , ma allora SNAT ∈ L.

• esiste una regola r = (φ, NAT(? : ?, ip : port)) nella ruleset e DNAT /∈ L, questo caso è identico

al precedente.

111



• esiste una regola r = (φ, NAT(ip1 : port1, ip2 : port2)) nella ruleset e DNAT /∈ L oppure SNAT /∈
L;

anche questo non è possibile per costruzione in quanto inseriamo un target NAT(ip : port, ip′ :

port′) con ip o port e ip′ o port′ diversi da ? solo se λ(p).sIP 6= id o λ(p).sPort 6= id per

qualche p e λ(p′).dIP 6= id o λ(p′).dPort 6= id per qualche p′, e questo è possibile solo se

λ ∈ Λ2SNAT ∩ Λ2DNAT , ma allora SNAT e DNAT sono entrambi in L.

Teorema 11. Un firewall astratto λ è legale secondo un diagramma di controllo C e un assegnamento

di etichette v se e solo se valgono ε0(λ,C, v) e ε1(λ,C, v).

M4(C, v) = {λ : P→ T (P) ∪ {⊥} | ε0(λ,C, v) ∧ ε1(λ,C, v)}

Dimostrazione.

M4(C, v) = {λ | f ∈M3(C, v). � (π, f)(p) = λ(p)}

ε0(λ, C, v) = ∀p ∈ P. ∃f ∈M3(C, v). (�(C, f)) (p) = λ(p)

ε1(λ, C, v) = (∀p ∈ P. ∃f ∈M3(C, v). (�(C, f)) (p) = λ(p))⇒

(∃f ∈M3(C, v). ∀p ∈ P. (�(C, f)) (p) = λ(p))

Abbiamo che ε0(λ, C, v) ∧ ε1(λ, C, v) implica per modus ponens ∃f ∈M3(C, v). (�(C, f)) = λ e quindi

che λ ∈M4(C, v).

Viceversa abbiamo che ∃f ∈ M3(C, v). (�(C, f)) = λ implica ε0(λ, C, v) e che i due implicano

ε1(λ, C, v).

A.6 Correttezza della generazione di configurazioni

Teorema 12. Se il sistema k è uniterale e compatto, e se la funzione λ : P→ T (P) ∪ {⊥} verifica la

fattibilità locale, ε0(λ, Ck, vk), allora (i) ⇐⇒ (ii) ∧ (iii)

Dimostrazione.

f ∈M3(C, v) ∧ ∀p ∈ P. ∃π ∈ Π(C). ∆((C, f), p) = π ∧ �(π, f)(p) = λ(p) (i)

∀p ∈ P. λ(p) 6= ⊥ ⇒ f ∈M3(C, v) ∧ �(π, f)(p) = λ(p) dove {π} = P(Ck, vk, p, λ(p)) (ii)

∀p ∈ P. λ(p) = ⊥ ⇒ f ∈M3(C, v) ∧ ∃π ∈ Π(C). ∆((C, f), p) = π ∧ �(π, f)(p) = ⊥ (iii)

Chiaramente (i) ⇐⇒ (ii′) ∧ (iii), dove

∀p ∈ P. λ(p) 6= ⊥ ⇒ f ∈M3(C, v) ∧ ∃π ∈ Π(C). ∆((C, f), p) = π ∧ �(π, f)(p) = λ(p) (ii’)

Il teorema quindi è vero se e solo se (ii′) ⇐⇒ (ii) assumendo che il sistema sia uniterale e compatto

e che valga ε0(λ, Ck, vk).

Poiché il sistema è uniterale e ε0(λ, Ck, vk) vale, l’insieme P(Ck, vk, p, λ(p)) è un singoletto e dunque

(ii′) è equivalente a

∀p ∈ P. λ(p) 6= ⊥ ⇒ f ∈M3(C, v) ∧∆((Ck, f), p) = π ∧ �(π, f)(p) = λ(p) dove {π} = P(Ck, vk, p, λ(p))

Essendo k compatto e uniterale possiamo inoltre trascurare il controllo ∆((Ck, f), p) = π in quanto

sussunto da �(π, f)(p) = λ(p), ottenendo quindi (ii).
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Teorema 13. Se un sistema è senza NAT ripetuti, allora è compatto.

Dimostrazione. Assumiamo che il sistema sia senza NAT ripetuti e che data una configurazione

semiastratta f ∈M3(Ck, vk) e due pacchetti p, p′ ∈ P, valga

∆((Ck, f), p) = ∆((Ck, f), p′) = π ∧ �(π, f)(p) = �(π, f)(p′) = t 6= ⊥

Vogliamo dimostrare che p ∼=
(π,f)

p′. Procediamo per casi:

• se t = id allora banalmente per ogni nodo in π, f(q)(p) e f(q)(p′) deve essere id, per le proprietà

della composizione.

• se t = (id : id, tdIP : tdPort) dove almeno uno fra tdIP e tdPort è diverso da id; allora deve

esistere un nodo nel percorso tale che DNAT ∈ v(q), poiché non ci sono NAT ripetuti non ce ne

può essere più di uno.

Allora banalmente per ogni nodo q′ 6= q in π, f(q′)(p) e f(q′)(p′) deve essere id, e f(q)(p) =

f(q)(p′) = t per le proprietà della composizione.

• se t = (tsIP : tsPort, id : id) il caso è praticamente identico al precedente, ma con SNAT al

posto di DNAT .

• se t = (tsIP : tsPort, tdIP : tdPort) allora esistono due nodi, potenzialmente identici, uno

etichettato con SNAT e l’altro etichettato con DNAT . Se il nodo è unico allora faccio f(q)(p) =

f(q)(p′) = t in quel nodo q e id in tutti gli altri; altrimenti applico la prima trasformazione nel

primo nodo e la seconda nel secondo nodo.

In ogni caso i due pacchetti subiscono le stesse trasformazioni.

Teorema 14. Per ogni sistema uniterale e compatto k con diagramma di controllo Ck, etichettato

secondo vk, percorso π ∈ Π(Ck), multicubo P e trasformazione t vale che

∀f̃ .χ̃(Ck, vk, π, P, t, f̃) ⇐⇒ ˜̃χ(Ck, vk, π, P, t, f̃)

Dimostrazione. Per induzione sulla lunghezza di π

caso base: se π = ε allora entrambi i predicati sono veri se e solo se t = id.

passo induttivo: assumo che il teorema valga per percorsi lunghi n− 1, sia π = q · π′ lungo n.

• ˜̃χ(Ck, vk, π, P, t, f̃) è vero se e solo se

∃t′, t′′. t = t′ n t′′, t′ ∈ ν(`(π, Ck, vk)), (P, t′)∈̃f̃(q), t′(p) = p′ e ˜̃χ(Ck, vk, π′, P ′, t′, f̃).

• χ̃(Ck, vk, π, P, t, f̃) è vero se e solo se

∀p ∈ P. ∃t′, t′′. t = t′nt′′, t′ ∈ ν(`(π, Ck, vk)), i(f̃)(q)(p) = t′, t′(p) = p′ e χ(Ck, vk, π′, p′, t′, i(f̃)).

Dato che il sistema è uniterale e compatto, e che a tutti i pacchetti in P è assegnata la stessa

trasformazione, in ogni nodo essi subiranno tutti la stessa trasformazione. Pertanto in

χ̃(Ck, vk, π, P, t, f̃)

è possibile spostare e distribuire il quantificatore nella seguente maniera:

∃t′, t′′. t = t′ n t′′ ∧ t′ ∈ ν(`(π, Ck, vk)) ∧ ∀p ∈ P. i(f̃)(q)(p) = t′ ∧ ∀p ∈ P. χ(Ck, vk, π′, t′(p), t′, i(f̃))

∃t′, t′′. t = t′ n t′′ ∧ t′ ∈ ν(`(π, Ck, vk)) ∧ (P, t′)∈̃f̃(q) ∧ χ̃(Ck, vk, π′, t′(P ), t′, f̃)

Dove per ipotesi induttiva χ̃(Ck, vk, π′, t′(P ), t′, f̃) è verificato se e solo se ˜̃χ(Ck, vk, π′, P ′, t′, f̃).
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Teorema 15 (Correttezza del firewall generato). Se il sistema k è senza NAT ripetuti e la funzio-

ne sintetizzata λ̃ è disgiunta, se esiste una configurazione Σ ∈ Γk tale che i(λ̃) = L$(Ck,Σ)%M e

tale che non esistono pacchetti ciclanti in (Ck,Σ), allora l’algoritmo 4 restituisce una configurazione

semiastratta sintetizzata f̃ tale che

i(f̃) ∈M3(Ck, vk) ∧ ∀p ∈ P. � (Ck, i(f̃))(p) = i(λ̃)(p)

altrimenti l’algoritmo termina segnalando errore.

Dimostrazione. L’algoritmo gestisce correttamente i pacchetti accettati in quanto le ipotesi del teo-

rema sono più forti di quelle dei teoremi 12 e 14, e in quanto la funzione CHI è una riscrittura fedele

del predicato ˜̃χ. Dunque per il teorema 14 vale (ii) e per il teorema 12 se vale (iii), cioè i pacchetti

scartati sono gestiti correttamente, allora vale (i) (e quindi la tesi).

Dato che il sistema è uniterale e compatto, per ogni nodo q del diagramma di controllo, esistono

una serie di coppie (p′′, t′′) tali che se non vale f ′′(q)(p′′) = t′′ per qualche coppia, allora non è possibile

che �(Ck, f ′′) = λ e tali che se f ′′(q)(p′′) = t′′ è verificato per ogni nodo q e per ogni coppia dell’insieme

di coppie associato a q, allora f ′′ verifica (ii). Dal teorema 12, deriva che le coppie (p′′, t′′) associate

al nodo q sono tutte e sole quelle che compaiono nella forma di f ′′(q)(p′′) = t′′ nello svolgimento di

χ(Ck, vk, π, p, t, f ′′). Quindi dal teorema 14 deriva che, per ogni nodo q, gli insiemi di pacchetti P#

non trattati dalla configurazione astratta f̃ prodotta da CHI, e sfruttati da FILL, sono tali che se uno

qualunque dei pacchetti che non è in P# fosse trattato diversamente nel nodo q, allora non varrebbe

più (ii).

Assumiamo dunque per assurdo che esista una configurazione semiastratta f ′ che scarta un pac-

chetto p tale che i(λ̃)(p) = ⊥ e che f = i(f̃) invece non lo scarti. Dato che non sono ammessi pacchetti

ciclanti, allora esiste un percorso da qi ad un certo nodo qd tale che DROP ∈ v(qd); dato che abbiamo

assunto che f ′ verifichi (ii), il pacchetto p non viene mai trasformato in un pacchetto che sta fuori da

P#. Dimostriamo per induzione sulla lunghezza del percorso che allora anche f scarta il pacchetto.

caso base: se il percorso contiene solo un nodo allora vuol dire che il nono qi è etichettato con

DROP , e dato che p ∈ P# abbiamo che sicuramente f(q)(p) = ⊥.

passo induttivo: se il percorso è lungo n allora f trasforma p in p′ e lo passa ad un nodo successivo

q′; per ipotesi induttiva allora p′ ∈ P⊥ del nodo q′, quindi f manda p in un p′′ ∈ P⊥, se p ∈ P#.

L’unico caso in cui p /∈ P# è quello in cui un valore sia già assegnato a p in q, ma dato che p

non viene accettato questo vuol dire che viene già scartato da un altro nodo.

Teorema 16. Sia ρ = {Rsnat, Rdnat, Rnat, Rfil, Rsnat · Rfil, Rdnat · Rfil, Rnat · Rfil, Rε}, dove Rfil,

Rsnat, Rdnat e Rnat sono prodotto dall’algoritmo 6 con input Rλ. Sia c : Q → ρ l’assegnamento di

ruleset ai nodi del diagramma di controllo del sistema target Ck, generato secondo vk. Se il sistema

target k è senza NAT ripetuti, se ogni percorso da qi a qf comprende almeno un nodo etichettato

con DROP , se l’interpretazione di λ̃ è localmente fattibile dal sistema target, ε0(i(λ̃), Ck, vk), e se le

etichette sugli archi non predicano sul campo tag, allora la semantica del firewall (Ck,Σ) con Σ = (ρ, c)

per lo stato sNEW è identica all’interpretazione di λ̃.

L(Ck,Σ)M(sNEW) = i(λ̃)
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Dimostrazione. Dato che ogni percorso da qi a qf passa per almeno un nodo con etichetta DROP ,

e dato che ogni pacchetto p tale che i(λ̃)(p) = ⊥ viene scartato se arriva ad un nodo etichettato con

DROP (qualunque sia il suo formato al momento dell’arrivo sul nodo), tutti i pacchetti da scartare

sono gestiti correttamente dal firewall prodotto.

Dato che l’interpretazione è localmente fattibile e che non ci sono NAT ripetuti, esiste un’unica

serie di trasformazioni che un pacchetto p può subire lungo il percorso per essere trattato secondo

i(λ̃)(p) = t 6= ⊥. Dato che la funzione su pacchetti è localmente fattibile, per ogni pacchetto p esiste

un percorso π nel diagramma di controllo, avente le etichette adeguate alla trasformazione assegnatagli

t = i(λ̃). È banale che la composizione delle trasformazioni delle ruleset prodotte dall’algoritmo, in

corrispondenza delle etichette del percorso, realizzano la trasformazione t, a meno del campo tag.

Dato che il sistema è senza NAT ripetuti, il fatto che la composizione delle trasformazioni associate ai

nodi corrisponda alla trasformazione attesa implica che anche nodo per nodo, le trasformazioni siano

quelle attese a meno del campo tag, e quindi, dato che per ipotesi le etichette sugli archi non predicano

sul campo tag, vale che ∆((Ck,Σ), p) = π. Vale dunque sia ∆((Ck,Σ), p) = π che �(π, f)(p) = t, con

(Ck, f) semiastrazione di (Ck,Σ); e quindi vale la tesi.

Teorema 17. Sia ρ = {Rsnat, Rdnat, Rnat, Rfil, Rsnat · Rfil, Rdnat · Rfil, Rnat · Rfil, Rε}, dove Rfil,

Rsnat, Rdnat e Rnat sono prodotto dall’algoritmo 6 con input Rλ. Sia c : Q → ρ l’assegnamento

di ruleset ai nodi del diagramma di controllo del sistema target Ck, generato secondo vk. Se tutti

i percorsi del sistema target k, Π(Ck), sono tali che `(π̈) = {SNAT,DNAT,DROP}, e se nessun

pacchetto a cui siano applicate trasformazioni SNAT e DNAT al massimo una volta percorre dei loop

nel diagramma di controllo, allora la semantica del firewall (Ck,Σ) con Σ = (ρ, c) per lo stato sNEW è

identica all’interpretazione di λ̃.

L(Ck,Σ)M(sNEW) = i(λ̃)

Dimostrazione. Si può notare che nessun pacchetto subisce più di una trasformazione SNAT e DNAT

diversa, qualsiasi sia l’ordine e il numero delle ruleset visitate. Pertanto nessun pacchetto nel sistema

prodotto sarà scartato per colpa di un ciclo nel diagramma di controllo e dato che ogni percorso verso

qf è etichettato con SNAT , DNAT e DROP , qualunque sia t = i(λ)(p) è banale verificare che il

firewall prodotto associa al pacchetto p il destino t.
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