Transcompilazione fra Linguaggi di
Firewall

sintesi e generazione di configurazioni

Relatore : Prof. Pierpaolo Degano

Candidato : Lorenzo Ceragioli

Dipartimento di Informatica

Universita di Pisa

Laurea Magistrale in Informatica

Indice

[1__Introduzione|

[1.1 Background|

I1.1.2° Sistemi supportaty

[1.1.3 Definizioni preliminari Lo oo

[1.2 Ipotesidilavoro|

2 _TFCTI

2.2 Modellazione de1 sistemi reali supportaty L oL
2.2.1 Modellazione di iptables| o o
2.2.2 Modellazione dipf]
2.2.3 Modellazione diipfw|

Pipeline di transcompilazione|

4.1 Transcompilazione di configurazioni firewall] 000

4.2 Presentazione della pipeline|o oo

4.2.1 Esempio di transcompilazione|00 oo 0oL

4.3 Domini della pipeline|.

6

P2 ComposIZIONE| o e e e e e e

b.2.2 Algoritmo di composizione]

b.3 Esempiodisintesiinpfl L

0 00 N O = NN

o ©

12
13
14
15
15
17
19

22
22
24

30
31
32
32
37
39

6 Espressivita dei sistemi firewall|

6.1 Configurazioni IFCL esprimibily|o oo oo
6.2 Configurazioni astratte esprimibilil L oL
6.2.1 Fattibilita localel oo
022 Coerenzal L e

7.4 Decomposizione sintetizzatalo

7.5 Generazione diretta della configurazione IFCL usandoitag

[(.5.1 Generazione delle ruleset]

[7.5.2 Assegnamento delle ruleset ainodi|o oL

[7.5.3 Correttezza della configurazione generata]

B Conclusiond

8.1 Implementazionel

8.1.1 Implementazione banale| L.

8.1.2 Implementazione con segment tree| L.

8.2 Sviluppi futuri]o

1A.4 Correttezza della sintes1 di un firewalll

IA.5 Correttezza dell’espressivita di un sistema firewall]

IA.6 Correttezza della generazione di configurazionil

54
54
57
60
68

71
72
72
73
76
84
84
85
86
86

Sommario

Il porting delle configurazioni da un sistema di firewall a un altro € un procedimento difficile e costoso.
Le configurazioni consistono in centinaia di regole scritte in linguaggi di basso livello, specifici della
piattaforma ed in cui 'ordine delle regole influenza la semantica della configurazione. Senza una
procedura automatica per il porting, un amministratore ¢ tenuto a conoscere i dettagli delle politiche
di sicurezza implementate e a progettare da capo la configurazione per il nuovo sistema. Nel caso
in cui le politiche di sicurezza non siano state documentate accuratamente e necessario analizzare la
configurazione iniziale e tentare di creare una configurazione equivalente per il sistema target: questo
€ un procedimento rischioso perché e possibile tralasciare dettagli significativi e produrre un firewall
non equivalente a quello di partenza. E possibile in questo modo compromettere la sicurezza della
rete in quanto si implementa senza accorgersene una politica diversa da quella originale e gli asset
potrebbero non essere protetti in modo corretto. In un lavoro recente & stata proposta una pipeline di
transcompilazione fra linguaggi di configurazione di firewall, composta da tre fasi: (i) decompilazione
della configurazione dal linguaggio di origine ad un linguaggio intermedio; (i) estrazione del significato
della configurazione come insieme minimale di regole dichiarative che descrivono i pacchetti accettati
e le traduzioni in termini logici; (#7) compilazione delle regole dichiarative nel linguaggio target. Lo
strumento firewall synthesizer rappresenta 'implementazione delle prime due fasi in quanto permette,
facendo uso di un SAT solver, di derivare una rappresentazione ad alto livello della semantica di un
firewall. Per la fase (i) € stato proposto un algoritmo che tuttavia non ha garanzie di conservare la
traduzione degli indirizzi (Network Address Translation o NAT) e che si basa sull’operazione di marking
dei pacchetti, la quale e soggetta a restrizioni differenti nei vari sistemi firewall.

In questa tesi presentiamo un nuovo algoritmo per la sintesi della semantica nella fase (ii) che
non necessita di un SAT solver e analizziamo formalmente la generazione della configurazione target
nella fase (4ii), tenendo in considerazione il problema di NAT. A questo scopo studiamo la differente
espressivita dei sistemi firewall riguardo la traduzione degli indirizzi dei pacchetti. Nel linguaggio
intermedio, che & dotato di una semantica formale, ogni sistema firewall & modellato tramite un
diagramma di controllo e ogni configurazione come un assegnamento di ruleset ai nodi del diagramma.
Per ogni linguaggio di configurazione individuiamo dei vincoli che caratterizzano quali assegnamenti
di ruleset ai nodi del diagramma di controllo possono essere espressi e sfruttiamo questi vincoli sia per
studiare I’espressivita dei linguaggi di configurazione, sia per definire un algoritmo per la generazione

della configurazione finale.

Capitolo 1

Introduzione

I firewall sono uno dei meccanismi standard per la protezione di reti di computer, la loro funzione e
quella di ispezionare il traffico della rete, filtrandolo in accordo con la propria configurazione. Oltre
a fungere da filtro, i firewall contribuiscono a realizzare l'instradamento, effettuando delle traduzioni
sugli indirizzi dei pacchetti attraverso il NAT. Per decidere se consentire o meno il transito di un
pacchetto, e quali trasformazioni effettuare, il firewall si basa su un insieme di regole stabilite dal-
I’amministratore. Il linguaggio per la definizione delle regole e 'ordine nel quale queste sono valutate
dipendono dal sistema scelto.

Le configurazioni consistono comunemente in centinaia di regole scritte in linguaggi di basso livello,
in cui le regole interagiscono fra loro e il loro ordine influenza la semantica della configurazione. Spesso
Iordine di valutazione delle regole & non banale, e puo essere modificato da istruzioni dedicate, simili
alle chiamate di procedura dei linguaggi di programmazione imperativi. Inoltre questi linguaggi sono
del tutto privi di semantica formale, e in genere anche la caratterizzazione informale € piuttosto lasca.

Le regole possono essere statiche, se dipendono unicamente dalle proprieta del pacchetto, o dinami-
che se dipendono dallo stato del firewall stesso, che tiene traccia delle connessioni attive, permettendo

filtri e modifiche dipendenti dai pacchetti precedentemente osservati.

Il porting di un firewall & un compito oneroso e rischioso anche per amministratori esperti; e
infatti necessario conoscere a fondo sia il sistema di origine, sia quello di destinazione ed & possibile
introdurre accidentalmente delle vulnerabilitd senza accorgersene. Attualmente infatti I’approccio
comune ¢ quello di ripartire dalle politiche di sicurezza che si era deciso di implementare nel sistema
precedente e codificarle da capo nel linguaggio del sistema target, verificando infine con dei test
I’aderenza del comportamento del firewall rispetto a quello atteso. Questo procedimento & molto
dispendioso in termini di tempo e non si hanno garanzie che i due sistemi si comporteranno nella
stessa identica maniera di fronte agli stessi pacchetti. Presentiamo un metodo automatico per il
porting delle configurazioni, basato sulla transcompilazione, che garantisce la conservazione della
semantica del firewall, sia per quanto riguarda il filtro, sia per le trasformazioni.

Basiamo il nostro approccio su IFCL, un linguaggio formale per la definizione di firewall origina-
riamente presentato in [4, [5], che usiamo come linguaggio intermedio. IFCL evidenzia la struttura
bipartita tipica dei sistemi firewall, composta dalle regole in sé e dal meccanismo che stabilisce 1’or-
dine di valutazione e la modalita di applicazione. La prima parte ¢ modellata attraverso un insieme
di liste di regole scritte in un linguaggio formale che e stato progettato in modo tale da consentire
una compilazione relativamente facile da ogni sistema firewall, in quanto incorpora tutte le feature
dei linguaggi di firewall come il NAT, i salti, le invocazioni e ’accesso allo stato delle connessioni. La

seconda parte ¢ modellata attraverso un diagramma di controllo, un grafo in cui ai nodi sono assegnate

liste di regole, e gli archi sono etichettati da predicati e rappresentano la possibilita di passare da uno
stato ad un altro, nel processo di valutazione del pacchetto.

Il procedimento di transcompilazione & una pipeline composta da quattro stadi: () il firewall ini-
ziale viene rappresentato attraverso IFCL; (4) si calcola una rappresentazione astratta e sintetica della
semantica della configurazione come funzione dall’insieme dei pacchetti alle possibili trasformazioni
(compreso Dessere scartato); (iii) si genera un firewall IFCL del tipo target avente semantica corri-
spondente a quella calcolata al punto precedente; (iv) si compila la configurazione IFCL nel linguaggio
target.

Valutiamo inoltre I’espressivita dei linguaggi di configurazione, intesa come l’insieme delle funzioni
dall’insieme dei pacchetti alle possibili trasformazioni che possono essere espresse da una configurazione
per il sistema in esame. Dimostriamo che non tutti i sistemi firewall sono capaci di esprimere le stesse
funzioni su pacchetti. Questo studio ci fornisce dei limiti entro i quali il porting puo essere effettuato
in maniera corretta.

La soluzione proposta supporta i sistemi iptables, pf e ipfw, che sono sfruttati per fornire esempi
concreti; tuttavia la procedura di transcompilazione e definita in modo tale da essere adattabile,
abbastanza semplicemente, a nuovi sistemi. Infatti, la parte centrale della pipeline & basata su IFCL,
e gli algoritmi impiegati sono parametrici rispetto alle specifiche del firewall, anziché limitarsi ai soli
sistemi supportati attualmente. Per estendere il supporto ad un nuovo sistema ¢ quindi sufficiente
fornire una sua caratterizzazione attraverso IFCL. Il funzionamento dell’algoritmo che implementa la
fase (ii1) della pipeline, per il momento, & garantito unicamente quando il sistema target non consente
di effettuare lo stesso tipo di trasformazione (SNAT o DNAT) in pitt momenti diversi della valutazione

di un pacchetto.

1.1 Background

Presentiamo i lavori correlati a quello esposto in questa tesi, facendo particolare attenzione al linguag-
gio di configurazione intermedio IFCL, presentato in [5] e [4], sul quale basiamo il nostro approccio di
transcompilazione, e che definiremo in dettaglio nel capitolo [2| (in una versione lievemente modificata).
Per ognuno dei sistemi attualmente supportati diamo una piccola introduzione che permetta al lettore
di comprendere gli esempi presentati nel resto della tesi. Concludiamo, infine, presentando alcune

definizioni che useremo in seguito.

1.1.1 Lavori correlati

I metodi formali sono stati impiegati per modellare il controllo degli accessi dei firewall seguendo
diversi metodi, si vedano ad esempio [6l 11} @]; qui noi restringiamo la nostra attenzione agli approcci
che, come il nostro, si basano sui linguaggi.

Recentemente c’¢ stata una crescita di interesse riguardo linguaggi di alto livello per la program-
mazione di reti di computer come un tutt’uno. Il paradigma delle Software Defined Network (SDN)
separa il controllo della rete dalle funzioni di inoltro, astraendo dalle applicazioni e dai servizi di
rete i dettagli legati all’infrastruttura sottostante [16]. Un approccio unificato e di alto livello alla
configurazione delle reti e dei firewall ¢ attraente e potrebbe rendere le configurazioni piu semplici e
meno soggette ad errori. Tuttavia le SDN richiedono una infrastruttura adeguata e, nonostante la
rapidita di diffusione, non possiamo aspettarci che le “vecchie” tecnologie siano dismesse troppo rapi-

damente, anche per questioni legate alla conservazione di sistemi legacy. Negli anni a venire avremmo

ancora bisogno di affrontare i problemi legati alla configurazione, verifica e porting di sistemi firewall
tradizionali.

In questo lavoro seguiamo un approccio antitetico rispetto a quello di SDN, consideriamo i linguaggi
di configurazione specifici delle diverse piattaforme dei linguaggi macchina, con i quali interagiamo
attraverso compilazioni e decompilazioni verso linguaggi di alto livello, che nel caso della pipeline di

transcompilazione fungono da linguaggi intermedi.

La transcompilazione & una tecnica ben nota nell’ambito del code refactoring, della parallelizzazione
automatica e del porting di codice legacy in nuovi linguaggi di programmazione. Recentemente questa
tecnica e stata ampiamente usata nel campo della programmazione web per implementare dei linguaggi
di programmazione di alto livello in JavaScript, si vedano ad esempio [2] 19]. Al meglio delle nostre
conoscenze, oltre a [4], non sono presenti in letteratura approcci per il porting automatico delle
configurazioni dei firewall. Esistono invece approcci che attraverso la definizione di una semantica
formale dei linguaggi di configurazione esistenti, permettono di fare refactoring e di verificare la
presenza di eventuali errori. Alcuni di questi approcci sono basati sulla traduzione delle configurazioni
analizzate in linguaggi ad alto livello, nei quali risulta piu facile controllare ’aderenza alle policy di
sicurezza. Sono stati proposti anche approcci che a partire dalle specifiche di sicurezza espresse
attraverso linguaggi formali ad alto livello, permettono la generazione di configurazioni per sistemi
reali.

La proposta di [§] “pulisce” le regole, poi le analizza con uno strumento automatico; usa una
semantica formale di iptables (senza NAT) per descrivere delle trasformazioni per la semplificazione
che preservano la semantica. Il tool FIREMAN [24] localizza inconsistenze e inefficienze delle confi-
gurazioni firewall (senza NAT). Margrave [15] & un analizzatore di configurazioni per firewall 10S: &
estensibile ad altri linguaggi, ma si concentra sulla ricerca di errori specifici piuttosto che nella sintesi
di una specifica di alto livello del significato della configurazione. Un altro strumento per la ricerca
di anomalie & Fang [12] [I3], che sintetizza anche una politica astratta. Mignis [14] 1] & un tool che
permette di definire policy ad alto livello, con un linguaggio dotato di semantica formale, e di compi-
larle in configurazioni iptables (senza possibilitd immediata di generalizzazione). Fra gli articoli che
formalizzano la semantica dei linguaggi di firewall menzioniamo anche [3] che permette di specificare
delle politiche di filtro astratte da compilare nel sistema firewall reale.

Molti di questi approcci definisce il proprio linguaggio formale, ma la compilazione viene effettuata
sempre in una sola direzione: dal linguaggio di configurazione reale a quello ad alto livello per analisi
e correzione; oppure nel verso opposto per la generazione di configurazioni a partire dalle specifiche.
Inoltre molti dei lavori citati non supportano componenti essenziali del comportamento reale dei
firewall, come NAT e lo stato interno; e spesso si concentrano su un sistema firewall specifico. Nel
nostro approccio invece, IFCL funge da linguaggio intermedio fra i linguaggi reali source e target.
Pertanto la traduzione fra IFCL e i linguaggi di configurazione & definita in entrambe le direzioni.

Gestiamo inoltre sia i costrutti per la modifica dei pacchetti, sia lo stato interno del firewall.

Il nostro approccio differisce da quelli proposti precedentemente quindi in quanto allo stesso tem-
po: (i) & indipendente dal linguaggio; (ii) definisce una semantica formale capace di esprimere il
comportamento dei firewall; (i77) supporta NAT e stato interno; (i) consente di derivare una rap-
presentazione ad alto livello, funzionale e concisa del comportamento del firewall; (v) permette di
generare una configurazione per un sistema dato, il cui comportamento sia coerente con la descrizione
ad alto livello.

I1 nostro lavoro si basa soprattutto su [4], nel quale si propone una pipeline di transcompilazione

fra linguaggi di configurazione di firewall, e di cui questa tesi puo essere considerata una prosecuzione.

L’articolo [5] descrive la progettazione di un tool automatico per la sintesi della semantica di una
configurazione firewall, e la sua applicazione a casi reali. Il tool implementa i primi due stadi della
pipeline di transcompilazione proposta in [4] e supporta "amministratore di sistema nella verifica delle
politiche data una configurazione. In particolare I'utente puo verificare implicazione, equivalenza e
differenze fra configurazioni, e la raggiungibilita fra host. Il tool usa la stessa sintassi di [4] in cui pero
IFCL viene presentato in maniera piu approfondita, definendone la semantica operazionale e spiegando
in maniera approfondita e formale le fasi di sintesi della rappresentazione dichiarativa della semantica
del firewall, e dimostrandone la correttezza. Inoltre in [4] si affronta il problema della compilazione
della specifica dichiarativa nel linguaggio target, permettendo la transcompilazione. Per risolvere
automaticamente i problemi di porting e refactoring delle configurazioni, si propone una pipeline di

transcompilazione composta dalle seguenti fasi:
1. traduzione in IFCL della configurazione espressa nel linguaggio source;

2. estrazione della semantica della configurazione come insieme di regole dichiarative non sovrap-

poste che descrivono i pacchetti accettati e le loro trasformazioni in termini logici;
3. compilazione delle regole dichiarative nel linguaggio target.

La prima fase della pipeline & invariata rispetto alla versione che discutiamo in questa tesi. La seconda
fase si basa su una caratterizzazione logica della semantica di IFCL; la rappresentazione sintetica
consiste in una descrizione concisa, basata su multicubi, dell’insieme dei modelli del predicato che
rappresenta la semantica, ed & calcolata attraverso un SAT solver. Per quanto relativamente efficiente,
questa fase rappresenta il collo di bottiglia della transcompilazione; da qui il desiderio di studiare un
algoritmo alternativo.

Per 'ultima fase della pipeline viene proposto un algoritmo basato sui tag, che produce una con-
figurazione IFCL per il sistema target. In [4] si garantisce che il firewall prodotto accetta tutti e soli
i pacchetti accettati dal firewall di partenza. Tuttavia non non si danno garanzie sulla conservazione
delle trasformazioni NAT e non viene studiata la possibilita effettiva di ricompilare il firewall ottenuto
nel linguaggio target. La ricompilazione da IFCL al linguaggio reale potrebbe in effetti essere proble-
matica proprio a causa del largo uso che viene fatto dei tag, i quali sono soggetti a limitazioni diverse
nei vari sistemi, in contraddizione con I'intento di delineare un approccio il piti generale possibile.

Nel capitolo [2] definiamo una versione lievemente modificata di IFCL e in generale presentia-
mo i risultati di [4] che ci servono come base per impostare la nostra rivisitazione della pipeline di

transcompilazione.

1.1.2 Sistemi supportati

Per il momento i sistemi supportati sono iptables, pf e ipfw. Dato che una volta tradotta la
configurazione in IFCL, la procedura di transcompilazione & indipendente dal sistema di origine, &
possibile supportare nuovi sistemi fornendo un compilatore da e per il linguaggio di configurazione

desiderato.

iptables

Si tratta del sistema firewall di default delle distribuzioni Linux [2I]. Opera grazie a Netfilter, il
framework standard per la gestione di pacchetti implementato nel kernel di Linux [22]. Ogni regola di
iptables e assegnata ad una tabella e ad una catena. Intuitivamente, una catena ¢ una lista ordinata
di regole, una tabella € una collezione di catene.

Le tabelle pii comunemente usate sono:

FILTER : per il filtro di pacchetti, nella quale e possibile scartare i pacchetti che non soddisfano

determinati vincoli;

NAT : per la traduzione degli indirizzi in accordo con un protocollo di NAT (Network Address Trans-

lation), nella quale & possibile modificare gli indirizzi dei pacchetti;

MANGLE : per l'alterazione dei pacchetti, dove si possono associare etichette ai pacchetti, aggiornare

contatori etc.

Ci sono cinque catene built-in che sono ispezionate in momenti specifici del ciclo di vita di un pacchetto,

e sulla base dell’interfaccia di destinazione e origine [23]:
prerouting : quando il pacchetto raggiunge 1’host;
forward : quando il pacchetto viene instradato dall’host;
postrouting : quando il pacchetto sta per lasciare I’host;
input : quando il pacchetto e instradato verso I’host;
output : quando il pacchetto & generato dell’host.

Non tutte le tabelle contengono necessariamente tutte le catene. L’utente puo inoltre definire delle
proprie catene, che saranno ispezionate solo se chiamate espressamente da quelle built-in. Ogni regola
¢ divisa in due parti: una condizione e un target. Se un pacchetto verifica la condizione allora
viene gestito in accordo con il target. I target possono essere quelli predefiniti oppure una catena

user-defined. 1 target predefiniti pii comuni sono:
ACCEPT : permette al pacchetto di passare, continuando la valutazione delle altre catene;
DROP : scarta il pacchetto;

RETURN : interrompe la valutazione della catena corrente e ritorna alla valutazione della catena

precedente;

DNAT : permette di modificare I'indirizzo di destinazione del pacchetto (destination NAT), il pacchetto

viene immediatamente accettato dalla ruleset;

SNAT : permette di modificare U'indirizzo di origine del pacchetto (source NAT), il pacchetto viene

immediatamente accettato dalla ruleset.
Quando invece il target € un catena user-defined occorre specificare un metodo di invocazione fra:

call : che esegue la catena chiamata fino alla fine o al primo RETURN, e che successivamente ritorna

alla catena chiamante come se si fosse invocata una procedura in un linguaggio imperativo;

jump : che passa ad eseguire la nuova catena in modo definitivo, senza tornare alla catena chiamante,

come nei salti dei linguaggi assembly.

Le catene built-in hanno una policy di default configurabile, corrispondente ad ACCEPT o DROP: se un
pacchetto raggiunge la fine della catena built-in o di una catena invocata con metodo jump, senza che

il pacchetto sia accettato o scartato, allora si applica la policy di default.

pf

Si tratta del firewall standard di OpenBSD [I7], supportato anche da FreeBSD [10]. Differentemente
dagli altri firewall, ’azione applicata ad un pacchetto dipende dall’ultima regola in cui la condizione e
verificata dal pacchetto, non dalla prima, tranne dove specificato diversamente attraverso l’etichetta
quick.

pf ha una singola ruleset che viene ispezionata sia all’arrivo sull’host, sia alla partenza da esso.
Nella versione di FreeBSD le regole di traduzione, quelle che implementano NAT, sono applicate prima
di quelle di filtro, nella versione di OpenBSD si segue rigidamente ’ordine di definizione.

I pacchetti appartenenti a connessioni stabilite sono accettati di default, aggirando le regole di
filtro.

ipfw

Si tratta del sistema firewall standard per FreeBSD [20]. Come in pf, le regole sono inserite in un’unica
lista che viene valutata due volte, quando il pacchetto arriva all’host e quando lo lascia (un’etichetta
in o out puo essere applicata alla regola se vogliamo che sia applicata solo in uno dei due casi); e come
in iptables queste sono valutate in ordine e la prima di cui ¢ verificata la condizione viene applicata.

Il pacchetto viene scartato se nessuna condizione & verificata. L’ordine di valutazione sequenziale
puo essere alterato da regole contenenti skipto e goto. goto ¢ simile all’istruzione jump di iptables,
ma la destinazione invece di essere una catena separata, ¢ una regola all’interno dell’'unica lista di
regole. skipto e equivalente a goto, ma ¢ valido solo se la destinazione e successiva alla regola
chiamante.

I pacchetti che appartengono a connessioni stabilite possono essere accettati usando regole apposite.

1.1.3 Definizioni preliminari

Chiamiamo IP Iinsieme degli indirizzi IPv4, cioé i numeri interi da 0 a 232 — 1, che rappresenteremo
con la classica notazione composta da quattro numeri fra 0 e 255 separati da punti; Port l'insieme delle
porte, cioé numeri interi da 0 a 2'6 —1; e Tag I'insieme dei possibili tag associabili ad un pacchetto dal
firewall. Sulla forma di Tag non facciamo assunzioni, in alcuni sistemi i tag sono stringhe arbitrarie,
in altri sono numeri interi (talvolta confrontabili per intervallo e usando maschere).

Definiamo P, I'insieme di tutti i pacchetti, come il prodotto cartesiano dei possibili valori per: IP

di origine, porta di origine, IP di destinazione, porta di destinazione, tag del pacchetto.
P =1P x Port x IP x Port x Tag

Per alcuni protocolli, come ad esempio ICMP, non sono definiti i campi relativi alle porte, per questo
assumiamo la presenza di un valore speciale ¢ € Port corrispondente alla mancanza del campo stesso.
Ogni predicato ¢(port) diverso da true, presente nella condizione di una regola di firewall, dove
port € Port, ¢ falsificato da un assegnamento di valore che associa ¢ a port.

Usiamo una notazione “ad oggetti” per accedere ai campi di un pacchetto p, scrivendo p.sIP,
p.sPort, p.dIP, p.dPort e p.tag. Inoltre, per leggibilita, anziché usare la classica notazione per le
tuple, ci riferiamo al pacchetto (sIP, sPort,dIP,dPort,tag) come (sIP : sPort, dIP : dPort, tag).

I firewall possono modificare i pacchetti, ad esempio attraverso il NAT. Scriviamo plda — a] e
plsa — al], con a = (ip,port) € IP x Port (rappresentato a sua volta come ip : port), per denotare
un pacchetto identico a p, tranne per I'IP e la porta relativamente di destinazione da e di origine sa,
che sono uguali ad ip e port. Allo stesso modo, p[tag — m] denota un pacchetto identico a p, con il

campo tag uguale a m.

1.2 Ipotesi di lavoro

Nonostante l'intento di non tralasciare aspetti fondamentali del comportamento dei firewall reali,
come NAT e stato interno, facciamo comunque delle semplificazioni rispetto al reale funzionamento
dei sistemi supportati. Delineiamo, attraverso queste assunzioni, un contesto abbastanza contenuto
da poter essere trattato in modo sufficientemente completo e in una forma adeguata, supportando

comunque la maggior parte dei casi di studio reali.

Imponiamo che le trasformazioni NAT applicate dai firewall possano modificare i campi stabiliti
solo in modo deterministico, escludendo quindi la possibilita di specificare per i campi del pacchetto,
trasformazioni con valori scelti non deterministicamente da intervalli o insiemi arbitrari. Questo serve
a garantire che il comportamento dei firewall stessi sia deterministico. Ad esempio in iptables,
normalmente, & possibile definire una trasformazione NAT secondo la quale I'TP di destinazione viene
modificato in uno fra i possibili indirizzi della sottorete 192.168.0.0/24; I'indirizzo viene selezionato
con una politica round robin (a meno di configurazioni differenti).

Assumiamo che questo genere di configurazione non siano legali, anche per evitare conseguenze
apparentemente contraddittorie, come il fatto che un pacchetto possa essere accettato o scartato non
deterministicamente. Alcune versioni di questa generalizzazione del NAT potrebbero essere definite
sfruttando lo stato interno, senza bisogno di estendere il modello per gestire il non determinismo; in
effetti per implementare una politica round robin, tutto quello che ci serve & la memoria riguardo
I'ultimo indirizzo assegnato.

E bene segnalare che, a meno di approssimazioni (come quelle fatte in [], vedi , la mo-
dellazione delle trasformazioni dovute allo stato, ad esempio in un contesto di NAT dinamico, non
comportano problemi in quanto non si tratta di trasformazioni intrinsecamente non deterministiche,

ma semplicemente dipendenti dallo stato interno del firewall.

Nella modellazione dei linguaggi di configurazione attraverso IFCL, per quanto riguarda le azioni
su pacchetti che dipendono dallo stato interno del firewall, assumiamo ’esistenza di una funzione che,
dato lo stato interno e il pacchetto attuale, restituisce ’azione prescritta per il pacchetto. Questo
viene fatto senza dare dettagli relativi alla forma di questa funzione e senza descrivere espressamente
I'insieme delle azioni che possono essere applicate ai pacchetti. Il formalismo € quindi molto generale,
permettendo in teoria di modellare ogni genere di azione che dipenda dallo stato interno come NAT
dinamico, politiche di bilanciamento del carico e rate limit; ma demanda la formalizzazione della

caratteristica in sé all’utente interessato.

Per lo studio dell’espressivita e per I'implementazione della pipeline di transcompilazione ci occu-
piamo unicamente dei pacchetti appartenenti a nuove connessioni, assumendo che il comportamento
di default del sistema target, per pacchetti appartenenti a connessioni stabilite, sia soddisfacente.
Infatti ogni sistema ha un modo lievemente diverso di gestire le connessioni stabilite, e non & detto
che configurare il sistema target perché simuli quello di origine sia in assoluto desiderabile.

Inoltre, per lo studio dell’espressivita e la generazione di firewall tralasciamo 'uso dei tag. Questo
perché essi sono soggetti a vincoli diversi nei diversi sistemi di firewall ed & difficile tenere traccia di
queste limitazioni quando si parla della versione IFCL del firewall. Per permettere di implementare i
diversi sistemi reali in IFCL, infatti, abbiamo definito un sistema di tag il pit permissivo possibile; e
questo chiaramente ¢ un problema quando la configurazione IFCL deve essere compilata nel linguaggio

target, che potrebbe non permettere alcune operazioni adoperate.

1.3 Contributo

Il contributo originale di questo lavoro, soprattutto rispetto alla versione precedente della pipeline di

transcompilazione, presentata in [4], puo essere riassunto nei seguenti punti:
e definizione di una semantica denotazionale per i firewall IFCL;

e presentazione di un nuovo algoritmo di sintesi che si basa sulla semantica denotazionale e che

non richiede I'uso di un SAT solver;

e sviluppo di una teoria per lo studio dell’espressivita di un sistema firewall, data la sua caratte-

rizzazione IFCL;

e definizione di una procedura di compilazione che a partire dalla semantica astratta genera un

nuovo firewall per il sistema target senza usare i tag;

e valutazione delle condizioni di correttezza dei firewall prodotti dall’algoritmo basato sui tag

presentato in [4];

e definizione formale della rappresentazione sintetica usata e dimostrazione di correttezza.

1.4 Schema della tesi

Nel capitolo [2| presentiamo IFCL, il linguaggio formale sul quale basiamo il nostro lavoro: mostriamo
come compilare i sistemi supportati in IFCL, ne definiamo la semantica operazionale, forniamo un
algoritmo di riscrittura che rimuove i costrutti che influenzano il flusso di controllo (mantenendo in-
variata la semantica) e forniamo una caratterizzazione dichiarativa della semantica mettendo in luce
anche I'approssimazione dello stato interno sulla quale € basata. Nel capitolo [3| definiamo l'insieme
delle possibili trasformazioni su pacchetti e diamo la semantica denotazionale di IFCL come funzione
da pacchetti a trasformazioni. Nel capitolo [ridefiniamo la pipeline di transcompilazione, modifican-
do quella originariamente proposta in [4] ed evidenziando i passi intermedi e le condizioni necessarie
affinché il firewall prodotto sia semanticamente equivalente a quello di partenza. Qui introduciamo
anche la rappresentazione sintetica usata ed enunciamo le condizioni sotto le quali il comportamento
degli algoritmi, che operano sulla rappresentazione sintetica, rispetta le condizioni formali di corret-
tezza espresse. Il capitolo[5|e dedicato al nuovo algoritmo per il calcolo della semantica astratta di una
configurazione; si presenta anche un algoritmo per la rimozione dei cicli dal diagramma di controllo
di un firewall. Nel capitolo [f] studiamo ’espressivita dei diversi sistemi firewall basandoci sulla loro
formalizzazione IFCL, prima definiamo le configurazioni IFCL legali in un dato sistema, poi attraverso
queste deduciamo quali funzioni da pacchetti a trasformazioni sono esprimibili in quel sistema. Il ca-
pitolo [7] presenta l'algoritmo per la generazione della configurazione target, specificando in quali casi
abbiamo garanzie di successo e confrontandolo con quello presentato in [4]; per entrambi gli algoritmi
analizziamo anche la possibilita di compilare il firewall ottenuto da IFCL al linguaggio target. Infine,
nel capitolo [§] concludiamo tirando le somme sul lavoro svolto e parlando dei possibili sviluppi futuri
che ci aspettiamo, sia per quanto riguarda la produzione di uno strumento software che implementi

quanto descritto, sia rispetto a possibili estensioni della teoria e rilassamenti delle ipotesi di lavoro.

Capitolo 2

IFCL

In questo capitolo presentiamo IFCL (Intermediate Firewall Configuration Language), un formalismo
per la definizione di firewall proposto originariamente in [5] e riportato con maggiore dettaglio in [4].
I firewall modellati in IFCL sono composti da due elementi: il diagramma di controllo, che rappresenta
un’astrazione dell’algoritmo di controllo del sistema firewall, e la configurazione, un assegnamento di
ruleset espresse in un linguaggio comune ai nodi del diagramma di controllo.

Mostreremo come modellare iptables, pf e ipfw in IFCL e daremo una definizione formale della
semantica operazionale di un firewall espresso in IFCL. Presenteremo anche una procedura di nor-
malizzazione delle configurazioni e una caratterizzazione logica del linguaggio, entrambe utili per la
realizzazione della pipeline di transcompilazione.

I contenuti presentati in questo capitolo sono una rivisitazione del materiale di [4], che & stato
adattato alle ipotesi di questa tesi, in particolare all’ipotesi secondo la quale il NAT possa essere
effettuato unicamente verso indirizzi singoli e non verso intervalli. Abbiamo inoltre cercato di rendere
piu chiaro il ruolo dello stato interno del firewall e la differenza fra le proprieta di un firewall legate

al sistema firewall impiegato e quelle legate alla sua configurazione.

2.1 Fondamenti di IFCL

Presentiamo il linguaggio di configurazione intermedio IFCL. Non forniamo specifiche esatte del com-
portamento dello stato, preferendo rimanere parametrici rispetto a esso.

Assumiamo che una qualche nozione di stato s € S sia definita, dove S & 'insieme di tutti gli stati
possibili, e che il sistema tenga traccia di quali pacchetti appartengono a una connessione stabilita
e quali no. Il comportamento del firewall rispetto allo stato interno ¢ parametrizzato attraverso il
predicato astratto p b5 «, vero se il pacchetto p appartiene a una connessione stabilita secondo lo
stato s, che prescrive un’azione « da applicare al pacchetto p. Se un pacchetto p non appartiene ad
alcuna connessione stabilita secondo lo stato s scriviamo p Fs.

Per permettere la modifica di un pacchetto secondo lo stato della connessione introduciamo

un’azione dedicata nel linguaggio delle ruleset, il target cHeck-sTATE.

Una regola firewall & composta di due parti: un predicato ¢ che esprime una condizione sui
pacchetti, e un target che definisce ’azione da applicare al pacchetto. Le regole possono predicare su
proprieta intrinseche del pacchetto, come indirizzo di origine o destinazione, ed eventualmente anche
sull’appartenenza o meno del pacchetto a una connessione stabilita. Pertanto il predicato ¢ ha come
parametri sia il pacchetto da valutare che lo stato s del firewall. Non diamo una specifica completa

dei predicati che possono comparire come condizione di una regola, ma imponiamo che questi possano

Target Effetto

ACCEPT Il pacchetto viene accettato dalla ruleset, la valutazione della ruleset termina

DROP Il pacchetto viene scartato dal firewall, la valutazione del pacchetto termina
completamente

CALL(R) Invoca la ruleset R, questa verra valutata al massimo fino all’invocazione di un

reTuRN O alla fine della ruleset R, successivamente si ritornera alla ruleset chiamante

GOTO(R) Salta alla ruleset R, il destino del pacchetto sara quello assegnatogli da R

RETURN Ritorna dalla ruleset corrente a quella chiamante

NAT(T g, M) Effettua una trasformazione sul pacchetto e lo accetta, la valutazione della ruleset
termina

ARk () Marca il pacchetto col tag m, la valutazione prosegue dalla regola successiva

cueck-sTATE(X) | Esamina lo stato: se il pacchetto appartiene a una connessione stabilita effettua
le trasformazioni previste dallo stato, il pacchetto viene accettato e la valutazione

della ruleset termina; altrimenti la valutazione prosegue dalla regola successiva

Tabella 2.1: T target IFCL e loro semantica informale.

essere scomposti in una congiunzione di predicati tali che ciascuno di essi predica unicamente su uno dei
campi del pacchetto, piti uno per lo stato. Questo vincolo e coerente con i linguaggi di configurazione
dei sistemi firewall reali e ci serve a garantire alcune proprieta sull’insieme dei pacchetti che verificano
la condizione di una regola. Alcune azioni comportano la fine della valutazione della ruleset da
parte del pacchetto, altre prevedono che il pacchetto prosegua la valutazione della ruleset dalla regola
successiva, altre ancora comportano la fine della valutazione del pacchetto da parte dell’intero firewall.

Consideriamo un insieme di azioni incluso in molti dei firewall reali. Queste azioni non determinano
solo il destino del pacchetto, ma influenzano anche il flusso di controllo in cui le regole sono applicate.

I target e la loro semantica informale sono presentati in Tabella [2:1]

I target caLL() e rerury implementano un comportamento simile a una chiamata a procedura; coro(.)
ha un comportamento simile a quello dei jump in assembly. Nell’azione nat, ng € ns sono indirizzi
usati per tradurre rispettivamente la destinazione e 'origine.

Usiamo il simbolo x per indicare la trasformazione identita, ad esempio n : * rappresenta una
trasformazione in cui I'indirizzo IP & trasformato in n e la porta € lasciata inalterata. L’argomento
X € {+,—, >} dell’azione cueck-state indica i campi del pacchetto che possono essere modificati dallo

stato. Piu precisamente, — riscrive solo la destinazione, < solo l'origine e <+ entrambi. Formalmente:

Definizione 1 (Regola di firewall). Una regola di firewall v é una coppia (¢,t) dove t é l'azione target

della regola e ¢ € una formula logica su un pacchetto e sullo stato tale che:

O(p, 8) = s1p(p-SIP) A $sport(p.sPort) A ¢arp(p.dIP) A ¢aport(p-dPort) A ¢rag(p-tag) A ¢s(p,s)

10

per qualche predicato ¢sip, Psport; Parp, Gdrort € Prag, € per un predicato ¢s(p, s) che puo essere solo

Ja. p s a oppure =3a. p k5 a.
Un pacchetto p si abbina a una regola r con target ¢, in uno stato s se ¢ vale.

Definizione 2 (Abbinamento di una regola). Data una regola v = (¢,t), diciamo che p si abbina a
r con target t, nello stato s, scritto p,s Ik t, se e solo se ¢p(p,s). Scriviamo p, s |, quando p non si

abbina a r nello stato s.

Per semplificare la trattazione assumeremo sempre che, per ogni regola del tipo (¢, cueck-state(X)),

valga che
o(p,s)=Ja.pksa

Nella pratica questo puo essere ottenuto imponendo che le condizioni ¢ delle regole con target
cueck-sTATE(X) siano sempre della forma ¢’ A (state = ENSTABLISHED) per un qualche predicato ¢’
(eventualmente true). Si noti che lapplicazione di cueck-state(X) in uno stato in cui la connessione
non e stabilita produce lo stesso risultato di quando la condizione non ¢ verificata, quindi le due regole
(¢, cueck-sTate(X)) € (¢, cuck-sTate(X)) hanno semantica equivalente. In pratica 1’assunzione non limita
affatto l'espressivita del formalismo, si tratta unicamente di una questione di forma.

Definiamo ora come un pacchetto viene elaborato da una lista di regole, da qui in poi chiamata

ruleset.

Definizione 3 (Ruleset). Un ruleset R é una lista di regole di firewall (anche vuota) corredata da
un target di default indicato come tq € {accerr, broP}, che specifica l'operazione da compiere quando un

pacchetto raggiunge la fine della ruleset e non ci sono ruleset chiamanti a cui tornare.

Quando non specificato diversamente assumeremo che il target di default sia sempre acceer, inoltre
chiamiamo per convenienza R, la ruleset vuota con default policy accepr.

Le regole sono ispezionate una dopo l’altra, viene eseguita 1’azione specificata dal target della
prima regola che si abbina al pacchetto e la valutazione della ruleset pud proseguire o meno, e in
modi diversi, sulla base del target. Come abbiamo detto infatti, alcune azioni fanno si che 'ispezione
termini, altre prevedono che si continui a ispezionare la ruleset dalla regola immediatamente successiva,
e in altri casi ancora la valutazione delle regole prosegue in maniera diversa dal normale. Per sanita
non permettiamo che per mezzo di azioni cotor) 0 caLL(r) si creino dei cicli nella catena delle ruleset
applicate. Il sistema tiene traccia delle ruleset invocate e nel caso si creino delle chiamate circolari
fra le ruleset scarta il pacchetto incriminato. Questo comportamento ¢ implementato nella semantica

operazionale di IFCL e modella fedelmente il comportamento dei firewall reali supportati.

Definizione 4 (Abbinamento in una ruleset). Data una ruleset R = [rq,...,ry], diciamo che R

abbina p alla i-esima regola con target t, nello stato s, scritto p,s kg (t,1), se e solo se
i<n A pslt AV<i.pslf,

Dove r; = (¢, t).
Scriviamo anche p,slfr se p non si abbina a nessuna regola in R, nello stato s, formalmen-
te se Vr € R.p,s .. Ci sentiremo liberi di omettere l'indice i quando non necessario, scrivendo

semplicemente p, s IFrt.

Nel nostro modello, astraendo dalle specifiche operazioni compiute dal sistema operativo per pro-
cessare un pacchetto, rappresentiamo ’algoritmo che valuta il pacchetto secondo le ruleset attraverso

un diagramma di controllo, cioé un grafo in cui i nodi rappresentano differenti fasi di valutazione e gli

11

L
q;a l]u # @

(@)@ —
p.sa ¢ L p.da € L
p.sa €L p.da € L
p.da
7 q11

(a) Diagramma di controllo di iptables

(b) Diagramma di controllo di ipfw (c¢) Diagramma di controllo di pf

Figura 2.1: Diagrammi di controllo dei sistemi supportati.

archi i possibili passaggi da una fase all’altra. Gli archi sono etichettati da un predicato che descrive
i requisiti che un pacchetto deve soddisfare per poter passare alla fase di valutazione successiva. As-
sumiamo che i diagrammi di controllo siano deterministici, cioé che ogni pacchetto possa attraversa

uno ed uno solo degli archi uscenti da ogni nodo.

Definizione 5 (Diagramma di controllo). Sia ¥ un insieme di predicati sui pacchetti. Un diagramma

di controllo C ¢é una tupla (Q, A, ¢;,qy), dove
e () ¢ un insieme di nodi;
¢ ACQxT xQ éun insieme di archi tale che ¥p,q # q5 . #{¢' | (¢,¥,¢') € ANY(p)} =1;
® ¢i,qr € Q sono nodi speciali che denotano linizio e la fine dell’elaborazione.

Dato che il diagramma di controllo ¢ deterministico possiamo definire una funzione di transizione

che dato lo stato attuale e un pacchetto restituisce il prossimo stato della valutazione.

Definizione 6 (Funzione di transizione). Sia (Q, A, i, q¢) un diagramma di controllo, la funzione di

transizione §: Q x P — Q ¢é definita come

0(g;p) =4 sse g, q) €A P(p)
Possiamo ora definire un firewall IFCL.

Definizione 7 (Firewall IFCL). Un firewall IFCL F é una coppia (C,X), dove C é un diagramma
di controllo; ¥ = (p,c) é una configurazione in cui p é un insieme di ruleset e c: QQ — p & una

corrispondenza che mappa ogni nodo di C in una rulesets in p.

2.2 Modellazione dei sistemi reali supportati

Mostriamo come codificare tre sistemi di firewall standard in IFCL: iptables, pr| e ipfw. Una

conseguenza immediata ¢ che attraverso la codifica definiremo implicitamente una semantica formale

INella versione supportata da freeBSD [10].

12

per i tre linguaggi, in termini della semantica formale di IFCL. Per ognuno di questi forniamo un
diagramma di controllo (si veda la Figura , mostriamo come tradurre il file di configurazione
in un insieme di ruleset e come assegnare queste ruleset ai nodi del diagramma. La traduzione della
configurazione dal linguaggio source & presentata in due fasi, per prima cosa spieghiamo come tradurre
le singole regole del linguaggio in IFCL e infine come distribuire le regole ottenute nelle varie ruleset e
come assegnarle ai nodi del diagramma.

Per economia di spazio e tempo, non specifichiamo completamente la traduzione da regole del
linguaggio di configurazione a IFCL, tralasciando alcuni dettagli non particolarmente delicati e che
richiederebbero la presentazione della sintassi completa dei linguaggi di configurazione supportati. In
particolare non descriviamo come tradurre le condizioni delle regole in predicati ¢ e diamo solo alcuni
accenni su come tradurre i parametri dei target. Crediamo che i dettagli tralasciati siano di immediata

comprensione per il lettore e che possano essere ricavati autonomamente senza particolari difficolta.

2.2.1 Modellazione di iptables

La ﬁgura mostra il diagramma di controllo Ciptepies di iptables. In questo grafo e in tutti quelli
che seguono, assumiamo che gli archi senza etichetta siano implicitamente etichettati del predicato
“true”. Idealmente ogni nodo corrisponde a una chain built-in e il diagramma ricalca il modo in cui
un pacchetto viene valutato attraversando chain differenti a seconda se sia proveniente e diretto verso
indirizzi locali o non locali.

Ogni regola di iptables ¢ immediatamente traducibile in una equivalente in IFCL da una semplice
elaborazione sintattica, si noti che il target catr¢) di IFCL corrisponde al target jump di iptables
per l'invocazione di una chain user-defined. In iptables ogni regola ¢ associata a una tabella e a
una chain built-in oppure & associata a una chain user-defined. Ogni coppia tabella chain built-in
e ogni chain user-defined corrisponde a una diversa ruleset. Ogni nodo del diagramma di controllo

corrisponde a una coppia tabella chain built-in.

Data la funzione di traduzione delle singole regole, la ruleset relativa a una coppia tabella chain
built-in 0 a una chain user-defined consiste semplicemente nella concatenazione della traduzione delle
regole a essa assegnate. L’ordine delle regole nelle ruleset deve essere lo stesso del file di configurazione
source in quanto l'ordine di valutazione delle regole & lo steso per IFCL e iptables (vengono applicate
dalla prima all’ultima).

In iptables ci sono dodici chain built-in, ognuna delle quali corrisponde a una singola ruleset.
Possiamo definire un insieme p,, C p di ruleset che sono la traduzione delle ruleset built-in di iptables.

man nat man nat man man
ROUT’ R ROUT7 RPRE) R RFOR ’ RFOR’ R

an nat
Chiamiamo queste ruleset Rive", Ri%, RJ G Paps Posr

INP’

Rpet . dove I'apice indica il nome della chain e il pedice il nome della tabella. Sinoti che p\p, contiene
le ruleset definite dall’utente, che entrano in gioco solo per mezzo di istruzioni caLL() o coTo() .

Leruleset R[4, R4 RR% e RO contengono come prima regola (state = ENSTABLISHED, cHECK-STATE(<)),
questo permette di modellare il comportamento reale di iptables, in cui se un pacchetto appartie-
ne a una connessione stabilita questo non passa per le chain della tabella NAT, ma subisce invece le
trasformazioni previste dallo stato.

La funzione di associazione delle ruleset ai nodi cipiapics : @ — p € definita come segue:

Ciptables(¢i) = Ciptables(qf) = Ciptables (q0) = Enr?h"
Ciptables(G1) = ﬁﬁé Ciptables (q1) = iﬁﬁ" Ciptables (q3) = FOR
Ciptables (q5) = R Ciptables (46) = INP Ciptables (q7) = ROGr
Ciptables (q8) = RO Ciptables (q9) = OUT Ciptables (¢2) = Rpgn'

13

_ pfi _ man _ nat
Ciptables (%) - RFOR Ciptables (qu) - RPOST ciptables (Q11) — RPOST

I target di default delle ruleset sono quelli delle default policy specificati dalla configurazione

iptables.

2.2.2 Modellazione di pf

Il diagramma di controllo Cps di pf, € mostrato in figura I nodi ¢g e g2 rappresentano la fase di
valutazione delle regole di trasformazione, i rimanenti nodi la fase di filtro.

Differentemente da iptables, pf non prevede la divisione delle regole in tabelle o chain differente.

Le regole sono valutate nell’ordine in cui compaiono. Quelle di trasformazione sono valutate prima
di quelle di filtro e ’algoritmo che stabilisce quale regola applicare ¢ differente per i due tipi di regole.
Fra le regole di trasformazione viene applicata la prima regola che verifica la condizione ¢. Fra le
regole di filtro invece viene applicata 1'ultima regola fra quelle di cui le condizioni sono verificate,
tranne le regole contenenti ’opzione quick, che sono applicate immediatamente.

La traduzione di una singola regola pf in IFCL non comporta particolari difficolta in quanto le

regole esprimibili in pf sono piuttosto semplici (nessun salto o chiamata).

La traduzione delle regole del file di configurazione sono divise nelle seguenti ruleset, che compon-

gONo ppy:
e nella ruleset Rg,q: sono inserite le regole rdr;
e nella ruleset Rg,4; sono inserite le regole nat;
e nella ruleset Rgy, sono inserite le regole di filtro quick che non hanno modificatore out;

e nella ruleset Rpy,y- sono inserite, in ordine inverso rispetto a quello del file di configurazione, le

regole di filtro non quick che non hanno modificatore out;
e nella ruleset R, sono inserite le regole di filtro quick che non hanno modificatore in;

e nella ruleset Ry Sono inserite, in ordine inverso rispetto a quello del file di configurazione, le

regole di filtro non quick che non hanno modificatore in;

In aggiunta la ruleset R4y, contiene come prima regola (state = ENSTABLISHED, cHEck-STATE(—)), Rsnat
contiene come prima regola (state = ENSTABLISHED, cueck-sTATE(<—)), € le ruleset Rfn, € Rpou con-
tengono sempre come prima regola (state = ENSTABLISHED, accept). Questo permette di modellare il
comportamento di pf rispetto ai pacchetti appartenenti a una connessione stabilita, che sono accettati
automaticamente e che subiscono solo le traduzioni prescritte dallo stato.

Le ruleset di filtro sono collegate infine dall’inserimento della regola (true, coto(Ry,,)) alla fine di
Ryour € (true, cot0(Ry,..)) alla fine di Ryoys.

L’assegnamento delle ruleset ai nodi ¢,y ¢ il seguente:

Copf (q’b) € Cpf (qO) = Rdnat Cpf (q2) = Rsnat

=R
cprqr) = R

€ Cpf (1) = Rfinp Cpf (g3) = Rout

Il target di deafault delle ruleset & sempre acceer in pf.

14

2.2.3 Modellazione di ipfw

Il diagramma di controllo Cipey di ipfw, mostrato in figura e piu semplice di quelli analizzati
precedentemente. Abbiamo sostanzialmente un nodo per le operazioni effettuate sui pacchetti in input
(go) ed uno per i pacchetti in output (q).

La configurazione di un firewall ipfw consiste in una serie di regole etichettate con un numero
identificativo che ne indica 'ordine di valutazione. L’idea ¢ quella di costruire una coppia di ruleset per
ogni regola della configurazione: una per i pacchetti in input, che sara “vuota” per regole etichettate
con la keyword out; una per i pacchetti in output, che sara “vuota” per regole etichettate con la
keyword in.

Piu precisamente, siano r4,,...,7q, le regole del file di configurazione ipfw, dove id; ¢ 'iden-
tificativo numerico assegnato a ciascuna delle regole. pipe, contiene 2k differenti ruleset: k ruleset
denominate R}, una per ogni regola r;4, € k denominate RZO , sempre una per ogni regola r;q,. Se
la regola r;q, contiene la keyword out, allora sard R! = [(true,coro(r?,>)]. Altrimenti, definiamo

R = (trs(riq,), (true,coto(rL,)))), dove trs & definita come:

(trs'(¢),coro(RL)) se r & skipto id, ¢
trs(r) = 4 (trs'(¢),ca(rl)) ser & call id, ¢
(trs'(¢),trs'(t)) seret ¢

In cui la funzione trs’ realizza una semplice traduzione sintattica per target e condizioni.
La costruzione delle rulesets Rio ¢ identica, ma in questo caso sono le regole etichettate con in a
essere tradotte in un ruleset “vuote”.

La funzione di assegnamento delle ruleset ai nodi c;pp, € definita come segue:

Cipfuw(Qi) = Re Cipfw(q0) = Ri
Cipfu(q1) = RY Cipfuw(qf) = Re

ipfw permette di definire una policy di default, questa determinera il target di default di tutte le

ruleset.

2.3 Semantica operazionale di IFCL

Esprimiamo la semantica di un firewall IFCL attraverso due sistemi di transizione operanti in un
modalita master-slave. Il sistema master definisce una relazione della forma s p’—p,> s’, intuitivamente
significa che un firewall nello stato s che riceve un pacchetto p lo trasforma in p’ e modifica il suo
stato interno in s’.

Le configurazioni del sistema slave sono triple (g, s,p) dove: (i) ¢ € @ & un nodo del diagramma di
controllo; (ii) s & lo stato del firewall; (iii) p & il pacchetto. Una transizione (q, s,p) — (¢, s,p’) descrive
come il nodo ¢ del firewall nello stato s gestisce un pacchetto p trasformandolo in p’, e passandolo al
nodo ¢’ per la prosecuzione della valutazione. Lo stato non cambia in questo sistema in quanto viene

aggiornato solo alla fine della valutazione del pacchetto, e solo se non viene scartato.

Usiamo il predicato p, s =5 (t,p’) che definisce il risultato della valutazione (pacchetto risultante
p’ e destino associato ¢ € {accepr,pror}) di un pacchetto p da parte di una ruleset R nello stato s
con stack delle chiamate S. Il predicato cerca nella ruleset R una regola che si abbini al pacchetto
p attraverso p, s IFg (t,4). Se la trova, il target ¢ & applicato a p per ottenere il nuovo pacchetto p’

(potenzialmente identico a p).

15

p,s kR (t,i) t € {ACCEPT,DROP} @ p, s IFr (CHECK-STATE(X),i) phksa p’ = establ(a,X,p)
p,s =5 (t,p) p, s =3 (ACCEPT, p')

(€]

. S .
3) p. s IFr (CHECK-STATE(X), i) pl/s p.sER, (t,p") p, s IFr (NAT(dn, 5n), 1)

S ’ (4) 5
p,s =g (t,p") p, s =% (ACCEPT, nat(p, dn, sn))

p,slFr (GOTO(R?),i) R ¢S p,s =55 (t,p) © " IFr (GOTOR?),i) R’ €S

ps =5 (t,0) p, s =5 (DROP, p)

(5)

p.s kR (CALLGR),) R €S ps it (t0) p,s bR (CALL(R?),i) R' €S

7 8
(7) oo 25) (8)

p,s =% (DROP,p)

9) p, s IFg (RETURN,3) pop*(S) = (R’,S’) p,s \:f{, (t,p") (10) p, s IFr (RETURN, %) pop™(S) =t
p.s =3 (t,p') p,s =g (ta,p)
ap iR SFEe pop'(S) = (RLS) bR (bp)) pstr (S=c Vopor'(S)=1)

p,s EL (tp) p.s EF (ta,p)

p, s IFr (MARK(m), 7) pltag — m], s ‘ZIS%‘JA (t,p")

(13)

p s =g (t,p)

Tabella 2.2: Predicato p,s =3 (¢,p').

Lo stack S serve a gestire le azioni caL(), retury € coTo(), e supplisce a una duplice funzione:
controllare che non ci siano chiamate cicliche e tenere traccia delle ruleset chiamanti nel caso si
incontri un’azione rerury. Si noti che nel momento di dover tornare alla ruleset chiamante ¢ necessario
ignorare le ruleset che sono state inserite in S da un coto(), limitandosi a quelle inserite attraverso
una carL(). Distinguiamo dunque le ruleset inserite nella pila da un coro() sopralineandole: le ruleset
sopralineate sono ignorate quando si ritorna da una chiamata.

Chiamiamo € la pila vuota e indichiamo con - la concatenazione di elementi sullo stack. Definiamo
la funzione pop* per trattare il ritorno da una ruleset invocata (1 segnala che non ¢’¢ nessuna ruleset

a cui tornare)
pop*(e) =1 pop™(R-S)=(R,S) pop"(R-S) = pop™(S)

Nella definizione di p,s =% (¢ p') usiamo la notazione Ry, per indicare la ruleset [r,...,7,] (k €
[1,n]) risultante dalla rimozione delle prime k — 1 regole dalla ruleset R = [rq, ..., 7).

In linea con l'idea di rimanere parametrici rispetto allo stato interno del firewall, assumiamo che
la funzione establ(a, X, p), data la trasformazione « prescritta dallo stato, un pacchetto p e i campi
X € {+,—, 4>} da modificare, restituisca un pacchetto possibilmente modificato p’, ad esempio nel
caso questo appartenga a una connessione stabilita.

Assumiamo infine di avere una funzione nat(p,d,,s,) che restituisce il pacchetto p modificato
secondo 'operazione NAT. L’argomento d,, specifica la modifica alla destinazione di p, cioe il destination
NAT (DNAT), mentre s, specifica la modifica all’origine di p, cioe il source NAT (SNAT).

La tabella mostra le regole che definiscono p, s =% (¢,p'). La prima regola gestisce il caso in cui
il pacchetto p si abbini a una regola con target acceprr o prop; in questo caso la valutazione della ruleset
termina e vengono restituiti il pacchetto non modificato e il target. Quando un pacchetto p si abbina
a una regola con target cueck-sTaTE, controlliamo lo stato s: se p appartiene alle connessioni stabilite,
restituiamo accepr e un pacchetto p’ ottenuto dalla riscrittura di p. Se p non appartiene a nessuna
connessione stabilita allora proseguiamo con la valutazione della ruleset. Quando un pacchetto p si
abbina a una regola con target wat, restituiamo accerr e il pacchetto risultante ottenuto invocando la
funzione nat. Ci sono due casi corrispondenti alla situazione in cui p € associato a una regola con

target coto(). Se la ruleset R’ non ¢ ancora nello stack inseriamo la ruleset corrente R nello stack,

16

sovralineandola in modo da ignorarla per il ritorno. Altrimenti, se R’ & gia nello stack, abbiamo
trovato un loop e quindi scartiamo p assegnandogli il target orop. Il caso di un pacchetto p associato a
una regola con target caL() e simile, a parte per il fatto che la ruleset inserita nello stack non viene
sovralineata. Quando un pacchetto p & associato a una regola con target retury, chiamiamo la funzione
pop* sullo stack e confrontiamo il pacchetto con la ruleset ottenuta. Infine, quando nessuna regola si
associa al pacchetto, un implicito retury occorre: continuiamo dal top dello stack, se esiste. Una regola
con target mark semplicemente modifica il tag del pacchetto a cui & associata. Se nessuna delle regole
¢ applicabile allora restituiamo ’azione di default t; della ruleset corrente.

Possiamo ora definire la funzione di transizione slave come segue:

/

clg) = R p,s =g (acower,p) 6(q,p") = ¢

(¢,s,p) = (d',5,p")

La regola descrive come viene trattato il pacchetto p quando il firewall € nella fase di elaborazione
rappresentata dal nodo ¢ e lo stato &€ s. Confrontiamo p con la ruleset R associata a q e se p & accettato
come p’, continuiamo considerando la prossima fase di elaborazione rappresentata dalla fase ¢'.

Il sistema di transizione master ¢ basato sulla chiusura transitiva della relazione — del sistema slave.
Tuttavia e necessario verificare che la sequenza dei nodi attraversati non contenga dei nodi ripetuti,
cioe dei cicli, in quanto in questo caso il sistema run time del firewall scarterebbe immediatamente il
pacchetto, in modo coerente col comportamento dei firewall supportati. Per questo definiamo —©,

una versione priva di cicli della chiusura transitiva della relazione —.

(4i:5,2) = {3 (¢:5.9")

/
(qi757p) _>@ (Q7S7p)
Dove la relazione %}' ¢ una versione della chiusura transitiva che tiene conto dell’insieme dei nodi

visitati I al fine di prevenire i cicli.

(@.5.p) = (d,s,0) d ¢1 (a50) =@ s0") " ¢1 (@ 50") 2 (d550)

(a,5,p) =7 (d',5.9) (a,5,p) =7 (d',5.9)
Infine definiamo il sistema di transizione master, che trasforma stati e pacchetti come segue:

(in svp) —® (va Svp/)

S&S&J(p,p/)

Questa regola dice che quando un firewall & nello stato s e riceve un pacchetto p, elabora p a partire
dal nodo iniziale ¢; del suo diagramma di controllo. Se l’elaborazione ha successo, cioe p raggiunge
il nodo ¢y da cui viene accettato come p’, allora il sistema di transizione master accetta p come p’
e aggiorna lo stato s inserendo informazioni riguardanti p, la sua trasformazione in p’ e I'eventuale

connessione a cui appartiene, attraverso la funzione W, lasciata non specificata per generalita.

2.4 Normalizzazione

Il linguaggio di configurazione intermedio IFCL permette di gestire il flusso di controllo attraverso
i target coto(L), caL() e rerurn. Questa proprieta del linguaggio permette di modellare fedelmente i
sistemi reali come iptables e ipfw, tuttavia rende difficile analizzare formalmente le configurazioni
per derivare una rappresentazione sintetica della loro semantica. Mostriamo come questi target pos-
sono essere eliminati automaticamente dalla configurazione di un firewall, mantenendo inalterata la

semantica.

17

Chiamiamo normalizzata una ruleset in cui non siano presenti target per modificano il flusso di
controllo. Presentiamo un’operazione di normalizzazione { _) che data una ruleset ne produce una
normalizzata equivalente.

Nel seguito denotiamo con r; R una ruleset non vuota composta dalla regola r seguita dalla ruleset
(potenzialmente vuota) R; e indichiamo con R1@Rs la concatenazione di R; e Rs.

La normalizzazione di una ruleset R & definita come segue:

CRY=CRD{R
Cedf=e
C (¢, t);RD} = (f A t);C R D{ se t & {coTo(R?), CALL(R’), RETURN }
@ (¢, renomn); R D] = C R DI
CR D@ CRY] iR ¢1

A (¢, caewn); R D=
(f A p,oropr); C R D}c altrimenti

CR Yty @ CRY Pse B ¢ 1

A (¢, como®)); R)){ —
(f A p,oror); C R D{Aﬁgﬁ altrimenti

La procedura ausiliaria { R D; ispeziona ricorsivamente la ruleset R. La formula f accumula con-
giunzioni di predicati ¢ e rappresenta la condizione sufficiente e necessaria perché la valutazione di un
pacchetto da parte della ruleset raggiunga la posizione attualmente in esame della ruleset; 'insieme
I tiene traccia delle ruleset attraversate dalla procedura e serve a riconoscere i loop. Se una regola
non modifica il flusso di controllo, allora modifichiamo solo la condizione, sostituendo ¢ con f A ¢, e
continuiamo ad analizzare il resto della ruleset. La sostituzione della condizione corrisponde intuitiva-
mente a specificare che nella ruleset normalizzata una regola deve essere applicata al pacchetto p se e
solo se () nella ruleset originaria il pacchetto p avrebbe visitato la regola e (ii) il pacchetto p verifica
la condizione originaria della regola.

Nel caso di una regola di return (¢, return) non generiamo nessuna nuova regola, ma continuiamo
ad analizzare il resto della ruleset aggiornando f con la negazione di ¢.

Per la regola (¢, catLr)) abbiamo due casi, distinti in base all’esito del sanity check che verifica se
siamo in un loop o meno. Se la ruleset chiamata R’ non ¢ in I, e quindi il sanity check & verificato,
allora sostituiamo la regola con la normalizzazione di R’, con f A ¢ come predicato e aggiungendo
R’ all’insieme delle ruleset visitate. Se R’ invece ¢ gia in I, e quindi il sanity check non ¢ verificato,
allora abbiamo un loop e quindi rimpiazziamo la regola con una avente prop come target e f A ¢ come
condizione. In entrambi i casi continuiamo la normalizzazione del resto della ruleset.

La regola (¢, cotar’)) & trattata in maniera simile alla precedente, tranne che nella normalizzazione
del resto della ruleset abbiamo f A —¢ come predicato, in quanto non si torna indietro dalle ruleset
chiamate attraverso i target coro(), condizione necessaria perché un pacchetto visiti le regole che
seguono il coto() € che questo non verifichi la condizione ¢.

Chiamiamo firewall normalizzato un firewall in cui tutte le ruleset in p sono normalizzate. Un
firewall normalizzato ¢ ottenuto dalla riscrittura attraverso ’operazione di unfolding delle ruleset
associate ai nodi del diagramma di controllo. Si noti che non essendo possibile invocare o chiamare
ruleset le uniche ruleset in p, per un firewall normalizzato, sono quelle associate ai nodi.

Formalmente:

Definizione 8 (Normalizzazione di un firewall). Dato un firewall F = (C,X), con ¥ = (p,c), la
sua versione normalizzata C F D & (C,X') con X' = (p',¢') dove Vg € C.c'(q) = Ce(q) D e p =
{Celg) Dlgecy.

18

Pe(p,p;s) = dp(R) Ap =p
Prir(p,p,s) = (é(p,s) Ap =) V (—d(p,s) A Pr(p,p,s)) se 1 = (¢, accepr)
Prr(p,p,s) = =¢(p,s) A Pr(p, b, s) se 1 = (¢, prop)
Prr(p,p,8) = (¢(p,8) AP € tr(p,dn, 5n,3)) V (=¢(p,) A Pr(p, p,s)) ser = (¢, m1(dn, sn))
Prr(p,p,s) = (¢(p,8) AP € tr(p, %, %%, X)) V (=0(p, s) A Pr(p, p,s)) ser = (¢, oumok-state(X))
Prr(p,b;s) = (6(p, s) A Pr(pltag = m],p,s)) V (=¢(p,s) A Pr(p,p;s)) ser = (¢, mx(m))

Tabella 2.3: Traduzione delle ruleset in predicati logici.

Vale il seguente teorema che garantisce che ogni firewall ¢ semanticamente equivalente alla sua

versione normalizzata:

Teorema 1 (Correttezza della normalizzazione). Sia F un firewall e C F D la sua versione normaliz-

zata. Chiamiamo s ﬂ)x s un passo del sistema di transizione master del firewall X € {F,(F D}.

Vale che
/ ’
spm}_s/ SM)C(FDS/'

2.5 Caratterizzazione dichiarativa

Mostriamo come costruire un predicato logico che caratterizza il comportamento di un firewall nor-
malizzato: quali pacchetti accetta e con quali trasformazioni in quale stato.

Per gestire il NAT, definiamo una funzione ausiliaria tr(p, d,, sn, X) che calcola il pacchetto risul-
tante dall’applicazione della trasformazione definita dagli indirizzi d,, ed s, sul pacchetto in input p.
Il parametro X € {<«, —, <} specifica se la trasformazione si applica all’origine, al destinatario o a

entrambi gli indirizzi, similmente a quanto avviene per cueck-sTaTE(X).

tr(p, dn, sn, <) = {p[da > aq, sa > as]|aq € dn,as € 5,}
tr(p, dn, $n, =) = {plda — a4] | aq € dn}
tr(p, dn, sn, <) = {p[sa — as]| as € sn}

Modelliamo la policy di default di una ruleset R con un predicato dp, vero se la policy € acceer, falso
altrimenti.

Data una ruleset normalizzata R, costruiamo il predicato Pr(p, p, s) che vale se e solo se il pacchetto
p & accettato come p da R nello stato s. La sua definizione ¢ data induttivamente sulle

regole della ruleset R.

Facciamo una piccola digressione riguardo a come vogliamo studiare il comportamento del fi-
rewall in funzione dello stato s. In teoria il corretto modo di esprimere attraverso un predicato il

comportamento di una regola con target cueck-state(X) sarebbe il seguente:

P(¢,CHECK—STATE(X));R(17>157 5) = (¢(p,s) ANpFs a A = establ(a, X, p)) V ((=o(p, 5) V pI/s) A Pr(p, b, s))

Questo corrisponde esattamente al comportamento dinamico del firewall in cui dato un pacchetto p e
uno stato s, un solo pacchetto risultante & prodotto nel caso in cui p appartenga a una connessione
stabilita. Innanzitutto possiamo omettere p I/ in quanto abbiamo assunto che ¢(p,s) = Ja . p s a.

Successivamente, dato che l'obiettivo & quello di rappresentare il comportamento di un firewall in

19

modo sintetico, osserviamo che non possiamo analizzare uno per uno tutti i possibili stati del firewall.
Per questo astraiamo dal comportamento esatto dello stato, cioe del predicato p 5 a e dalla funzione
establ(a, X, p), e consideriamo solo due possibilitd per un pacchetto in uno stato s: il pacchetto
non appartiene a nessuna connessione stabilita e quindi il predicato ¢ non viene verificato e I’azione
cueck-sTatE(X) non viene mai applicata, oppure il pacchetto appartiene a una connessione stabilita e in
questo caso approssimiamo tutti i possibili esiti delle trasformazioni prescritte dallo stato in un unico
caso in cui la trasformazione produce non deterministicamente ogni possibile pacchetto ottenibile dalla
modifica dei campi specificati da X, esprimiamo questo per mezzo della funzione tr(p, *:%, *:%, X).

Dato che scegliamo di approssimare in questo modo il comportamento del firewall rispetto allo
stato, possiamo considerare una versione approssimata dello stato che si limita ad assegnare a ogni
possibile pacchetto un’etichetta che indica se questo appartiene o meno a una connessione stabilita
s : P — {ENSTABLISHED,NEW}. Notiamo che il fatto che un pacchetto p appartenga o meno a una
connessione stabilita non influenza in alcun modo il comportamento del firewall rispetto a un secondo
pacchetto p’ # p, pertanto non ¢ necessario studiare il comportamento del firewall per ogni possibile
stato approssimato, ma e sufficiente ridursi alle due funzioni costanti Sgystasrismep, stato nel quale
tutti i pacchetti appartengono a una connessione stabilita, e sygy, stato nel quale nessun pacchetto
appartiene a una connessione stabilita.

Definiamo formalmente il concetto di stato approssimato del firewall come segue

Definizione 9 (Stato approssimato di un firewall). Dato uno stato di firewall s € S definiamo la sua
versione approssimata § : P — {ENSTABLISHED, NEW} come:

ENSTABLISHED se da . pls«

>
o~
S
=

Il

NEW altrimenti

Non abbiamo descritto formalmente come vengono valutate le condizioni ¢ delle regole, ma abbia-
mo assunto che una condizione del tipo state = ENSTABLISHED venga valutata correttamente su un
pacchetto p dato lo stato attuale del firewall s; estendiamo la stessa ipotesi per quanto riguarda lo

stato approssimato s nel predicato

Commentiamo brevemente la costruzione del predicato Pr(p,p,s), definita ricorsivamente su R,
per casi sulla prima regola. Intuitivamente, la ruleset vuota non trasforma il pacchetto e lo accetta
solo se lo prevede la policy di default, quindi solo coppie in cui vale p = p possono verificare il predicato
e solo se vale dp(R). Se la ruleset inizia con la regola (¢, accerr), seguita da R, consideriamo due casi:
quando ¢(p,s) vale e quindi il pacchetto viene accettato com’®; e quando invece vale —¢(p, s), e p &
accettato come p solo se il resto della ruleset R lo accetta. La ruleset che inizia con la regola (¢, orop)
accetta p solo se ¢ la continuazione a farlo e se non vale ¢(p,s). La ruleset che inizia con la regola
(¢, mat(dy, sp)) & trattata come quella che inizia con (¢, accert): la differenza & che quando ¢(p, s) vale, il
pacchetto & accettato come p = tr(p, dy, sp, <), che & il risultato dell’applicazione delle trasformazioni
NAT al pacchetto p. La ruleset che inizia con la regola (¢, cueck-state(X)) si comporta in modo simile a
NAT applicando la trasformazione al pacchetto, nei campi X (scritto come tr(p, *:x, x:x, X)). Questa
trasformazione dovrebbe avvenire solo se il pacchetto appartiene a una connessione stabilita. Per la
verifica di questa condizione ci affidiamo al predicato ¢ che, come abbiamo assunto, nel caso di regola
con target cueck-state(X) deve comportare che il pacchetto appartenga a una connessione stabilita
o(p,s) = Ja . pts a. Infine, la regola (¢, mark(m)), se ¢(p, s) vale, trasforma il pacchetto in un nuovo
p’ = p[tag — m], come in una NAT, ma il pacchetto non viene accettato una volta modificato, quindi
p,p’ non & una automaticamente una soluzione del predicato, ma la continuazione verra valutata

usando p’ come pacchetto in arrivo.

20

Il predicato ¢ semanticamente corretto: se un pacchetto p € accettato da una ruleset
R, nello stato s come p’, allora P§(p,p’) vale, e vice versa.

Lemma 1. Data una ruleset R abbiamo che

1. Vp,s. p,s =% (accerr,p’) = Pr(p,p’, 8);

2. Vp,p',s. Pr(p,p',s) = 3s€S.5=5 A p,s =% (accerr, p’)
Definiamo il predicato associato a un intero firewall come segue.

Definizione 10. Sia F = (C,X) un firewall con diagramma di controllo C = (Q, A, ¢;,q5) e configu-

razione 3 = (p,c). Il predicato associato a F ¢é definito come

Pr(p,p, s) = Pgi (p,p,s) where

Pa; (0B, s) 2p =5 P65, 9) 2 Pyt) A |\ v @) AP W5,)
(a,9,9")€A
a' ¢
per ogni q € Q tale che q # qy, a dove Pygq) ¢ il predicato costruito a partire dalla ruleset c(q), cioe

quella associata al nodo q del diagramma di controllo.

Intuitivamente, del nodo finale ¢y accettiamo p cosi com’e. In tutti gli altri nodi g, p ¢ accettato
come P se e solo se viene accettato come un qualche pacchetto intermedio p’ dalla ruleset associata al
nodo ¢ e se questo pacchetto intermedio viene accettato dal nodo successivo nel percorso di p, tutto
per un firewall nello stato s. Pill precisamente, cerchiamo un pacchetto intermedio p’, per il quale
valga che (i) p & accettato come p’ dalla ruleset associata la nodo g¢; (i¢) p’ verifica uno dei predicati ¢
degli archi del diagramma di controllo uscenti da g; e (iii) p’ & accettato come p’ dal nodo raggiunto
q'. Vogliamo chiaramente ignorare i percorsi contenenti loop, sia per essere aderenti alla semantica
operazionale data, sia perché questo ¢ il comportamento reale dei firewall. Percio il predicato usa un
insieme I nel quale tenere traccia dei nodi gia attraversati ed esiste una quarta condizione che deve
essere verificata da p’: (iv) il nodo successivo che valutera il pacchetto non deve appartenere gia I,
ciot ¢’ ¢ I.

Concludiamo questa sezione stabilendo una connessione fra la caratterizzazione logica di un firewall

e la sua semantica operazionale.

Teorema 2 (Correttezza della caratterizzazione logica). Dato un firewall F ed il suo predicato

corrispondente Pr abbiamo che
1. s 25 54 (p,p) = Pr(p,p,3)

2.Yp,p,s. Pr(p,p/,s) = Ise€S.5=5 A s 22 sw(p,p)

21

Capitolo 3

Caratterizzazione funzionale

In questo capitolo presentiamo una caratterizzazione funzionale della semantica di IFCL. Come per la
caratterizzazione dichiarativa dell’articolo [4], presentata precedentemente, ci interessa trattare solo i
firewall normalizzati, senza istruzioni caLL(), reTury 0 coto()). Definiamo per prima cosa la semantica di
una ruleset e poi per composizione quella di un firewall. Introduciamo il concetto di trasformazione
su un pacchetto e presentiamo una seconda caratterizzazione funzionale basata su questo concetto.
Questa seconda versione della semantica funzionale ¢ equivalente alla prima, ma risulta pit comoda
per 'implementazione della fase di sintesi della pipeline di transcompilazione.

A differenza della caratterizzazione logica presentata precedentemente, quella funzionale non si
basa su un’approssimazione dello stato, alla fine del capitolo discuteremo le conseguenze di questa

scelta.

3.1 Semantica denotazionale

Definiamo la semantica di una ruleset R e di un firewall IFCL F come una funzione che dato uno stato
interno restituisce una funzione che associa ogni pacchetto al pacchetto nel quale viene trasformato
quando viene accettato o L se il pacchetto viene scartato.

La semantica di una ruleset R & definita da:

[R] : S —=P—>PU{L}
[R](s) =[R]s :P—PU{L}

p se dp = ACCEPT
Heﬂs (p) -

1 altrimenti

[(¢, accert); R]s (p) = p se ¢(p, s)
[R]s (p) altrimenti
[(¢, oro); R] s (p) = se ¢(p, s)
Js (p) altrimenti

nat(p, dn,sn) se ¢(p, s)
[R]s (altrimenti

[(¢,mat(dy,, sn)); R

[(6. cxmox-smaze(X)): R]. (p) = establ(a, X,p) se (b.(p, s)'/\p Fs
[R]s (p) altrimenti

22

[R]s (pltag — m]) se é(p,s)

¢,mark(m)); R]s (p) =
[((m)); B]s (p [R]s (p) altrimenti

Dove ricordiamo che il predicato p 5 « € vero se il pacchetto p appartiene ad una connessione stabilita
secondo lo stato s del firewall che prescrive per p azione «, e la funzione establ(a, X, p) effettua la
trasformazione « sul pacchetto p limitatamente ai campi specificati da X € {+, —, < }.

La funzione [R], dato uno stato s, ¢ definita attraverso la funzione ricorsiva [R]s, che a sua volta
& definita per casi sulla forma della prima regola di R. Se R & vuota allora ogni pacchetto viene
mappato in se stesso se la policy di default della ruleset dp € accerr, in | se la policy di default &
prop. Se R comincia con una regola con target accerr e condizione ¢ allora ogni pacchetto che verifica
la condizione ¢ viene mappato in se stesso, ogni altro pacchetto viene trattato secondo la funzione
associata al resto della ruleset. Se la prima regola della ruleset R ha target orop o wat(d,,, s,) allora
ci si comporta come nel caso precedente, ma i pacchetti che verificano la condizione sono mappati
rispettivamente in L o in un p’ ottenuto a partire da p modificano i campi secondo le specifiche di d,,
e s, attraverso la funzione nat introdotta nel capitolo[2] Il caso in cui R cominci con una regola con
target cueck-sTaTE(X) & piuttosto simile ai precedenti, dove perd non & sufficiente che la condizione ¢
sia verificata, serve anche che il pacchetto appartenga ad una connessione stabilita, cioe p F5 «a, e la
trasformazione applicata ¢ «, quella prescritta dallo stato, e solo nei campi specificati da X. L’ultimo
caso, quello in cui la prima regola della ruleset ha target mark(m) & particolare in quanto la valutazione
viene comunque demandata al resto della ruleset, con un pacchetto eventualmente modificato nel
campo tag se la condizione della regola & verificata.

La semantica appena definita per le ruleset ¢ corretta rispetto alla semantica operazionale definita

attraverso la relazione = nel capitolo
Lemma 2. Sia R una ruleset normalizzata IFCL, abbiamo che
1. Vp,p',s. (p,s Efg (acceer,p’) <= [R](s)(p) =p")

2. ¥p,s. ([R](s)(p) = L <= F}p". p,s ER (oror,p’))

La semantica di un firewall F in uno stato s ¢ definita da

[F]: S—>P—-PU{L}
[FI(s) = [Fls : P—=PU{L}

[1s = [a:l’

Dove la funzione [¢]Z! : P — P U {L}, per un firewall F, uno stato s e un insieme di ruleset I &

definita per ogni g € Q, ¢ # ¢y come:

[¢15 ") sep £ Lng @1

altrimenti

[a)3F (0) =
dove p’ = [c(q)]s (p) e se p’ # L allora ¢’ = d(q,p’)
e per il nodo finale come:

laf177 () =p

23

La semantica di un firewall [F], dato uno stato s ¢ definita dalla funzione [¢]Z*! in cui ¢ & il nodo
del diagramma di controllo da cui parte la valutazione del pacchetto, I e l'insieme dei nodi visitati
e viene usato per individuare i loop. La funzione [¢]7*! & definita ricorsivamente sul diagramma di

controllo, dato il nodo di partenza q ed il pacchetto da valutare p, la funzione

e calcola qual ¢ il risultato della valutazione del pacchetto p da parte della ruleset associata al

nodo ¢;

e se il risultato ¢ un pacchetto p’ allora calcola il prossimo nodo del grafo che sara visitato ¢/ =
d(q,p");
e se il risultato & L oppure se ¢’ & gia stato visitato, cioe € in I, restituisce L;

e se ¢’ non & in I allora [¢]7! associa a p il risultato dell’applicazione di ﬂq’]]f’IU{Q}

/

p.

al pacchetto

Il nodo finale accetta ogni pacchetto senza modificarlo.

La caratterizzazione funzionale & corretta rispetto alla semantica operazionale.

Teorema 3 (Correttezza della caratterizzazione funzionale). Dato un firewall normalizzato F abbiamo

che
LWpps (525 sw(pp) <= [Fls)p) =p)
2. Vp,s. ([FI(s)(p) = L = =3 s 2% 5w (p,p))

Si noti che il teorema [3] ha un corollario interessante, ovvero che il comportamento di un firewall
& deterministico. Questo & dovuto alla scelta dell’insieme di target che abbiamo deciso di introdurre
nel linguaggio, e in particolare al fatto che non abbiamo permesso di effettuare NAT verso intervalli
di indirizzi. Questa scelta potrebbe non rispettare il reale comportamento di alcuni firewall (esclusi
da questa trattazione), in cui il destino di un pacchetto ¢ deciso non deterministicamente, ad esempio
per effettuare bilanciamento del carico. Meccanismi piu evoluti di bilanciamento del carico possono

tuttavia essere modellati sfruttando lo stato interno del firewall.

Corollario 1 (Determinismo dei firewall). Dato un firewall IFCL F, il destino associato ad un

pacchetto p & unico, ovvero

Vp,s. (13p). s 25 sw (p,p)) vV (3. s 5 sw (p,p)))

3.2 Semantica a trasformazioni

Abbiamo espresso la semantica denotazionale del firewall nella maniera piu naturale ovvero speci-
ficando per ogni pacchetto se questo puo attraversare il firewall e quale ¢ il suo stato dopo averlo
attraversato. Tuttavia, per gli algoritmi che implementano la pipeline di transcompilazione, lavora-
re con le coppie (pacchetto ricevuto, pacchetto trasformato) di questa semantica sarebbe costoso e
scomodo. Supponiamo ad esempio di voler rappresentare con una tabella tutte le coppie (p, [F](p)),
avremmo bisogno di una tabella con #P righe. A poco servirebbe unire fra loro le righe con la stessa
immagine, in quanto ad esempio tutti i pacchetti che sono accettati senza alcuna modifica, avendo
immagine diversa, necessiterebbero di una riga dedicata.

Vogliamo associare ad ogni pacchetto accettato la trasformazione che gli viene applicata, anziché

il valore finale della trasformazione stessa. In questo modo ogni pacchetto che viene accettato senza

24

modifica ha la stessa immagine, cosi come anche ogni pacchetto che viene accettato modificando
solo l'indirizzo IP di destinazione in una data maniera e cosi via. Abbiamo quindi la possibilita di
raccogliere i pacchetti che sono trattati alla stessa maniera dal firewall.

Vogliamo definire una nuova semantica, che opera su domini diversi e che associa ad ogni pacchetto
la trasformazione che il firewall applica ai suoi campi. In pratica per ogni campo del pacchetto abbiamo
due possibilita: il firewall pud modificare il campo (attraverso un NAT ad esempio) o lasciarlo com’e. 11
concetto rimane lo stesso della semantica precedente, ma in questo modo tutti i pacchetti che vengono
“trattati alla stessa maniera” dal firewall hanno la stessa immagine nella funzione che definisce la
semantica e questo ci permettera di trattarli come un unico insieme semplificando gli algoritmi della

pipeline.

Definizione 11 (Trasformazione su un campo del pacchetto). Dato A l'insieme di valori possibili per

il campo di un pacchetto, linsieme delle trasformazioni possibili sull’insieme A é:
T(A) = {id} U{cost(a) | a € A}

Una trasformazione puo essere quindi una funzione costante o una funzione identita. Abbiamo
dunque 7(IP), T(Port) e 7T(Tag). 7 (P), 'insieme di tutte le possibili trasformazioni su pacchetti,

¢ definito come il prodotto cartesiano delle trasformazioni sui campi del pacchettﬂ

Definizione 12 (Trasformazione su un pacchetto). L’nsieme delle trasformazioni possibili sui pac-
chetti T(P) é:

T(P) := T(IP) x T(Port) x T(IP) x T(Port) x T(Tag)

Come per i pacchetti, anche per le trasformazioni di pacchetti assumiamo di poter accedere ai campi
del prodotto cartesiano con una notazione simile a quella per I’accesso ai campi di un oggetto, cioe
scrivendo t.sI P, t.dI P, t.sPort, t.dPort e t.tag. Inoltre rappresentiamo le trasformazioni di pacchetti
t € T(P) in modo simile ai pacchetti, scrivendo per leggibilita (¢.sIP : t.sPort, t.dIP : t.dPort,t.tag)
anziché (t.sIP,t.sPort,t.dIP,t.dPort,t.tag)

La scelta del dominio per esprimere le trasformazioni dei campi di un pacchetto € chiaramente
arbitraria, ogni alternativa che permetta di derivare la semantica originaria & accettabile. Questa
scelta & semplicemente un buon compromesso fra semplicita ed espressivita che tiene conto sia del
fatto che un firewall spesso lascia passare i pacchetti senza modificarli, sia del fatto che spesso la
modifica e ristretta solo ad alcuni campi del pacchetto e imponendo un valore costante piuttosto che
una funzione arbitrariamente complicata. Di fatto il linguaggio nel quale esprimiamo le trasformazioni
& quello usato dal tool FireWall Synthesizer[5] per mostrare la sintesi della semantica di un firewall,
dove nella tabella mostrata dalla sintesi un valore esplicito nelle colonne relative al NAT rappresenta
la funzione costante e il carattere _ rappresenta la funzione identita.

Le trasformazioni possono chiaramente essere applicate ai pacchetti, in modo simile alle funzioni.
Useremo in effetti la stessa notazione usata per le funzioni. Data una trasformazione ¢ ed un pacchetto
p, applicazione di t a p & definita come il risultato dell’applicazione delle trasformazioni dei campi di

t ai campi di p. Formalmente
t(p) = (t.sIP(p.sIP) : t.sPort(p.sPort), t.dIP(p.dIP): t.dPort(p.dPort), t.tag(p.tag))
dove per il valore di un campo di un pacchetto val e per una trasformazione su quel campo ¢ vale

val set=1d
t(val) =
¢ set=cost(c)

1Useremo id € T (P) per indicare id x id x id X id X id.

25

Possiamo vedere 'insieme delle trasformazioni sui pacchetti 7 (P) come un preordine in cui ¢ < ¢/
se e solo se t’ & una trasformazione che modifica ogni pacchetto almeno quanto ¢. Formalmente
la relazione d’ordine < & definita sulle trasformazioni del campo di tipo A € {IP,Port, Tag} del

~

pacchetto come la chiusura riflessiva e transitiva di <o, dove

Va € A. id So cost(a)

Va,a' € A. cost(a) So cost(a’)

Per 'insieme delle trasformazioni sui pacchetti 7 (P) il preordine & definito nella seguente maniera:
t<t < tsIP St .sIPAt.sPort St'.sPort Nt.dIP St'.dIP At.dPort <t'.dSort At.tag < t'.tag

Notiamo che (7(A), <) & un insieme diretto, per ogni A € {IP, Port, Tag}, cio¢ per ogni coppia di
elementi ¢1,t2 € T(A), esiste un ¢’ € T(A) tale che 1 St e ta < t'. Lo stesso vale conseguentemente
per (T(P), <). La relazione < & totale su 7(A), per A € {IP, Port, Tag}. In questo insieme, il least
upper bound di un insieme di elementi esiste sempre, dato che per ogni coppia di trasformazioni (¢,
t') o vale t <t/ o vale t' < t. Tuttavia il least upper bound non & sempre unico. Infatti data una
qualunque trasformazione t € T(A), per A € {IP, Port, Tag} I'insieme dei maggioranti di ¢ in 7 (A)
comprende sempre almeno cost(a) per ogni a € A, nei quali ogni elemento & “minore” di tutti gli
altri; se anche ¢d appartiene ai maggioranti allora il minore dei maggioranti & unico e coincide con id,
altrimenti non abbiamo un unico least upper bound. La relazione < non ¢ invece totale su 7 (P), infatti
le due trasformazioni t; = cost(192.168.0.8) x id X id X id X id e to = id X id X cost(192.168.0.6) x id X id
non sono in relazione. Anche su 7 (A) esiste sempre un insieme di least upper bound di un insieme
di elementi, e anche qui spesso non si tratta di un unico valore. Ad esempio 'insieme dei least upper
bound dell'insieme {t1,t2} & {cost(ip) x id x cost(ip’) X id x id | ip,ip’ € IP}.

Definiamo 'operazione di aggiornamento _ X _ tale che ¢’ x ¢ & una aggiornamento della trasfor-
mazione ¢t con una nuova trasformazione t' ed & uguale a t’ nei campi del pacchetto in cui questa &
diversa da id, nei campi rimanenti la trasformazione risultante ha lo stesso valore di ¢ (sostanzialmente
prendiamo fra i least upper bound dell’insieme {t,¢'}, quello in cui i valori delle trasformazioni cost(_)

sono presi da t' e da ¢, dando precedenza ai valori di ¢’ su quelli di t). Formalmente

t' xt = (t'.sIPxt.sIP, t'.sPortxt.sPort, t'.dIPxt.dIP, t'.dPortxt.dPort, t .tagxt.tag)

dove

. valy se valy # id
valy Xvals
valy altrimenti

L’idea & la stessa della composizione di funzioni, cioe applicare una trasformazione ¢, aggiornata con
t’ ad un pacchetto p ha lo stesso effetto di applicargli la trasformazione ¢ e poi al pacchetto risultante

p’ = t(p) applicare t’, ovvero (t x t')(p) = t(t'(p)).

Possiamo ora definire una nuova semantica che sfrutti le trasformazioni. Per prima cosa presen-

tiamo la semantica di una ruleset R:

(R):S—P—T(P)U{L}
(R)(s) = (R)s : P — T(P)U{L}

26

GRD s = @RD id

Dove la funzione (R)% : P — T(P) U {L}, per un firewall 7, uno stato s e una trasformazione su
pacchetti t € T(P) ¢ definita come:

t se dp = accepT

(€)% (p) = P
1 altrimenti
((¢, acceer); R)E (p) = t se ¢(p, s)
(R). (p) altrimenti
L se ¢(p, s)

(6, m08); R (9) = ®5)
(R)L (p) altrimenti

S

trnat(dna Sn) Xt se ¢(p7 5)

(](¢7 NAT(dnv Sn))v Rl)z (p) = - .
(R)L (p) altrimenti

((¢, creck-state(X)); R)% (p) = trstato(c, X) X T se d(p,s) Aphs a
(R)% (p) altrimenti

(]RDgid:id7 id:id, cost(m))xt (p[tag N m]) se ¢(p’ S)

(6. s (m)): RY, (p) = 5
(R)% (p) altrimenti

La funzione tr,q¢(d,,s,) restituisce la trasformazione applicata ad un pacchetto secondo i valori
indirizzo IP e porta specificati da d,, ed s,,, compresa l'identita se uno dei due valori contiene x. Piu

precisamente
trpat (AP 2 dPort, sIP : sPort) = (tr'(dIP) : tr'(dPort), tr'(sIP) : tr'(sPort), id)
dove

, id se add = *
tr'(add) =
cost(add) altrimenti
La funzione trgqi0(c, X) restituisce la trasformazione rappresentata dall’azione «, prescritta dallo
stato per il pacchetto, ristretta ad i campi specificati da X. Lasciamo astratta questa funzione dato

che per generalita non abbiamo descritto in dettaglio quale sia la forma delle azioni a.

t

La semantica ¢ espressa in modo simile a quella precedente, attraverso una funzione ricorsiva (R)?

definita per casi sulla prima regola di R. L’apice t serve a collezionare la trasformazione attuale
applicata al pacchetto, cioe 'eventuale modifica al campo tag, di modo che quando troviamo ’azione
che determina ’accettazione del pacchetto possiamo ricavare la trasformazione complessiva avendo sia
t, sia la trasformazione finale data dall’ultima regola applicata al pacchetto. Sfruttiamo 1’operazione
di aggiornamento della trasformazione per unire la trasformazione data dall’'ultima regola a quella
accumulata nell’apice.

Se la ruleset e vuota allora la trasformazione applicata al pacchetto p & quella accumulata ¢, tranne
nel caso in cui la policy di default della ruleset sia prop, in quel caso restituiamo 1. Le ruleset che
cominciano con una regola con target acceprt o prop restituiscono rispettivamente ¢ o L se la condizione
¢ verificata, altrimenti restituiscono il risultato dell’applicazione della semantica del resto della ruleset

al pacchetto. Se la prima regola della ruleset ha target war(d,,s,) o caeck-state(X) restituiscono la

27

trasformazione ¢ aggiornata con la loro trasformazione, se la condizione ¢ & verificata e, nel caso
di cueck-state(X) se il pacchetto appartiene ad una connessione stabilita; associano al pacchetto la
trasformazione associatagli dalla semantica del resto della ruleset altrimenti. Se la ruleset comincia
con una regola con target mark(m) allora la semantica restituisce il risultato dell’applicazione della
semantica della continuazione: se la condizione della regola e verificata allora la semantica della
continuazione ¢ applicata al pacchetto modificato nel campo tag e con trasformazione accumulata
t aggiornata da una trasformazione identita su tutti i campi tranne sul campo tag, il cui valore
¢ cost(m); se la condizione della regola non e verificata allora la semantica della continuazione &
applicata al pacchetto originale e la trasformazione accumulata rimate t.

La semantica a trasformazioni definita per una ruleset R € equivalente a quella denotazionale

definita precedentemente.

Lemma 3. Per ogni ruleset normalizzata R, stato s e pacchetto p valgono

1. [[R]]s (p) =1 < (]RDS (p) =1
2. (R)s (p) # L = [R]s (») = (R)s (p) ()

La semantica di un firewall F & definita allora da

(F):S—P—TP)U{L}
(FD(s) = (Fhs : P = T(P) U{L}

(F)s = (g

Dove la funzione (g)7! : P — T(P) U {L}, per un firewall F, uno stato s e un insieme di ruleset I &

definita per ogni g € Q, ¢ # ¢¢ come:

(]q,D;F,IU{q} (p/) Xt set# LA¢G ¢1

1 altrimenti

dove t = (c(q))s (p) e set # L allora p’ =t(p) e ¢ =d6(q,p)

e per il nodo finale come:
las)I! (p) = id

Questa parte della semantica rimane quasi invariata rispetto alla versione presentata precedente-
mente. La semantica della ruleset di un nodo ¢ associa una trasformazione t al pacchetto p, quindi
per ottenere il pacchetto p’ prodotto dal nodo g devo applicare la trasformazione ¢ al pacchetto p,
ottenendo cosi p’ = ¢(p). Nella versione precedente della semantica, una volta stabilito che il pacchetto
p fosse trasformato in p’ dal nodo ¢, e che il nodo successivo ad essere visitato fosse ¢/, la semantica
associava al pacchetto p il risultato dell’applicazione della funzione associata a ¢’ al pacchetto p’. Nella
versione con trasformazioni, quando ho stabilito che il nodo successivo ¢’ associa la trasformazione
t' al pacchetto p’ = t(p) non mi basta restituire ', devo tenere traccia anche della trasformazione ¢

applicata al pacchetto da g e restituire quindi ¢ aggiornata con t, ciod ' X t.

La semantica a trasformazioni e corretta rispetto alla semantica denotazionale, e quindi rispetto

alla semantica dichiarativa di IFCL. Cioe, dato un firewall F, per ogni pacchetto p € P, se calcolo

28

la trasformazione ¢ associata a p dalla semantica a trasformazioni di F e la applico al pacchetto p,
ottengo un nuovo pacchetto p’ = ¢(p) che & uguale al pacchetto associato a p dalla semantica [F].

Inoltre le due semantiche concordano sullo scarto dei pacchetti.

Teorema 4 (Correttezza della semantica a trasformazioni). Per ogni firewall F, stato s e pacchetto

p valgono

1. H‘Fﬂs (p):J_ <~ (]]:Ds (p):J_
2. (F)s (p) # L= [FIs (p) = (F)s (p) ()

Dove con la notazione (F)s (p) (p) rappresentiamo il risultato dell’applicazione della trasformazione

associata al pacchetto p da F (cioe (F)s (p)), al pacchetto p stesso.

Si noti che I'uso delle trasformazioni per esprimere il comportamento del firewall introduce un
certo grado di arbitrarieta: ad esempio un pacchetto p che viene accettato senza modifiche dal
firewall, ovvero tale che [F]s (p) = p, pud essere associato a id € T(P) dalla semantica, ma
anche a (cost(p.sIP),cost(p.sPort),cost(p.dIP), cost(p.dPort), cost(p.tag)) e a molte altre trasfor-
mazioni. Dato un firewall F, esistono infatti pit funzioni f : S — P — T(P) U {L} tali che
Vs,p. [F]s (p)) = L <= [f(s)(p) = L eVs,p. [F]s (n) # L = [F]s (») = f(s)(p)(p). Non
consideriamo questo un problema in quanto la caratterizzazione del comportamento del firewall &
comunque corretta e la trasformazione associata ad un pacchetto dalla semantica puo essere standar-
dizzata, dato che questa ambiguita si presenta unicamente nel caso in cui un pacchetto sia trasformato
da un NAT in se stesso. E quindi possibile riconosce questi casi e forzare una preferenza, ad esempio
nei confronti della trasformazione id.

Definiamo una relazione di equivalenza = per le funzioni che assegnano trasformazioni ai pacchetti
P — T (P)U{L} che lega coppie di funzioni che hanno lo stesso risultato finale sull’insieme dei pacchetti
P. Formalmente f = f'seesolose VpeP. f(p) =1L < f'(p)=LeVpeDP. f(p)# L= f(p)p) =

f'(p)(p).

Si noti che la caratterizzazione funzionale della semantica non comprende un’approssimazione sul
comportamento dello stato del firewall, come invece accade per la caratterizzazione logica presentata
nella sezione [2.5] Questo & un problema, perché come abbiamo detto, nella sintesi non possiamo
aspettarci di studiare il comportamento del firewall per tutti i possibili stati analizzandoli uno ad uno.
Di fatto & possibile modificare la semantica appena espressa per gestire il target cueck-state(X) con la
stessa approssimazione della caratterizzazione dichiarativa. La versione approssimata della semantica,
tuttavia, complica grandemente lo sviluppo degli algoritmi per 'implementazione della pipeline, ed &
troppo grossolana per la rappresentazione del comportamento reale di un firewall. Per questo abbiamo
deciso di basarci sulla versione esatta e deterministica della semantica nel resto della tesi, e di limitare
i requisiti sulla configurazione generata dalla transcompilazione alla gestione di pacchetti appartenenti
a nuove connessioni, assumendo che il comportamento di default del sistema target sia soddisfacente
per quanto riguarda i pacchetti appartenenti a connessioni stabilite (vedi capitolo {). Presentiamo

comunque per completezza la versione approssimata della semantica nel capitolo

29

Capitolo 4

Pipeline di transcompilazione

Il problema che vogliamo affrontare e quello della transcompilazione fra linguaggi di configurazione di
firewall. L’idea e di avere una configurazione per un sistema e di volerne creare una equivalente, cioe
avente la stessa semantica, per un secondo sistema scelto.

Dal punto di vista dei sistemi firewall questo procedimento deve tenere conto sia della diversa
struttura dei diagrammi di controllo dei due sistemi, cioe degli algoritmi di controllo che applicano
le policy, sia del linguaggio di configurazione in sé. Sfruttiamo il linguaggio di modellazione comune
IFCL per esprimere delle condizioni sulla traduzione che garantiscano la conservazione della semantica
del firewall. Riformulando in questo modo, vogliamo, dato un sistema e una configurazione source e
dato un sistema target, calcolare una configurazione target tale che la formalizzazione IFCL del firewall

source e quella del firewall target abbiano la stessa semantica.

Basiamo la transcompilazione su una versione lievemente modificata della pipeline proposta in [4].
Come detto, Papproccio originale si basa su una pipeline composta da tre stadi: (i) formalizzazione del
firewall source in IFCL, (ii) derivazione della semantica del firewall in una forma sintetica ed esplicita,
(éi1) generazione del firewall target avente la stessa semantica. Nella versione originale della pipeline
la semantica del firewall veniva rappresentata come un predicato Px(p,p,s) e la rappresentazione
sintetica era basata sui modelli del predicato: il secondo stadio della pipeline restituiva 'insieme delle
triplette (p,p, s) che verificano il predicato Pr, espresso in maniera sintetica grazie ai multicubi.

Per convenienza nel trattare la parte finale del processo di transcompilazione, speziamo 'ultima
fase della pipeline originale in due parti: la prima, a partire dalla descrizione sintetica della semantica,
produce un firewall IFCL; la seconda lo traduce nel linguaggio di configurazione target (si pud notare
una certa simmetria con le prime due fasi della pipeline originale). Questo ci permette di analizzare
con chiarezza il passaggio di traduzione da IFCL al linguaggio target, trascurato da [4].

Inoltre, anziché basarci sulla caratterizzazione logica della semantica del firewall usiamo la descri-
zione denotazionale presentata: la semantica astratta di un firewall non e rappresentata da un predica-
to ma da una funzione definita sul dominio dei pacchetti. E diversa pertanto anche la rappresentazione
sintetica della semantica del firewall.

Presentiamo la pipeline specificando una serie di passi intermedi per ciascuna fase e presentiamo per
ogni passaggio la specifica del comportamento: quali sono i dati in input e quali sono i dati calcolati
e restituiti alla fase successiva. Inoltre per ogni stadio della pipeline presentiamo i domini degli
elementi trattati e studiamo la loro rappresentazione sintetica, necessaria per questioni di efficienza.
Dimostriamo che la transcompilazione ¢ corretta, cioe che la semantica del firewall & conservata, se
I'implementazione della pipeline rispetta le specifiche.

La ridefinizione della pipeline nella forma che presenteremo permette di

30

e parametrizzare il processo di transcompilazione rispetto alla specifica dei sistemi firewall in modo

da facilitare ’estensione della teoria
e garantire la conservazione delle trasformazioni effettuate sui pacchetti
e fornire un algoritmo efficiente per il calcolo della rappresentazione sintetica del firewall

e cvidenziare le scelte arbitrarie nella fase di generazione del firewall finale sulle quali & possibile

intervenire per ottimizzare il firewall prodotto

4.1 Transcompilazione di configurazioni firewall

Assumiamo, per ogni sistema firewall supportato, di avere una funzione che dato un file di configura-
zione source ne deriva la formalizzazione in IFCL, fory(file.conf) = ¥ per k € {iptables, pf, ipfw},
dove file.conf e il file di configurazione per il sistema source e ¥ ¢ una configurazione IFCL. Chiamia-
mo Cy, il diagramma di controllo del sistema firewall k. Le funzioni di formalizzazione e i diagrammi
di controllo per i sistemi supportati sono presentati informalmente nella sezione

Formalmente il problema che vogliamo affrontare e il seguente: dato un firewall source definito
come la coppia (k € {iptables,pf,ipfw}, file.conf) e un sistema target desiderato k', produrre
un file di configurazione file.conf’ per il sistema target tale che la semantica dei due firewall sia
equivalente, ovvero, chiamando s p’—pl> x s’ un passo del sistema di transizione master del firewall
X e {F,F'}, dove F = (Cy, forr(file.conf)) e F' = (Cys, fory (file.contf’)), deve valere:

Vs,s' €8, ppeP. s s — s, ¢

In realta, come abbiamo dichiarato precedentemente, tralasciamo dalla trattazione i pacchetti
appartenenti a connessioni stabilite. Consideriamo per questi pacchetti che il comportamento di
default dei sistemi sia quello corretto. Dato che lo stato associato ad un pacchetto non influenza il
destino di altri pacchetti, per studiare il comportamento di tutti i pacchetti quando non appartengono
a connessioni stabilite & sufficiente studiare il firewall in un solo stato: sygy, lo stato in cui non esiste
nessuna connessione stabilita. Formalmente possiamo limitarci a questo stato in quanto per ogni

firewall F vale:
Vse S, peP. st = (V. s PP rsw(p,p) <= suew 227 sy W (p, 7))

Inoltre per comodita preferiamo basarci sulla semantica denotazionale anziché sul sistema di

transizioni etichettate. Dati i teoremi [2:4] [3] e [4] vale il seguente lemma.

Lemma 4. Due firewall IFCL F e F' sono equivalenti secondo la semantica operazionale se e solo se

la loro normalizzazione é equivalente secondo la semantica denotazionale, ovvero
;. P p.p’
VseS,pecP. Vp s s “—=5rs — s2>zp s

se e solo se

(CF D)= (CF D)

Riassumendo, dato un firewall source definito come la coppia composta dal sistema k € {iptables, pf, ipfw}
e dal file di configurazione file.conf, e dato un sistema target desiderato k’, vogliamo produrre un

file di configurazione file.conf’ per il sistema target tale che:

(C (Ck, fork(file.cont)) D) (syew) = (C (Crr, fory (file.conf’)) D) (syew)

31

4.2 Presentazione della pipeline

La pipeline di transcompilazione & composta da quattro stadi: il primo riguarda la traduzione del
firewall source in IFCL, il secondo consiste nell’estrazione della semantica del firewall come funzione
da pacchetti a trasformazioni, il terzo genera un nuovo firewall IFCL del tipo scelto e infine il quarto
traduce il firewall IFCL in un file di configurazione per il sistema target.

Come abbiamo detto per la parte centrale della pipeline, quelle relativa a firewall IFCL, ci basia-
mo sulla semantica denotazionale presentata nel capitolo La versione precedente della pipeline,
presentata in [4] si basava sulla caratterizzazione logica presentata nella sezione

Gli stadi della pipeline sono i seguenti, per alcuni di loro abbiamo evidenziato una serie di passi

intermedi:
1. traduzione del firewall iniziale in IFCL
2. estrazione della semantica astratta del firewall

(a) normalizzazione del firewall IFCL
(b) astrazione delle ruleset associate ai nodi del diagramma di controllo del firewall IFCL

(c) astrazione del firewall come funzione sui pacchetti
3. generazione del firewall IFCL finale

(a) calcolo delle funzioni associate ai nodi del diagramma di controllo del firewall IFCL

(b) traduzione delle funzioni associate ai nodi in ruleset IFCL

4. traduzione in configurazione nel linguaggio target

4.2.1 Esempio di transcompilazione

Presentiamo un esempio di transcompilazione completo nel quale mostriamo una ad una le fasi della
pipeline. Consideriamo il caso di un firewall ipfw del quale vogliamo portare la configurazione in
iptables. Supponiamo che il file di configurazione ipfw sia il seguente:

ipfw -q nat 1 config redirect_port tcp 192.168.0.8:22 22
ipfw -q nat 2 config ip 151.15.185.183

ipfw -q add 0010 deny all from any to 8.8.8.8

ipfw -q add 0020 nat 1 all from not 192.168.0.0/24 to 151.15.185.183 22
ipfw -q add 0030 nat 2 all from 192.168.0.0/24 to not 192.168.0.0/24 80
ipfw -q add 0040 allow all from 127.0.0.1 to 192.168.0.8 22

ipfw -q add 0050 allow all from 151.15.185.183 to 192.168.0.8 22

ipfw -q add 0060 deny all from any to any

Seguendo la pipeline, effettuiamo la formalizzazione del firewall ipfw in IFCL (stadio 1.). Prendiamo
quindi il diagramma di controllo Cipe, di ipfw, in figura Sfruttando la procedura descritta in
costruiamo un insieme di ruleset p e un assegnamento c ai nodi del diagramma C;p¢y. Il risultato
di questa prima fase della pipeline & la configurazione IFCL 3 = (p, ¢) dove:

p = {Rio, Rbo, Rio, Rio, Rio, RSb, RSy, RS0}
e(q;) = c(qr) = Re, ¢(qo) = Rio, c(q1) = R

RO _

10

32

L
q;a l]u # @

(@)@ —
p.sa ¢ L p.da € L
p.sa €L p.da € L
p.da
7 q11

(a) Diagramma di controllo di iptables

(b) Diagramma di controllo di ipfw

Figura 4.1: Diagrammi di controllo dei sistemi supportati.

(p.dIP = 8.8.8.8,DROP);
(true, coroRL,)

Rl/©

20 —
(p.sIP ¢ 192.168.0.0/24 A p.dIP = 151.15.185.183 A p.dPort = 22, NAT(% : x, 192.168.0.8 : %));
(true, GUTORI/O)
1/0
R36 =
(p.sIP € 192.168.0.0/24 A p.dIP ¢ 192.168.0.0/24 A p.dPort = 80, NAT(151.15.185.183 : %, % :));
(true, GUTOR%O)
1/0
R4(/) =
(p.sIP =127.0.0.1 Ap.dIP = 192.168.0.8 A p.dPort = 22, ACCEPT);
(true, GUToRééO)
1/0
RE)(/J =
(p.sIP =151.15.185.183 A p.dIP = 192.168.0.8 A p.dPort = 22, ACCEPT);
(true, GUTORééO)
1/0
Rﬁ(/] =

(true, DROP)

Lo stadio 2. della pipeline € composto da tre passi: per prima cosa normalizziamo il firewall attraverso
la procedura { -). Otteniamo:

p= {Rlv RO}
(gi) = ¢(qr) = Re, c(q0) = R, ¢(q1) = R°

R'=R° =

(p.dIP = 8.8.8.8,DROP);
(p.sIP ¢ 192.168.0.0/24 A p.dIP = 151.15.185.183 A p.dPort = 22, NAT(x : %, 192.168.0.8 : ¥));

33

(p.sIP € 192.168.0.0/24 A p.dIP ¢ 192.168.0.0/24 A p.dPort = 80, naT(151.15.185.183 : , % : %));
(p.sIP =127.0.0.1 Ap.dIP = 192.168.0.8 A p.dPort = 22, ACCEPT);

(p.sIP =151.15.185.183 A p.dIP = 192.168.0.8 A p.dPort = 22, ACCEPT);

(true, DrROP)

Dove per questioni di leggibilita le regole con condizione equivalente a false sono state omesse, e le
condizioni della forma true A ¢ sono riscritte come ¢. Entrambe le semplificazioni non modificano la
semantica delle ruleset, si limitano a renderle piu leggibili. A questo punto, a partire dalle ruleset,
usando () (sxey), calcoliamo per ogni nodo ¢; la funzione \; : P — T(P) U { L} (fase 2.b).

id X id X cost(192.168.0.8) X id X id se p.sIP ¢ 192.168.0.0/24 A
p.dIP = 151.15.185.183 A
p.dPort = 22

cost(151.15.185.183) x id X id x id X id se p.sIP € 192.168.0.0/24 A
p.dIP ¢ 192.168.0.0/24 U {8.8.8.8} A

Ao(p) = Ai(p) = p.dPort = 80
id X id x id X id x id se p.sIP € {127.0.0.1, 151.15.185.183} A
p.dIP = 192.168.0.8 A
p.dPort = 22
1 altrimenti

Nella fase 2 calcoliamo la funzione A : P — T (P) U {L} ottenuta combinando le funzioni Ao e
A1 sulla base del diagramma di controllo. Assumendo che l'insieme degli indirizzi locali sia £ =
{127.0.0.1, 192.168.0.1, 151.15.185.183 } la funzione A &:

cost(151.15.185.183) x id x id x id x id se (p.sIP € 192.168.0.0/24 A
p.dIP € {151.15.185.183, 127.0.0.1} A
p.dPort =80)
V (p.sIP =192.168.0.1 A
p.dIP ¢ 192.168.0.0/24 U {8.8.8.8} A
p.dPort =80)

D) id x id X cost(192.168.0.8) x id x id se p.sIP € {127.0.0.1, 151.15.185.183} A
p =
p.dIP = 151.15.185.183 A

p.dPort = 22
id X id X id X td X id se p.sIP € {127.0.0.1, 151.15.185.183} A
p.dIP = 192.168.0.8 A
p.dPort = 22
1 altrimenti

34

A questo punto conosciamo la semantica del firewall e vogliamo generarne uno con semantica identica
per iptables. Per prima cosa prendiamo il diagramma di controllo di iptables (ﬁgura. Vogliamo
assegnare ad ogni nodo ¢; del diagramma una funzione X; : P — 7 (P) U {L} in modo tale che il
risultato complessivo sia coerente con la semantica attesa (fase 3.a). La descrizione di un metodo
efficace per derivare le funzioni A; a partire dalla funzione \ e dalla forma del diagramma di controllo
sara oggetto del capitolo [7] Per il momento ci limitiamo ad osservare che non tutti i nodi possono
effettuare trasformazioni arbitrarie, questo ¢ immediatamente evidente in iptables in quanto i nodi
corrispondono a coppie (ruleset, tabella) dove solo nella tabella NAT & possibile modificare gli indirizzi

dei pacchetti. Diamo senza ulteriori chiarimenti un’assegnazione di funzioni ai nodi:

Ao(p) = Ai(p) = A2(p) = M(p) = M(p) = Aio(p) = id

cost(151.15.185.183) x id x id x id x id se p.sIP € 192.168.0.0/24 A
p.dIP € {127.0.0.1, 151.15.185.183} A

As(p) =
p.dPort = 80
id altrimenti
id se p.sIP = 151.15.185.183 A
p.dIP € {127.0.0.1, 151.15.185.183} A
As(p) =
p.dPort = 80
L altrimenti
id x id X cost(192.168.0.8) x id x id se p.sIP € {127.0.0.1, 151.15.185.183} A
p.dIP = 151.15.185.183 A
As(p) =
p.dPort = 22
id altrimenti
id se (p.sIP € {127.0.0.1, 151.15.185.183} A

p.dIP = 192.168.0.8 A

p.dPort = 22))

Ao(p) = V (p.sIP =192.168.0.1 A

p.dIP ¢ 192.168.0.0/24 U {8.8.8.8} A
p.dPort =80)

1 altrimenti

cost(151.15.185.183) x id x id x id x id se p.sIP = 192.168.0.1 A

p.dIP ¢ 192.168.0.0/24 U
A (p) = {127.0.0.1, 151.15.185.183, 8.8.8.8} A
p.dPort = 80

id altrimenti

Dove la ruleset \; & assegnata al nodo ¢;. Il passaggio successivo, 3.b, prevede di generare una ruleset
IFCL R; per ogni nodo g; del diagramma di controllo che abbia semantica corrispondente alla funzione

35

i

Ro=Ri=Rys=Rs=Rr=Rio=Ri =Ry =R

R3 = (true, bRoP)

Rs =

(p.sIP € 192.168.0.0/24 A p.dIP € {127.0.0.1, 151.15.185.183} A p.dPort = 80 , maT(151.15.185.183 : %, * : %))
Rs =

(p.sIP = 151.15.185.183 A p.dIP € {127.0.0.1, 151.15.185.183} A p.dPort = 80 , ACCEPT);

(true , DROP)

Rg =
(p.sIP € {127.0.0.1, 151.15.185.183} A p.dIP = 151.15.185.183 A p.dPort = 22 , NaT(% : %, 192.168.0.8 : *))
Ry =
((p.sIP € {127.0.0.1, 151.15.185.183} A p.dIP = 192.168.0.8 A p.dPort = 22) V
(p.sIP =192.168.0.1 A p.dIP ¢ 192.168.0.0/24 U {8.8.8.8} A p.dPort = 80) , ACCEPT);

(true , DROP)

Rll =
(p.sIP =192.168.0.1 Ap.dIP ¢ 192.168.0.0/24 U {127.0.0.1, 151.15.185.183, 8.8.8.8} A p.dPort = 80,
NAT(151.15.185.183 : %, * : %))

Infine non ci resta che tradurre la configurazione ottenuta nel linguaggio target (stadio 4. della
pipeline):

*nat

:PREROUTING ACCEPT [0:0]
:INPUT ACCEPT [0:0]
:0UTPUT ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]

-A OUTPUT -s 127.0.0.1,151.15.185.183 -d 151.15.185.183 --dport 22 -j DNAT --to 192.168.0.8
-A INPUT -s 192.168.0.0/24 -4 127.0.0.1,151.15.185.183 --dport 80 -j SNAT --to 151.15.185.183
-A POSTROUTING -s 192.168.0.1 --dport 80 -j SNAT --to 151.15.185.183

COMMIT

*filter

:INPUT DROP [0:0]
:FORWARD DROP [0:0]
:0UTPUT DROP [0:0]

-A OUTPUT -s 127.0.0.1,151.15.185.183 -d 192.168.0.8 --dport 22 -j ACCEPT
-A OUTPUT -s 192.168.0.1 -d 8.8.8.8,192.168.0.0/24 --dport 80 -j DROP
-A OUTPUT -s 192.168.0.1 --dport 80 -j ACCEPT

-A INPUT -s 151.15.185.183 -d 127.0.0.1,151.15.185.183 --dport 80 -j ACCEPT

COMMIT

36

4.3 Domini della pipeline

Possiamo considerare ogni fase della pipeline come una funzione che data una rappresentazione del
firewall ne produce una equivalente in un diverso dominio. In questo modo la transcompilazione puo
essere vista come una composizione di pit funzioni. Individuiamo cinque domini per la rappresentazio-
ne dei firewall, ognuno corrispondente ad un diverso livello di astrazione. Ad ogni livello distinguiamo
quali attributi di un firewall sono dovuti al sistema scelto e quali alla sua configurazione. Per semplifi-
care la notazione, dato che abbiamo deciso di concentrarci unicamente sullo stato sygy, nelle definizioni

omettiamo ’eventuale parametro relativo allo stato.

Livello 0 (firewall concreti): A questo livello di astrazione un sistema firewall & rappresentato da

un processo di sistema e una configurazione da un file di configurazione.

Livello 1 (firewall IFCL): Un sistema firewall ¢ un diagramma di controllo C, una configurazione
Y. ¢ una coppia composta da un insieme di ruleset IFCL p e da un’assegnazione delle ruleset ai

nodi del diagramma ¢ : Q — p.

Livello 2 (firewall IFCL normalizzati): Un sistema firewall ¢ un diagramma di controllo C, una
configurazione Y & una coppia composta da un insieme di ruleset IFCL normalizzate p e da

un’assegnazione delle ruleset ai nodi del diagramma c: Q — p.

Livello 3 (firewall semiastratti): Un sistema firewall ¢ un diagramma di controllo C, una confi-
gurazione ¢ una funzione f : Q@ — P — T(P) U {L} che assegna ad ogni nodo una funzione su
pacchetti A: P — T(P)U {L}.

Livello 4 (firewall astratti): Un firewall & la sua configurazione astratta, cio®¢ una funzione che

associa ogni pacchetto al modo in cui viene trattato A : P — T(P) U {L}.

Indichiamo per ogni firewall, il livello di astrazione a cui ci stiamo riferendo attraverso un pedice: Fy
¢ un firewall concreto, F; € un firewall IFCL, F» € un firewall IFCL normalizzato, F3 € un firewall
semiastratto e F4 ¢ un firewall astratto.

Abbiamo presentato i domini in ordine dal piu concreto al piu astratto. Le prime due fasi della
pipeline, corrispondenti al frontend, operano traduzioni dal dominio dei firewall concreti a quello dei
firewall astratti; le ultime due, corrispondenti al backend, operano nel verso opposto, dal dominio dei
firewall astratti ritornano al dominio dei firewall concreti.

La funzione di traduzione dal primo al secondo livello € la formalizzazione del linguaggio di con-
figurazione. Quella che traduce dal secondo al terzo & la normalizzazione (rimozione di caLL e coto e
rerurN). Chiamiamo la traduzione dal terzo al quarto livello semiastrazione ed infine la traduzione dal
quarto al quinto livello composizione.

Per realizzare le ultime due fasi della pipeline occorre definire delle funzioni di traduzione nel
verso opposto: dall’astratto al concreto. La funzione di traduzione dal quinto al quarto livello ¢ la
decomposizione. Quella che traduce dal quarto al terzo ¢ la codifica. Chiamiamo la traduzione dal terzo
al secondo livello rifattorizzazione ed infine la traduzione dal secondo al primo livello concretizzazione.

Tutte le funzioni di traduzione, ad eccezione di quelle fra il primo ed il secondo livello, sono
definite genericamente su ogni diagramma di controllo. Con questo approccio per estendere la teoria

includendo il supporto a nuovi linguaggi ¢ sufficiente definirne la formalizzazione IFCL.

La figura[4.2)illustra le varie fasi della pipeline in relazione con i domini di riferimento. Assumiamo
di avere un file di configurazione file. conf per il sistema source k € {pf,iptables, ipfw} e di avere
un sistema target k', allora gli stadi della pipeline di configurazione possono essere formalizzati come

segue:

37

1. formalizzazione del firewall concreto come firewall IFCL

e riceve Fy = (k,file.conf)
e prende Cj, definito per il sistema se questo € supportato
e calcola ¥ = fory(file.conf)

o restituisce 7y = (Ck, X)
2. estrazione della semantica astratta del firewall

(a) normalizzazione del firewall IFCL
o riceve F1 = (Ci, X)
e calcola e restituisce Fo = C F1 D
(b) semiastrazione del firewall normalizzato
e riceve Fy = (Cx, Xp), dove X, = (p, ¢)
e per ogni ruleset R € p calcola (R)
e calcola f tale che per ogni ¢ € Q, vale f(q) = (c(q)) (swew)
e restituisce F3 = (Cg, f)
(¢) composizione del firewall astratto
o riceve F3 = (Cg, f)

e calcola e restituisce Fy = OF3
3. generazione del firewall IFCL finale

(a) decomposizione del firewall astratto in un firewall semiastratto del tipo target
e riceve Fy = F, : P — T(P)U{L} e & il sistema target
e prende Cy definito per il sistema se questo € supportato
e calcola f/: Qp — P — T(P)U{L} tale che ©(Cy, f') = F4
e restituisce F's = (Cir, f’)
(b) codifica del firewall IFCL normalizzato
e riceve F5 = (Ci, f')
e per ogni funzione A € A assegnato ai nodi da f (la definizione esatta di A & {f'(q) | ¢ €

Q1 }) genera una ruleset R tale che (R)(sysw) = A e colleziona queste ruleset nell’insieme
/

p
e calcola ¢ : Q — p’ tale che per ogni g € Q. vale (¢'(¢)) (sxew) = f'(q)
e restituisce ' = (Cyr, X'), dove &/ = (p/,)

(c) rifattorizzazione del firewall IFCL normalizzato in un generico firewall IFCL
e riceve Fy = (Cpr, ')
e calcola una nuova configurazione X! tale che { (Cp/,X.) D = (Cpr, X)
e restituisce Fj = (Cyr, X))

4. concretizzazione del firewall IFCL in un firewall concreto

e riceve F| = (Cyr, 20.)
e calcola file.conf’ = cony (Cpr, X))

e restituisce Fy = (k’,file.conf’)

38

Dove nei passi 2.c e 3.a abbiamo usato la funzione di composizione ®, che dato un firewall semiastratto
restituisce il firewall astratto ottenuto componendo le funzioni associate ai nodi secondo la semantica
denotazionale. Vale che ®(Ck, f) = ((Ck, 2))(suew), con X = (p,c) se per ogni ¢ € Qi vale f(q) =

GC(Q)D(SNEW)E .

Formalmente la funzione ®, per un firewall semiastratto 7 = (C, f), ¢ definita come @6'- (¢;)- Dove

la funzione ®7 (¢) per un dato insieme di nodi I, & definita per ogni q € @, ¢ # q; come:

OF (@) W)Xt set#LAg ¢l

1 altrimenti

dove t = f(q)(p) e se t # L allora p’ =t(p) e ¢ = d(q,p)

o7 (9) (p) =

e per il nodo finale come:

o7 (qf) (p) = id

La funzione cony, € la funzione di concretizzazione del sistema k che data una configurazione IF-
CL X restituisce un file di configurazione file.conf nel linguaggio di configurazione di k. Questa &
concettualmente la funzione inversa della funzione di formalizzazione fory, tuttavia & bene osservare
che non ¢ necessariamente l'inversa dal punto di vista funzionale. Infatti la formalizzazione delle con-
figurazioni prodotta dalla funzione fory ha spesso una forma molto particolare (si prenda ad esempio
quella di ipfw presentata nella sezione ; non vogliamo limitarci alla possibilita di concretizzare
solo configurazioni IFCL aventi una struttura cosi particolare. L’idea & quella di definire una funzione
che per ogni configurazione IFCL per il diagramma di controllo del sistema k restituisca una confi-
gurazione nel linguaggio target “il piu simile possibile”; esprimiamo questo concetto dicendo che la
normalizzazione del firewall IFCL e di quello ottenuto applicando conj e poi formalizzando di nuovo,
devono essere uguali: { (Cr,X) D = { (Ck, forp(file.conf)) D. La forma di queste funzioni sard
descritta in maggior dettaglio nel capitolo [7]

In questa trattazione trascuriamo la fase di rifattorizzazione, assumendo che il firewall restituito
da questa fase sia sempre quello ottenuto in input dello stadio di codifica (X = ¥’). Si ricordi
che ¢ banalmente vero che ogni firewall normalizzato € anche un firewall IFCL. Inoltre, come gia
annunciato, abbiamo trascurato il comportamento dei pacchetti appartenenti a connessioni stabilite,

concentrandoci unicamente sullo stato sygy.

Teorema 5 (Correttezza della pipeline). Sia file.conf un firewall concreto in uno qualunque dei
sistemi k € {iptables, ipfw, pf}. Il firewall target file.conf prodotto dalla pipeline di transcompi-
lazione, per il sistema target k', ha la stessa semantica del firewall source per quanto riguarda pacchetti

non appartenenti a connessioni stabilite. Formalmente vale:

(C (Ck, fork(fite.conf)) D)(suew) = (C (Crr, forp (File.conf')) D)(syew)

4.4 Domini sintetici

Quella che e stata presentata e la versione concettuale della pipeline, con le specifiche per ogni fase dei

valori in input, di quelli calcolati e di quelli restituiti. Per alcune fasi abbiamo una descrizione accurata

1 Si noti che abbiamo definito la semantica denotazionale per firewall IFCL normalizzati, non semiastratti, il passaggio
intermedio dei firewall semiastratti ci & utile dal punto di vista pratico per 'implementazione degli algoritmi della pipeline

e per la ricompilazione.

39

Livello 0 (firewall concreti)

sistema firewall (processo)

. . ipfw
file di configurazione)
file.conf

file.conf

pf

f

concretizzazione /

Livello 1 (firewall IFCL)

diagramma di controllo C

configurazione (p, c)

Livello 2 (firewall IFCL normalizzati)

diagramma di controllo C

configurazione (p, c)

1

Livello 3 (firewall semiastratti)

diagramma di controllo C
configurazione f: Q — P — T(P)U{L}

composizione

decomposizione

\

Livello 4 (firewall astratti)

configurazione A : P — T(P) U {L}

Figura 4.2: schema della pipeline di transcompilazione

40

dell’algoritmo da applicare, come per la fase di normalizzazione che sfrutta la procedura { _). Per
dare un’implementazione della pipeline occorre definire le funzioni di traduzione del backend, delle
quali abbiamo solo una descrizione non operativa.

La parte complicata da implementare & quella relativa alle fasi 2.b, 2.c, 3.a e 3.b. Questo perché
abbiamo a che fare con firewall astratti e semiastratti, che sono basati su funzioni da pacchetti a tra-
sformazioni P — 7 (P) U {L}. Queste funzioni devono essere rappresentate in un modo che consenta
di effettuare le operazioni della fase 8.a e 3.b. Una rappresentazione sintattica come quella prodotta
dalla semantica denotazionale sarebbe molto difficile da maneggiare, quindi abbiamo optato per una
rappresentazione esplicita, basata su una visione delle funzioni come insiemi di coppie (pacchetto,
trasformazione). Ovviamente dato che abbiamo un enorme numero di input possibili per le funzioni,
#P = 29 non & possibile calcolare e memorizzare le coppie una ad una. Ci affidiamo ad una rappre-
sentazione sintetica dell’insieme delle coppie, basata su multicubi. Implementiamo la parte centrale
della pipeline di transcompilazione attraverso un algoritmo di sintesi e un algoritmo di generazione,
corrispondenti rispettivamente alle fasi 2.b e 2.c, e alle fasi 3.a e 3.b.

Definiamo una rappresentazione sintetica ed esplicita dei domini dei firewall semiastratti e astraitti,
che sara la forma dei dati realmente gestiti dagli algoritmi. Stabiliamo ovviamente una corrispondenza
fra domini di specifica e sintetici, definendo l'interpretazione teorica di ogni elemento dei domini

sintetici e basandoci su di questa per dimostrare la correttezza degli algoritmi di sintesi e generazione.

Come abbiamo detto la rappresentazione sintetica si basa su multicubi. Il multicubo ¢ una gene-
ralizzazione del concetto di cubo: dove un cubo di dimensione n puo essere visto come il prodotto
cartesiano di n intervalli, un multicubo ¢ il prodotto cartesiano di n unioni di intervalli. Ad esempio,
in R3, il cubo di lato 1 con uno spigolo sull’origine degli assi e resto dei punti nel sottospazio di coor-
dinate positive, puo essere rappresentato come [0,1] x [0,1] x [0, 1], mentre & un multicubo l'insieme
([0,1]U[2,3]) x [0,1] x ([0,1] U [2,3] U [6,7]).

Definizione 13 (Multicubo). Dato un insieme A, prodotto cartesiano din insiemi A = Ay X ---xX A,
un suo sottoinsieme M C A & un multicubo se e solo se esistono n insiemi My C Aq,--- , M, C A,
tali che M = My x --- x M,,. Solitamente gli insiemi M, --- , M,, sono rappresentati come unioni di

intervalli disgiunti.

In particolare un multicubo nel nostro sistema sara un insieme di pacchetti P C P per il quale
esistono I P, [Py C IP, Ports, Porty C Port e Tag C Tag tali che P = I P; X Ports x IP; X Porty x

Tag. Denotiamo l'insieme dei multicubi in P con M(P), formalmente
M(P) _ 2113 % 2P0rt % 211:’ % 2P0rt % 2Tag

Un firewall sintetizzato di un qualunque livello € una rappresentazione sintetica del firewall, in
cui ogni funzione P — T(P) U {L} & espressa come insieme di coppie (P,t) dove t € T(P) & una
trasformazione e P & un multicubo di pacchetti che hanno ¢ come immagine. Rappresentiamo a volte
queste funzioni come una tabella con una riga per ogni coppia (P,t) in cui ¢ # L (lasciando implicito
che il destino di tutti i pacchetti non rappresentati nella tabella ¢ quello di essere scartati).

Per prima cosa definiamo formalmente cosa intendiamo per rappresentazione sintetizzata di una
funzione su pacchetti, successivamente definiamo di conseguenza firewall semiastratti sintetizzati e
firewall astratti sintetizzati (non essendo presenti funzioni da pacchetti a trasformazioni nei firewall

ad altri livelli di astrazione, non ha senso parlare di loro versioni sintetizzate).

Definizione 14 (Funzione sintetizzata su pacchetti). Chiamiamo funzione sintetizzata su pacchetti

9M(P)x T (F)

un insieme di coppie e UL} tale che Uinsieme delle parti sinistre delle coppie di X ¢ una

41

partizione di P. Formalmente:

1. Y(Pt)eX P#0
2. V(Pl,tl),(Pg,tg) EX. leP2:®

3. U P=P

(Pt)ex

Chiamiamo firewall semiastratto sintetizzato una coppia .,7-:;, = (C,f) dove C & un diagramma di
controllo e f: Q — 2MEXTMP)U{L} a5segna ad ogni nodo ¢ una funzione sintetizzata su pacchetti
A. Allo stesso modo chiamiamo firewall astratto sintetizzato una funzione sintetizzata su pacchetti.

Definiamo linterpretazione di una funzione sintetizzata su pacchetti i(A) : P — T (P) U {L} come

segue:

iN(p)=t < I(Pt)EXpEP

Dato che I'insieme delle parti sinistre di X & una partizione di P, ¢ immediato verificare che la definizione
appena data non e ambigua e definisce davvero una funzione del tipo dichiarato. L’interpretazione
di un firewall semiastratto sintetizzato F3 = (C, f) & un firewall semiastratto F3 = (C, f) dove per
ogni nodo g, f(q) = z(f(q)) L’interpretazione di un firewall astratto sintetizzato F1 =\ & un firewall

astratto Fy = i(A).

Gli algoritmi di sintesi e generazione del firewall, che realizzano le fasi di semiastrazione (2.b),
composizione (2.c), decomposizione (3.a) e codifica (3.b), operano dunque sulla versione sintetizzata
dei domini. Perché siano corretti ¢ sufficiente che 'interpretazione dei firewall prodotti corrisponda
sempre alla specifica della pipeline nello stadio di riferimento. Piu precisamente: 1’algoritmo di sintesi

prende come input un firewall IFCL normalizzato e restituisce un firewall astratto sintetizzato .7:"4 S
9M(P)

*T(P)U{L} mentre Palgoritmo di generazione prende come input un firewall astratto sintetizzato
F'4 e restituisce un firewall IFCL normalizzato.

Per applicare il teorema [5| & sufficiente che, nell’implementazione della pipeline in cui i domini
sintetizzati sostituiscono quelli normali, siano garantite le seguenti condizioni: (¢) l'interpretazione del
firewall astratto sintetizzato restituito dall’algoritmo di sintesi verifica le condizioni dell’output della
fase 2.c della pipeline, (it) se Uinterpretazione del firewall astratto sintetizzato in input all’algoritmo
di generazione verifica le condizioni dell’input della fase 3.a della pipeline, allora il firewall IFCL
normalizzato prodotto dall’algoritmo di sintesi verifica le condizioni dell’output della fase 3.b della
pipeline. Se queste condizioni valgono allora vale anche il risultato del teorema [f] Formalmente,
perché valga il risultato del teorema 5| che garantisce la conservazione della semantica del firewall, &

sufficiente che siano verificate dagli algoritmi di sintesi e generazione le due condizioni seguenti:

1. Sia F5 un firewall normalizzato, sia A il risultato dell’algoritmo di sintesi con input JF», allora

(F2) (swew) = i(N)

2. Sia A un firewall astratto sintetizzato, sia JF} il risultato dell’algoritmo di generazione con input
X e sia A = i(\), allora che (F3)(sym) = A

42

Capitolo 5

Algoritmo di sintesi

L’algoritmo di sintesi realizza le ultime due fasi dello stadio 2 della pipeline di transcompilazione:
prende in input un firewall IFCL normalizzato e restituisce un firewall astratto, cioé una funzione
P — T(P) U {L}, rappresentato come un firewall astratto sintetizzato. Dividiamo lalgoritmo in due
parti, la prima realizza la semiastrazione, fase 2.b della pipeline, ovvero a partire dal firewall IFCL
genera un firewall semiastratto in cui ad ogni nodo del diagramma di controllo € associata una funzione
P — T(P)U{L}. Laseconda parta realizza la fase 2.c, componendo le funzioni associate ai nodi sulla
base del diagramma di controllo, calcola una rappresentazione sintetica della funzione corrispondente
alla semantica del firewall.

L’esatta implementazione degli algoritmi, e la scelta delle strutture dati verranno discussi nel
capitolo

5.1 Semiastrazione

La prima parte della sintesi, corrispondente alla semiastrazione, ¢ realizzata nell’algoritmo 1| dalla fun-
zione FIREWALL_SEMI_ABSTRACTION (riga 1), che attraverso la funzione RULESET_SYNTHESIS, dato un
firewall normalizzato F> in input, calcola la funzione su pacchetti corrispondente alla semantica della
ruleset associata ad ognuno dei nodi del diagramma di controllo. L’output & un firewall semiastratto
sintetizzato]:'3.

Nell’implementazione abbiamo usato la funzione SPLIT(P: insieme di pacchetti, ¢: trasformazione,
¢: predicato), che divide I'insieme di pacchetti P in due parti: la prima, Ps, & composta dai pacchetti
che dopo aver subito la trasformazione ¢ verificano il predicato ¢; la seconda, P, da quelli che non
lo verificano. Il primo insieme viene restituito com’e, il secondo insieme invece viene restituito come

insieme di multicubi disgiunti non vuoti.
SPLIT(P, t, ¢) = (Ps, Py,)
Py={peP|¢p)} € MP)
P,={P.,', P2 ... P,"} € 2M®) tale che 1.VP.cP,. P.#0
2. VP, PI cP,. PPNPI =
3. U Pi={peP |00}

PieP,

43

Algorithm 1
1: function FIREWALL_SEMI_ABSTRACTION(JFy: firewall normalizzato)
(Cv E) <~]:2

2

3 (p,c) X

1 (Q,Aqqp) < C
5.]

6 for all ¢ € Q do
7

: flg] < RULESET_SYNTHESIS(c(q))
8. F3« (C,f)

9: return]:"3

10:

11: function RULESET_SYNTHESIS(R: ruleset)

12: return RULESET_SYNTHESIS_REC(P, R, id)
13:

14: function RULESET_SYNTHESIS_REC(P: insieme di pacchetti, R: ruleset, ¢: trasformazione)
15: if R =[] then return {(P,t)}

16: (¢, Action) - R < R

17: (Ps,Py,) <—SPLIT(P, t, ¢)

188 XN+ Upscp, (RULESET_SYNTHESIS_REC(P), R, 1))
19: if Actiorj = accer then

20: return {(P,,t)} U X

21: if Action = pror then

22: return {(P,, 1)} U X

23: if Action = mrt(sn,dn) then

24: return {(P;, trpa(dn,sn) x t)} U N

25: if Action = cueck-state(X) then

26: return RULESET_SYNTHESIS_REC(P, R/, t)

27: if Action = wrk(m) then

28: return RULESET_SYNTHESIS_REC(P,, R, (id : id, id : id, cost(m)) x t) U X

Il motivo dietro a questa scelta € che, assumendo che P sia un multicubo, P; ¢ sicuramente un
multicubo, mentre P,, puo non esserlo. Daremo dettagli maggiori sulla forma di Ps e P,, alla fine di

questa sezione.

La funzione FIREWALL_SEMI.ABSTRACTION itera sui nodi del diagramma di controllo C (riga 6),
per ogni nodo ¢ calcola la funzione sintetizzata X applicando la funzione RULESET_SYNTHESIS alla
ruleset associata al nodo ¢ da ¢, e aggiorna 'array f in modo tale che f[g] restituisca A (riga 7).
La funzione RULESET_SYNTHESIS, applicata ad una ruleset R, restituisce una funzione su pacchetti
sintetizzata \ tale che la sua interpretazione ¢ uguale alla semantica della ruleset nello stato sygy, cioe
tale che i(A) = (R)(sysy). La sua definizione ¢ simile a quella della semantica denotazionale di una
ruleset, e sfrutta una funzione ricorsiva ausiliaria RULESET_SYNTHESIS_REC che calcola la sintesi di
una parte di ruleset, dato I'insieme dei pacchetti che non sono stati gestiti dalle regole precedenti P e
la trasformazione ¢ gia subita per via delle regole precedenti. Inizialmente la funzione viene chiamata
con parametri corrispondenti all’insieme di tutti i pacchetti P, 'intera ruleset R e la trasformazione

identita id (riga 12).

44

La ricorsione ¢é sulla porzione di ruleset ancora da analizzare R. Se ¢ vuota allora tutti i pacchetti
che ancora non sono stati gestiti saranno accettati con trasformazione ¢, restituiamo dunque un singo-
letto contenente (P, t) (riga 15). Abbiamo infatti assunto una politica di default accerr per semplicita,
Pestensione al caso generale ¢ banale. Altrimenti si estrae la prima regola della ruleset (¢, Action) e
si chiama R’ il resto della ruleset (riga 16). Dividiamo P nei due insiemi di pacchetti Ps; e P,, per
mezzo della funzione SPLIT(P, t, ¢) (riga 17). Ps & un multicubo e contiene tutti e soli i pacchetti in
P che dopo aver subito la trasformazione t verificano la condizione ¢ della regola, P,, € un insieme di
multicubi che contengono tutti gli altri pacchetti di P. Si calcola la funzione su pacchetti sintetizzata
N corrispondente alla semantica del resto della ruleset R’ riguardo 'insieme di pacchetti P,,, facendo
una chiamata ricorsiva per ognuno dei multicubi nell’insieme (con trasformazione invariata) e unendo
i risultati fra loro (riga 18). La prosecuzione dell’algoritmo dipende dal target della regola. Se il target
¢ accept allora tutti i pacchetti che verificano la condizione sono accettati con trasformazione ¢ e di tutti
gli altri sono trattati secondo A’ (riga 20). Il caso in cui Action & uguale a prop & simile, i pacchetti in
P, sono associati a | e P,, viene trattato alla stessa maniera con \’ (riga 22). Se la ruleset comincia
con una regola con target nar allora 'insieme P; viene associato a t aggiornata con il risultato della
funzione tr,.; (riga 24), che restituisce la trasformazione specificata dai parametri del target e che
abbiamo definito formalmente in [3:2] Il target cueck-sTate & trattato in maniera molto particolare in
quanto ci stiamo concentrando sullo stato sygy € quindi nessun pacchetto appartiene a connessioni
stabilite: nessuna pacchetto viene trasformato per effetto dello stato, Ps; e P, non servono, passiamo
alla chiamata ricorsiva I'insieme P, tutti i suoi pacchetti sono gestiti sulla base del resto della ruleset
R’ (riga 26). Se il target ¢ marx(m) allora la valutazione di Ps procede con una chiamata ricorsiva in
cui la trasformazione ¢ viene aggiornata con la trasformazione relativa alla scrittura del campo tag

con il valore m; come negli altri casi P,, viene gestito con N (riga 28).

Osserviamo che per poter chiamare il risultato prodotto dall’algoritmo un firewall semiastratto
sintetizzato occorre che I'array f rappresenti una funzione Q — 2MP)XTPU{L} percid gli insiemi di
pacchetti nella parte sinistra delle coppie associate ai nodi devono essere dei multicubi. L’insieme di
tutti i pacchetti P ¢ banalmente un multicubo, tutti gli altri insiemi di pacchetti coi quali lavoriamo
sono prodotti dalla funzione SPLIT. Abbiamo detto che questa funzione restituisce una coppia (Ps, P,),
dove P, ¢ un multicubo e P,, & insieme di multicubi, se I'insieme P in input € un multicubo. Ogni
insieme finito puo essere espresso come unione di finiti multicubi, pertanto P, non da problemi da
questo punto di vista. In generale non & vero, per una generica funzione ¢, che linsieme {p €
P | ¢(p, syew)} € un multicubo se P lo &. Tuttavia dato che il predicato ¢ & la condizione di una regola

IFCL, deve essere possibile scomporlo nella seguente maniera:

O(p,5) = os1p(D-SIP) A psport(p-sPort) A ¢parp(p.dIP) A ¢paport(p-dPort) A ¢rag(p-tag) A ¢s(p,s)

per qualche predicato ¢srp, @sport; Parp, arort € Prag, € per un predicato ¢s(p, s) che puo essere solo
Ja. p s a oppure —3Ja. p 4 «, corrispondenti rispettivamente a false e true nei casi in questione,
dato che abbiamo assunto che s = sygy. La scomposizione garantisce che S, sia un multicubo, in
quanto {p € P | ¢(p, suey)} € un multicubo e I'intersezione di due multicubi & sempre un multicubo.

Questa scomposizione del predicato ¢(p, s) suggerisce anche un metodo per calcolare P, B e
sufficiente prendere i predicati ¢1(p) = ¢dsrp(p.sIP), ¢2(p) = dsport(p.sPort), ¢p3(p) = parp(p.dIP),
1(p) = Paport(p-dPort) e ¢5(p) = ¢rag(p-tag) e combinarli per calcolare degli insiemi P}, P2, ...,
P e M(P) tali che:

1. VPi € P,,. Pi #10)

I Assumiamo qui che il predicato ¢s(p, s) possa essere ignorato in quanto valuta a true (e quindi elemento neutro

della congiunzione); nel caso contrario il congiunto stesso vale false, quindi P, = {P} e Ps = (.

45

2. VP PieP, PinpPi=0

3. Upiep, Pn=1{p€P|-0(tp) }

Possiamo comporre i predicati in modo diverso per ottenere un risultato che soddisfi i requisiti, il
pitt semplice probabilmente & quello di prendere fra gli elementi dell’insieme {1, 2, d3, D4, P5} tutti
i predicati diversi da true, chiamiamo questi predicati @1, @2, ..., @m. A seconda della condizione
originale della regola, m puo essere un qualunque numero naturale minore o uguale di 5. A questo

punto possiamo costruire gli m multicubi nella seguente maniera:

Vie{l,...m}. PZ:{pEP | ~pi(p) AV <i.@;(p) }

Si noti che per leggibilita non abbiamo trattato esplicitamente il caso in cui I'insieme P; sia
I'insieme vuoto, assumiamo che il controllo sia effettuato al momento dell’aggiunta della coppia (Ps, t)

all’insieme \/ ; la versione completa dell’algoritmo ¢ immediatamente derivabile da quella presentata.

Il risultato dell’algoritmo & un firewall semiastratto sintetizzato la cui interpretazione corrisponde

alle specifiche della pipeline di transcompilazione.

Teorema 6. Sia F» = (C,X) con ¥ = (p,c) il firewall normalizzato in input all’algoritmo di

semiastrazione. L’algoritmo produce un firewall Fy = (C, f) tale che
o F3 ¢ un firewall semiastratto sintetizzato

e la funzione sintetizzata f ¢ tale che per ogni q € Qi vale i(f)(q) = (c(q))(snzw)

5.2 Composizione

La fase di composizione (2.c) a partire dal firewall semiastratto sintetizzato Fs calcola il firewall
astratto sintetizzato relativo, Fy. Per semplificare questa fase ci basiamo su una versione del firewall
avente diagramma di controllo aciclico. Sebbene sia possibile in teoria comporre le funzioni sintetiz-
zate associate ai nodi su un grafo aciclico, questo richiederebbe di tener traccia per ogni multicubo
che valutiamo, del percorso fatto all’interno del diagramma di controllo, in modo da scoprire quando
siamo in presenza di un ciclo e da assegnare correttamente il valore L. In un firewall con diagramma
di controllo aciclico invece possiamo effettuare la composizioni in ordine, dal nodo finale al primo,
propagando all’indietro il valore ottenuto per un nodo e combinandolo con la semantica della ruleset
associata al nodo precedente. A livello algoritmico questo si traduce nella possibilita di usare, per ogni
nodo, una ricorsione sui nodi successori (cioé raggiunti da un arco uscente), e di avere automaticamente
garanzia di terminazione.

Presentiamo dunque un algoritmo per la trasformazione di un firewall IFCL in una sua versione
aciclica, garantendo la conservazione della semantica nel processo. Successivamente forniamo 1’algo-
ritmo di composizione in sé, che a partire da un firewall semiastratto sintetizzato con diagramma di

controllo aciclico calcola la rappresentazione sintetizzata del firewall astratto.

5.2.1 Firwall aciclici

L’obiettivo ¢ quello di calcolare la versione aciclica di un firewall, trasformando il diagramma di
controllo C in una versione equivalente aciclica e aggiornando la funzione ¢ di conseguenza. Un
diagramma di controllo aciclico ¢ un digramma di controllo in cui non esiste un percorso m = ¢;, -+ ,qy

tale che un nodo ¢ compare piu di una volta in 7w, dove in un percorso possiamo passare dal nodo ¢ al

46

nodo, ¢’ se e solo se esiste un arco (q, 1, q’) per qualche ¥ # false. La versione aciclica di un firewall
F =(C,X) & un firewall 7, = (C,,X,) tale che: il diagramma di controllo C, & aciclico e i due firewall
hanno la stessa semantica, ovvero (F) = (F,).

Consideriamo 'uguaglianza della semantica dei due firewall, (F) = (F,), come la congiunzione
di due condizioni, la prima relativa alla simulazione del firewall 7 da parte di F’, la seconda a quei
pacchetti che in F percorrono un ciclo nel diagramma di controllo.

Il firewall prodotto dall’algoritmo simula il firewall in input, ovvero per ogni percorso legale, cioe
aciclico, nel firewall originale esiste un percorso legale nel firewall prodotto tale che i predicati sugli

archi e le ruleset associate ai nodi sono le stesse.

Definizione 15 (Simulazione di un firewall). Il firewall F' simula il firewall F, scritto F > F', se e
solo se (F,qi,{a:}) & (F',q,{q.}) dove &> ¢é una relazione fra triple (firewall, nodo, insieme di nodi)

definita come:

(F.a. D)= (F,d I') <= clg)=c(d) A
(a=qr = 4 =d;) A
Voo e Q\I.3(¢,,q1) €A =
Ga e QNI (¢ ¥, q1) € ANF,q1, TU{ai}) & (Froq1, I'U{aq1}))

dove F = (C,Z) e Fl' = (C/azl); con C = (QaA,Qi»(If), Y= (pv C) eC = (Q,vAlvq;‘vQ}); Y= (p/acl)'

Chiamiamo pacchetto ciclante per un firewall un pacchetto la cui valutazione comporta la visita

di uno stesso nodo piu volte per un qualche stato.

Definizione 16 (Pacchetti ciclanti). L’insieme dei pacchetti ciclanti in un dato firewall F, pc(F), é

Uinsieme {p e P | 3g € Q,p',p" € P, s € S. (¢:;,s,p) =% (¢,5,0) N (¢,8,0") =1 (¢,5,0")}.

Non & una sorpresa che due firewall simili abbiano la stessa semantica per quanto riguarda i

pacchetti non ciclanti.

Teorema 7. Se due firewall sono simili allora hanno semantica equivalente per quanto riguarda i
pacchetti non ciclanti di F, ovvero: F > F = (Vp ¢ pc(F),s € S. (F)(s)(p) = (F)(s)(p)).

L’idea & dunque quella di generare un firewall che simuli quello originale, replicando alcuni nodi in
modo tale da “srotolare” il diagramma di controllo ed evitare che ci siano cicli. La procedura si basa sul
fatto che ogni pacchetto in un diagramma di controllo puo passare per ogni nodo al massimo una volta
prima di essere scartato automaticamente. Occorre un trattamento ad hoc per i pacchetti ciclanti,
che nel firewall originale verrebbero scartati. Perché il grafo risultante sia un diagramma di controllo
occorre che da ogni nodo diverso da quello finale si possa sempre passare ad un nodo successivo, per
ogni pacchetto. Pertanto i pacchetti ciclanti del firewall originale non possono bloccarsi nell’ultimo
nodo prima della fine del ciclo, devono essere mandati verso un nodo che li gestisca in modo opportuno,
cioe scartandoli. Creiamo per questo un nodo ad hoc, ¢, , nel quale ridirigiamo tutti i pacchetti ciclanti
del firewall originale e che ¢ configurato in modo tale da scartare ogni pacchetto. Chiamiamo la ruleset
che gli & assegnata R, questa ¢ composta da un unica istruzione (¢rue, brop).

La funzione UNLOOP(F) dell’algoritmo[2] (riga 1) calcola la versione aciclica del firewall F attraverso
la funzione ricorsiva UNLOOP_REC(F, ¢, ¢y, I) che visita il diagramma nodo per nodo, seguendo gli
archi e costruendo man mano il nuovo firewall. Il parametro F ¢ il firewall originale, ¢ ¢ il nodo di
F che stiamo considerando, g, ¢ il nodo del firewall prodotto che stiamo considerando e I ¢ 'insieme

dei nodi visitati per raggiungere g nel firewall originale, e ci serve a riconoscere i cicli. La funzione

47

UNLOOP_REC(F, ¢, qu, I) restituisce una tripla (Qu, Ay, ¢.) dove @, sono i nodi del diagramma
del firewall prodotto dall’algoritmo, A, sono gli archi e ¢, ¢ un insieme di coppie che rappresenta la
funzione di assegnamento di ruleset ai nodi (riga 5). Nella definizione della funzione UNLOOP_REC
(riga 10), per prima cosa si inizializzano @,, e A, come insiemi vuoti e ¢, come la funzione che associa
a ¢, la stessa ruleset associata a ¢ nel firewall originale: ¢, ¢ una “copia” del nodo ¢ del firewall
originale (righe 13, 14 e 15). Si noti che nel firewall aciclico prodotto dall’algoritmo possono esistere
piu “copie” diverse del nodo ¢ del firewall originale. Assumiamo di avere una funzione SUCCESSORI
(¢: nodo, A: archi) che dato un nodo e l'insieme degli archi restituisce la lista di coppie (¢’,) tale
che (¢,%,q’) appartiene ad A. Attraverso la funzione SUCCESSORI, itero sui nodi ¢’ raggiungibili da ¢
con predicato 1, nel firewall F (riga 16): se il nodo causa un ciclo nel firewall (riga 17) allora aggiungo
nel firewall prodotto il nodo ¢; e un arco con predicato ¥ fra ¢, e ¢, e associo al nodo ¢, la ruleset
R, in ¢y; per la definizione che abbiamo dato di diagramma di controllo non & possibile che il nodo
g1 non abbia archi uscenti, pertanto aggiungiamo anche un arco uscente con predicato true verso il
nodo ¢y (righe 18, 19 e 20).

Se il nodo ¢’ non causa un ciclo (riga 21) allora devo aggiungerlo al firewall prodotto, se ¢’ = ¢y
allora lo aggiungo com’e (riga 23), altrimenti genero e aggiungo una sua “copia” (riga 25), cio¢ un
nuovo nodo che avra nel diagramma finale lo stesso ruolo che ¢’ ha nel diagramma originale per
quanto riguarda i percorsi di cui ci stiamo occupando, ma che sara separato dagli altri nodi del
diagramma finale generati a partire dallo stesso nodo ¢’. La generazione di un nuovo nodo viene
effettuata dalla funzione GENERA NODO() che assumiamo generi sempre nodi differenti. Aggiungo il
nuovo nodo ¢, a @ e copio in A, 'arco (q,,q’), che diventa (q.,,q,,) (righe 26 e 27). Effettuo una
chiamata ricorsiva sul nodo ¢’ in F e su ¢/, sul firewall che sto costruendo, aggiungendo il nodo ¢’ in I
(riga 28). Unisco il risultato della chiamata ricorsiva alla tripla (Qy, Ay, ¢,) ottenuta dalle iterazioni
precedenti e proseguo con il successivo fra i nodi raggiungibili da ¢ nel firewall iniziale (righe 29, 30 e
31). Alla fine restituisco la tripla (Q., Ay, cy)-

La semantica del firewall aciclico prodotto & equivalente a quella del firewall di partenza.

Teorema 8. Sia F un firewall IFCL, sia F, il risultato dell’applicazione della funzione UNLOOP al
firewall F:

1. Fy ¢ un firewall IFCL aciclico
2. F> Fu
3. Vp € pc(F),se€S. (Fu)(s)(p) =L

Il diagramma di controllo di iptables non contiene cicli, percio non c’¢ necessita di applicare
l’algoritmo ai firewall iptables. I diagrammi di controllo di pf e ipfw, invece, contengono cicli: la
loro versione aciclica, restituita dall’algoritmo, ¢ mostrata in figura e

48

(a) ipfw

Figura 5.1: Versione aciclica dei diagrammi di controllo

Algorithm 2

1: function UNLOOP(F: firewall)

2 (C,%) «+ F

3 (p,c) < X

4 (Q7Aaq27Qf) —C

5: (Qu, Ay, ¢y) < UNLOOP_REC(F, ¢;, ¢i, {q:i})
6 Cu — (QuyAzuquqf)

7 Yo (pU{RL},cu)

8 return (Cy, ;)

9:

10: function UNLOOP_REC(F: firewall, ¢: nodo, ¢,: nodo , I: insieme di nodi)
11: (C,p,c) « F

12: (Q7A7qz7qf) «—C

13: Qu+ 0

14: A, 0

15 ey {(qu.c(q))}

16: for all (¢, ¢)) € succEessioRrI(q, A) do

17: if ¢ € I then

18: Qu +— QU {q.}

19: Ay Ay U {(qu, ¥ q1), (qu, true, qr)}
20: cu —cuU {(qu, R1)}

21: else

22: if ¢ = ¢y then

23: @, < qf

24: else

25: q,, < GENERA_NODO()

26: Qu + QuU {q,}

27: Ay AU A{(qus ¥, 0}

28: (Q', A, ¢ + uNLOOP_REC(F, ¢, q,,, T U{d'})
29: A, — A, UA

30: Qu+— QU@

31: Cy < c U

32: return (Qu, Ay, cy)

49

5.2.2 Algoritmo di composizione

La seconda parte dell’algoritmo di sintesi realizza la fase di composizione della pipeline. In questa
fase le funzioni sintetizzate associate ai vari nodi del diagramma di controllo sono composte fra loro
in modo da ottenere la semantica del firewall source. L’algoritmo [3| realizza questa fase attraverso
la funzione COMPOSITION (riga 1) che dato un firewall semiastratto sintetizzato Fs restituisce un
firewall astratto sintetizzato equivalente F. L’algoritmo termina solo se il firewall in input ¢ aciclico,
condizione garantita dall’applicazione dell’algoritmo

La funzione COMPOSITION ¢ definita attraverso la funzione ricorsiva COMPOSITION_REC che ha
come parametri il firewall semiastratto sintetizzato F3 e il nodo ¢ a partire dal quale calcolare la
semantica, inizialmente ¢;. La funzione COMPOSITION_REC(F3, q) (riga 6) calcola la semantica del
firewall considerando il diagramma di controllo solo dal nodo ¢ in avanti. La semantica di un firewall
composto da un unico nodo, il nodo finale gy, ¢ la semantica della ruleset associata al nodo stesso,
ovvero avendo assunto che in ogni firewall IFCL debba valere ¢(qf) = R, la funzione sintetizzata (P, id)
(riga 9). Se invece non siamo nel nodo ¢y, prediamo la funzione sintetizzata su pacchetti associata a g,
A = f(q) (riga 10). Inizializziamo), con le coppie (P, L) di X (riga 11). Per ogni nodo ¢’ raggiungibile

da ¢ con arco etichettato dal predicato :

e usando la funzione FILTER prendiamo S\(qﬂ/), la parte di X relativa ai pacchetti che attraversano

larco, cioé che verificano ¢ (riga 13);

e calcoliamo S\q/, la semantica del firewall dal nodo ¢’ in poi, attraverso una chiamata ricorsiva
COMPOSITION REC(F3, ¢') (riga 14);

e concateniamo in maniera opportuna le due funzioni sintetizzate S\(q,q/) e S\q/ usando la funzione
CONCAT (riga 15).

Collezioniamo gli insiemi di coppie ottenuti per ognuno dei nodi raggiungibili ¢’ e creiamo e restituiamo

la funzione sintetizzata finale.

Nell’implementazione abbiamo assunto di avere a disposizione le funzioni DROPPER, FILTER e
CONCAT. La funzione DROPPER(X: funzione su pacchetti sintetizzata) dato un insieme di coppie
(multicubo di pacchetti, trasformazione) restituisce l'insieme ottenuto togliendo tutte le coppie in cui

la trasformazione ¢ diversa da prop.
DROPPER(A) = {(P, L) | (P, L) € A}

La funzione FILTER(S\: funzione su pacchetti sintetizzata, 1: predicato) dato un insieme di coppie
(multicubo di pacchetti, trasformazione) e un predicato, filtra ogni termine sinistro delle coppie del
primo parametro A togliendo tutti i pacchetti che non verificano ¥ dopo aver subito la trasformazione

specificata dalla parte destra della coppia.
FILTER(A,) = { (P',t) | (Pit) € X A P/ =t""((t(P))) A P #0}

Dove ci siamo permessi un piccolo abuso di notazione e abbiamo scritto ¢(P) per {¢(p) | p € P} e ¢(P)
per {p € P | ¢¥(p)}; e con t~1(P") intendiamo la preimmagine di P” nell’insieme P tramite ¢. In ordine
quindi per calcolare P’: applichiamo la trasformazione ¢, filtriamo i pacchetti secondo il predicato
e infine torniamo indietro dalla trasformazione. Formalmente t=1(v)(t(P))) = {p € P | ¥(t(p))}.

Per poter chiamare il risultato della funzione FILTER occorre che le parti sinistre delle coppie P’
dell’insieme prodotto siano multicubi di pacchetti. Assumendo che)\ sia una funzione sintetizzata, se

il predicato 1 & scomponibile in una congiunzione di predicati secondo la formula

Y(p) = Ysip(p-SIP) AN Ysport(p.sPort) A arp(p.dIP) A Yaport(p.dPort) A tiaq(p.tag)

50

Algorithm 3

1: function COMPOSITION(]:'gz firewall semiastratto sintetizzato aciclico)
2: (C, f) — F3
3: (Q7Aa Q17qf) —C

4: return COMPOSITION_REC(F3, ¢;)

5:

6: function COMPOSITION,REC(]}g: firewall semiastratto sintetizzato aciclico, ¢: nodo)
. (Cf)« Fs

8: (CQ,zi,qi,qf) «—C

9: if ¢ = ¢y then return {(P,id)}

100 A f(q)

11:)\, « DROPPER())

12: for all (¢’,4) € succEssori(q, A) do
13: /N\(M,) + FILTER(A, ¢)

14: Ay ¢~ COMPOSITION_REC(F3, ¢')
15: Ag < Ag U CONCAT(A (4.4}, Agt)

16: return S\q

allora il risultato della funzione ¢ una funzione sintetizzata su pacchetti, ovvero se P € M(P) allora
T (W(E(P)) € M(P).)

La funzione CONCAT(A;: funzione su pacchetti sintetizzata, \o: funzione su pacchetti sintetizzata)
concatena due funzioni sintetizzate espresse come coppie (multicubo di pacchetti, trasformazione).
L’idea ¢ quella di prendere il primo insieme e calcolare per ogni coppia (P;,t;) quali coppie (P, t2)
sono associate a t(P;) nel secondo insieme e restituire delle coppie in cui il primo termine ¢ composto
dagli elementi di P; che trasformati da t; appartengono a P» (preimmagine di P, in P; tramite ¢1) e

il secondo termine ¢ la trasformazione t; aggiornata con t,.
CONCAT(jq,;\g) = { (P/,tg X tl) ‘ (Pl,tl) S 5\1 A\ (Pg,tg) € 5\2 AP = t;1<P2 ﬂtl(P1>) AP =+] }

Anche qui occorre controllare che il risultato della funzione sia effettivamente una funzione su
pacchetti sintetizzata, cioe che le parti sinistre delle coppie che contiene siano in effetti multicubi di
pacchetti. Non occorre nessuna assunzione in quanto se P1 e P2 sono multicubi di pacchetti e ¢ & una

trasformazione su pacchetti allora anche t;* (P, Nt (P;)) & un multicubo.
L’algoritmo di sintesi € corretto: dato un firewall IFCL normalizzato aciclico, calcola un firewall
astratto sintetizzato la cui interpretazione corrisponde alla semantica del firewall nello stato sygy.

Teorema 9 (Correttezza dell’algoritmo di sintesi). thm:sintesi Sia Fa un firewall IFCL normalizzato

aciclico, sia Fy il firewall astratto sintetizzato restituito dall’algoritmo di sintesi, allora vale:

i<~7:4> = (]]:2[)(5NEW)

5.3 Esempio di sintesi in pf
Presentiamo un esempio di sintesi di un firewall pf. Si consideri la seguente configurazione:

rdr from any to 151.15.185.183 port 22 -> 192.168.0.8
nat from 192.168.0.0/24 to ! 192.168.0.0/24 -> 151.15.185.183

51

peEP t e T(P)
sIP [sPort [dIpP [dPort [tag sIP [sPort [dIpP [dPort [tag

[« [*« [« 1 * [« id] id [id [id [id]
(a) Ae
peP teT(P)
sIP [sPort dIpP [dPort [tag sIP [sPort [dIP [dPort tag
192.168.0.8/24 * —192.168.0.8/24 * * cost(151.15.185.183) id id id id
—192.168.0.8/24 * * * * id id id id id
* * 192.168.0.8/24 * * id id id id id
(b))\snat
peP te T(P)
sIP sPort dIP dPort [tag sIP sPort [dIP [dPort tag
* * 151.15.185.183 22 * id id cost(192.168.0.8) id id
* * —151.15.185.183 * * id id id id id
* * * —22 * 1d id id id id
(C))\dnat
peP te T(P)
sIP [sPort dI P [dPort [tag sIP sPort [dIpP [dPort tag
151.15.185.183 * * 80 * id id id id id
192.168.0.0/24 * 192.168.0.0/24 * * id id id id id
—192.168.0.0/24 * 192.168.0.8 22 * id id id id id
(d) Agre

Tabella 5.1: Rappresentazione tabellare delle funzioni su pacchetti sintetizzate.

block all

pass from any to 192.168.0.8 port 22

pass from 192.168.0.0/24 to 192.168.0.0/24
pass from 151.15.185.183 to any port 80

La traduzione in IFCL della configurazione ¢ la seguente:

p = {Rsnat» Ranat, sz‘n;n Rfinp’!‘7 Rfout7 Rfout'm Rs}
c(ql) = c(qf) = R€7 C(qo) = RSnat: C(q1) = Rfinp C(Q2) = Rdnat7 C((B) = Rfout

Ronat =

(p.sIP € 192.168.0.0/24 A p.dIP ¢ 192.168.0.0/24 , naT(151.15.185.183 : %, % : x))
Ranat =

(p.dIP = 151.15.185.183 A p.dPort = 22 , NAT(% : %, 192.168.0.8 : %))
Rfinp =

(true , GoT0(R finpr))
Ryiout =

(true , coto(Ryfoutr))
Riinpr = Ryoutr

(p.sIP = 151.15.185.183 A p.dPort = 80 , ACCEPT))

(p.sIP € 192.168.0.0/24 A p.dIP € 192.168.0.0/24 , AccepT)

52

peP t e T(P)
sIP [sPort dIpP [dPort tag sIP sPort [dI P dPort tag
* * 192.168.0.8 22 * id id id id id
192.168.0.0/24 * 192.168.0.0/24 * * id id id id id
151.15.185.183 * * 80 * id id id id id
192.168.0.1 * —192.168.0.0/24 80 * cost(151.15.185.183) id id id id
* * 151.15.185.183 22 * id id cost(192.168.0.8) id id

Tabella 5.2: Rappresentazione tabellare del firewall astratto sintetizzato.

(p.dIP = 192.168.0.8 A p.dPort = 22 | ACCEPT)

(true, brop)

Il grafico e quello di pf, in figura La normalizzazione consiste semplicemente nella rimozione

delle coto.

p = {Rsnah Rdnat7 Rfinpa Rfout7 Re}
c(qi) = c(qr) = Re, c(q0) = Rsnat, c(q1) = Ryinp c(q2) = Ranat, c(q3) = Ryout

Rs’nat -
(p.sIP € 192.168.0.0/24 A p.dIP ¢ 192.168.0.0/24 , nar(151.15.185.183 : %, % : +))
Ranat =
(p.dIP = 151.15.185.183 A p.dPort = 22 , NAT(* : *,192.168.0.8 : %))
Rpinp = Rout =
(p.sIP =151.15.185.183 A p.dPort = 80 , ACCEPT))
(p.sIP € 192.168.0.0/24 A p.dIP € 192.168.0.0/24 , AccEpT)
(p.dIP = 192.168.0.8 A p.dPort = 22, ACCEPT)
(true, DroP)

Il passaggio alla versione aciclica del firewall puo essere fatto in ogni momento, in questo caso per
semplicita lo rimandiamo a dopo la fase di semiastrazione. Applichiamo ’algoritmo [I] e calcoliamo la
versione semiastratta sintetizzata del firewall IFCL, con configurazione f tale che:

f(ai) = F(ar) = Xe, c(q0) = Xsnat, ¢(q2) = Adnat, c(q1) = c(gs) = Apire

Dove le funzioni su pacchetti sintetizzate ;\E, ;\S,mt, Ndnat € S\ﬁlt sono presentate nella tabella
come tabelle in cui ogni riga corrisponde ad una coppia (multicubo, trasformazione) e dove le coppie
in cui la parte destra ¢ L sono lasciate implicite.

A questo punto, grazie all’algoritmo [2| passiamo alla versione aciclica: il diagramma di controllo

diventa come quello in figura e la configurazione f diventa:

Fla) = £(ar) = Ae, c(@0) = c(@h) = Asnat, c(q2) = ¢(¢h) = Adnats c(a1) = c(d}) = c(gs) = c(g5) = Apau

Possiamo infine comporre le tabelle grazie all’algoritmo[3} assumendo che 'insieme £ degli indirizzi
locali sia {127.0.0.1,192.168.0.1,151.15.185.183}, la funzione su pacchetti sintetizzata risultante A &
espressa dalla tabella

53

Capitolo 6

Espressivita dei sistemi firewall

Come abbiamo anticipato, i diversi sistemi firewall non sono ugualmente espressivi. La forma dei
diagrammi di controllo e i vincoli legati al linguaggio di configurazione source inducono delle condizioni
sulle configurazioni esprimibili, rendendo alcune funzioni su pacchetti impossibili da codificare.

Ci interessa caratterizzare dunque per ogni sistema quali sono le configurazioni esprimibili e stu-
diarle nel dominio dei firewall astratti, per poter meglio confrontare I’espressivita di diversi sistemi
fra loro. Ci basiamo in effetti sulla parte della pipeline di transcompilazione relativa alla sintesi: per
prima cosa caratterizziamo i diversi sistemi supportati a livello di firewall IFCL, e quindi di firewall
semastratti. Successivamente a partire da questi cerchiamo di derivare quali firewall astratti possono
essere prodotti dalla fase di composizione.

Formalmente, dato un sistema firewall k € {iptables, pf, ipfw}, chiamiamo Conf; I'insieme dei
file di configurazione legali per il sistema k. L’insieme dei firewall astratti esprimibili nel sistema k &

dunque:
Ay = {(TC (C, forr(file.contf)) D) | file.conf € Confy}

Sostanzialmente chiamiamo esprimibili da un sistema i firewall le configurazioni ottenibili a partire da
file di configurazione legali per quel sistema, tramite le funzioni di formalizzazione e trasformazione
della parte di sintesi della pipeline.

Per prima cosa introduciamo l’assegnamento di etichette, un meccanismo per rappresentare le
configurazioni IFCL esprimibili di un sistema e ne diamo una descrizione per i sistemi supportati.
Successivamente descriviamo l'insieme dei firewall astratti esprimibili da un sistema, sulla base dei
firewall IFCL esprimibili dallo stesso.

In questo capitolo e nel successivo trascuriamo completamente il campo tag dei pacchetti, questo
perché il target mark, nei diversi sistemi firewall supportati, & soggetto a vincoli diversi e difficili
da modellare usando IFCL. Solo per questo capitolo e per il successivo ridefiniamo dunque P come
IP x Port x IP x Port ¢ 7 (P) come 7 (IP) x T (Port) x T (IP) x T (Port).

6.1 Configurazioni IFCL esprimibili

A livello di IFCL ogni firewall & una coppia composta da un diagramma di controllo e da una confi-
gurazione. Per ogni sistema k ¢ definito il relativo diagramma di controllo Cy e la funzione fory che
traduce un file di configurazione source nella sua formalizzazione IFCL. Non tutte le possibili configu-
razioni IFCL X sono esprimibili dal linguaggio di configurazione di k, ovvero la funzione fory non € una

funzione surgettiva. Chiamiamo I'y, 'insieme delle configurazioni IFCL ottenibili dalla formalizzazione

54

di file di configurazione legali del sistema k, formalmente:
I'y = {forg(file.conf) | file.conf € Confy}

L’insieme I'y, potrebbe essere studiato partendo dai file di configurazione legali per i sistemi iptables,
pf e ipfw, e delle relative funzioni di formalizzazione forj che abbiamo definito nel capitolo [2} Tut-
tavia in mancanza di una formalizzazione ufficiale di questi linguaggi di configurazione, preferiamo
caratterizzare direttamente I'insieme I'y, all’interno del dominio di IFCL.

Inoltre, dato 'obiettivo finale & quello di caratterizzare Ay, e dato che la forma dei firewall prodotti
da fory € piuttosto complessa (si pensi ad esempio al modo con il quale abbiamo rappresentato i firewall
ipfw, presentato nella sezione|2.2.3)) e anche decisamente arbitraria in quanto avremmo potuto definire
delle funzioni di formalizzazione diverse ma equivalenti (ad esempio decidendo di modellare in modo
diverso i salti di ipfw), evitiamo di caratterizzare esattamente I'y, concentrandoci immediatamente
sull’insieme dei firewall normalizzati ottenibili da esso. Nel seguito chiamiamo esprimibili da un

sistema k le configurazioni IFCL ottenibili dalla normalizzazione di una configurazione in I'j.

Dobbiamo quindi tener conto del fatto che non tutti gli assegnamenti di ruleset ai nodi del dia-
gramma di controllo di un sistema sono esprimibili. In particolare risulta, nei sistemi analizzati, che
non sia possibile associare ruleset contenenti determinate operazioni ad alcuni dei nodi. In alcuni nodi
¢ possibile scartare pacchetti, in altri no; in alcuni i pacchetti possono solo essere scartati o accettati
senza modifiche mentre altri possono trasformare i pacchetti modificando alcuni campi e cosi via.

Assumendo che ogni nodo possa accettare i pacchetti senza modificarli diciamo che I'insieme delle
operazioni interessanti sono {SNAT, DNAT, DROP}. Dove SNAT e DN AT indicano che un nodo
puo modificare rispettivamente i campi sIP e sPort, e dI P e dPort di un pacchetto; e DROP indica
che nel nodo i pacchetti possono essere scartati.

Forniamo uno strumento per caratterizzare 'insieme delle configurazioni IFCL esprimibili da un
sistema k sulla base delle operazioni che si possono associare ai nodi del suo diagramma di controllo.
Un assegnamento di etichette per un diagramma di controllo & una funzione che assegna a ogni nodo
del diagramma un sottoinsieme delle etichette {SNAT, DN AT, DROP}; le etichette associate a un

nodo specificano quali operazioni possono essere effettuate sui pacchetti che passano da quel nodo.

Definizione 17 (Assegnamento di etichette a un diagramma di controllo). Un assegnamento di
etichette a un diagramma di controllo C = (Q, A, ¢i, qf) € una funzione v : Q — 2{SNAT,DNAT,DROP}

che associa un insieme di etichette I € 21SNAT,DNAT.DROP}Y o o0ni nodo del diagramma di controllo.

Una configurazione normalizzata ¥ = (p,c¢) di un diagramma di controllo C & legale secondo un
assegnamento di etichette v a C se e solo se per ogni nodo g € @ la ruleset associatagli ¢(g) contiene
solo target permessi dalle etichette v(q). Scriviamo ¥ |= v per dire che la configurazione ¥ ¢ legale

per 'assegnamento di etichette v.

Definizione 18 (Configurazione IFCL normalizzata legale). La configurazione normalizzata ¥ di un
firewall IFCL con diagramma di controllo C = (Q, A, gi,qy) € legale secondo un assegnamento di eti-
chette v, scritto ¥ |= v, se e solo se Vq € Q. ¢(q) = v(q), dove R, |= L per ogni insieme di etichette

L, altrimenti sia R=1r - R':
o ser = (¢, accerr), T = (¢, ciEck-s1atE(_)) 0 T = (¢, mar(-)) allora R |= L se e solo se R' =L
o ser = (¢,oror) allora R}=L se e solo se DROP € L eR =L

o ser = (¢, mr(ip : port,* : x)) allora R}= L se e solo se SNAT € L e R =L

55

o ser = (¢,mr(x : x,ip : port)) allora R |= L se e solo se DNAT € L e R EL

o ser = (¢, mr(ipy : porty,ips : ports)) allora R = L se e solo se SNAT € L e DNAT € L ¢
R EL

Chiamiamo My(C, v) l'insieme delle configurazioni normalizzate 3 per il diagramma di controllo

C, legali secondo v, dove ’assegnamento di etichette v & definito su C B Formalmente My(C,v) =

{(X[XFEv}
Assumiamo il seguente risultato (senza poterlo dimostrare dato che non abbiamo formalmente

introdotto sintassi e semantica dei linguaggi di configurazione dei firewall concreti).

Ipotesi 1. Per ogni sistema firewall k € {iptables, pf, ipfw}, esiste un assegnamento di etichette
v per il diagramma di controllo Cy, tale che una configurazione IFCL % ¢ esprimibile in k se e solo se

Y, & legale secondo vy, dove C (Cx,X) D = (Cx, Xy). Formalmente:

Mg(vak) = {En | YelyA q (Ck,E) D= (Ck72n)}

Assegnamento di etichette per i sistemi supportati

Presentiamo gli assegnamenti di etichette che caratterizzano le configurazioni IFCL esprimibili nei
sistemi supportati: iptables, pf e ipfw. Nella figura mostriamo i diagrammi dei sistemi firewall,
con le etichette assegnate a ognuno dei nodi, dove I'assenza di etichette indica che I'insieme vuoto &
assegnato al nodo.

In iptables l'assegnamento ¢ rappresentato in figura [6.1al

viptables qi

Viptables(d0

Ulptables ((19) - {DROP}
q11) = {SNAT}

(¢:) =
(90) =
Uiptables(‘h) Viptables
Viptables ((Id)

(5)

Viptables\d5

Ogni nodo nel diagramma di controllo di iptables corrisponde a una coppia (tabella, chain); le
etichette associate a un nodo dipendono dalla tabella in quanto solo nella tabella NAT & possibile
effettuare traduzioni di indirizzi, e solo nella tabella FILTER e possibile scartare dei pacchetti. Inoltre
nel caso della tabella NAT, a seconda della chain associata al nodo possiamo fare solo NAT sugli indirizzi

di origine o su quelli di destinazione.

Nel linguaggio di configurazione di pf non e presente una nozione simile a quella di ruleset, tutte
le regole fanno parte di un unico insieme che viene letto piu volte. E la funzione forpe che realizza
la divisione delle regole fra i nodi del diagramma di controllo Cpe. Il modo in cui le regole vengono
divise fa si che solo nei nodi ¢; e g3 si possa scartare un pacchetto, solo nel nodo g si possa modificare

Iindirizzo di destinazione e in go quello di origine. L’assegnamento di etichette, rappresentato in

e dunque:
Upt (Gi) pe(qr) =10
vpt (q1) = vpe (g3) = {DROP}
vps(qo) = {DN AT}
vpe(q2) = {SNAT}

1 pedice in M2(C,v) dipende dal dominio di riferimento, che & quello dei firewall IFCL normalizzati.

56

qr

{DNAT} {DROP} {SNAT}

(a) iptables

{DNAT} {DROP} {DNAT,SN AT, DROP}

{SNAT} {DROP} {DNAT, SN AT, DROP}

(b) pf (c) ipfw

Figura 6.1: Diagrammi di controllo dei sistemi supportati con etichette associate ai nodi.

Il diagramma di controllo di ipfw ¢ minimale: come in pf, le regole di filtro e di traduzione sono
mischiate, ma a differenza di pf 1'ordine di applicazione non dipende dal tipo della regola. Le regole
sono divise solo sulla base dell’eventuale presenza delle keyword in e out. Ogni tipo di regola puo
essere etichettata con entrambe le keyword, pertanto nei due nodi gg e ¢; possiamo trovare ogni genere

di regola, le etichette assegnate sono le seguenti:

Uipfw(qi) = Uipfw(Qf) =0
Vipta(d0) = Vipra(@1) = {SNAT, DN AT, DROP}

La figura mostra le etichette a fianco dei relativi nodi del diagramma di controllo.

6.2 Configurazioni astratte esprimibili

Dati i vincoli sulle configurazioni IFCL esprimibili da un sistema k, rappresentati dall’assegnamento di
etichette sul diagramma di controllo, vogliamo studiare quali sono i firewall astratti esprimibili dallo

stesso sistema.

Definizione 19 (Firewall astratto esprimibile). L’insieme dei firewall astratti esprimibili nel sistema
k e:

A ={(CT(Cr,2) D) | X €Ty}

Dato che abbiamo assunto nell’ipotesi (1| che la normalizzazione dei firewall con configurazioni in 'y,

sia esattamente 'insieme di firewall con configurazioni legali secondo vy, per il sistema k, My (Cg, vk),

o7

Livello 0 (firewall concreti)

. X Confy
sistema firewall (processo)

file di configurazione

Livello 1 (firewall IFCL)

Tk

diagramma di controllo C

configurazione ¥ = (p, c)

Livello 2 (firewall IFCL normalizzati)

T o M (Cx, vk)

diagramma di controllo C

configurazione ¥ = (p, c)

Livello 3 (firewall semiastratti)

f o Mi(Cy, vi)

diagramma di controllo C
configurazione f: Q — P — T(P)U {L}

Livello 4 (firewall astratti) C)
€A, bk, Uk

e1(A, Cr, v)

My (Cr;, vk) Ay

configurazione A : P — T (P) U {1}

Figura 6.2: Schema delle configurazioni esprimibili e legali nei vari livelli di astrazione: le relazioni
che abbiamo assunto per ipotesi sono rappresentate tratteggiate, quelle che valgono per definizione

sono delle frecce e quelle che abbiamo dimostrato sono delle linee doppie.

possiamo basarci su questi per calcolare Ap. Chiamiamo M;5(Ck,v) le configurazioni dei firewall
risultanti dalla semiastrazione dei firewall normalizzati con diagramma di controllo Cy, e configurazione
Y € My(Cg,vg). 1 firewall astratti ottenuti combinando i firewall semiastratti con diagramma di
controllo Cy e configurazione f € Ms3(Cy, vy) saranno infine chiamati My (Cg, v). Dall’ipotesi [1| segue
che My (Ck, vr) = Ag.

L’obiettivo & quello di caratterizzare gli insiemi M3 (C, vi) ed My(Cg, vi) sulla base dell’assegna-
mento di etichette vy, in modo da avere una descrizione degli insiemi Ay, per k € {iptables, pf,ipfw}

tramite la quale sia agevole:
e confrontare I’espressivita di due sistemi firewall
o verificare se una funzione A : P — 7(P) U {_L} appartiene o meno a Ay

In realta per il confronto ci accontentiamo al momento di definire una condizione necessaria per
I'uguaglianza di espressivita di due sistemi, facile da verificare e sufficientemente espressiva, che ci

permette di dimostrare che pf € meno espressivo di iptables e ipfw.

Per descrivere l'insieme Mj(Cg, vi,) definiamo, per ogni possibile insieme di etichette assegnato a un
nodo, l'insieme delle possibili funzioni A : P — 7(P) U {_L} che possono essere assegnate a quel nodo.
Usiamo la stessa notazione f |= v per dire che 'assegnamento f di funzioni A : P — T (P)U{L} ai nodi
del diagramma di controllo del firewall semiastratto ¢ legale secondo l'assegnamento di etichette v.
Scriviamo sempre A = L per dire che la funzione A puo essere assegnata a un nodo a cui sia assegnato
Iinsieme di etichette L.

Per prima cosa definiamo per ogni etichetta | € {SNAT, DNAT, DROP} linsieme Ap; delle
funzioni P — T (P) U {L} che corrispondono alla semantica delle ruleset che non possono essere
assegnate a un nodo che non abbia letichetta . Formalmente Ag; = {A\:P - TP)U{L} |\ L=

58

leL}.

Apsnar ={N:P=>TP)U{L} | IpeP. Ap) =tAt# LA(t.sIP #idVt.sPort #id)}
ADDNAT = {)\P—)T(P) U{J_} | E|p€ P.)\(p) =tANT 7’5 LA (t.d]P;éid\/t.dPOTt #Zd)}
Aoprop ={\:P = T(P)U{L} [IpeP. A(p) =L}

Definizione 20 (Configurazione semiastratta legale). La configurazione f di un firewall semiastratto
con diagramma di controllo C = (Q, A, ¢i, qf) € legale secondo un assegnamento di etichette v, scritto
fE v, se e solo se Vg € Q. c(q) = v(q) dove per una funzione A : P — T(P)U{L} e un insieme di
etichette L vale A |= L se e solo se X\ non appartiene a nessuno degli insiemi Ag; per una etichetta l

che non appartiene a L. Formalmente:

ML = M¢ A
1¢L

Teorema 10. L’insieme delle configurazioni semiastratte di un diagramma di controllo C = (Q, A, ¢i, ¢5),
legali secondo un assegnamento di etichette v, € l’insieme delle configurazioni di firewall ottenute dalla

semiastrazione di firewall IFCL normalizzati legali secondo v.

Ms(C,v) ={f: Q@ = P—=>T@)U{L} | [v}

Per caratterizzare My(C,v) ci basiamo sulla coppia di predicati €y(A,C,v) e €1(A,C,v). T due

predicati sono i seguenti:

e co()\,C,v), che chiamiamo fattibilita locale, & vero se ogni pacchetto p viene trattato dal firewall
secondo una trasformazione t tale che I'assegnamento di ¢ a p & singolarmente esprimibile dal

sistema, ovvero
Vp e P. 3f € Ms(C,v). (©(C, f)) (p) = Alp)

e ¢1(\, C,v), che chiamiamo compatibilita, ¢ vero se, assumendo che gli assegnamenti di trasfor-
mazioni ai pacchetti siano singolarmente esprimibili dal sistema, esiste una configurazione che li

verifica tutti contemporaneamente, ovvero

(Vp e P. 3f € M3(C,v). (©(C, f)) (p) = A(p)) =
(3f € M3(C,0). Vp € P. (0(C, f)) (p) = Ap))

La prima proprieta riguarda ’espressivita del diagramma di controllo e dell’assegnamento di etichette
in senso stretto. Ad esempio un pacchetto con origine locale e destinazione non locale in pf non
puo subire una trasformazione che modifichi i campi destinazione in quanto non attraversa mai, nel
diagramma, di controllo Cp¢, un nodo etichettato con DN AT. Per questo motivo un firewall astratto
che preveda una trasformazione di questo tipo per uno di questi pacchetti non si puo esprimere in pf.

La seconda proprieta riguarda la coerenza fra i diversi assegnamenti (pacchetto, trasformazione)
del firewall astratto da esprimere ed e legata al fatto che il comportamento dei nodi del diagramma
di controllo nei confronti di un dato pacchetto possa dipendere unicamente dalla forma attuale del
pacchetto stesso. Se nel sistema in esame per accettare il pacchetto p; con trasformazione ¢ &
necessario che la funzione A, associata al nodo g, accetti il pacchetto p’ con trasformazione ¢} e per
accettare il pacchetto py con trasformazione 5 € necessario che la stessa funzione A,, accetti il pacchetto
p’ con trasformazione), # t}, allora un firewall astratto Fy tale che F4(p1) = t1 e Fu(p2) = t2 non &

esprimibile dal sistema.

59

Teorema 11. Un firewall astratto X ¢ legale secondo un diagramma di controllo C e un assegnamento

di etichette v se e solo se valgono eg(\, C,v) e €1(\, C,v).
My(C,v) ={N:P=>TP)U{L} | eo(N,C,v) Aer(N\,C,v)}

La figura[6.2] sintetizza le relazioni fra i vari insiemi e predicati che abbiamo definito, evidenziando
sia il livello di astrazione di ciascun elemento, sia la natura della relazione: se vale per definizione
allora e rappresentata come una freccia, se dipende da un’assunzione che abbiamo fatto € una linea
tratteggiata, infine se € dimostrata la rappresentiamo come una linea doppia. Gli elementi sono
distribuiti su cinque righe, a seconda del livello di astrazione, e su tre colonne: la colonna piu a
destra contiene le configurazioni esprimibili dal sistema; la colonna centrale contiene le configurazioni
legali secondo 'assegnamento di etichette vg; la colonna a sinistra contiene i predicati che usiamo per
caratterizzare le configurazioni legali a un dato livello di astrazione.

In pratica €y ed €; sono i vincoli che abbiamo sul firewall astratto dati i vincoli imposti sul dia-
gramma di controllo del firewall IFCL. Per controllare se una funzione A sia esprimibile da un sistema,
e per poter confrontare ’espressivita di diversi sistemi, vogliamo esprimere i due predicati senza fare
riferimento a M3(C, v).

Per fare questo studiamo i percorsi che attraversano il diagramma di controllo C. Chiamiamo
I(C) = {#1, 79,73 ..., 7y} i percorsi che partono da ¢; e terminano in gy, questi sono i percorsi che
un pacchetto pud fare prima di essere accettato. Chiamiamo II(C) = {7, 72, 73...,7s} i percorsi
che partono da ¢; e terminano in un ¢, dove g, o € etichettato con DROP oppure compare piu di
una volta nel percorso, questi sono i percorsi che un pacchetto puo fare prima di essere scartato.
Chiamiamo II(C) = {m1, 72,73, ..., Tntm 1 percorsi che attraversano il diagramma di controllo (di
qualunque tipo siano, ovvero: II(C) = II(C) UTI(C)).

Ridefiniamo le proprieta sulla base dei percorsi:

e la fattibilita locale € verificata se e solo se per ogni pacchetto p l'insieme dei percorsi che p puo

seguire all’interno del diagramma di controllo permette una trasformazione t = A(p).

e la compatibilita & verificata se e solo se per ogni coppia (p,t) taleche pePet = A(p) € T(P)U
{L}, le condizioni che dobbiamo imporre sulle funzioni associate ai nodi del diagramma affinché
uno dei percorsi del diagramma di controllo trasformi p secondo ¢ non sono in contraddizione

con il resto della funzione .

Se esprimiamo il firewall astratto come una tabella allora possiamo pensare a ¢y(A,C,v) come a
una condizione di validita delle singole righe, mentre a €; (A, C,v) come a una condizione riguardo il

rapporto fra piu righe.

6.2.1 Fattibilita locale

La fattibilita locale di un firewall astratto A rispetto a un diagramma di controllo C e un assegnamento

di etichette v puo essere espressa considerando i percorsi del diagramma come segue:
eo(A\, C,v) =Vp e P. 37 € TI(C). (p, M(p)) € E(w,C,v)

dove la funzione E, dato un percorso 7, un diagramma di controllo C e un assegnamento di vincoli
v, restituisce un insieme di coppie (p,t) tale che esiste una configurazione coerente con il diagramma
di controllo C e con le etichette v per la quale il pacchetto p percorre il percorso 7 nel diagramma

e viene trattato secondo t. Si tratta sostanzialmente di una funzione che associa a ogni percorso in

60

un diagramma di controllo la sua espressivita, in relazione ai vincoli espressi dall’assegnamento di

etichette. Formalmente:

E(r,C,v) ={ (p,t) | 3f € M3(C,v). (O(C, f)) (p) =t NA((C, f),p) =7 }

Nella definizione abbiamo usato la funzione A che dato un firewall associa a ogni pacchetto p € P il
percorso 7 che questi compie all’interno del diagramma di controllo. Poiché i diagrammi di controllo
sono deterministici la funzione A & ben definita; e pu0 essere espressa in modo standard sulla base
della funzione § che dato un nodo del diagramma di controllo e un pacchetto restituisce il prossimo
nodo a essere visitato.

Caratterizziamo la funzione E in termini delle etichette del diagramma di controllo. Per prima
cosa definiamo una funzione ¢(r,C,v) che dato un percorso 7 all’interno di un diagramma di controllo

C etichettato secondo v, restituisce l'insieme delle etichette presenti sui nodi del percorso.

U, C,v) = U v(q) dove C=(Q,A, q,q5)
q€Q
Definiamo una funzione p che dato un insieme di etichette restituisce I'insieme dei campi di un

pacchetto che possono essere modificati da un nodo da esso etichettato.

(L) = psnar(L)Uppnar(L)

{sIP,sPort} se SNAT € L {dIP,dPort} se DNAT € L
psnar(L) upnAaT(L
altrimenti) altrimenti

A questo punto, per verificare che una coppia (p,t) sia esprimibile da un percorso, per ogni campo
del pacchetto controlliamo che il valore del campo verifichi i predicati sugli archi attraversati dal
pacchetto. Dal nodo iniziale, fino al primo nodo in cui avviene una modifica al valore di quel campo,
¢ il valore dal campo del pacchetto p a dover verificare le condizioni; dall’ultimo nodo in cui avviene
una modifica al valore del campo fino al nodo finale, & invece il valore del campo ottenuto applicando
t al pacchetto p a dover verificare i predicati sugli archi. Nel caso di un pacchetto scartato occorre
verificare solo la prima parte, cioé occorre verificare per ogni campo del pacchetto che questo verifichi
i predicati sugli archi, dal nodo iniziale fino al primo nodo capace di modificare quel campo (dopo la
trasformazione, che & arbitraria, ogni predicato diverso da false puo essere verificato da ogni pacchetto
iniziale dopo una trasformazione ad hoc).

Per prima cosa ci serve una notazione per esprimere una condizione sull’arco fra due nodi ¢, ¢/,
che predichi unicamente sul valore associato a un campo specifico « € {sI P, sPort,dIP,dPort}. Se
¥ & il predicato sull’arco fra q e ¢, ciog (q,%,¢’) € A, allora scriviamo Yy (@) per la versione di ¢

che predica unicamente sul campo x del pacchetto, formalmente:

Vg q(a)=3p€P. px=aAy(p)

Possiamo ora definire la funzione E(7,C,v).

{ (p,L) | Vo € {sIP,sPort,dIP,dPort}. 72(17.33,77,0,11) } se m € II(C)
E(m,C,v) =
{(p, t)|t# L AVx € {sIP,sPort,dIP,dPort}. Vx(p.x,t.x,ﬂ,c,v) } sew e TI(C)
dove
=
‘?x(a,mc): sp(@AVy(a,d -7',C) ser=q-q -7

true altrimenti

61

Plam o) (@) AV o(aq - 7.Cv) sem=q-¢ -7 Ao ¢ u(v(g))

true altrimenti

Fotame.o - | @A Valaw o) sem=at g gne ¢ utoia)

true altrimenti

=

Vﬂ?(aa 7T,C) se ta = id

Vx(a,ta,mc,v) =
x € pll(m)) A 7w(a,7r,C, v) A (Vz(a’,w,c,v) se ta = cost(a’)

Data una coppia (p, t), per verificare se questa appartiene a E(, C,v), come prima cosa verifichiamo
se il percorso & uno che porta a scartare il pacchetto o ad accettarlo: nel primo caso, dato che 7 € II,
t deve essere L e il pacchetto p deve poter percorrere il percorso 7. Esprimiamo la seconda condizione
attraverso il predicato 7$ (a,m,C,v), che & verificato da un valore a per il campo z, da un percorso
7 e da un diagramma di controllo C se e solo se a verifica tutte le condizioni presenti sugli archi del
percorso 7 a partire dal nodo iniziale ¢;, fino al primo nodo capace di modificare il campo x, cioe tale
che x € u(v(q)). Questo perché, dal primo nodo capace di modificare il campo in poi, ogni condizione
sugli archi puo essere verificata da un assegnamento ad hoc: la forma che assume il pacchetto non &
importante infatti, dato che alla fine verra scartato.

Nel caso invece in cui il percorso sia in II, il pacchetto p pud essere trattato secondo ¢ se e solo se
t # 1 e per ogni campo z il valore del pacchetto per quel campo, subite le trasformazioni apportate
dai vari nodi, verifica tutte le condizioni sugli archi del percorso, cioe deve valere Vx(a,ta, 7, C,v).
Il predicato vm(a,ta,w,c,v) e vero se il valore a del campo x puo attraversare il percorso 7 del
diagramma di controllo C etichettato secondo v e subire una trasformazione complessiva ta. La
definizione del predicato dipende dalla trasformazione ta: se questa ¢ id allora ¢ necessario che il
valore iniziale del campo del pacchetto verifichi tutte le condizioni sugli archi, cioe ?z(a, m,C); se invece
viene applicata una trasformazione € necessario che questa sia consentita dalle etichette associate al
percorso, cioe & € u(f(m)) e che il valore a del campo x consenta al pacchetto di attraversare tutti
gli archi fino al primo capace di trasformare il campo z, cioe 7$ (a,m,C,v), e che il valore finale del
campo, a’, ottenuto applicando la trasformazione ad a, consenta di attraversare gli archi a partire
dall’ultimo nodo capace di trasformare il campo « in poi, cioe vx(a’, m,C,v). Sinoti che fra il primo
e 'ultimo nodo capace di trasformare il campo x non imponiamo alcuna condizione, questo perché
per ogni coppia (a, cost(a’)), qualunque sia il predicato da verificare, possiamo assegnare al campo un
valore a’’ che lo verifichi e sovrascrivere la trasformazione con cost(a’) nell’ultimo nodo disponibile.

Come detto, il predicato ‘:;g; (a,m,C) & verificato se e solo se a verifica tutte le condizioni presenti
sugli archi del percorso 7. Il predicato Vx(a, m,C,v) invece & verificato da un valore a per il campo
x, da un percorso m e da un diagramma di controllo C se e solo se a verifica tutte le condizioni
presenti sugli archi del percorso m, ma solo a partire dal nodi iniziale fino al primo nodo capace di
modificare il campo z, cioe tale che x € p(v(q)). Entrambi i predicati sono definiti iterativamente
attraverso una condizione sui primi due nodi del percorso e lo stesso predicato applicato al percorso
ottenuto rimuovendo il primo nodo; se i nodi del percorso non sono almeno due non c¢’¢ nessun arco
da verificare e quindi il predicato € vero automaticamente. La definizione di vx(a,w,c,v) ricorre
in modo diverso sul percorso, si controlla la condizione sull’arco che collega gli ultimi due nodi e la
ricorsione & sul percorso a partire dal nodo iniziale fino al penultimo. Il predicato & vero se e solo
se il valore a, assegnato al campo x verifica le condizioni sugli archi del percorso 7 dall’ultimo nodo
capace di modificare x in poi. L’iterazione avviene nel verso opposto rispetto a 71.((1, m,C,v) proprio

per riconoscere facilmente 'ultimo nodo tale che z € u(v(q)).

62

Per semplificare ulteriormente la verifica di eg, anziché basarci sull’insieme di coppie (p, t) esprimibi-
li da un particolare percorso, calcolato dalla funzione E (7, C,v), riformuliamo ’espressivita calcolando

per ogni coppia (p,t) quale sia I'insieme dei percorsi capaci di esprimerla.
P(C,v,p,t) ={m € I(C) | (p,t) € E(m,C,v)}
Quindi ridefiniamo €g nella seguente maniera:
co(A,C,v) =Vp € P. P(C,v,p,\(p)) # 0

La rappresentazione di P(C, v, p,t) & adeguata a verificare I’appartenenza o meno di una coppia (p, t)
all'insieme E(m,C,v). Per quanto riguarda un firewall astratto A : P — T(P) U {1}, la verifica di
€o(A,C,v) dovrebbe procedere verificando una a una tutte le coppie (p, A(p)). Chiaramente possiamo
supporre di avere a che fare con la versione sintetizzata di A\, pertanto il numero di controlli non
¢ intrattabile essendo limitato dal numero di multicubi e quindi legato al numero di regole della
configurazione IFCL.

Il confronto dell’espressivita di due sistemi diversi, k e k’, quindi dell’insieme delle A che verificano
eo(\, Cg, vg) rispetto a quelle che verificano €y(A,Cys, vg/), non & invece immediatamente trattabi-
le. Chiaramente, data la formulazione, ¢ evidente che la capacita di un sistema di esprimere una
funzione che associa un dato pacchetto a una trasformazione ¢ indipendente dall’eventuale capacita
di esprimere altre associazioni. Pertanto anziché verificare una a una quali delle possibili funzioni
A: P — T(P)U{L} verificano il predicato (A, Cy,vi) possiamo considerare le coppie (p,t) sepa-
ratamente e considerare quali verifichino P(Cg, vk, p,t) # () per un dato sistema k. Dal punto di
vista generale possiamo solo affidarci a un risolutore automatico, non potendo fare assunzioni sulle
condizioni che etichettano gli archi.

Dato pero che le condizioni v nei sistemi analizzati sono tutte molto simili e riguardano unica-
mente "appartenenza o meno dell’indirizzo di origine o destinazione all’insieme degli indirizzi locali
L, forniamo una procedura semplificata che funziona per i sistemi supportati. Vogliamo caratteriz-
zare l'insieme delle coppie (p,t) che verificano P(Cy,vg,p,t) # 0 per un dato sistema k in maniera
abbastanza sintetica da permettere il confronto con un secondo sistema &’. Non & necessario calcolare
il risultato della funzione coppia per coppia, e sufficiente calcolare il risultato per tutte le possibili
combinazioni di alcuni valori canonici per i campi del pacchetto e della trasformazione.

L’insieme P viene suddiviso in quattro classi di equivalenza in base alla localita o meno dell’indirizzo
IP di origine e destinazione, I'insieme delle trasformazioni viene suddiviso in 3% - 22 = 36 sulla base
delle trasformazioni sui campi: per gli indirizzi IP consideriamo tre tipi di trasformazioni id, cost(L)
e cost(—L) mentre per le porte consideriamo solo id e cost. In aggiunta dobbiamo considerare anche

L come possibile destino di un pacchetto. Definiamo dunque degli insiemi di valori canonici:

e per i campi sI P e dI P del pacchetto definiamo la coppia di valori prp = {L£, =L}, corrispondenti
a un generico indirizzo appartenente a £ e a un generico indirizzo non appartenente a £ (la porta

non & importante ai fini della verifica dei predicati);

e pericampi sIP e dIP della trasformazione abbiamo invece tre valori t;p = {id, cost(L), cost(—L)}
corrispondenti rispettivamente a una trasformazione id, a una trasformazione in un indirizzo

appartenente a £ e a una trasformazione non appartenente a L;

e per i campi sPort e dPort della trasformazione i valori possibili sono tpy+ = {id, cost} a

seconda se la trasformazione sia ¢d o meno.

Modelliamo quindi 'insieme P come il prodotto cartesiano P = (prp X prp) e linsieme T(P) come

T(P) =trp Xtport Xtrp X tport. La definizione della funzione ap(p) che dato un pacchetto p € P resti-

tuisce un pacchetto con i valori canonici corrispondenti, p € P, e quella della funzione a1y (t) che

63

data una trasformazione 7 (P)U{_L} restituisce una trasformazione con i valori canonici corrispondenti,
t € T(P)U{L}, sono banali.

L sea€ Ll
ap(p) = (aprp(p.sIP), aprp(p.dIP)) aprp(a) =
—-L altrimenti
1 set=_1
ar@ufLy(t) =

(aerp(t.8IP), arport(t.sPort), sy p(t.dIP), g port(t.dPort)) altrimenti

id se ta = id
id se ta = id
agrp(ta) = 4 cost(L) se ta = cost(a) Na € L aiport(ta) =
cost altrimenti
cost(—L) altrimenti

Definiamo la funzione Pe ., (5,1) con p € Pe i € ’7/'@’7) U {L} come la versione definita sui valori

canonici di P, in particolare vale:
Vp € Pt € T(P)U{L}. P(C,v,p,t) = Peo(a(p), a(t))

Dellinsieme delle coppie (p,f) che verificano il predicato P, ., (5,), per un dato sistema k, pos-
siamo ora dare una descrizione completa in tempo ragionevole in quanto il numero di combinazioni da
provare non & troppo alto (22-(22-32+1) = 148 per la precisione). Per i sistemi supportati definiremo

la funzione P in forma tabellare, per leggibilita e facilita di confronto dei sistemi.

Fattibilita locale nei sistemi supportati

Per ognuno dei sistemi supportati k& € {iptables, pf, ipfw} calcoliamo come prima cosa l'insieme
dei percorsi nel diagramma di controllo. Successivamente per ogni percorso 7 calcoliamo la funzione
E(7,Ci,vi). Infine, basandoci sulla funzione F ottenuta, forniamo in formato tabellare il risultato
della funzione ﬁck,vk (p,t) per ogni possibile coppia di input (p,). Per risparmiare spazio, laddove il
valore di un campo non sia rilevante per il risultato della funzione usiamo il carattere _ ed evitiamo
di ripetere righe identiche. Sempre per risparmiare spazio usiamo una tabella a parte per le coppie in
cuit = 1.

pf
I percorsi m € II(Cps) sono i seguenti:

1 = 5905 q1; 45 T2 = 35925 43; 45

T3 = qi;qo; 415 925 G3; 4f T4 = 5925435905 415 4f
1 = 559051 Ty = @55 42543

T3 = ;3905915925 q3 T4 = 455925435905 91

Ts = Q45 q0; 915 925 435 90 Te = i3 425935905 915 G2

Abbiamo quindi che la funzione F per i percorsi vale:
E(it1,Cos,vpe) = {(p,t) | p.SIP ¢ LAL.SIP =t.sPort =id At(p).dIP € LAt # L}

E(ity,Cos,vps) = {(p,t) | p.sIP € LAt(p).dIP ¢ LAt.dIP =t.dPort =id Nt # 1}

64

| psIP | pdIP || tsIP : tsPort | tdIP : tdPort| = |

L L _ : _ id : _ {74}
L L - : - cost(L) - {74}
L L - : - cost(—L) : - 0
c - S , id . i (fa}
L -L - : - cost(l) - 0
L -L - : - - : cost 0
-L L id : id id : - {1}
-L L id : id cost(L) - {i1}
-L L - : - cost(=L) - {73}
-L L id : cost id : - 0
-L L id : cost cost(L) - 0
-L L cost(Z) - i : - 0
-L L cost(_) - cost(L) - 0
-L -L id : id cost(L) - {71}
-L -L - : - id : - {73}
-L -L - : - cost(=L) - {#ts}
-L -L cost(-) - cost(L) - 0
-L -L id : cost cost(L) - 0
(a) t# L

| psiP | pdiP || t || = |

£ | e L] {mmn]

e | e [Lfimy

L [- L] Fumms)]

by i=1

Tabella 6.1: Rappresentazione tabellare della funzione 75cpf7vpf (P, t).

E(7t3,Cps,vps) = {(p,t) | p.sIP ¢ LAt(p).dIP ¢ LAt # 1}
E(it4,Cos,vpt) = {(p,t) | p.sIP € LAp.dIP € LAt(p).dIP € LAt # L}
E(71,Cos, vpe) = {(p, L) [p-sIP ¢ L}

E(72,Cos,vps) = {(p, L) | p.sIP € L}

E(73,Cos, vpe) = {(p, L) [p.sIP ¢ L}

E(74,Cotyvpe) = {(p, L) | p.sSIP € L Ap.dIP € L}

E(7s5, Cos, vpe) = {(p, L) [p.sIP ¢ L}

E(76,Co,vpe) = {(p, L) | p.sIP € LAp.dIP € L}

La funzione 75cpf71,pf (p,t) & definita per casi su ogni possibile input dalla tabella Si noti che

alcune coppie (p,f) non sono esprimibili dal sistema, pertanto pf non & del tutto generale.

65

| psIP | pdIP || tsIP . tsPort | tdIP : tdPort || nw |

L _ _ : _ cost(L) - {74}
L _ _ : _ cost(—L) - {ita}
’ L ‘ L H . : . ‘ id : - H {74} ‘
T [-« [-] o [{#)]
-L _ _ : _ cost(L) - - {1}
L _ _ : _ cost(=L) - {3}
T | [-+] i - J{ny]
e [[- | i | i}
(a) T# L

L[| {774} |
L [- [mm]

Tabella 6.2: Rappresentazione tabellare della funzione ﬁciptables,viptables (B, 1).

iptables

Definiamo i percorsi 7 € II(Ciptapres) nella seguente maniera:

1 = qi; qo; 415 92; G35 4105 911; 4 T2 = ;5975 48; 995 9105 q11; 4
3 = 4i54905 915945955965 4 f Ty = qi3497:985995 94,955,965 4f
T = i3 903915 925 93 T2 = 5475 485 99

T3 = ¢i5 4905915945 95 96 T4 = ¢i; 473 985 995 945 955 96

Abbiamo quindi che la funzione F per i percorsi vale:
E(71, Ciptables, Viptables) = {(p,t) | p.sIP ¢ L Nt(p).dIP € LAt # L}
E (2, Ciptables, Viptables) = (1) | p.sIP € LAt(p).dIP ¢ LAt # L}
E (i3, Ciptavles; Viptavles) = 1(P>t) | p.sIP ¢ LAt(p).dIP ¢ LAt # 1}
E(74,Ciptables; Viptables) = {(D,t) | p.sIP € LAt(p).dIP € LAt # L}
E(ﬁl’ciptablesvUiptables) ={(p,L) | psIP ¢ L}
E(72, Ciptables, Viptables) = 1(p, L) | p.sIP € L}
E(ﬁ&ciptablesv”iptables) ={(p,L) [p-sIP ¢ L}
E(74,Ciptavles; Viptables) = {(p, L) | p.sIP € L}

La funzione Pe (p, 1) & definita per casi su ogni possibile input dalla tabella Si noti

iptables,Uiptables

che per ogni coppia (p,) la funzione restituisce un insieme non vuoto, pertanto iptables, a differenza

di pf, & generale, almeno per quanto riguarda la condizione di fattibilita locale.

66

ipfw

Definiamo i percorsi di ipfw nella seguente maniera:

T1 = 5 90; 4f T2 = @5 q1; 4f T3 = qi; 905 915 4f a4 = qi; q1; 90; 4f
T1 = Qi 40 To = Qi Q1 T3 = Q35 905 q1 T4 = Qi;q1; 90
Ts = @Qi;q0; 915 90 Te = Qi 415905 q1

Abbiamo

E(it1, Cipta, Viptw) = {(p,1) | p.sSIP & LAt(p).dIP € LAt # 1}
E(it2, Ciptu, Viptw) = {(p,t) | p.sIP € LAt(p).dIP ¢ LAt # 1}
E(#3, Ciptus Vipta) = {(ps1) | p.sIP ¢ LAt(p).dIP ¢ LAt # 1}
E(it4, Cipta Viptw) = {(p,1) | p.sSIP € LAH(p).dIP € LAE# 1}
E(71, Cipu, Vipsw) = {(p, L) | p.sIP & L}
E(72, Ciptu, Viptw) = {(p, L) | p.sIP € L}
E(73, Cipta, Viptw) = {(p, L) | p.sIP ¢ L}
E(74, Ciptus Viptw) = {(p, L) | p.sIP € L}
E(7s, Cipu; Vipew) = {(p, L) | p.sIP ¢ L}
E(T6, Ciptus Vipta) = {(p, L) | p.sIP € L}

La funzione ﬁcmmvipfw (p,t) & definita per casi su ogni possibile input dalla tabella Si noti che

per ogni coppia (p,t) la funzione restituisce un insieme non vuoto, pertanto ipfw, come iptables, &

generale, almeno per quanto riguarda la condizione di fattibilita locale.

Confronto

Come abbiamo notato iptables e ipfw sono generali, cioe & possibile configurarli in modo tale da
creare qualunque assegnamento possibile fra uno specifico pacchetto e una specifica trasformazione.
Infatti la tabella non ha “buchi”, tutte le coppie sono esprimibili. Chiaramente questo non basta a
garantire che tutti i possibili firewall astratti siano esprimibili, dato che non abbiamo ancora trattato
la coerenza. Tuttavia quanto descritto ¢ sufficiente ad affermare che alcuni firewall iptables e ipfw
hanno una semantica impossibile da replicare esattamente in pf. In particolare, non sono esprimibili
in pf quelle funzioni A : P — T(P) U {L} per le quali esiste un p € P tale che la coppia (p, A(p)) &
relative a una delle righe della tabella in cui il campo 7 & 0.

Portiamo un esempio di firewall astratto A : P — T (P)U{_L} che non & esprimibile da pf, non veri-
ficando €g(A, Cpg, vpe). Si supponga che I'insieme degli indirizzi locali sia £ = {192.168.0.0, 127.0.0.0}.

Il firewall astratto non esprimibile ¢ il seguente:

o) (id : id, cost(4.3.2.1) : id) se p = (192.168.0.0 : 80, 1.2.3.4 : 80)
p =

L altrimenti
Notiamo che P (Cps, vps, (192.168.0.0 : 80, 1.2.3.4 : 80), (id : id, 4.3.2.1 : id)) = (). Questo segue dal
fatto che (192.168.0.0 : 80, 1.2.3.4: 80) = (£, L), a(id : id, cost(4.3.2.1) : id) = (id : id, cost(—L) :
id) e dal risultato della funzione in tabella Pe,e vy (£,7L), (id - id, cost(=L) : id)) = 0.

67

| psIP | pdIP || tsIP . tsPort | tdIP : tdPort || nw |

L _ _ : _ cost(L) - {74}
L _ _ : _ cost(—L) - {ita}
’ L ‘ L H . : . ‘ id : - H {74} ‘
T [-« [-] o [{#)]
-L _ _ : _ cost(L) - - {1}
L _ _ : _ cost(=L) - {3}
T | [-+] i - J{ny]
e [[- | i | i}
(a) T# L

| psIP | pdIP || t | = \
e [- [L] |
e [[mmss) |

(b)yt=1

Tabella 6.3: Rappresentazione tabellare della funzione ’ﬁcipfmvipm (p,1).

6.2.2 Coerenza

La coerenza e la proprieta di un firewall astratto A, rispetto a un diagramma di controllo C e a un
assegnamento di etichette v, secondo la quale per nessuna coppia (p, t) tale che t = A(p), imporre che
la configurazione del firewall f sia tale che ®(C, f)(p) = t causa delle restrizioni sulla configurazione
stessa che siano contraddittorie con altre coppie (p’,t') tali che ¢’ = A(p’). Formalmente €1 (\, C,v)

puo essere espressa considerando i percorsi del diagramma nella seguente maniera:

e1(N\,C,v) = (Vp e P. Ir € II(C). (p, A(p)) € E(m,C,v))
= (3f € M3(C,v). Vp € P. 3m € I1(C). A((C, f),p) = T AO(, f)(p) = A(p))

dove ci siamo concessi un piccolo abuso di notazione e abbiamo scritto ®(m, f) per intendere la

concatenazione delle funzioni P — 7 (P) U { L} associate ai nodi del percorso 7 da f. Formalmente:

O, NHP)xt ser=q-7 ANt# L
o (m f)p)=4qL ser=gq-mAt=1 dove t = f(q)(p) e P’ = t(p)

id altrimenti

In effetti, dato che abbiamo a disposizione la funzione P(C, v, p, t), possiamo sfruttarla per limitare la

scelta del percorso m € II(C) scrivendo:

e1(N\,C,v) = (Vp e P. I € II(C). (p, A(p)) € E(nm,C,v))
= (3f € M3(C,v). Vp € P. 37 € P(C,v,p, A(p)). A((C, f),p) =7 AO(m, f)(p) = A(p))

Inoltre, se la funzione P(C,v,p, A(p)) restituisce un singoletto, allora la condizione A((C, f),p) &

automaticamente soddisfatta e possiamo riscrivere la coerenza come:

e1(\,C,v) = (Vp e P. Ir € II(C). (p, M(p)) € E(m,C,v))
= (3f e M3(C,v). Vp € P. Im € P(C,v,p, A(p)). @ (m, f)(p) = A(p))

68

L’algoritmo di generazione, che realizza la fase 3. della pipeline di transcompilazione, si occupa
sostanzialmente di trovare una f che verifichi la seconda parte del predicato, possibilmente generandola
ad hoc perché verifichi ®(r, f)(p) = A(p), tenendo f € M3(C,v) come vincolo.

L’idea & quella di calcolare per ogni coppia (p, t), le restrizioni cui un firewall del sistema studiato &
soggetto accettando il pacchetto p con trasformazione ¢. Una policy e esprimibile solo se le restrizioni
causate da ciascuna delle coppie non impedisce il firewall dal realizzare il resto della funzione .

La formula proposta non & la piu vantaggiosa per il confronto dell’espressivita di diversi sistemi,
ma fornisce un predicato che data una funzione A : P — T (P) U {L} consente in teoria di verificare se

questa pud o meno essere la semantica di un firewall del sistema in esame.

Forniamo un esempio di firewall astratto A che nel sistema pf verifica la condizione di fattibi-
lita locale €g(A, Cpe, vpe) ma che non € esprimibile in quanto non verifica la condizione di coerenza
€1(X, Cps, Upe). Supponiamo £ = {192.168.0.0,127.0.0.0}, si consideri la funzione A : P — T(P) U { L}

definita come:

(cost(1.2.3.4) :id, id :id) sep = (192.168.0.0 : 22, 192.168.0.0 : 23) (1)
A(p) = 4 (id : id, cost(4.3.2.1) :id) se p = (1.2.3.4:22, 192.168.0.0 : 23) (2)
1 altrimenti

Riguardo al caso (1), 74 & I'unico percorso che il pacchetto (192.168.0.0 : 22, 192.168.0.0 : 23) puo

percorrere se gli deve essere associata la trasformazione (cost(1.2.3.4) : id, id : id); formalmente:
P (Cos Ve, (192.168.0.0 : 22,192.168.0.0 : 23), (cost(1.2.3.4) : id, id : id)) = {4}

Quindi ¢ necessario, perché e;(\,Cpe,vpe) sia verificato, che esista una configurazione f tale che
O(my, £)(192.168.0.0 : 22, 192.168.0.0 : 23) = (cost(1.2.3.4) : id, id : id). Nel percorso m4 esiste
un solo nodo con etichetta SNAT, adatto ad applicare la trasformazione cost(1.2.3.4) al campo sIP
del pacchetto, questo nodo & go. Dunque il nodo ¢o applichera questa trasformazione e il resto dei

nodi del percorso assocera la trasformazione identita al risultato:

£(g2)(192.168.0.0 : 22, 192.168.0.0 : 23) = (cost(1.2.3.4) : id, id : id)
f(gs)(1.2.3.4: 22, 192.168.0.0 : 23) = (id : id, id : id)
fq0)(1.2.3.4: 22, 192.168.0.0 : 23) = (id : id, id : id)
Flq)(1.2.3.4: 22, 192.168.0.0 : 23) = (id : id, id : id)

Nel caso (2) invece, 71 € I'unico percorso che il pacchetto (1.2.3.4 : 22, 192.168.0.0 : 23) puo percorrere

se deve essergli associata la trasformazione (id : id, cost(4.3.2.1) : id); formalmente:
P(Cos, vpe, (1.2.3.4 1 22, 192.168.0.0 : 23), (id : id, cost(4.3.2.1) : id)) = {m }

E quindi necessario, perché €1(X, Cps, vpe) sia verificato, che la stessa configurazione f del caso prece-
dente sia tale che ®(ms, f)(1.2.3.4 : 22, 192.168.0.0 : 23) = (id : id, cost(4.3.2.1) : id). Nel percorso
73 esiste un solo nodo con etichetta DN AT, adatto ad applicare la trasformazione cost(4.3.2.1) al
campo dIP del pacchetto, questo nodo ¢ gg. Dunque il nodo ¢g applichera questa trasformazione e il

resto dei nodi del percorso assocera la trasformazione identita al risultato:

Fqo)(1.2.3.4: 22, 192.168.0.0 : 23) = (id : id, cost(4.3.2.1) : id)
Flq)(1.2.3.4:22, 4.3.2.1:23) = (id : id, id : id)

69

Il firewall astratto A non & esprimibile dunque, dato che non ¢ possibile che la funzione di trasforma-
zione associata al nodo ¢q sia tale che f(qp)(1.2.3.4 : 22, 192.168.0.0 : 23) = (id : id, cost(4.3.2.1) : id)
e contemporaneamente f(go)(1.2.3.4 : 22, 192.168.0.0 : 23) = (id : id, id : id).

In particolare il problema di questo firewall astratto in pf e legato al fatto che se un pacchetto p
viene accettato con trasformazione ¢ dal percorso 74, allora il pacchetto p’ tale che p'.sIP = t(p).sIP,
p'.sPort = t(p).sPort, p'.dIP = p.dIP e p’.dPort = p.dPort deve essere accettato con trasformazione
t' = (id : id, t.dIP : t.dPort). Altri vincoli simili possono essere individuati dall’analisi del predicato

€1(A, Cpt, Ups), sulla base del percorso associato a una coppia (p,t).

70

Capitolo 7

Generazione di un firewall

La generazione ¢ la terza fase della pipeline di transcompilazione, relativa alla creazione di un firewall
IFCL, del tipo designato, che abbia una semantica equivalente a quella del firewall astratto di partenza.
Dato un firewall astratto sintetizzato A, obiettivo & dunque quello di produrre una configurazione

IFCL X per il sistema k tale che:

(T (Cr,) D) (swew) = i(N)

Nonostante avvenga in un’altra fase della pipeline, dobbiamo occuparci anche della concretizzazione:
cioe la procedura che, a partire dalla configurazione per il firewall IFCL, restituisce il file di configura-
zione del sistema target. La quarta ed ultima fase della pipeline é realizzata per mezzo di una funzione
cony; questa funzione non puo essere definita su tutte le possibili configurazione IFCL assegnabili al
diagramma di controllo del sistema target, Cx. In effetti per poter implementare la fase finale della
pipeline & necessario che la configurazione ¥ prodotta dall’algoritmo di sintesi appartenga al dominio
della funzione cony. Alcune configurazione potrebbero non essere compilabili perché la loro semantica
non e esprimibile dal sistema target, come abbiamo dimostrato nel capitolo precedente infatti non
tutti i sistemi possono esprimere tutte le funzioni P — 7(P) U {L}. In questo caso non possiamo
fare niente, il fallimento non dipende dall’algoritmo che scegliamo per la fase 3. della pipeline o dalla
funzione di concretizzazione. Tuttavia, se la funzione di concretizzazione cony non e definita su tutte
le configurazioni ¥ tali che ((Ck, X)) & una funzione esprimibile dal sistema k, & possibile produrre dei
firewall IFCL che non possono essere concretizzati anche quando la funzione di partenza & esprimibile
dal sistema target.

Per prima cosa forniremo qualche dettaglio sulla funzione di concretizzazione, specificando quali tipi
di configurazioni IFCL sono concretizzabili nei vari sistemi; successivamente forniremo due approcci
alternativi per la fase di generazione: uno che segue passo passo le fasi intermedie della pipeline
proposta nel capitolo 4 1’altro proposto inizialmente in [4] basato sulla generazione in un passo solo
della configurazione IFCL per il sistema target, basato sull’uso intensivo del campo tag dei pacchetti.

Dato un firewall astratto sintetizzato A e un sistema k, vorremmo verificare in anticipo se sia
possibile ottenere un firewall con semantica equivalente a A = 1(5\) per il sistema k, cioe A € Ak, ma
come abbiamo visto la procedura per un controllo ¢ tanto complessa quanto tentare la generazione
in sé. Verifichiamo comunque la condizione necessaria (A, Cg, vg), se questa non ¢ verificata allora
sicuramente non potremo generare il firewall target, in caso contrario c’eé comunque la possibilita che la
generazione non vada a buon fine, nel qual caso ce ne accorgeremo durante ’applicazione dell’algoritmo
e la generazione terminera segnalando errore.

Come detto decidiamo di analizzare i sistemi solo per quanto riguarda il modo di trattare pacchetti

appartenenti a nuove connessioni, pertanto assumeremo sempre che il firewall sia nello stato sygy.

71

7.1 Concretizzazione

L’ultima traduzione effettuata dalla pipeline € la concretizzazione del firewall IFCL come file di con-
figurazione del sistema target. Concettualmente la funzione cony € I'inversa della funzione di forma-
lizzazione fory, ma questo non & strettamente vero a livello funzionale. Non vale infatti in genere
che fori(cong (X)) = X; quello che abbiamo & che data un configurazione IFCL X, per il sistema k, la
sua concretizzazione restituisce un file di configurazione file.conf la cui semantica sia equivalente a

quella di ¥. Formalmente:
(T (Cr, forr(conk(%))) D) = (T (Cr, %) D)

Per una funzione di concretizzazione chiamiamo correttezza la proprieta di produrre sempre un file di
configurazione legale e la cui semantica sia equivalente a quella della configurazione di partenza.

La funzione cony non puo essere definita su ogni possibile configurazione, si tratta di una funzione
parziale. Ad esempio tutte le configurazioni per le quali la semantica del firewall non & esprimibile dal
sistema k non saranno concretizzabili in file di configurazione per k. Chiamiamo I'j I'insieme delle
configurazioni ¥ sulle quali ¢ definita la funzione cony. Si noti che I'y, non ¢ affatto equivalente a I'.
Idealmente vorremmo poter concretizzare ogni configurazione con semantica esprimibile. Chiamiamo

cony, completa se e solo se:

VA€ A VE (T (Cr, D) D) = A= T eIy,
In realta ci accontentiamo di una proprieta piu debole:

VA€ A I8 (T (Cr, D) D) =AAT €Ty,

E ci sincereremo che la configurazione prodotta dall’algoritmo di generazione sia proprio una dei 3 che
appartengono a I'}.. In particolare la funzione cony, per k € {iptables, pf, ipfw} & definita sull’'insieme
% = M (Cp,).
La concretizzazione per i sistemi supportati e relativamente banale se ci limitiamo a supportare le
configurazioni in My (Cy, vg). Trattandosi di configurazioni normalizzate infatti, e non dovendo quindi
trattare salti, tag e chiamate, e sufficiente applicare una trasformazione sintattica immediatamente

derivabile dalla definizione delle funzioni di formalizzazione fory.

7.2 Generazione per livelli

Presentiamo 'algoritmo di generazione per livelli, che funziona attraverso una serie di trasformazioni,
dal dominio dei firewall astratti fino a quello dei firewall concreti, passando per livelli intermedi e
mantenendo inalterata la semantica. Per realizzare la traduzione fra due sistemi firewall differenti &
necessario definire delle funzioni di traduzione che vadano nel verso opposto rispetto a quelle dell’al-
goritmo di sintesi, dal livello piu astratto a quello piu concreto. Lo studio dell’espressivita dei sistemi
di firewall ci serve anche a capire il dominio delle funzioni e a guidare I'implementazione. L’algoritmo
di generazione implementa le fasi 3.a e 3.b della pipeline di transcompilazione.

Come per la sintersi anche nella generazione € importante mantenere una rappresentazione sintetica
delle funzioni per questioni di trattabilita. Prima di passare alla fase di generazione, viene controllato
che la funzione su pacchetti sintetizzata A da compilare verifichi eo(i(j\),C;€7 Vg)-

Notiamo che la fase complicata ¢ la decomposizione (fase 3.a), la quale prevede di generare una
configurazione semiastratta sintetizzata f, legale secondo l’assegnamento di etichette del sistema,

tale che la composizione della sua interpretazione, secondo il diagramma di controllo Ci, corrisponda

72

all'interpretazione del firewall astratto sintetizzato di partenza.

i(f) € Ms(Ck,vi) AVp € P. © (Cryi(f))(p) = i(A)(p)
Infatti, una volta calcolata una f adeguata, la compilazione delle funzioni sintetizzate assegnate ai
nodi in ruleset IFCL si riduce semplicemente ad una procedura sintattica banale, il cui risultato ¢ un
firewall IFCL normalizzato. Dato che il risultato & un firewall IFCL normalizzato, se il firewall astratto
¢ esprimibile allora la configurazione prodotta appartiene sicuramente all’insieme I', su cui la funzione
di concretizzazione e definita.
Per prima cosa analizziamo la generazione di f dal punto di vista teorico, concentrandoci quindi

su A e f, successivamente passiamo alla versione reale con funzioni sintetizzate.

7.3 Generazione del firewall semiastratto

Formalmente il problema che vogliamo affrontare & quello, dato un sistema k e un firewall astratto A

tale che eg(\, Ck, vy), di trovare una configurazione semiastratta f tale che:
1. f sia legale secondo I’assegnamento di etichette che caratterizza il sistema k: f € M3(C,v)
2. f imponga una semantica coerente con la funzione \: Vp € P. ® (Cx, f)(p) = A(p)

Ovvero, facendo riferimento ai percorsi all’interno del diagramma di controllo:
f eMs(C,v) AVp e P. 3r € II(C). A((C, f),p) =7 AO(m, f)(p) = A(p) (i)

Per prima cosa definiamo una proprieta dei diagramma di controllo e degli assegnamenti di etichette
che garantisce la possibilita di individuare, per ogni coppia (p,t), un preciso percorso all’interno del
diagramma di controllo. Chiamiamo sistemi uniterali i sistemi con diagrammi di controllo tali per
cui, in ogni possibile configurazione legale secondo I'assegnamento di etichette, il percorso che un dato

pacchetto p puo percorrere, dato che la trasformazione finale risultante deve essere t, ¢ unico.

Definizione 21 (Sistema uniterale). Un sistema uniterale é un sistema firewall k tale che per ogni
coppia (p,t), conp € P et € T(P), esiste un percorso m € II(Cy) tale che per ogni possibile configura-
zione semiastratta f legale secondo vy par la quale vale ©(Cy, f)(p) = t, il percorso di p nel firewall é

7, cioé A((Ck, f),p) = 7.

Si noti che la definizione non comprende vincoli riguardo i pacchetti che vengono scartati, questi
infatti verranno trattati in maniera particolare dall’algoritmo di generazione. Si noti inoltre che i
sistemi iptables, pf e ipfw sono tutti uniterali, come testimonia la funzione P del capitolo precedente,

la quale restituisce sempre singoletti o insiemi vuoti per coppie in cui t # L.

Se il sistema in questione & uniterale e la funzione A da compilare verifica la fattibilita locale,
allora per ogni coppia (p,t) tale che t = A(p) # L, vale che P(Ck, vk, p,t) € un singoletto. In questo
caso possiamo fare a meno della quantificazione esistenziale sui percorsi, quando parliamo di pacchetti

accettati; possiamo scrivere quindi:

Vp e P. ANp) # L = f € M3(C,v) AA((Ck, f),p) = 7 AO(, f)(p) = A(p) dove {7} = P(Cx, vk, p, A\(p))

Occorre ancora la condizione A((C, f),p) = 7 in quanto, sebbene il percorso adeguato sia uno
solo, &€ comunque necessario verificare non solo che la composizione delle funzioni di trasformazione
associate ai pacchetti mappino p in A(p), ma anche che la configurazione scelta imponga al pacchetto

di percorrere il percorso corretto.

73

Diverso ¢ il caso in cui la sequenza di trasformazioni che permettono ai nodi del percorso di mappare
p in A(p) sia unica. Chiamiamo compatto un sistema k per il quale se due pacchetti subiscono la stessa
trasformazione ¢ # | per una data configurazione, percorrendo lo stesso percorso nel diagramma di

controllo, allora i due pacchetti subiscono esattamente le stesse trasformazioni negli stessi nodi.

Definizione 22 (Sistema compatto). Un sistema k con diagramma di controllo Cy, etichettato secondo
vg, € detto compatto se
Vf € M3(Ck,vg). Vp,p' € P.

(A((Cr, 1), p) = A((C, £),0') =7 AO(m, f)(p) = O, /() # L) = p s 4

Dove la relazione = ¢ definita come:

t=tAtlp) = t'(p) sem=gq-7
= p = (1) Dove t = f(q)(p) et’ = f(q)(p')
true altrimenti

Definiamo dunque la versione semplificata del predicato sui pacchetti accettati:
Vp e P. Mp) # L = f € Ms(C,v) AO(m, f)(p) = A(p) dove {7} = P(Ck, vk, p, A(p)) (i)

Definiamo inoltre un predicato vero se e solo se i pacchetti per i quali A(p) = L siano gestiti

correttamente, cioe:

VpeP. Ap) =L = feMs(C,v)AIr eTI(C). A((C, f),p) =7 AO(m, f)(p) =L (iii)
Vale allora il seguente teorema.

Teorema 12. Se il sistema k & uniterale e compatto, e se la funzione A : P — T (P) U{L} verifica la

fattibilita locale, eg(X, Cr,vg), allora (i) <= (i) A (4i1)

L’obiettivo del resto della sezione ¢ definire una forma equivalente per il predicato (iz) che dia una
traccia per 'implementazione dell’algoritmo in sé. Definiamo un nuovo predicato x(Cg, vk, 7, p,t, f)
equivalente a f € M3(C,v) A ©(m, f)(p) = A(p) se t # L, dove m = P(Ck, vk, p, A(p)), del quale diamo
una caratterizzazione operativa che sara la base della parte dell’algoritmo di generazione che si occupa
dei pacchetto accettati.

Ut =t At € v(v(q)) At € v(l(m,Cr,vi)) A
@) =t At'(p) =p" A
X(Ck,vkaﬂ-ap,taf) = X(Ck;,vk;,ﬂ'/,p/,t//,f) se 7TZQ'7T/

t=1d altrimenti

Dove la funzione v dato un inseme di etichette restituisce 'insieme delle trasformazioni consentite su
un generico pacchetto: v : 21SNAT.DNAT,DROP} _, 9T (F)

v(L) = 11 v.(L)

z€{sIP,sPort,dI P,dPort}

{cost(a) | a € Domy} U {id} sex € u(L) IP se x € {sIP,dIP}
v(L) = dove Dom,, =

{id} altrimenti Port se x € {sPort,dPort}

74

Ridefiniamo dunque il predicato (ii) come Vp € P. A(p) # L = x(Ck, vk, 7, D, t, f).

Anziché considerare il predicato x(Cg, vk, 7, p, t,) per ogni coppia (p, t) tali che t = A(p) = L come
una condizione da verificare per una data configurazione f, la consideriamo una descrizione operativa
dei vincoli che abbiamo sulla selezione della configurazione f. In particolare questi vincoli sono della
forma f(q)(p) = t per qualche nodo ¢, pacchetto p e trasformazione ¢, e sono generati a partire dal
percorso 7, dal pacchetto p e dalla trasformazione t. Idealmente un algoritmo per la generazione di
f potrebbe cercare di verificare il predicato con un assegnamento di valore per la variabile libera f,
aggiornandola di volta in volta quando trova una condizione esplicita del tipo f(q)(p) = ¢, scegliendo
arbitrariamente i valori in caso di quantificazione esistenziale e facendo backtrack quando ci si trova
di fronte ad una contraddizione. La realizzabilita dell’algoritmo cambia drasticamente sulla base delle
soluzioni di 3 #/,¢". ¢ xt”" =t At/ € v(v(q)) ANt € v(l(m,Ck,vk)). A seconda di quanti modi legali
ho per scomporre la trasformazione ¢ in due parti: ¢ e t”, posso avere pill o meno casi da verificare.
1l caso ideale & quello in cui ¢’ e t/ sono uniche data ¢, in questo modo la scomposizione ¢ unica e
la verifica del predicato puo essere fatta senza backtrack; in questo caso, se si trova un’inconsistenza
allora la compilazione fallisce in quanto non puo esistere una configurazione che verifichi il predicato
X-

Consideriamo la trasformazione ¢ campo per campo. L’idea e che, per ogni campo che non rimale
invariato, vorremmo che solo uno dei nodi del percorso fosse capace di modificarlo, in questo modo
la trasformazione ¢t puo essere scomposta in una trasformazione costante su quel nodo e id in tutti
gli altri; quando invece la trasformazione puo essere applicata in piti nodi abbiamo liberta di scelta,
possiamo applicare la modifica prima o dopo, e possiamo anche modificare il campo in piu nodi
sovrascrivendo la prima modifica con la seconda.

Formalmente, dati una trasformazione ¢, un percorso m = ¢ - 7’ in un diagramma di controllo C, e
un assegnamento di etichette vg; per ogni campo x € {sI P, sPort,dIP,dPort}, le scomposizioni che

devo provare per la verifica di x(Cg, vk, 7, p, t, f) sono:
e se la trasformazione t.x ¢ id allora la scomposizione ¢ unica: t' =t = id;

e se si tratta di una trasformazione costante, t.x = cost(a) per un qualche a, e x € u(v(q)) e

x ¢ pu(l(n’,Cr,vx)), allora la scomposizione € sempre unica: t'.z = cost(a) e t".x = id;

e se si tratta di una trasformazione costante, t.x = cost(a) per un qualche a, e z ¢ u(v(q)) e

x € p(l(n’,Cr,vi)), allora la scomposizione ¢ unica e deve essere: t'.x = id e t"’.x = cost(a);

e se si tratta di una trasformazione costante, t.x = cost(a) per un qualche a, e x € u(v(q)) e

x € p(l(n’,Cy,vr)), allora la scomposizione non ¢ unica, sono possibili in totale:

— t'.x = cost(a) e t".x = id;
— t'x =idet'.x = cost(a);

— t'.x = cost(b) e t’.x = cost(a) per ogni possibile valore b.

Qualche chiarimento: per prima cosa il caso in cui ¢ u(v(q)) e x ¢ u(¢(n’,Ck, vx)) non & possibile in
quanto la fattibilita locale e garantita per ipotesi e abbiamo scelto il percorso restituito dalla funzione
P; secondariamente & bene notare che la liberta di scelta in questo contesto non ¢ una cosa positiva,
infatti vuol dire che abbiamo piu alternative da provare. Non possiamo limitarci a prendere solo
alcune delle alternative possibili perché, a causa dell’interferenza fra la verifica di diverse coppie (p,),
legata al problema della coerenza, €1, rischieremmo di escludere valori che si combinano bene fra loro
e quindi la soluzione.

Nel caso quindi in cui, in nessun percorso 7 € II(Cy), vi siano pit di un etichetta NAT dello stesso

N

tipo (due SN AT o due DN AT), la scomposizione di ¢ in ¢’ e t” & unica. Chiaramente infatti, per ogni

75

campo z della trasformazione, per ogni nodo ¢ del percorso 7, non possono valere entrambi x € p(v(q))

ex € p(l(n’,Cr,vg)), dove 7’ & la parte di 7 che segue q.

Definizione 23 (Sistema senza NAT ripetuti). Chiamiamo sistema senza NAT ripetuti un sistema k
con diagramma di controllo Cy e assegnamento di etichette vy tale che per ogni percorso w € I1(Cy), il

numero di occorrenze dell’etichetta SNAT in w ¢ al pit uno e lo stesso vale per DN AT

E immediato verificare che iptables e pf sono sistemi senza NAT ripetuti; ipfw invece no.
Notiamo inoltre che, in un sistema senza NAT ripetuti, non c’¢ alternativa sul nodo nel quale
effettuare una traduzione per due pacchetti che debbano subire la stessa trasformazione seguendo lo

stesso percorso, infatti solo un nodo & disponibile. Vale infatti il seguente teorema:

Teorema 13. Se un sistema ¢ senza NAT ripetuti, allora é compatto.

7.4 Decomposizione sintetizzata

Passiamo quindi a considerare la vera forma dei dati che sara trattata dall’algoritmo, ovvero le funzioni
su pacchetti sintetizzate. In effetti, il firewall astratto da compilare sara fornito come funzione sinte-
tizzata A € 2MEXTEU{L} ¢ i firewall semiastratto prodotto sara esso stesso sintetizzato, pertanto
la sua configurazione sard f : Q — 2ME)XTE)L{L}

I pacchetti scartati dal firewall saranno trattati separatamente, consideriamo quindi le coppie
(p,t) tali che t = i(A)(p) # L. Definiamo 'equivalente dell’espressione (ii), verificata se e solo se la
configurazione sintetizzata f ¢ legale e rispetta la semantica attesa per quanto riguarda i pacchetti

accettati.
V(P t) € Mt#+1=VpeP x(Ck,Uk,w,p,t,i(f)) dove {n} = P(Ck, vk, p, 1) (iv)

Dove abbiamo assunto che il sistema target sia uniterale e compatto.

Vogliamo definire un predicato X, equivalente del predicato x per i firewall sintetizzati, che carat-
terizzi operativamente le configurazioni f desiderate, attraverso una serie di vincoli sulle coppie (P, t)
appartenenti alle funzioni sintetizzate f (¢). Ogni coppia (P,t) € X comporta la generazione di un
certo numero di questi vincoli, per i nodi appartenenti al percorso 7 seguito dai pacchetti p € P. Per
prima cosa vogliamo la garanzia che tutti i pacchetti in un insieme P tale che (P,t) € A percorrano
lo stesso percorso m € II(C). Non si tratta di una proprietd strettamente legata al diagramma di
controllo, quanto piuttosto alla forma stessa della funzione sintetizzata, in particolare alla divisione

dei pacchetti fra i vari multicubi.

Definizione 24 (Funzione sintetizzata disgiunta). Una funzione sintetizzata su pacchetti A € oM@ XT(R)U{L}

e detta disgiunta rispetto ad un sistema uniterale k, con diagramma di controllo Cy e assegnamento
di etichette vy, se e solo se il percorso associato ai pacchetti p nella parte sinistra di ogni coppia

(Pt) € A, cont# L, ¢ sempre lo stesso. Formalmente:
V(P,t) € :\ t 7& 1= vpvp/ S P(Ckavkap7t) = P(Ck,'l)k,p/,t)

Nella pratica € possibile ottenere una funzione sintetizzata disgiunta a partire da una funzione
sintetizzata qualunque, per i sistemi iptables, pf e ipfw, spezzando ogni coppia (P, t) € A in quattro
parti con trasformazione t e multicubo di pacchetti uguale al sottoinsieme di P in cui gli indirizzi di
origine e destinazione sono rispettivamente tutti locali, il primo locale e il secondo non locale, il primo
non locale e il secondo locale, e infine tutti non locali. La divisione presentata funziona in quanto gli
insiemi prodotti sono tutti dei multicubi (I'intersezione di multicubi & un multicubo) e in quanto la

funzione P restituisce solo insiemi vuoti o singoletti per i sistemi supportati (vedi capitolo @

76

Se la funzione sintetizzata da compilare ¢ disgiunta rispetto al sistema k allora possiamo definire

un nuovo predicato x tale che la formula seguente sia equivalente all’espressione (iv):
V(P,t) € A t # L = X(Cp, vk, m, P,t, f) dove Vp € P. {x} = P(Ci, vx, p, t)
Definiamo formalmente il predicato Y come segue:
X(Cry v, 7, P,t, f) =¥p € P. x(Cp, vi, m, p, t,i(f))

Vogliamo una caratterizzazione operativa del predicato y, tuttavia stavolta non vale direttamente

un’equivalente fra il predicato e la caratterizzazione operativa, che chiamiamo quindi ¥.

T)t =t At € p(u(g)) AL € v(E(m,Cryvn)) A
(P.t') € fla) AH'(P) =P A
f((cfmwﬁﬂ-vp’t»f):)?(vakﬂrlvplat"af) sem=gq-m

t=1d altrimenti

Dove (P,t) € X & vero se e solo se Vp € P. i(A\)(p) = t; ovvero secondo una qualche divisione degli
elementi di P in multicubi vale che a tutti gli elementi di P & associata la trasformazione ¢ da A. La
notazione evidenzia il fatto che 1'operazione pitt semplice per garantire che (P, t') € f (g) sia verificato,
consiste nell’aggiungere la coppia (P’,t) all’insieme f (¢); in effetti questo ¢ pitt o meno quello che fa
I’algoritmo di generazione che presenteremo.

E immediato verificare che)?(Chvk,ﬂ,Rt,f) =)Z(Ck,vk,ﬁ,P,tf); tuttavia se & & un sistema

uniterale compatto allora vale anche 1’opposto.

Teorema 14. Per ogni sistema uniterale e compatto k con diagramma di controllo Cy, etichettato

secondo vy, percorso m € II(Ck), multicubo P e trasformazione t vale che
vf'i(ck7vk77r7p7t7 JZ:) @ i(ck7luk7ﬁ7p7t7f)

L’algoritmo di generazione che segue e sostanzialmente una riscrittura in pseudocodice di una
valutazione del predicato V(P,t) € A. t # L = X(Ci, v, T, P,t, f), in cui la verifica delle condizioni

del tipo (P,t) € f (q) viene usata costruttivamente per determinare il valore di f.

Ma prima di presentare I'algoritmo dobbiamo risolvere il problema dei pacchetti scartati, i quali
non verificano nessuna delle proprietd necessarie ad essere trattati attraverso il predicato x. Quello
che proponiamo & di costruire f in quattro passaggi: (i) inizializzazione di f come funzione che
associa ad ogni nodo un insieme vuoto di coppie (multicubo, trasformazione); (ii) per ogni coppia
(P,t) € Xin cui t # L inserimento in f delle coppie (multicubo trasformazione) necessarie affinché
X(Cryvp, m, P, t, f) sia verificato; (4ii) per ogni nodo ¢, completamento di f(q) affinché definisca una
trasformazione per ogni pacchetto in P, dove la trasformazione & scelta in modo tale da scartare il
maggior numero possibile di pacchetti; (iv) verifica che tutti i pacchetti che devono essere scartati
siano effettivamente scartati dalla configurazione ottenuta, terminazione con errore in caso contrario.

Nella fase (ii), dichiariamo un fallimento quando occorrono assegnamenti contrastanti per un
qualche nodo ¢, come (P,t) € f(q) e (P',t') € f(q) cont #t' ¢ PN P # (). Assumiamo inoltre che
ogni aggiornamento della funzione sintetizzata associata ad un nodo ¢ sia effettuato in modo tale da
non inserire coppie (P, t) tali che PN P’ # () per un qualche (P’ t) € f (¢). Per questo definiamo una
funzione di aggiornamento che nell’aggiungere una coppia (P,t) ad una funzione sintetizzata controlla

le coppie gia presenti, terminando con fallimento se verifica delle incompatibilita e “ritagliando” P se

7

si verificano delle sovrapposizioni non contraddittorie. Dato che la fase in cui configuriamo il firewall
per gestire i pacchetti da accettare viene prima di quella in cui completiamo la configurazione per
scartare pitt pacchetti possibile, e dato che nella fase (4ii) non tocchiamo nessuna coppia gia inserita
in f , non e possibile che vengano scartati per errore dei pacchetti da accettare.

Alla fine della fase (1), la configurazione f e tale che assegna ad ogni nodo ¢ € @ un insieme di
coppie (P, t); dato che sono inserite solo le coppie necessarie a realizzare il corretto comportamento
riguardo ai nodi accettati, & possibile che questi insiemi non contengano, per ogni p, una coppia (P,t)
tale che p € P: cioe ci possono essere dei pacchetti per i quali non abbiamo deciso come il nodo ¢ li
debba gestire. Chiamiamo P4 Iinsieme dei multicubi contenenti i pacchetti a cui f (¢) non associa
trasformazioni. Associamo dunque ai pacchetti in P4 delle trasformazioni in modo tale da scartare pit
pacchetti possibili: chiamiamo P 'insieme dei multicubi contenenti i pacchetti che vengono scartati
in q. I pacchetti in P possono essere scartati direttamente o passati ad un nodo che li scarta a sua
volta.

Quello che possiamo fare per scartare i pacchetti in ¢ dipende da vi(g). Se DROP € vi(q) allora
aggiungiamo a f una coppia (P, L) per ogni P in Py; cio¢ scartiamo direttamente tutto il possibile,
abbiamo dunque che P = Py. Altrimenti, se DROP ¢ vy(g), 'unico modo che abbiamo per scartare
un pacchetto p di Py & quello di trasformarlo in un pacchetto che venga scartato nel prossimo nodo
¢’ (direttamente o a sua volta attraverso una trasformazione ed un passaggio ad un nodo successivo).
Il problema & che il pacchetto p potrebbe visitare nodi diversi in base alla trasformazione associatagli
da g, ed e possibile che solo in alcuni dei cammini possa finire per essere scartato, quindi dovremmo
considerare tutte le alternative possibili.

Anziché seguire questo approccio, sfruttiamo il fatto che tutti i pacchetti, per essere scartati devono
visitare prima o poi un nodo etichettato con DROP. Quindi completiamo le funzioni f (¢) partendo da
questi nodi e seguendo gli archi in A a ritroso, occupandoci per primi dei nodi etichettati con DROP,
poi dei loro predecessori, dei predecessori dei predecessori e cosi via. Dato un nodo ¢ per cui abbiamo
completato f(g), con P non vuoto, per ognuno dei predecessori ¢’ di ¢, tale che (¢/,%,q) € A,
filtriamo i multicubi di P in modo da eliminare i pacchetti che non verificano v, chiamiamo ’'insieme
ottenuto P | . Nel nodo ¢’ vogliamo applicare ad ogni pacchetto p una trasformazione ¢ tale che ¢(p)
appartiene ad un multicubo in P/ | .

Se v(¢’) non contiene né SNAT, né DN AT, allora I'unica possibilita & quella di associare id ai
multicubi in P’,; occorre comunque calcolare P’ , I'insieme dei multicubi che, se lasciati identici, sono
passati al nodo g e poi scartati. Questi possono essere calcolati facendo 'intersezione fra i multicubi
di P/, e quelli di P .

Se v(q') contiene sia SNAT che DN AT allora & possibile prendere un pacchetto qualsiasi p, di
un multicubo qualsiasi di P}, e trasformare ogni pacchetto di P;# in p, attraverso la trasformazione
cost(p1) = (cost(pL.sIP) : cost(py.sPort), cost(p).dIP) : cost(p,.dPort)). In questo caso dunque,
per ogni P € P, aggiungiamo (P, cost(p1)) a f(q') e abbiamo che P’ = P,

Se v(q’) contiene solo SN AT allora per ogni multicubo di pacchetti P; € P%ﬁ, e per ogni mul-
ticubo P, € P, prendiamo un pacchetto qualsiasi p; € P, definiamo una trasformazione ¢t =
(cost(py.sIP) : cost(py.sPort),id : id) e calcoliamo P] l'insieme dei pacchetti di P; che una volta
trasformati secondo t appartengono a P, formalmente P; = {p € P; | t(p) € P2}; se P # (0 allora
aggiungiamo la coppia (P}, t) in f(¢'), e P/ all’insieme P .

Il caso in cui v(q’) contenga solo DN AT ¢ identico al precedente, dove perd la trasformazione
t & (id : id,cost(p,.sIP) : cost(p,.sPort)). Una volta completata la configurazione f per quanto
riguarda ¢’, proseguiamo passando ai nodi predecessori di ¢/, sfruttando l'insieme P’, che abbiamo

calcolato.

78

7 {SNAT}

Legenda

D : P#v t(P#>
D Py
D : Py, H(PL)

@ {SNAT,DNAT} ¥ @ {DROP}

Figura 7.1: Esempio di come vengono completati gli insiemi di coppie (multicubo, trasformazione)
assegnate ai nodi del diagramma di controllo: in ogni nodi rappresentiamo l'insieme dei pacchetti P

prima e dopo 'applicazione delle trasformazioni.

Si veda ad esempio la figura contenente quattro nodi di un diagramma di controllo, con i
relativi nomi e 'insieme delle etichette assegnate loro da vg. In ogni nodo abbiamo rappresentato la
funzione di trasformazione dei pacchetti, assegnatagli dalla configurazione astratta alla fine della fase
(i1): a sinistra abbiamo il dominio della funzione, 'insieme P rappresentato su due dimensioni per
comodita (indirizzo di origine e di destinazione), a destra abbiamo il codominio costituito dall’insieme
P stesso pitt L. Nel dominio di ogni nodo, abbiamo rappresentato con delle linee orizzontali 'insieme
P dei pacchetti per i quali non c’e trasformazione assegnata, e con una quadrettatura I'insieme P
dei pacchetti che riusciamo a scartare. Nei nodi che non sono etichettati con DROP, 'insieme di
pacchetti Py nei quali vogliamo trasformare i pacchetti da scartare, affinché siano scartati dal nodo
successivo, ¢ rappresentato da linee verticali. Nel codominio rappresentiamo anche le immagini di Py
e P, secondo la solita notazione.

Il nodo ¢q ¢ etichettato con DROP, pertanto possiamo scartare direttamente tutti i pacchetti in
P assegnando loro la trasformazione L; poiché tutti i pacchetti in P sono scartati, essi sono anche
in P, ; abbiamo usato quindi la quadrettatura. Nel codominio del nodo ¢, abbiamo rappresentato con
le righe verticali P, , cioe i pacchetti dell’insieme P di gy che verificano ;. Il nodo & etichettato
soltanto con SNAT, pertanto riusciamo a scartare solo i pacchetti in Py che hanno indirizzo di
destinazione presente anche in P, mentre ogni indirizzo di origine va bene in quanto e possibile
trasformarlo in quello di un pacchetto qualsiasi appartenente a P, . Il nodo ¢o ¢ etichettato sia con
SNAT, sia con DNAT, pertanto riusciamo a scartare tutti i pacchetti in Py trasformandoli in un
pacchetto qualsiasi appartenente a P, . Nel nodo g3 non abbiamo etichette, quindi possiamo solo
assegnare l'identita come trasformazione ai pacchetti in P; verranno scartati solo quelli che hanno
indirizzo di origine e destinazione all’interno di P, ovvero l'intersezione fra i due insiemi.

La configurazione ottenuta scarta ogni pacchetto possibile; tuttavia non abbiamo alcuna garanzia

79

che vengano scartati tutti i pacchetti che devono esserlo. Per questo alla fine della generazione di f ,
nella fase (iv), verifichiamo che ogni coppia (P, L) € \ sia rispettata dal firewall prodotto, in caso
contrario terminiamo segnalando errore.

Si noti che nella fase (74) ignoriamo la possibilita di scartare i pacchetti dirottandoli verso un
percorso che contenga un loop. E possibile per questo che I’algoritmo fallisca anche in casi in cui
esiste una configurazione corretta. Il comportamento dei firewall rispetto ai pacchetti ciclanti serve a
gestire una situazione di errore (il loop), pertanto preferiamo non sfruttarlo deliberatamente in fase

di configurazione.

La funzione FIREWALL_GENERATION dell’algoritmo |4| realizza 1’algoritmo di generazione (riga 1).
Gli input sono il firewall astratto sintetizzato A, il diagramma di controllo Cj, e 'assegnamento di eti-
chette vg. L’obiettivo della funzione & quello di restituire una configurazione semiastratta sintetizzata
f . Come prima cosa si inizializza questa funzione, assegnando ad ogni nodo del diagramma l’insieme
vuoto di coppie (multicubo di pacchetti, trasformazione), righe 3 e 4. Usiamo una notazione ad array
per la funzione f per comodita. Le righe 5, 6, 7 e 8 corrispondono alla generazione della parte di f che
verifica le coppie di Ain cui t # 1. La riga 9 realizza invece il riempimento delle funzioni sintetizzate
associate ai nodi, attraverso la funzione FILL che scarta tutto il possibile e assegna id come trasfor-
mazione di default ai pacchetti che non riesce a scartare. Questa funzione & definita nell’algoritmo
Infine le righe 10 e 11 verificano che la configurazione prodotta rispetti le coppie (P, L) € A

Alla riga 7 assumiamo di aver accesso alla funzione P; in realta per i sistemi supportati consul-
teremo la tabella relativa a P presentata nel capitolo @ La costruzione di f ¢ effettuata grazie alla
funzione ricorsiva CHI, che implementa la verifica del predicato . I parametri sono: una configura-
zione semiastratta sintetizzata f , un assegnamento di etichette vg, un percorso 7, un multicubo di
pacchetti P e una trasformazione t.

Alla riga 11 usiamo una funzione PASS che dato un diagramma di controllo Ci, una configurazione
semiastratta sintetizzata f e un multicubo di pacchetti P, restituisce true se e solo se almeno uno
dei pacchetti p € P passa attraverso il firewall (Cy,i(f)) (cioé non viene scartato). Usiamo questa
funzione per verificare che i pacchetti da scartare siano gestiti correttamente.

La funzione CHI copia la funzione sintetizzata ricevuta in input (riga 14), successivamente, se il
percorso non & vuoto, divide la trasformazione ¢ in due parti ¢’ e t” tali che "/ xt' = ¢ (riga 18), aggiorna
f/ con la coppia (P,t'), controllando se la coppia contraddice altre coppie inserite precedentemente
attraverso la funzione update (riga 19), calcola l'insieme di pacchetti che deve gestire il prossimo nodo
del cammindﬂ ed effettua una chiamata ricorsiva aggiornando la configurazione, I'insieme di pacchetti
e la trasformazione (riga 21).

La funzione DIVIDE prende come input una trasformazione da scomporre ¢ e un insieme di etichette
L (riga 24), e restituisce una coppia di trasformazioni, di cui la prima sara applicata dal nodo a cui fa
riferimento 'insieme di etichette e la seconda sara applicata dal resto del percorso. Le trasformazioni
sono ricavate campo per campo (riga 25): per ognuno di questi, se la trasformazione ¢ ¢ id allora
entrambe t’ e t” sono id (righe 26, 27 e 28); altrimenti, se la trasformazione & cost(a) per qualche a,
se le etichette del nodo permettono la trasformazione del campo allora ¢’ trasforma il campo e ¢/ ¢ id
(righe 32 e 33), altrimenti vale il contrario (righe 35 e 36).

La funzione update prende come input una funzione sintetizzata A, un multicubo di pacchetti
P e una trasformazione ¢ (riga 39), e restituisce la funzione sintetizzata aggiornata con la nuova
coppia (P,t), controllando perd che P non intersechi nessun insieme di pacchetti gid trattato da
A. La procedura scorre tutto I'insieme di coppie A in modo ricorsivo, se trova una coppia (P',t)

tale che P e P’ hanno degli elementi in comune e ¢t # t' allora ¢’¢ una contraddizione e 1’algoritmo

1Con un abuso di notazione abbiamo scritto ¢(P) per intendere {t(p) | p € P}.

80

Algorithm 4

1: function FIREWALL_GENERATION(A: funzione su pacchetti sintetizzata, Cy: diagramma di

controllo, vg: assegnamento di etichette)

2 (Q,A,q,9r) =Ck

3: for all ¢ € Q do

e fla) <0

5. for all (P,t) € A do

6: if t # 1 then

7 {m} + P(C, v, P, t)

8: f < cni(f, vy, m, P, t)
9: f <« FILL(f, Ck, vi)

10: for all (P,t) € X do

11: if t = L A Pass(f, Cy, P) then FAIL
12: return f

13:

14: function CHI(f: configurazione, vg: assegnamento di etichette, m: percorso, P: multicubo di

pacchetti, ¢: trasformazione)

15 fl f

16: if LENGTH(7) > 0 then

17: g+

18: (t',t") <DIVIDE(t, vk(q))
19: f'lq] <-uPDATE(f]q], P, t)
20: P+ t(P)

21: f' cui(f’, vy, 7, P, t")
22: return f’

23:

24: function DIVIDE(¢: trasformazione, L: insieme di etichette)
25: for all z € {sIP, sPort,dIP,dPort} do

26: if t.x =id then

27: t'.x < id

28: t".x <« id

29: else

30: cost(a) < t.x

31: if x € u(L) then
32: t'.x + cost(a)
33: t".x +id

34: else

35: t'.x < id

36: t".x + cost(a)
37: return (¢',¢")

38:

39: function UPDATE(): funzione sintetizzata, P: multicubo, ¢: trasformazione)
40: if A = () then return {(P,t)}

41: else

42: (P)Y UN < A

43: (Ps,P,,) «<—spLIT(P, id, € P’)
44: if P, 20 At#t then FAIL

15 return {(P',#)} UU pocp, UPDATE(VSPY, ¢)

Algorithm 5

1: function FILL(f: configurazione semiastratta sintetizzata, Cy: diagramma di controllo, wvy:

assegnamento di etichette)

2 (@A 4507) = Ci

3 flef

4: for all ¢ € Q do

5. if DROP € v(q) then

6: P, «resT(f'(q))

7. if P, # () then

8: for all P € P, do

9: .fv(_fvu{(P’J-)}
10: f +BACK_FILL(f, ¢, Cy, vg, P 1)
11: f' « FILL_ALL(f, id)

12: return f’

13:

14: function BACK_FILL(f: configurazione semiastratta sintetizzata, ¢: nodo, Cy: diagramma di

controllo, vg: assegnamento di etichette, P : insieme di multicubi)
15: (QaAa Q17qf) :Ck:

16: fl f

17: for all (¢’,v) € PREDECESSORI(gq, A) do

18: P, «REsT(f'(¢'))

19: P/, <FILTER_.BACK(P |,)

20: P« 0

21: if DROP € v(¢') NP, # 0D AP #0 then

22: if SNAT € v(¢') NDNAT € v(¢') then

23: p1 < TAKE_ONE(TAKE_ONE(P’]))

24: f/ — f/U (UpGP;#{(P’ 008t<pl))})

25: P + P

26: else

27: while P/, # (do

28: P’ < HEAD(P,)

29: P, < TAIL(PY,)

30: for all P” € P/, do

31: pL < TAKE_ONE(P")

32: if SNAT € v(¢') NDNAT ¢ v(q') then

33: t < (cost(py.sIP) : cost(py.sPort), id : id)
34: else if SNAT ¢ v(¢’) NDNAT € v(q') then
35: t « (id : id, cost(p,.dIP) : cost(p,.dPort))
36: else

37: t+id

38: (Ps,PN) < spLIT(P', t,p € P")

39: if P; # () then

10 e Fru{es, v

41: P%E — P;ﬁ UPxN

42: P « P/ U{Ps}

43: break

44; if P/, # () then

45: f" « BACK_FILL(f', ¢, Ck, g, PL)BQ

46: return f’

segnala fallimento; altrimenti I'insieme P viene filtrato per togliere i pacchetti a cui A assegna gia
la trasformazione ¢, e a quello che rimane viene assegnata la trasformazione ¢ aggiungendo nuove
coppie alla funzione A. Per prima cosa si controlla se siamo nel caso base, ovvero se non esistono piu
coppie all’interno dell’insieme 5\, in questo caso (riga 40) si inserisce semplicemente la nuova coppia
(P,t). Altrimenti si prende una coppia (P’,t') da \ e si divide P nel multicubo P,, corrispondente
all’intersezione con P’, e nell’insieme di multicubi P,,, che non intersecano P’. Per fare questo si usa
la funzione SPLIT introdotta nel capitolo [5| (riga 43), controllando che la parte a comune fra P e P’
associ la stessa trasformazione e in caso contrario terminando con fallimento (riga 44). Alla fine viene
restituita 'unione della coppia (P’,t") con i risultati delle chiamate ricorsive, una per ogni multicubo
in P,,, sul resto delle coppie di A (riga 45). Si noti che la coppia (P’,#') viene appunto reinserita cosi
com’e nel risultato, infatti la funzione update non modifica nessuna coppia gia presente nel parametro

A, adegua le coppie nuove che inserisce a quelle gia presenti.

La funzione FILL, dell’algoritmo |5| (riga 1), ha lo scopo di aggiungere coppie a f per scartare
quanti piu pacchetti possibile, e completare la configurazione assegnando ai pacchetti rimanenti la
trasformazione id.

Partiamo sequenzialmente da ogni nodo etichettato con DROP (riga 5), assumiamo alla riga 6
di avere una funzione REST(S\: funzione sintetizzata su pacchetti) che dato un insieme di coppie
(multicubo di pacchetti, trasformazione) A, restituisce un insieme di multicubi contenenti tutti e soli i
pacchetti di P che non compaiono in nessuna parte sinistra di . Se I'insieme dei multicubi contenenti
pacchetti non trattati da f’ (¢) non & vuoto allora aggiungiamo a f! (¢) una coppia (P, L) per ogni
multicubo P di pacchetti non trattati (riga 9), e propaghiamo 'aggiornamento di f" allindietro nel
diagramma di controllo, attraverso la funzione ricorsiva BACK_FILL (riga 10). Dopo aver aggiornato
la configurazione per scartare quanti pitt pacchetti possibile, potrebbero ancora esistere dei pacchetti
non trattati, pertanto invochiamo la funzione FILL_ALL(f’, id) (riga 11). Assumiamo che la funzione
FILL_ALL(f , t) assegni la trasformazione ¢ ad ogni pacchetto libero nella configurazione f .

La funzione BACK_FILL(f : configurazione semiastratta sintetizzata, ¢: nodo, Cj : diagramma di
controllo, vy : assegnamento di etichette, P, : insieme di multicubi), definita alla riga 14, dato un
nodo ¢ e l'insieme dei multicubi P contenenti i pacchetti che vengono scartati da ¢, restituisce una
versione della configurazione f aggiornata in modo tale che i predecessori di ¢ assegnino ai propri
pacchetti delle trasformazioni tali da far si che piu pacchetti possibili siano ridiretti verso P, in gq.
Assumiamo (riga 17) di avere a disposizione una funzione PREDECESSORI(¢: nodo, A: insieme di
archi) che restituisce 'insieme delle coppie (¢’, %) tale che (¢, 1, q) € A. Inoltre, assumiamo (riga 17)
di avere a disposizione una funzione FILTER BACK (P: insieme di multicubi di pacchetti, ¢: condizione
sui pacchetti) che restituisce una copia di P nella quale in ogni multicubo sono rimossi i pacchetti che

non verificano .
FILTER BACK(P,¢) = {P' | Pe P AP = ¢(P)A P # 0}

Come nel capitolo [b| assumiamo che 1) possa essere scomposta in una congiunzione di predicati, uno
per ogni campo del pacchetto; pertanto I'insieme dei pacchetti che verificano ¥ & un multicubo e
quindi 'operazione alla base della funzione FILTER_BACK ¢ 'intersezione fra multicubi.

La funzione TAKE.ONE(X: insieme) & una funzione di utilitd che dato un insieme restituisce
uno qualunque fra i suoi elementi. Per quanto riguarda P;# usiamo le funzioni HEAD e TAIL per
specificare che seguiamo un ordine nella valutazione dei multicubi, e I'unione alla riga 41 inserisce

infondo all’insieme. Il risultato € che i multicubi in P sono valutati all’interno del ciclo while.

Teorema 15 (Correttezza del firewall generato). Se il sistema k é senza NAT ripetuti e la funzio-

ne sintetizzata \ ¢é disgiunta, se esiste una configurazione ¥ € Ty, tale che i(\) = (T (Cr, %) D) e

83

tale che non esistono pacchetti ciclanti in (Cg,X), allora Ualgoritmo |4 restituisce una configurazione

semiastratta sintetizzata f tale che

i(f) € Ms(Cr, ve) AVp € P. © (Cr, i(f))(p) = i(M)(p)

altrimenti Ualgoritmo termina segnalando errore.

7.5 Generazione diretta della configurazione IFCL usando i
tag

Il metodo seguente prevede una generazione diretta della configurazione IFCL, senza passare da firewall

semiastratti, e si basa sul campo tag dei pacchetti. Piu nel dettaglio, la generazione segue tre fasi:

e a partire dalla configurazione astratta A, generiamo una ruleset IFCL R) che ne ¢ la traduzione

coppia per coppia;
e creiamo quattro ruleset IFCL derivate da Rx: Ryii, Renats Ranat € Rnat;

e assegniamo ad ogni nodo del diagramma di controllo del sistema target una ruleset composta a

partire da quelle prodotte dal passo precedente o R, la rulset vuota.

Parleremo della correttezza della configurazione prodotta in termini di semantica della configurazione

IFCL e della sua concretizzazione come file di configurazione per il sistema target.

7.5.1 Generazione delle ruleset

Per prima cosa a partire dalla funzione astratta sintetizzata A generiamo la ruleset Ry in modo tale

che la valutazione semantica della ruleset corrisponda all'interpretazione della funzione astratta:

(RAD (sumw) = (M)
Questo viene ottenuto concatenando, per ogni coppia (P,t) € A, una regola (p € P,target(t)), dove

target(t) & un target la cui applicazione realizza la trasformazione t.

ACCEPT set=1d
target(t) = < prop set=1 dove d,, e s, tali che trpq¢(dn,sn) =t

var(dy,, sp,) altrimenti

Per definizione di funzione astratta sintetizzata, nessuna delle regole si sovrappone con le altre, e

quindi l'ordine & completamente irrilevante.

A questo punto a partire dalla ruleset R, attraverso la funzione RULESET_GENERATION dell’algo-
ritmo |§| (riga 1), creiamo quattro ruleset: Ry, Rsnat, Ranat € Rnat. L'obiettivo & quello di produrre
una ruleset Ry,qr che assegni ad ogni multicubo P presente in A un’etichetta diversa per il campo
tag; di fare in modo che questa ruleset sia sempre la prima ad essere valutata per ogni pacchetto; e
di far dipendere le modifiche effettuate al pacchetto unicamente sulla base del campo tag. Per ogni
riga della ruleset R, se il target & accerr allora la regola viene inserita nella ruleset Ry; (riga 5).
Altrimenti, se siamo di fronte ad una regola di NAT, viene generato un nuovo tag m, attraverso la
procedura NEW_TAG che assumiamo restituire sempre nomi freschi (riga 7); si aggiunge a Ryqrr una

regola che associa il tag generato ai pacchetti che verificano la condizione e che non sono ancora stati

84

Algorithm 6
1: function RULESET_GENERATION(R))

2: Ruat = Ranat = Rpit = Renat = Rpmark = €

3: for r in Ry do

4: if r = (¢, accerr) then

5: Rfil — Rfil - T

6: else if r = (¢, mr(d,, s,)) then

7: m < NEW_TAG()

s Runark < Ronart - (6 A tag(p) = o, mc(im)
9: Rinat < Ranat - (tag(p) = m,war(d,, *))
10: Rsnat < Rsnat - (tag(p) = m,wat(x, sp,))
11: Ruat < Rpat - (tag(p) = m,mar(dy,, sp))

12: Ry < Ry - (tag(p) # e, accepr) - (true, brop)

13: Ranat < Rmark - Ranat
14: Rypi < Ryark - Bra
15: Renat < Rmark - Renat
16: Rpat < Rmark - Rnat

17: return (Rfil7 Rsnat: Rdnata Rnat)

etichettati (riga 8), e si aggiunge una regola che applica la trasformazione ai pacchetti etichettati con
m alle rimanenti ruleset, applicando per ogni ruleset solo la parte di trasformazione corrispondente
(righe 9, 10 e 11). Nella condizione tag(p) = e, assumiamo che e sia il valore di default per il campo
tag, verificano la condizione tutti e soli i pacchetti che non sono ancora stati etichettati.

La condizione tag(p) = e serve perché altri pacchetti, non in P, dopo aver subito qualche tra-
sformazione in altri nodi, potrebbero verificare la condizione ¢, ma su loro non voglio applicare la
trasformazione legata all’etichetta m. Per concludere, se ad un pacchetto € associato un tag allora
non lo dobbiamo scartare, altrimenti, se nessuna regola con target accerr si applica al pacchetto e
questi non ha alcun tag assegnato, lo scartiamo con un’ultima regola (true,oror) (riga 12). La ruleset
Rynark viene preposta a tutte le altre ruleset (righe 13, 14, 15 e 16), come abbiamo gia detto infatti,
I’algoritmo funziona se I'assegnamento di etichette & la prima cosa che facciamo su ogni pacchetto in

transito sul firewall.

7.5.2 Assegnamento delle ruleset ai nodi

In [4] si propone un assegnamento delle ruleset ai nodi di iptables e pf. Daremo un metodo per la
generazione di un assegnamento di ruleset sulla base dell’assegnamento di etichette v, coerente con i
sistemi gia trattati ed applicabile anche a ipfw.

Assumiamo di avere un assegnamento di etichette per il sistema target vy, la funzione ¢ : Q — p

vale dunque:

c(q) = cnat(q) - cri(q)

Rsnat se SNAT € vi(q) N DNAT ¢ vi(q)

Ranat se SNAT ¢ vi(q) N DNAT € vi(q) Ryy se DROP € vi(q)
Cnat(Q) = Cfil(Q) =

Ryuat se SNAT € vi(q) N DNAT € vi(q) R, altrimenti

R, altrimenti

85

Da notare che per quanto riguarda pf ed iptables 'assegnamento di ruleset ai nodi del diagramma &

lo stesso descritto nell’articolo.

7.5.3 Correttezza della configurazione generata

Nell’articolo [4] si dimostra che se ogni percorso 7 € II(Cy) passa da almeno un nodo a cui ¢ assegnato
Ry (quindi nel nostro caso un nodo con etichetta DROP), allora il firewall generato accetta tutti e
soli i pacchetti accettati dal firewall originale. Notiamo che, oltre a quelli presentati precedentemente,
anche l'assegnamento di ruleset che abbiamo dato per ipfw rispetta la condizione.

Dimostriamo qualcosa di piu forte, se la funzione su pacchetti da compilare ¢ localmente fattibile
e non ci sono NAT ripetuti sul diagramma di controllo allora la semantica del firewall prodotto e

esattamente la stessa del firewall di partenza.

Teorema 16. Sia p = {Rsnat, Ranats Rnats Rfits Rsnat - Ryits Ranat - Ryit, Rnat - Ry, Re}, dove Ry,
Rgnats Ranat € Rpat sono prodotto dall’algoritmo [6 con input Ry. Sia ¢ : Q — p lassegnamento di
ruleset ai nodi del diagramma di controllo del sistema target Cy, generato secondo vy. Se il sistema
target k & senza NAT ripetuti, se ogni percorso da q; a gy comprende almeno un nodo etichettato
con DROP, se Uinterpretazione di X ¢ localmente fattibile dal sistema target, eo(i(;\),Ck,vk), e sele
etichette sugli archi non predicano sul campo tag, allora la semantica del firewall (C,) con ¥ = (p, c)

per lo stato sygy € identica all’interpretazione di .
((Cr> 2)) (smzw) = i(N)

Notiamo che questo non vale per ipfw che perd ha un forma abbastanza peculiare in quanto ogni
percorso m € II(Cipew) contiene solo nodi con assegnate tutte le etichette possibili (a eccezione del
nodo iniziale e di quello finale).

Questo secondo teorema garantisce la correttezza della generazione della configurazione per ipfw.

Teorema 17. Sia p = {Rsnats Ranat, Rnat, Rfils Renat - Rfits Ranat - Ryit, Rnat - Ry, Re}, dove Ry,
Rsnat, Ranat € Rpar sono prodotto dall’algoritmo @ con input Ry. Sia ¢ : Q — p l'assegnamento
di ruleset ai modi del diagramma di controllo del sistema target Cy, generato secondo vy. Se tutti
i percorsi del sistema target k, TI(Cy), sono tali che ¢(7t) = {SNAT, DNAT, DROP}, e se nessun
pacchetto a cui siano applicate trasformazioni SNAT e DNAT al massimo una volta percorre dei loop
nel diagramma di controllo, allora la semantica del firewall (Cy,X) con X = (p,c) per lo stato sygy &

identica all’interpretazione di \.

((Cr,) (swmw) = i(N)

7.5.4 Problemi di concretizzazione

Come mai abbiamo deciso di progettare un algoritmo che non facesse uso di tag se quello proposto
nell’articolo [4] funziona correttamente? Il motivo principale & legato al fatto che il campo tag stesso,
e l'operazione marxk nei vari linguaggi di configurazione, sono soggetti a vincoli differenti, rendendo
difficile la concretizzazione della configurazione IFCL in un file di configurazione per il sistema target.
Per i sistemi attualmente supportati abbiamo individuato delle tecniche di compilazione ad hoc, questo
pero € un problema da risolvere singolarmente per ogni nuovo sistema da supportare, e spesso per
permettere le operazioni di cui abbiamo bisogno € necessario produrre delle configurazioni bizantine.

Le parti delle ruleset prodotte dall’algoritmo [f]immediatamente individuabili come potenzialmente

problematiche da implementare nei linguaggi di configurazione target sono:

86

1. La condizione tag(p) = e, in quanto non & definito il tag nullo in nessuno dei linguaggi di
configurazione supportato. Questa condizione puo essere sostituita chiaramente con un controllo
del tipo tag(p) € M dove M & l'insieme dei tag creati dall’algoritmo, ma solo se il linguaggio

permette di esprimere condizioni come ’appartenenza del tag ad un insieme.

2. La condizione tag(p) # e, che soffre dello stesso problema che puo pero essere risolto in questo
caso creando piu regole, una per ogni m € M con condizione tag(p) = m e aventi tutte I'azione

associata alla regola iniziale (ovvero accepr).

3. 1l fatto di dover modificare il campo tag dei pacchetti, attraverso il target marx in ogni nodo del
diagramma di controllo, o comunque di dover eseguire la ruleset R,,q-x come prima cosa per

ogni pacchetto.

4. 11 fatto che in IFCL, dopo aver compiuto 'operazione mark, la valutazione della ruleset prose-
gue, mentre in alcuni linguaggi 'operazione di modifica del tag corrisponde necessariamente
all’accettazione immediata. La traduzione deve tener conto di questo usando un’istruzione del
linguaggio target che scrive il campo tag ma che lascia che il pacchetto continui la valutazione
della ruleset, oppure deve garantire la preservazione della semantica associando, gia al momento

dell’applicazione del tag, 'azione corretta.

Valutiamo questi potenziali problemi nei sistemi attualmente supportati e proponiamo soluzioni
adeguate. Per risolvere questi problemi e necessario in alcuni casi modificare le ruleset prodotte. La
mancanza di un approccio unificato, estendibile a nuovi sistemi & il motivo principale che ci ha portati
a sviluppare un nuovo algorimo per la generazione di configurazioni IFCL che, anche se per il momento
non supporta tutti i sistemi, crediamo vada nella direzione piu corretta per individuare una soluzione

generale al problema della transcompilazione fra linguaggi di configurazione.

ipfw

In ipfw i tag sono numeri interi ed ¢ supportato il filtro su intervalli di tag, quindi se generiamo i tag
in ordine e teniamo traccia del massimo possiamo risolvere i punti 1 e 2 usando not tagged O-max
per esprimere tag(p) = e e tagged O-max per esprimere tag(p) # e. L’ordine delle regole in ipfw
non e soggetto a restrizioni quindi non abbiamo nessun problema per quanto riguarda il punto 3.
L’applicazione di un tag al pacchetto non ¢ un’azione di per sé in ipfw ma un’opzione associata ad
un’azione. Pertanto in ipfw non ¢ direttamente esprimibile un’istruzione del tipo (¢, mark(m)). Questo

ci crea un problema con il punto 4, che possiamo risolvere in due modi:

e possiamo sfruttare ’azione count, che non ha effetti sulla valutazione del pacchetto da parte della
ruleset, ed esprimere (¢, mark(m)) come ipfw -q add count tag m ¢. Questa & sicuramente la
soluzione piu semplice ma usa ’azione count in modo sicuramente diverso da quello atteso e
rende la configurazione prodotta poco leggibile e potrebbe interferire con gli strumenti che usano

count, per esempio per monitorare o debuggare la configurazione.

e possiamo, attraverso una fase di preprocessing, verificare quale sara la regola successiva a
(¢, marx(m)) che stabilira il destino del pacchetto e riscrivere la regola combinando i due tar-
get. Osserviamo che, dato che non vale tag(p) = e, nessuna altra regola di R, sara applicata
al pacchetto. La regola che sara successivamente applicata al pacchetto nella ruleset sara ne-
cessariamente una della forma (tag(p) = m,mr(d,,s,)) dalla ruleset R,q:. Quindi lazione

corrispondente, insieme alla mark, puo essere scritta come target della regola.

87

Algorithm 7
1: function RULESET_GENERATION(R))

2: Ruat = Ranat = Rpit = Renat = Rpmark = €

3: for r in Ry do

4: if r = (¢, accerr) then

5: Rfil — Rfil - T

6: else if r = (¢, mr(d,, s,)) then

7: m < NEW_TAG()

8: Runark < Rmnark - (¢, manx(m))

9: Rainat < Ranat - (tag(p) = m,nat(dy, *))
10: Rsnat < Rsnat - (tag(p) = m,wat(x, sp,))
11: Ryat < Rpat - (tag(p) = m,mar(dy,, sp))

12: Ry < Ryii - Rpmark - Ry - (tag(p) # e, accepr) - (true, prop)

13: Rdnat — Rdnat . Rma'r‘k‘ : Rdnat
14: Rsnat — Rsnat . Rmark ' Rsnat
15: Rnat — Rnat ' Rmark ' Rnat

16: return (Rfila Rsnah Rdnata Rnat)

iptables

In iptables i tag sono numeri interi e le condizioni sui tag possono comprendere la specifica di una
maschera, in questo caso ogni numero che ¢ identico a quello specificato dalla condizione, modulo la
maschera, verifica la condizione. Possiamo quindi risolvere i problemi dei punti 1 e 2 decidendo di
usare solo tag dispari e usando una maschera /1. Esprimiamo quindi tag(p) = ® come ! --mark 1/1
e tag(p) # e come —-mark 1/1. In iptables MARK ¢ un taget a sé e una volta applicato la valutazione
della ruleset prosegue dalla regola successiva, esattamente come in IFCL, quindi non abbiamo problemi
per quanto riguarda il punto 4. Per quanto riguarda il punto 3 sembrano esserci indicazioni contrastanti
su dove possono essere inserite regole con target mark: in molte fonti si raccomanda di usarle solo
nella tabella mangle, talvolta dicendo che altrimenti il tag non viene associato al pacchetto [18]; nel
manuale di iptables invece non c'¢ traccia di vincoli simili [2I]. Che si tratti di una questione di
stile o di un requisito necessario per il corretto funzionamento della configurazione, una semplice fase
di preprocessing ¢ sufficiente a spostare il contenuto della ruleset R,,q.1 nei nodi del diagramma di
controllo relativi alla tabella MANGLE (i nodi relativi alle ruleset PREROUTING e OUTOUT della tabella
MANGLE dovrebbero essere sufficienti).

pf

In pf i tag sono stringhe arbitrarie, confrontate unicamente per identita: non € supportata nessuna
forma di controllo su insieme, lista o intervallo. Questo rende molto difficile realizzare il controllo
tag(p) = e del punto 1. A complicare ulteriormente le cose concorre il fatto che le regole di tra-
sformazione siano separate da quelle di filtro, pertanto la traduzione di R,,q-r per le ruleset Rgpq:
e Rgnat deve produrre una lista di regole di trasformazione, che hanno una sintassi piu limitata di
quelle di filtro [I0]. Un limite importante per quanto riguarda i tag nelle regole di traduzione, &
che la condizione tagged non puo essere negata usando ! come succede invece nelle regole di filtro.
Proponiamo un algoritmo alternativo per la generazione delle configurazioni, molto simile a quello

originale: 1’algoritmo

88

La ruleset R, ¢ tale che le condizioni delle regole sono tutte mutualmente esclusive. Il controllo
tag(p) = e nell’algoritmo |§| quindi non serve a impedire che un tag sovrascriva un altro precedente-
mente assegnato dalla stessa ruleset, ma ad impedire che siano assegnati nuovi tag a pacchetti gia
trasformati da una ruleset precedente. Poiché per essere modificato un pacchetto deve prima essere
taggato, il controllo tag(p) = e serve allo scopo. Possiamo quindi rimuovere il controllo tag(p) = e
dalle regole se prima di controllare se il pacchetto verifica le condizioni ci sinceriamo che il pacchetto
non sia gia stato taggato. Aggiungiamo quindi una parte iniziale alle ruleset Rsnat 5 Ranat € Ryi che
controlla se il pacchetto ¢ gia stato taggato e in quel caso gli associa il destino previsto dall’algoritmo;
questo corrisponde esattamente a replicare le regole del tipo (tag(p) = m,wat(d,,ds)) all’inizio della
ruleset.

Come detto, il problema del punto 2 & facilmente risolvibile producendo una regola della forma
(tag(p) = m, accept) per ogni tag m creato dal programma. Il punto 3 non rappresenta alcun problema:
i tag possono essere scritti sia dalle regole di filtro che da quelle di traduzione. Anche in pf, come
in ipfw, l'operazione di associare un tag a un pacchetto non ¢ un’azione, ma un’opzione associata ad
un’altra azione. Per il punto 4 occorre fare un distinguo: nelle regole di filtro ’azione a cui associamo
l'opzione di tag puo essere solo block o pass, quindi non ¢ possibile tradurre direttamente il target
mark; per le regole di traduzione la questione non e altrettanto chiara. Dalla grammatica presente
nel manuale notiamo che la parte delle istruzioni di trasformazione che specifica la traduzione da
applicare al pacchetto (["->" (redirhost | "" redirhost-list "") [portspec 1 [pooltype
1 ["static-port"] 1) ¢ opzionale. Tuttavia non & espressamente definito il comportamento di
una regola di traduzione che non preveda alcuna traduzione. Ad ogni modo sia per le regole di
traduzione, sia per quelle di filtro & possibile applicare la stessa fase di postprocessing proposta per
ipfw: combinare la regola da tradurre (con target mark) con la successiva la cui condizione viene
verificata dal pacchetto. Inoltre dal diagramma di controllo (o dal fatto che le regole di traduzione
siano sempre considerate prima di quelle di filtro) risulta evidente che in realta sia sufficiente associare

i tag ai pacchetti in Rgpat € Ranat, tralasciando la cosa in Ryj;.

89

Capitolo 8

Conclusioni

Abbiamo presentato una pipeline di transcompilazione fra linguaggi di configurazione di sistemi fi-
rewall differenti, che al momento supporta i sistemi iptables, pf e ipfw. Abbiamo dimostrato entro
quali limiti sia garantita I’equivalenza fra il firewall di partenza e quello prodotto, e attraverso uno
studio dell’espressivita dei sistemi firewall abbiamo valutato il risultato ottenuto rispetto a quanto
teoricamente possibile.

Il cuore del nostro approccio ¢ il linguaggio IFCL, un linguaggio intermedio che permette di rappre-
sentare firewall definiti con i vari linguaggi supportati e del quale & definita una semantica operazionale.
IFCL astrae dai dettagli dei sistemi rappresentati, usando un linguaggio standard per la definizione
delle regole di filtro e traduzione e modellando il procedimento di applicazione delle regole del sistema
attraverso un diagramma di controllo. Il lavoro presentato estende quello esposto in [4], definendo una
nuova semantica denotazionale per il linguaggio intermedio IFCL, che caratterizza il comportamento
di un firewall rappresentandolo come una funzione dall’insieme dei pacchetti a quello delle trasfor-
mazioni possibili. In base a questa caratterizzazione funzionale vengono ridefiniti gli algoritmi che
implementano il processo di astrazione del firewall source, e la rappresentazione sintetica della sua
semantica; vengono studiati i limiti teorici della transcompilazione e viene presentato un algoritmo
per la generazione della configurazione IFCL target.

Il primo stadio della pipeline corrisponde alla formalizzazione del firewall source, usando IFCL;
questa fase & semplificata molto dal fatto che IFCL sia definito in modo tale che ogni azione dei
linguaggi supportati abbia un corrispettivo diretto in IFCL.

Nello stadio due vogliamo calcolare una rappresentazione sintetica della semantica del firewall IFCL:
per prima cosa rimuoviamo i target che modificano il flusso di controllo, come caLL e coto; poi astraiamo
le ruleset calcolando la funzione da pacchetti a trasformazioni associata ad ogni nodo del diagramma
di controllo, in forma sintetica; infine procediamo a comporre fra loro le funzioni per ottenere la
semantica stessa del firewall (per semplificare il calcolo trasformiamo prima il diagramma di controllo
in una versione equivalente aciclica). La correttezza della semantica denotazionale rispetto a quella
operazionale e le condizioni poste sulla rappresentazione sintetica, basata su multicubi, garantiscono
la conservazione della semantica del firewall nei vari passaggi. Prima di applicare la terza fase della
pipeline, e derivare un firewall IFCL del tipo target, controlliamo che sia verificata la fattibilita locale,
una condizione necessaria (ma non sufficiente) perché il sistema target sia in grado di replicare il
comportamento del firewall di origine.

Se la condizione ¢ verificata, nella fase tre scomponiamo la funzione sintetizzata, ottenuta dall’a-
strazione del firewall di origine, in una serie di funzioni, una per ogni nodo del diagramma di controllo
del sistema target; successivamente traduciamo le funzioni in ruleset IFCL. La scomposizione puo fallire

qualora il firewall da implementare non sia esprimibile nel sistema target, in caso contrario il firewall

90

IFCL prodotto e quello di partenza hanno la stessa semantica, sia per quanto riguarda i pacchetti
accettati, sia per quanto riguarda i pacchetti scartati.

L’algoritmo che abbiamo definito purtroppo non da garanzie di trovare una scomposizione se nel
diagramma di controllo del sistema target sono presenti piti nodi, consecutivi in almeno un percorso,
che siano capaci di effettuare le stesse trasformazioni su un campo del pacchetto (due nodi capaci
di fare SNAT o due nodi capaci di fare DNAT). Per questi sistemi, come ipfw, rimane applicabile
lalgoritmo basato sull’'uso del campo tag dei pacchetti, definito inizialmente in [4] per iptables e
pf, e riproposto qui in versione lievemente modificata per essere applicabile a ipfw. Inoltre, abbiamo
studiato i problemi legati alla traduzione delle configurazioni IFCL generate da questo algoritmo verso
i linguaggi dei sistemi target, mostrando in particolare come questi possano essere risolti almeno per
iptables e ipfw.

Infine, nella fase quattro della pipeline, il firewall IFCL viene tradotto nel linguaggio di configura-
zione target; la traduzione € banale in quanto il firewall prodotto dalla fase precedente ¢ normalizzato

e quindi privo di azioni complesse come cALL € GoTo.

La necessita di trovare strumenti affidabili per la gestione dei firewall, definendo possibilmente
soluzioni applicabili a diversi sistemi, & fuor di dubbio. I nostri risultati sono a nostro avviso molto
promettenti, in quanto basati su un approccio formale e generale, sebbene risultino incapaci di trat-
tare adeguatamente alcuni casi importanti, come la generazione di firewall qualora il sistema target
consenta di applicare lo stesso tipo di trasformazione ad un pacchetto in pitt momenti diversi nel corso
della valutazione.

Presentiamo qualche accenno riguardo all’implementazione effettiva della pipeline, dando qualche
dettaglio in piu dal punto di vista degli algoritmi e delle strutture dati, con 'obiettivo principale di
mostrare che quanto esposto € realizzabile in modo efficiente. Presentiamo infine una serie di lavori
futuri che prevedono di estendere la teoria modellando ulteriori aspetti del comportamento di un

firewall e rilassando alcune delle assunzioni fatte.

8.1 Implementazione

Per la produzione di uno strumento software, che concretizzi quanto esposto in questa tesi, occorre
valutare alcuni aspetti implementativi e algoritmici tralasciati fino a qui. Nel capitolo [5| abbiamo
parlato della rappresentazione sintetica delle funzioni A : P — 7(P) U {L}, definite come insiemi di
coppie (P,t) € A con P € M(P) e t € T(P)U{L}, quindi abbiamo gia un modello di dato abbastanza
preciso per le coppie; manca da discutere il modello di dati per 'insieme stesso.

Fra le operazioni che la nostra rappresentazione delle funzioni sintetizzate deve supportare, quelle

potenzialmente problematiche di cui ci occuperemo sono:

e la funzione FILTER(), ¥) che restituisce una nuova funzione sintetizzata in cui la parte sinistra

delle coppie contiene solo elementi che verificano :
{(PLO)[(Pt)eX AP =t Q(t(P) A P'#0}

e la funzione CONCAT(/\Nl7 /\~2) che restituisce la funzione sintetizzata corrispondente alla concate-

nazione delle due funzioni sintetizzate:

{(P’,tgb(tl) ‘ (Pl,tl)Gj\l/\(PQ,tQ)ES\QAP/:tfl(Pzﬂtl(Pl))/\P/75(2)}

e l'unione di due funzioni sintetizzate \; U)\~

! Della funzione SPLIT(P, t,) abbiamo descritto gia brevemente nel capitolo

91

La soluzione banale consiste nel rappresentare A come una lista di coppie (P, t). E possibile comunque
usare anche strutture dati differenti, fra le varie possibili mostriamo una proposta che sfrutta i segment
tree [1].

8.1.1 Implementazione banale

Supponiamo di rappresentare le funzioni sintetizzate A come liste di coppie (P, t) € M(P)x T (P)U{L}.

L’implementazione della funzione FILTER(A,) prevede allora di calcolare sequenzialmente, per ogni
(P,t) di X:

1. il multicubo ¢(P), che viene calcolato come
(t.sIP(P.sIP) : t.sPort(P.sPort), t.dIP(P.dIP) : t.dPort(P.dPort),t.tag(P.tag))
dove t.x(A) & {a} se t.x = cost(a), altrimenti, se t.x = id, ¢ A.

2. il multicubo ¥ (t(P)) = {p € t(P) | ¥ (p)} dove abbiamo assunto che la funzione 1) possa essere

scomposta secondo

1/}(17) = wsIP(p-SIP) A q/}sPort (PSPOTt) A ¢d1P(p-dIP) A deort (p-dPOTt) A wtag (p~tag)

quindi possiamo calcolare ¥ (t(P)) semplicemente come

ili(g]p(t(P).SIP) X Z/}Sport(t(P).SPOT’t) X 1/)d]p(t(P)dIP) X 1/}dp0rt(t(P).dP07‘t) X ’l/}tag(t(P).tag)

dove scriviamo 9 (P) per {p € P | 1(p)}, possiamo verificare a questo punto se ¥ (¢t(P)) = 0, nel

qual caso scartiamo la coppia (P,t) e passiamo alla successiva.

3. il multicubo ¢t~ (¥ (¢(P))) viene ottenuto prendendo il risultato dalla fase precedente v(t(P))

che chiamiamo P’ e invertendo la trasformazione ¢, lavorando su ogni campo separatamente:
(t.sIP~Y(P'.sIP) : t.sPort ' (P'.sPort), t.dIP~'(P'.dIP) : t.dPort~*(P'.dPort),t.tag” (P’ .tag))

dove t.z=1(P'.x) & uguale a P'.x se t.x = id, altrimenti & uguale a P.x se t.z = cost(a) per un

qualche a.

In modo simile, la funzione CONCAT():l,):2) prevede, per ogni coppia (Py,t1) di A1, per ogni coppia
(Py,t3) di Ay (quindi in totale O(n?) volte, se n & il numero di coppie in una funzione sintetizzata),

di calcolare in ordine:
1. il multicubo ¢;(Py), seguendo lo stesso procedimento del primo passaggio della funzione FILTER.

2. il multicubo P> Nt1(P;) che viene calcolato campo per campo, essendo entrambi gli operandi

dei multicubi possiamo infatti calcolare per ogni x:
(P2 n tl(P1)).{)3 =P.xnN tl(Pl).LU

anche in questo caso possiamo verificare a questo punto se il risultato ¢) oppure no (e nel caso

scartare la coppia e passare alla successiva).

3. il multicubo t; ' (P, Nt (Py)) viene calcolato come nell’ultimo passo della funzione FILTER, dove
P’ & perd P, Nty (Py) e ty.o 1 (P.x) & uguale a P'.xz se t;.x = id, altrimenti & uguale a P;.x se

t1.x = cost(a) per un qualche a.

Infine, 'unione di due funzioni sintetizzate puo essere realizzata semplicemente concatenando le due

liste.

92

= [0,2]
Sy =0,0] 5'2 1,5]
Sy = [2,5] [0,31///// Sy = [3,9] [0,31///// \\\\\\\
/ \

' 23& 59&

noER AT A

0 oM e B o 0 m e E e o

(a) (b)
)

0,9
SQOSé:[].,?)] /
Sy NS, = {3}

S NS = {0}

SonNS,=10 / \

Snsi—1 6 SPJETIL TR
5051 - {2) m

R NVANEENYA <= BVAN
snsi=Bs 0 @ @ @ f o

’&mﬂ"&m%"&mﬁ"&m%"&m%

(8118}

(sinsi| |sinsy] [Ssnsy

()

Figura 8.1: due esempi di segment tree e i relativi insiemi di segmenti rappresentati,

e segment tree relativo all’insieme delle possibili intersezioni fra elementi del primo insieme e del

secondo

8.1.2 Implementazione con segment tree

Come abbiamo visto nella sezione precedente, la parte algoritmicamente pitt complessa e sicuramente
I’applicazione della funzione CONCAT, in quanto l'operazione descritta dai tre passi deve essere ripetuta
mettendo in relazione ogni coppia del primo insieme con ogni coppia del secondo insieme. Questo & uno
spreco in molti casi: data una coppia (Py,t1) € A1, non vorremmo considerare la sua concatenazione
con tutte le coppie (Pa,ts) € 5\2, ma solo con quelle per cui ¢1(P;) N Py # (. In altre parole, dato
t1(P1) = P’ vorremmo poter cercare in Ao tutte e solo le coppie (Pa,t2) in cui P, interseca P’. Se
rappresentiamo le funzioni sintetizzate A come liste di coppie 1'unico modo per determinare questo
insieme & quello di valutare uno ad una tutte le coppie, come in effetti abbiamo fatto quando abbiamo
discusso 'implementazione banale.

Possiamo tuttavia considerare una rappresentazione di A pilt adeguata a questo tipo di ricerca.
Perché sia vero che t1(P;)NPy # @, & necessario che, per ogni campo x € {sI P, sPort,dI P, dPort,tag},
t1.2(Py.2) N Py.x # (. L’idea & quella di usare, per ogni campo dei pacchetti, una struttura dati che
permetta una ricerca per intervalli in maniera efficiente, come un albero binario di ricerca, in modo
da poter trovare in tempo logaritmico il sottoinsieme di valori per i quali I'intersezione non & vuota.
In realta le cose sono lievemente pitt complicate in quanto: () non abbiamo a che fare con valori unici
ma con insiemi arbitrari rappresentati come unioni di segmenti; (77) non abbiamo in P un ordinamento

totale, in particolare non ci interessa un ordinamento lessicografico in cui l'ordine dipende dal primo

93

campo e in caso di equivalenza dipende dal secondo e cosi via: vogliamo un ordinamento separato per
ogni campo del pacchetto.

Per quanto riguarda il punto (7), una soluzione possibile, che approfondiamo qui, consiste nell’ap-
plicazione di segment tree, alberi specializzati per la rappresentazione di intervalli chiusi (segmenti)
[7]. Per il punto (i) invece proponiamo di considerare i campi in cui i pacchetti sono divisi, in modo

indipendente, usando un albero per ogni campo.

Dato un insieme di segmenti, un segment tree puo essere costruito prendendo la lista ordinata degli
estremi dei segmenti e costruendo un albero binario accoppiando i valori a due a due e costruendo
all’inst finché possibile, in modo tale che la lista degli estremi da cui si & partiti siano le foglie dell’albero
binario. L’altezza dell’albero & O(log(n)) con n numero degli intervalli di partenza, il numero di nodi
O(nlog(n)).

Ad ogni nodo viene assegnato il segmento che sottende, dove alle foglie & assegnato il singoletto
contenente il valore dal quale sono state create e ad ogni nodo interno viene assegnato il segmento
[m, M] dove m & Pestremo sinistro del segmento assegnato al figlio sinistro del nodo e M & Pestremo
destro del segmento assegnato al figlio destro. In questo modo ad ogni nodo & associato un segmento
che contiene i segmenti dei nodi figli. Chiamiamo Seg(q) = S il segmento assegnato al nodo ¢. L’idea
¢ che un segmento S = [m, M], all’interno del segment tree, & rappresentato da un insieme di nodi @
tali che m = min {m’ | ¢ € QA Seg(q) = [m’, M'|}, M = max {M’' | g € QA Seg(q) = [m',M’]} e che
per ogui valore a € [m, M], se a ¢ il valore di una foglia, allora esiste un g € @ tale che a € Seg(q).
L’insieme @ definito non & unico, fra quelli possibili prendiamo sempre il minore; € possibile dimostrare
che per ogni livello dell’albero servono al massimo due nodi.

Pitu in dettaglio, la procedura per etichettare i nodi del segment tree, per rappresentare il segmento

S = [m, M] ¢ la seguente. A partire dalla radice, dato il nodo ¢:
1. se Seg(q) C S allora etichettiamo il nodo con S;
2. altrimenti:

e se Seg(¢') NS # 0, dove ¢’ ¢ il figlio sinistro di ¢, allora proseguiamo I’etichettatura

ricorsivamente dal nodo ¢’;

e se Seg(¢") NS #), dove ¢’ & il figlio destro di ¢, allora proseguiamo l’etichettatura

ricorsivamente dal nodo ¢”.

Le figure e mostrano due esempi di segment tree, creati a partire da insiemi di segmenti
diversi, rappresentati a loro volta come etichette sugli alberi.

Per il seguito ci sara utile definire, dati due insiemi di intervalli S = {51,5,...,5,} e S’ =
{51,5%,...,5!,}, come calcolare I'insieme delle possibili intersezioni fra un intervallo del primo insieme
e uno del secondo: {S;N S} | S; € SAS; € S'}. Come prima cosa si noti che per ogni possibile scelta
di i e j, I'intersezione S; N S; restituisce un segmento oppure l'insieme vuoto. Osserviamo anche che
gli estremi dei segmenti risultanti possono essere solo fra quelli dei segmenti di S o S’. La procedura
per calcolare tutte le possibili intersezioni prevede di ispezionare i nodi del segment tree uno ad uno,
dalla radice alle foglie, seguendo una visita in profondita per mezzo di una procedura ricorsiva. Nella
visita ci ricorderemo all’interno di quali segmenti ci troviamo (cioe quali etichette abbiamo incontrato
nella discesa). Piu precisamente, a partire dalla radice e da due insiemi vuoti di etichette, uno per S,
laltro per S’, applichiamo il seguente algoritmo, dove ¢ ¢ il nodo nel quale ci troviamo, e gli insiemi

I e I’ sono le etichette incontrate:

1. per ogni etichetta S; di S assegnata al nodo ¢:

94

e aggiungiamo S; a I per ricordarci che da questo nodo in poi siamo dentro S;;

e per ogni S in I, seriviamo 'etichetta S; N .S sul nodo g.
2. per ogni etichetta S} di S" assegnata al nodo ¢:

e aggiungiamo S} a I’ per ricordarci che da questo nodo in poi siamo dentro S};

e per ogni S; in I, scriviamo etichetta S; N S’ sul nodo q.
3. proseguiamo ricorsivamente su entrambi i nodi figli di ¢ con gli insiemi aggiornati.

Il risultato dell’intersezione degli intervalli del segment tree in figura con quelli del segment tree

in figura [8.1b| ¢ mostrato in figura [8.1c

L’idea dunque ¢ quella di usare una serie di segment tree per ognuna delle funzioni sintetizzate 5\,
in particolare uno per ogni dimensione di P. Consideriamo di avere un nome per ogni multicubo P tale
che (P,t) €), la funzione sintetizzata A viene rappresentata come una coppia (D, T) dove D & una
rappresentazione efficiente della funzione che associa al nome di P la trasformazione ¢t per ogni coppia
(Pt) € A (ad esempio una tabella hash), e T'= Tsrp X Tsport X Tarp X Taport X Tiag € la lista di albert,
uno per ogni campo dei pacchetti, all’interno dei quali sono inserite le etichette che rappresentano i
segmenti dei campi nei multicubi. Come nome per il multicubo P useremo P. Consideriamo anche,
per ogni campo z, di ogni multicubo P, di avere un nome (una numerazione) per ogni segmento di cui
P.x & composto. Scriveremo P.z.1, P.z.2 e cosi via, assumendo quindi che dal nome del segmento sia
sempre immediatamente derivabile il nome del multicubo. Per indicare il segmento in sé scriveremo
invece P.x.1, P.x.2 e cosi via. Per ogni multicubo P, per ogni campo x, rappresentiamo dunque ogni
segmento P.x.i nel segment tree T, etichettandolo con il nome P

Supponiamo quindi di voler calcolare CONCAT(A],):2), supponiamo inoltre che le funzioni \; e
X2 siano rappresentate come (D1,7T1) e (D3,T3), dove gli alberi che compongono T; e quelli che
compongono 75 sono uguali tranne che per i nomi di segmenti associati ai nodi. Il risultato della
funzione sara):3, rappresentata come (Ds,T5), sempre con T3 avente la stessa forma degli altri. Per
motivi che saranno chiari dopo, supponiamo di avere una funzione & che dato il nome di due multicubi
restituisce un nuovo nome per la loro intersezione, assumendo sempre che data l'intersezione posso
ottenere il nome dei due multicubi. Ricordiamo che vogliamo calcolare ¢t; *(PyNt1(P;)), o meglio, per
ogni campo z vogliamo t;.271(Py.z Nty.z(P;.x)). Esprimendo gli insiemi P;.z e Py.z come unioni di
segmenti, abbiamo

e (JPeai) ntra((J(Preg) = e (J(Peainty.a(Pra.g)))

i J ,J

Consideriamo due casi distinti:

e se t; = id allora la formula precedente diventa

2]
quindi per ogni coppia di segmenti, uno relativo a P; nell’albero T).x e l'altro relativo a Ps
nell’albero Th.z, calcoliamo I'intersezione, che & un segmento che chiamiamo (P, & Py).z.(i, §),

e la inseriamo nell’albero T3.x;

e se t; = cost(a) allora dobbiamo verificare se a € |J,(P2.x.7) (possiamo farlo con una visita
sull’albero in O(log(n))), in questo caso allora la formula restituisce semplicemente |J,(P1..j),
cioe tutti i segmenti che compongono P;.x sono da ricopiare in T3.z; altrimenti nessun segmento

¢ da aggiungere a T5.x.

95

Il grande vantaggio di questa rappresentazione e che ora possiamo calcolare il risultato di CONCAT():l,
Xg) visitando in parallelo, per ogni dimensione x, i due alberi T1.z e T5.x e collezionando il risultato
in T5.2 una volta sola, e non una volta per ogni coppia di multicubi (P;, P»). Il procedimento & molto
simile a quello per il calcolo dell’intersezione fra due insiemi di intervalli presentato precedentemente e
mostrato in figura[8.I} qui perd & necessaria una trattazione delle etichette un po’ particolare in quanto
lavoriamo con insiemi scomposti in segmenti anziché direttamente con segmenti, inoltre occorre tenere
conto anche della trasformazione associata all’intervallo (se non @ id).

L’algoritmo per il calcolo di CONCAT():l,)\Ng) prevede, per ogni dimensione x:

1. per ogni elemento (P, 1) di M per cui t1.x = cost(a), per qualche a, verificare se a appartiene a
qualche Ps.x.j in Th.z, se questo € vero allora si inserisce)2 nell’insieme, inizialmente vuoto, C';
contenente i multicubi di cui il campo x va copiato invariato in T3.z, e per ogni P».x si aggiorna
D3 in modo tale che D3(Py).x = Dy(Py).z: x cost(a) (questa operazione complessivamente costa

O(log(n)) per ogni elemento di A;, quindi un totale di O(nlog(n)));

2. scorrere parallelamente gli alberi T;.xz e T5.xz, nodo per nodo, copiando in T5.z le etichette P .x.i
se e solo se P, appartiene a C,, (questa operazione prevede di scorrere ’albero 7).z una ed una

sola volta, quindi costa O(nlog(n)));

3. scorre parallelamente gli alberi T;.x, Tb.x e T5.x, leggendo dai primi due e scrivendo nel terzo,
attraverso una procedura ricorsiva che implementa una visita in profondita degli alberi; per ogni
nodo visitato teniamo conto dei segmenti all’interno dei quali ci troviamo. Piu precisamente
assumiamo di essere al nodo ¢ degli alberi, di sapere di essere dentro i segmenti I; per quanto

riguarda A1 e dentro i segmenti Iy per quanto riguarda 5\2, allora quello che facciamo e:

e per ogni P;.x.i assegnato al nodo ¢ in T7.x:

— segniamo di essere all’interno del segmento P;.x.i d’ora in poi, per il passo successivo

e le chiamate ricorsive (cio¢ aggiungiamo P;.z.i a I7)

— per ogni Py.z.j all’interno del quale ci troviamo in Th.z (cioe in I3), scriviamo (P &
F’g)x(z,]) nel nodo ¢ di T5.x, e aggiorniamo D3 in modo tale che Dg(f’l &) ﬁg) =
D2 (.PVQ)LE X id

e per ogni Ps.x.i assegnato al nodo ¢ in Ts.x:

— segniamo di essere all’interno del segmento P,.x.i d’ora in poi, nelle chiamate ricorsive
(cioé aggiungiamo Ps.z.i a I3)

— per ogni Py.z.j allinterno del quale ci troviamo in Ty.z (cio¢ in I;), scriviamo (P &
]52)30(@,]) nel nodo ¢ di T5.x, e aggiorniamo D3 in modo tale che Dg(f’l & pg) =

D2 (.PVQ).’IJ X id

e facciamo una chiamata ricorsiva per ogni nodo figlio di ¢ rispettivamente nei tre alberi, con

I, e I, aggiornati.

(il calcolo prevede operazioni dal costo costante applicate su ogni tripletta di nodi corrispondenti

nei tre alberi, ogni nodo degli alberi ¢ valutato una ed una sola volta, quindi il costo totale e
O(nlog(n))).

Il risultato & quindi calcolato in un tempo totale O(nlog(n)).

L’assunzione secondo cui tutti gli alberi hanno la stessa forma puo essere verificata tenendo conto
di tutte le funzioni sintetizzate con cui dobbiamo lavorare durante la fase di creazione degli stessi, ad
esempio attraverso una fase di preprocessing. Questi ed altri dettagli, relativi all’eventualita in cui il

componente di un multicubo risulti essere vuoto, sono rimandati a future trattazioni; 'intento di questa

96

digressione era infatti unicamente quello di mostrare che strutture dati adeguate possono essere im-
piegate per eliminare il costo quadratico della funzione CONCAT, che si presenta nell’implementazione

banale con liste.

8.2 Sviluppi futuri

La pipeline presentata qui puo essere estesa in molti modi: € possibile aumentare il numero di sistemi
supportati attraverso compilatori dedicati per e da IFCL; possiamo inoltre approfondire maggiormente
la formalizzazione dello stato interno del firewall modellando fedelmente le feature piu avanzate di-
sponibili nei firewall, come il bilanciamento del carico e i rate limit. Sebbene infatti, come abbiamo
detto, non sia sempre desiderabile per il porting forzare lo stesso comportamento rispetto allo stato,
possiamo comunque studiare il comportamento del firewall sulla base dello stato al fine di analizzare
le differenze fra la configurazione originale e quella generata.

La versione precedente di TFCL permetteva la modellazione di sistemi non deterministici, in cui
ad un dato pacchetto in input corrispondevano diversi esiti possibili. Anche lo stato interno veniva
modellato in un modo simile.

Abbiamo inoltre definito senza sfruttarla, la fase di refactoring della pipeline, atta a rimodellare la
configurazione IFCL dal punto di vista dello stile, mantenendo inalterata la semantica. Questa fase in
particolare offre numerose possibilita dal punto di vista della qualita del codice prodotto, ma complica
il lavoro dal punto di vista della traduzione delle configurazioni IFCL nel linguaggio target, pertanto

meriterebbe un’indagine a parte.

8.2.1 NAT non deterministico

Nelle versioni precedenti di IFCL, il target nat aveva come argomenti insiemi arbitrari di indirizzi anziché
singoli valori. La semantica attesa era quella di una trasformazione non deterministica secondo la quale
la riscrittura del pacchetto p potesse avvenire secondo uno qualunque degli indirizzi specificati.

Questo genere di trasformazioni puo essere specificata in iptables, dove pero la semantica pre-
vede che la trasformazione venga selezionata fra quelle possibili attraverso una politica round robin,
quindi non proprio in modo non deterministico, ma in funzione dei pacchetti precedentemente trattati.
Opzioni avanzate con effetti simili sono disponibili in molti linguaggi, di solito la trasformazione puo
essere selezionata attraverso una politica round robin o secondo il bilanciamento del carico.

In effetti quindi, secondo questi esempi un modello non deterministico non & necessario in quanto la
trasformazione scelta & funzione dei pacchetti precedentemente osservati e quindi lo stato interno puo

essere applicato per decidere deterministicamente il trattamento da riservare al prossimo pacchetto.

Inoltre consentire di definire NAT non deterministici complicherebbe molto ’analisi delle configu-
razioni. Si assuma ad esempio di avere in un percorso due nodi successivi: uno nel quale possiamo
fare NAT e ’altro nel quale possiamo scartare alcuni pacchetti; se nel primo nodo modifico 'indirizzo
di origine di un pacchetto p scrivendo non deterministicamente 0.0.0.0 oppure 1.1.1.1, e nel secondo
nodo scarto ogni pacchetto in cui I'IP di origine € 0.0.0.0 e accetto ogni pacchetto in cui 'IP di origine
¢ 1.1.1.1, allora complessivamente il firewall si comportera rispetto a p scartandolo o accettandolo
non deterministicamente. Questo genere di comportamenti sarebbe sicuramente presente solo in con-
figurazioni “sbagliate”, in loro presenza sarebbe perfettamente accettabile rifiutare la compilazione;
tuttavia altre difficolta di modellazione sono piu difficili da risolvere.

Ad esempio non sempre ¢ facile tenere traccia dei vincoli sugli insiemi di indirizzi. In iptables &

possibile specificare traduzioni non deterministiche solo verso insiemi di pacchetti che siano equivalenti

97

a prodotti cartesiani di intervalli di valori, cioe cubi della forma ([sI P, sI P’] : [sPort, sPort'], [dIP,dIP’] :
[dPort,dPort'], [tag,tag']); questo & dovuto alla sintassi attraverso la quale si definiscono le regole.
Tuttavia, avendo due nodi consecutivi in un percorso all’interno del diagramma di controllo, il pri-
mo capace di fare SNAT e il secondo DNAT, & possibile che la concatenazione delle trasformazioni
produca un insieme di alternative non esprimibile come cubo. Si supponga ad esempio che il pri-
mo dei nodi, quello capace di fare SNAT, trasformi un pacchetto p non deterministicamente in uno
fra un insieme di pacchetti uguali a p tranne per sIP, preso non deterministicamente all’interno
di [192.168.0.0,192.168.0.10]. Supponiamo anche che il secondo nodo applichi a tutti i pacchetti
p[sIP — 192.168.0.0]...p[sI P + 192.168.0.9] la trasformazione (id : id, cost(1.1.1.1) : id, id), e a
p[192.168.0.10] la trasformazione (id : id, cost(2.2.2.2) : id, id). Allora la composizione delle due

funzioni associa non deterministicamente al pacchetto p, una fra le trasformazioni

([cost(192.168.0.0), cost(192.168.0.9)] x {id} x {cost(1.1.1.1)} x {id} x {id})
U ({cost(192.168.0.10) : id, cost(1.1.1.1) : id, id})

che, evidentemente, non puo essere espresso come cubo (né come multicubo).

8.2.2 Stato interno

Lo stato interno e stato modellato in IFCL in un modo molto generale, tralasciando per il momento
ogni dettaglio riguardo alle informazioni effettivamente memorizzate riguardo il traffico osservato e
al loro uso per determinare il destino dei pacchetti in arrivo. Si € semplicemente assunto di avere
una funzione p k4 a che associ ad ogni pacchetto p e stato s ’azione prescritta «, ed una funzione
s (p,p’) che aggiorna lo stato interno s con le informazioni rilevanti riguardo ad un nuovo pacchetto
p accettato come p’. Gli sviluppi futuri rispetto allo stato possono andare nella direzione di modellare
uno ad uno i diversi strumenti che fanno uso dello stato interno, come il NAT dinamico e i limit rate;
oppure possono andare nella direzione di migliorare la rappresentazione sintetica della semantica di

un firewall per includere informazioni sul comportamento in funzione dello stato.

Nella caratterizzazione logica della semantica, formulata originariamente in [4] e presentata nella
sezione il funzionamento dello stato & approssimato assumendo che un pacchetto appartenen-
te ad una qualunque connessione stabilita possa essere trasformato non deterministicamente in ogni
pacchetto possibile. Si noti che la caratterizzazione funzionale della semantica non comprende in-
vece un’approssimazione sul comportamento dello stato del firewall. Di fatto ¢ possibile modificare
la semantica per gestire il target cueck-state(X) con la stessa approssimazione della caratterizzazione
dichiarativa. La versione approssimata della semantica denotazionale, dato uno stato, associa ogni
pacchetto ad un insieme di trasformazioni possibili. A causa del non determinismo dato dall’appros-
simazione che abbiamo fatto sulla semantica dell’operazione cieck-state(_) infatti non possiamo pilt
associare un pacchetto ad un destino deterministicamente. Come gia detto riguardo al NAT, dover
gestire il non determinismo complica molto la progettazione di algoritmi che implementino la pipeli-
ne di compilazione; per questo abbiamo deciso di basarci sulla versione esatta e deterministica della

semantica in questa tesi.

In generale scoraggiamo dunque 'uso di approssimazioni come quella della caratterizzazione logica
in quanto eccessivamente grossolane e complicate da gestire. Presentiamo comunque per completezza
la versione approssimata non deterministica della semantica denotazionale di un firewall. Come per
la caratterizzazione logica, ci baseremo su stati approssimati S, che assegnano ad ogni pacchetto
un’etichetta di stato s € {NEW, ENSTABLISHED}. Come al solito definiamo inizialmente la semantica di

98

una ruleset e successivamente quella di un firewall.

(R): S — P — 27 (UL}
(R)(s) = (R)s : P — 2T ®W{L)

(]RDS = (]RD id

Dove la funzione (R)% : P — 27®U{L} per un firewall F, uno stato s e una trasformazione su
pacchetti ¢t € T(P) ¢ definita come:

{t} se dp = accerr
{1} altrimenti

{t} se ¢(p, s)
(R). (p) altrimenti

S

((¢,oroe); R)E (p) = {J‘} se ¢(p, s)

(6, acceer); R); (p) =

altrimenti

)z (p)
(](¢ NAT(s { Tnat ns Sn X t} se d)(p, S)

altrimenti

tTnondet(X) Xt se d)(pa S)
(R)L (p) altrimenti

S

((¢, creck-sTate(X)); R)L (p) =
(]RDgid,id,idﬂdmost(m))l><t (p[tag N m]) se ¢(p7 S)

((6.(m)): RY: (p) = o)
(R): (p) altrimenti

La funzione tr,ondet(X) per X € {«, —, <>} restituisce tutte le possibili trasformazioni di pacchetti

che agiscono sui campi specificati da X. Formalmente:

any(IP) x any(Port) x {id} x {id} x {id} se X =«
trnondet(X) = § {id} x {id} x any(IP) x any(Port) x {id} se X =—
any(IP) x any(Port) x any(IP) x any(Port) x {id} se X =«

Dove any(A) = {id} U {cost(a) | a € A}. Abbiamo abusato della notazione per quanto riguarda i,
intendendo con tryondet(X) X t Uinsieme {#' x ¢ | ¢ € tryondet(X)}. Per il resto non c¢’e niente di parti-
colare da notare, la semantica € molto simile alla versione deterministica in cui i valori restituiti dalla
funzione sono pero inseriti in dei singoletti. L’unica eccezione ¢ la sola operazione non deterministica
(o meglio, approssimata in modo non deterministico), cioé cieck-state(X).

Definiamo la semantica di un firewall F come:

(F): S =P — 27T B
(F)(s) = (Fs : P — 27T B

(]]:D (]qu]:@

99

Dove per ogni q € Q, g # qr

TU{L} sedte(c(q)s(p) - t=LVqg,tp)el

T altrimenti

dove T= | (8(q,t()DI " (t(p)) ¢
te(]cf(q)LDs(p)

5(a,t(p))¢1

e per il nodo finale
(as)2" p = {id}

Notiamo che, poiché la semantica della ruleset associata ad un nodo ¢, dato un pacchetto p
restituisce un insieme di possibili trasformazioni 77, ¢ necessario considerare separatamente il risultato
di ognuna delle trasformazioni ¢t € T,. Se esiste almeno una trasformazione ¢; € T} che ¢ uguale a L
oppure tale che il prossimo nodo da visitare dato ¢ e il pacchetto p’ = t;(p) creerebbe un loop, allora
sappiamo che L ¢ una delle possibili trasformazioni associate a p dal firewall. Esclusa la possibilita
di essere scartato nel nodo ¢, tutte le possibili trasformazioni associate a p sono elementi dell’insieme
T, che viene costruito prendendo ogni trasformazione ¢ € Tj che permetta al pacchetto p di essere
passato ad un nuovo nodo ¢’ (dipendente da t) e collezionando le trasformazioni associate a p’ = t(p)

dalla semantica del nodo ¢’'.

100

Bibliografia

[1]

[2]
[3]

[4]

[10]

[11]

[13]

[14]

P. Adao, C. Bozzato, G. D. Rossi, R. Focardi, and F. L. Luccio. Mignis: A semantic based tool
for firewall configuration. In IEEE 27th Computer Security Foundations Symposium, CSF 2014,
pages 351-365, 2014.

Babel. The compiler for writing next generation JavaScript. https://babeljs.io.

Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato: A novel firewall management toolkit.
ACM Trans. Comput. Syst., 22(4):381-420, 2004.

C. Bodei, P. Degano, R. Focardi, L. Galletta, and M. Tempesta. Transcompiling firewalls. In
L. Bauer and R. Kisters, editors, Principles of Security and Trust, pages 303-324, Cham, 2018.

Springer International Publishing.

C. Bodei, P. Degano, R. Focardi, L. Galletta, M. Tempesta, and L. Veronese. Language-
independent synthesis of firewall policies. In Proc. 3rd IEEE FEuropean Symposium on Security
and Privacy, 2018.

F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miege. A formal approach to specify and
deploy a network security policy. In Formal Aspects in Security and Trust (FAST’04), pages
203-218, 2004.

M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms
and Applications. Springer, 2008.

C. Diekmann, J. Michaelis, M. P. L. Haslbeck, and G. Carle. Verified iptables Firewall Analysis.
In Proceedings of the 15th IFIP Networking Conference, Vienna, Austria, May 17-19, 2016, pages
252-260, 2016.

S. N. Foley and U. Neville. A firewall algebra for openstack. In 2015 IEEE Conference on
Communications and Network Security, CNS 2015, pages 541-549, 2015.

FreeBSD Packet Filter (PF). https://www.freebsd.org/cgi/man.cgi?query=pf.conf&

sektion=5&n=1.

M. Gouda and A. Liu. Structured firewall design. Computer Networks, 51(4):1106-1120, Mar.
2007.

A. J. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis engine. In 2000 IEEE Symposium
on Security and Privacy, Berkeley, California, USA, May 14-17, 2000, pages 177187, 2000.

A. J. Mayer, A. Wool, and E. Ziskind. Offline firewall analysis. Int. J. Inf. Sec., 5(3):125-144,
2006.

Mignis Compiler. https://github.com/secgroup/Mignis.

101

https://babeljs.io
https://www.freebsd.org/cgi/man.cgi?query=pf.conf&sektion=5&n=1
https://www.freebsd.org/cgi/man.cgi?query=pf.conf&sektion=5&n=1
https://github.com/secgroup/Mignis

[15]

T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi. The margrave tool for
firewall analysis. In Uncovering the Secrets of System Administration: Proceedings of the 24th
Large Installation System Administration Conference, LISA 2010, San Jose, CA, USA, November
7-12, 2010, 2010.

Open Networking Foundation. Software-Defined Networking (SDN) Definition. https://www.

opennetworking.org/sdn-resources/sdn-definition,
OpenBSD Packet Filter (PF). https://www.openbsd.org/faq/pf/.

Oskar Andreasson. https://www.frozentux.net/iptables-tutorial/iptables-tutorial.
htmll

Runtime converter. http://www.runtimeconverter.com.

The IPFW Firewall. https://www.freebsd.org/cgi/man.cgi?ipfw(8).
The netfilter project. http://ipset.netfilter.org/iptables.man.html.
The Netfilter Project. https://www.netfilter.org/.

The Netfilter Project. Traversing of tables and chains. http://www.iptables.info/en/
structure-of-iptables.html.

L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, and P. Mohapatra. FIREMAN: A toolkit for firewall
modeling and analysis. In 2006 IEEE Symposium on Security and Privacy (SE&P 2006), May
2006, Berkeley, California, USA, pages 199-213, 2006.

102

https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.openbsd.org/faq/pf/
https://www.frozentux.net/iptables-tutorial/iptables-tutorial.html
https://www.frozentux.net/iptables-tutorial/iptables-tutorial.html
http://www.runtimeconverter.com
https://www.freebsd.org/cgi/man.cgi?ipfw(8)
http://ipset.netfilter.org/iptables.man.html
https://www.netfilter.org/
http://www.iptables.info/en/structure-of-iptables.html
http://www.iptables.info/en/structure-of-iptables.html

Appendice A

Dimostrazioni

Presentiamo la dimostrazione di teoremi, lemmi e corollari presentati nella tesi, divisi seguendo i

capitoli di riferimento.

A.1 Correttezza della normalizzazione e della caratterizzazio-
ne logica di IFCL

Teorema 1 (Correttezza della normalizzazione). Sia F un firewall e C F D la sua versione normaliz-

zata. Chiamiamo s 225 s' un passo del sistema di transizione master del firewall X € {F, F D}.
Vale che
s By o sp,p(f))s/.

Dimostrazione. Si veda [] per la dimostrazione di questo teorema. O
Lemma 1. Data una ruleset R abbiamo che

1. ¥p,s. p,s =% (4accerr,p’) = Pr(p,p’,5);

2. Vp,p',s. Pr(p,p',s) = 3s€S.5=5 A p,s =% (accerr, p’)
Dimostrazione. Si veda [] per la dimostrazione di questo teorema. O

Teorema 2 (Correttezza della caratterizzazione logica). Dato un firewall F ed il suo predicato

corrispondente Pr abbiamo che

1. s 2% sw(p.p') = Pr(p.p,3)

2.Yp,p',s. Pr(p,p/,s) = Is€S.5=s A s 22 s (p,p)

Dimostrazione. Si veda [4] per la dimostrazione di questo teorema. O

A.2 Correttezza della caratterizzazione funzionale
Lemma 2. Sia R una ruleset normalizzata IFCL, abbiamo che

1.¥p,pss. (ps Eg (accerr,p’) <= [R](s)(p) =p")

2. Vp,s. ([R](s)(p) = L <= 3p". p,s =g (oror,p’))

Dimostrazione. La dimostrazione procede per induzione sulla lunghezza della ruleset R:

103

caso base: R = ¢, secondo la semantica denotazionale applico la default policy restituendo p o L;
in entrambi i casi viene applicata la regola (12) della semantica operazionale. Quindi I’enunciato

vale, dove nel caso di pacchetto scartato, p”’ = p.

passo induttivo: Assumo vero I'enunciato per ogni ruleset di lunghezza n, sia R = r- R’ una ruleset
di lunghezza n+1. Sia r = (¢(p, s), a), se ¢(p, s) non & verificato allora [R](s)(p) & definita come
[R'](s)(p) e banalmente, per ogni t, p,s IFr (¢,i) per qualche i se e solo se p, s IFr/ (t,5) per
qualche j. Essendo R’ di lunghezza n, 'enunciato da dimostrare ¢ valido per ipotesi induttiva.

Altrimenti, se ¢(p, s) & verificato procediamo per casi in base al target a:

e se a = accept allora
[R](s)(p) = p e p,s =% (acceet, p), per la regola (1) della semantica operazionale, dato che
p, s IFr (accept, i);

e se a = prop allora
[R](s)(p) = L e p,s =% (orop, p), per la regola (1) della semantica operazionale, dato che
p, s IFr (orop, 7);

e se a = mr(d,, s,) allora
[R](s)(p) = nat(p,dn, sn) € p, s ER (accept, nat(p, dy, s»)), per la regola (4) della semantica
operazionale, dato che p, s kg (vat(dy, s1),7);

e se a = cueck-sTATE(X) e vale p I «, allora
[R](s)(p) = enstabl(o,X,p) e p,s =% (accepr, enstabl(a, X, p)), per la regola (2) della
semantica operazionale, dato che p, s IFg (ciEck-state(X), 7);

e se a = cueck-sTATE(X) ma non vale p kg a, allora
[R](s)(p) = [R'](s)(p) e, per la regola (3) della semantica operazionale, p,s =5 (t,p”) se
e solo se p, s =% (t,p");

e se a = mrk(m) allora
[R](s)(p) = [R'](s)(p) = p[tag — m] e, per la regola (13) della semantica operazionale,
p, s =5 (t,p") se e solo se pltag — m], s =% (¢,p").

O

Teorema 3 (Correttezza della caratterizzazione funzionale). Dato un firewall normalizzato F abbiamo
che

L Vpphs. (522 sw(p,p) < [FI(s)p) =)
2. 9p,s. ([FI(s)(p) = L = —Fp. s 22 50 (p,p))

Dimostrazione. 1. segue banalmente da (q, s,p) =7 (qf,5,p') < [q]7"?(s)(p) = p/, che dimostria-

mo per induzione sul numero di passi nel sistema di transizione slave di IFCL.

caso base: (q,s,p) =7 (gr,s,p’) in un passo se e solo se (¢, 5,p) — (qy,5,0") e q ¢ I, dove (¢,s,p) —
(gf,s,p") a sua volta & vero se e solo se p, s }:Z(q) (accepr, p') e 6(q,p') = qp; [F1(s)(p) = p' in

un passo se e solo se [c(q)](s)(p) =p', (¢, ') = qf, a5 ¢ I e p' = [qs](s)(p’). La tesi segue dal
fatto che Vp € P. [qf](s)(p) = p e dal lemma

passo induttivo: (¢,s,p) =7 (qr,s,p') in n passi se e solo se (¢q,s,p) — (¢",s,p"), ¢" ¢ I e
(q",s,p") —>}ru{q,,} (qr,s,p"); dove (q,5,p) = (¢”,5,p") a sua volta & vero se e solo se p, s =5,
(accerr, p) € 6(q,p") = ¢"; [F](s)(p) = p’ in n passi se e solo se [c¢(q)](s)(p) =", §(¢, ") = ¢,

104

¢ ¢1ep =[] (s)(p"). Dal lemma [2| deriva che p” = p” e di conseguenza ¢ = ¢”;
dallipotesi induttiva, essendo il cammino da ¢’ a g7 lungo n—1, deriva che [¢']77°14"} () (p"") =

P (@ s 0") =g (@550
Per punto 2., dimostriamo che la parte sinistra implica la destra per contropositiva: assumiamo
dp'. s % s (p,p’), allora per il punto 1. vale che [F](s)(p) = p’ # L. Dimostriamo anche l'inverso
per contropositiva: assumiamo che [F](s)(p) # L, ma allora Jp’. [F](s)(p) = p’ e quindi per il punto
1. vale che Hp’.sp’—p/>sErJ(p,p’). O

Corollario 1 (Determinismo dei firewall). Dato un firewall IFCL F, il destino associato ad un

pacchetto p & unico, ovvero
Vp,s. (13p. s 25 s W (p,p')) V (-3 s = s (p,p))

Dimostrazione. Possiamo assumere che F sia normalizzato, senza perdita di generalita dato il teorema

2.4 Prendiamo il risultato di [F](s)(p) e consideriamo i due casi possibili:

e se il risultato ¢ L allora per il teoremaabbiamo che —3p’. s LAl (p,p").

e se il risultato & p’ # L allora per il teorema [3| abbiamo che s 225 s (p, p'), quindi Ip’. s 22

s W (p,p’); supponiamo che Jp’,p". s 2Py sw(p,p) As 22 sw (p,p”), allora, sempre per il

teorema [3|p’ = [F[(s)(p) = p’.

Lemma 3. Per ogni ruleset normalizzata R, stato s e pacchetto p valgono

1L [R]s (p)=1 <= (R)s (p) =1L
2. (R)s (p) # L = [R]s (p) = (R)s (p) ()

Dimostrazione. Dimostriamo 1. per induzione sulla lunghezza di R:

caso base: R ¢ la ruleset vuota, in questo caso entrambe le semantiche si comportano in accordo
a dp: se dp = acceer allora [R]s(p) = p e (R)s(p) = id, con id(p) = p; altrimenti dp = prop e
[[Rﬂs(p) = qRDs(p) =1

passo induttivo: R =r-R', conr = (¢,a): [R]s(p) = L se ¢(p,s) e a = prop, oppure se = (p, s) e
[R].(p) = L (R)a(p) = L se 6(p,) e @ = mor, oppure se ~é(p,5) ¢ (R)a(p) = L, Venunciato

segue banalmente dall’ipotesi induttiva.

Per 4. dimostriamo per induzione sulla lunghezza di R che vale [R]s(t(p)) = p' < (R)L(t(p))(p) =

P

caso base: R ¢ laruleset vuota, dp # prop per assunzione, quindi [R];(t(p)) = t(p) e (R)%(t(p))(p) =
id.

passo induttivo: assumiamo che ’enunciato valga per ogni ruleset di lunghezza n — 1, sia R =
r - R’ una ruleset di lunghezza n, dove r = (¢,a); se ~¢(p, s) allora [R]s(t(p)) = [R']s(t(p)) e
(R):(t(p)) = (R')L(t(p)), che sono uguali per ipotesi induttiva. Se invece ¢(p, s) vale allora per

S

casi su a

e se a = acceet allora (R)%L(t(p)) =t e [R]s(t(p)) = t(p);

S

e g = DROP NoN puo essere perché abbiamo assunto che il pacchetto non viene scartato;

105

e se a = mr(dy,,s,) allora (R).(t(p)) = trpa(dn,sn) x t e [R]s(t(p)) = nat(t(p),dn, sn);
(trnat(dn, $n) X 1)(P) = trnat(dn, sn)(t(p)) = nat(t(p), dn, sn);

e sea = cueck-sTATE(X) e p b5 avallora (R)%((p)) = trstate(c, X)Xt e [R]s(t(p)) = enstabl(a, X, t(p));
(trstato(c, X) X t)(p) = trstato(a, X)(t(p)) = enstabl(a, X, t(p));

e se a = cueck-sTate(X) e p /s allora [R]s(t(p)) = [R']s(t(p)) e (R)L(t(p)) = (R')L(t(p)), che
sono uguali per ipotesi induttiva;

e se a = mrk(m) allora

HWWD:
[R']s((id d : id, cost(m))(t(p))) =
WM« d : id, cost(m)) x t)(p)))

(R)5(t(p))(p) =
qR/Dgid:id, id:id,cost(m))xt((id . id, id - id7 cost(m))(t(p))) _
QR'Dgid:id’ id:id,cost(m)W((zd id, id : id, cost(m)) x t)(p)

che sono uguali per ipotesi induttiva.

O

Teorema 4 (Correttezza della semantica a trasformazioni). Per ogni firewall F, stato s e pacchetto

p valgono

1. [Fls p) =L <= (F)s (p) =L
2. (F)s (p) # L= [Fls (p) = (F)s (p) ()

Dimostrazione. Dimostriamo per induzione sulla lunghezza del cammino che [¢]7/(p) =p' # L se e
solo se (g)71(p) =t # LAt(p) =0

caso base: consideriamo un cammino composto da un unico nodo ¢, se il pacchetto non viene

scartato allora ¢ = ¢ e quindi [qf]7/(p) = p # L, (g7)7""(p) = id # L Aid(p) = p; altrimenti
[4]7(p) = L vale se e solo se [¢(q)](s)(p) = L oppure [e(q)](s)(p) = p' e 8(q,p') € I, il primo
caso, per il lemma |3} & vero se e solo se (c(q))(s)(p) = L, il secondo caso invece, sempre per il
lemma [3] & vero se e solo se [c(q)](s)(p) =t # L e 6(q, t(p)) € I, dove uno dei due casi & vero
se e solo se (g)7 1 (p) = L.

passo induttivo: assumiamo l’enunciato per cammini lunghi n — 1, sia il cammino da q a ¢’, dove

¢’ = gy oppure il pacchetto viene scartato al nodo ¢’ da F. Non pud essere che [¢]7!(p) = L
in quanto il cammino non sarebbe lungo n, per il caso base quindi anche (g)7!(p) ¢ diverso
da L. [q]I"(p) = p' se e solo se [e(q)](s)(p) = ("), 6(q,p") = ¢ e [¢]T (") = p'. Peril
lemma 3] [e(q)](s)(p) = (p”) & vero se e solo se (c(q))(s)(p) = t con t(p) = p’ e per ipotesi
induttiva [¢']7 (p”") = p’ & vero se e solo se ()71 (p”) =t e t/(p") = p. Infine si noti che vale
(o) 21 (p)(p) = p' se e solo se (g)7 1 (p) =t e t'(p) = p'; dove (g)7!(p) =t' & vero se e solo se
(c(@)(s)(p) =t, se t(p) = p" ese (¢) (") =t e t'(p") =p'.

106

A.3 Correttezza della pipeline di transcompilazione

Lemma 4. Due firewall IFCL F e F' sono equivalenti secondo la semantica operazionale se e solo se

la loro normalizzazione é equivalente secondo la semantica denotazionale, ovvero
;g oy / p,p’ /
Vse S,peP.Vp',s.s 2> rs < s—>5 S

se e solo se

(CF D)= (CF D)

’ /
, , . . p.p PP .
Dimostrazione. Per il teorema abbiamo che s =~ r s’ se e solo se s (D) s'. Per il teorema

abbiamo che s L,/)((i) s’ se e solo se [F[(s)(p) =p' e s’ = sW(p,p’). Per il teorema |4| abbiamo
che [F](s)(p) = p’ se e solo se (F))(s)(p)(p) = p'. Per definizione di =, (F) = (F) se e solo se per ogni
pes, (F)(s)(p)(p) = (F)(s)(p)(p)- I teorema segue per transitivita. O

Teorema 5 (Correttezza della pipeline). Sia file.conf un firewall concreto in uno qualunque dei
sistemi k € {iptables, ipfw, pf}. Il firewall target file.conf prodotto dalla pipeline di transcompi-
lazione, per il sistema target k', ha la stessa semantica del firewall source per quanto riguarda pacchetti

non appartenenti a connessioni stabilite. Formalmente vale:

(T (Ck, fork(fite.conf)) D)(suew) = (C (Crr, forp (File.conf')) D)(snew)

Dimostrazione. Per definizione di conyr, C (Cy, fory (file.conf?)) D & uguale a (Cxs, X') alla fine del
passo 3.b della pipeline. Sia { (C, fori(file.conf)) D uguale a (Cg,X).

((Cx, D)) =

® (Ck, f) = dove Vg € Q. f(q) = (c(q))(snew)
© Cr, f) = dove Vg € Q". f'(q) = (c'())(suew)
((Crr, 2D

Dove la seconda uguaglianza vale per ipotesi della pipeline, in particolare il fatto che Fy = Fy, e le

altre due valgono banalmente in quanto i due termini sono sintatticamente identici. O

A.4 Correttezza della sintesi di un firewall

Teorema 6. Sia F» = (C,X) con ¥ = (p,c) il firewall normalizzato in input all’algoritmo di

semiastrazione. L’algoritmo produce un firewall Fy = (C, f) tale che

o F3 ¢ un firewall semiastratto sintetizzato

e la funzione sintetizzata f ¢ tale che per ogni q € Qi vale i(f)(q) = (c(q))(snzw)
Dimostrazione. Fs & un firewall semiastratto sintetizzato in quanto:

e Y(P,t) € f(q). P € M(P), come abbiamo mostrato nel capitolo [5, in quanto le funzioni usate

preservano la forma del parametro della funzione che inizialmente ¢ un multicubo;

o Y(P,t),(P',t') € f(qg). PN P =0, per assurdo assumiamo che esista un p tale che p € P e
p € P’, allora esistono un t e un ¢ tali che ¢(¢(p), s) A —é(t(p), 8);

° U(P,t)ef(q) P =P, ovvero Vp € P. 3(P,t) € f(q). p € P, per assurdo, se non fosse vero, allora
avremmo che esistono un ¢ e un ¢ tali che —¢(t(p), s) A =—d(t(p), s);

107

e per quanto riguarda il fatto che V(P,t) € f (q). P # (), abbiamo assunto di controllare ogni

coppia prima di inserirla, il controllo non & mostrato nell’algoritmo per leggibilita.

Vq € Q. z(f) (¢) = (c(q))(snew) deriva dal fatto che per ogni ruleset R, trasformazione ¢t e multicubo
di pacchetti P, se p € P allora (R)% (p) = i(RULESET-SYMTHESIS(P, R, t))(p), che dimostriamo per

SNEW

induzione sulla lunghezza della ruleset R.

caso base: (R)! (p)=t,

SNEW

i(RULESET_SYMTHESIS(P, R, t))(p) = i({(P,t)})(p) = t.

passo induttivo: si assuma che ’enunciato sia vero per ogni ruleset di lunghezza n — 1, sia R =
(¢,a) - R’ una ruleset lunga n: se —¢(p, syew) oppure a = cieck-state(X) e p iy, allora (R)’ (p)
e i(RULESET_SYMTHESIS(P, R, t))(p) sono rispettivamente uguali a
(R')%,..(p) e i(RULESET_SYMTHESIS(P,, R, t))(p),

per un P, € P, tale che p € P,, i quali sono uguali per ipotesi induttiva.

Altrimenti, se ¢(p, syew) allora p € Ps; analizziamo 'enunciato per casi su a:

e se a = accepr allora (R)! (p) =t,

i(RULESET_SYMTHESIS(P, R, t))(p) = i({(Ps,t)} U...)(p) = ¢;
e se a = rop allora (R). (p) = L,

SNEW

i(RULESET_SYMTHESIS(P, R, t))(p) = i({(Ps, L)} U...)(p) = L;

p) = rnat(dna Sn)
)() = i({(Ps; trnat(dn, sn))} U ...)(P) = tTnat(dn, sn);

e il caso in cui @ = cueck-sTate(X) e p by, @ non & contemplato in quanto impossibile per

e se a = mr(dy, s,) allora (R) . (
)

i(RULESET_SYMTHESIS(P, R, t

definizione nello stato sygy;

e seq— MARK(m) allora (]RDgNEW() QR/DS;szd, id:id, cost(m))xt(p[tag — m])’
mentre RULESET_SYMTHESIS(Ps, R, (id : id, id : id, cost(m)) xt)) C RULESET_SYMTHESIS(P,
R, 1));

quindi da p € P, segue che i(RULESET_SYMTHESIS(P, R, t))(p) sia uguale a
i(RULESET_SYMTHESIS(P;, R, (id : id, id : id, cost(m)) x t))(p) e quindi enunciato & vero

per ipotesi induttiva.
O

Teorema 7. Se due firewall sono simili allora hanno semantica equivalente per quanto riguarda i
pacchetti non ciclanti di F, ovvero: F > F = (Vp ¢ pc(F),s € S. (F)(s)(p) = (F)(s)(p)).

Dimostrazione. 1l teorema segue dal predicato

(Foa. D)2 (Fd, 1) = (vp ¢ pe(F).s € S)T (0) = ()T (0)
che dimostriamo per induzione sulla lunghezza del cammino del pacchetto p in F.
base induttiva: il cammino comprende un solo nodo, sono possibili due alternative

® ¢ = gy, allora assumendo 'antecedente abbiamo che ¢’ = ¢} e quindi lae)Z1(p) =
()T (p) = id;
e altrimenti I'unica alternativa & che (g)7/(p) = L, che & vero se e solo se (c(q))s(p) = L

(il pacchetto non puo essere ciclante per ipotesi). Ma allora per 1'antecedente vale che
c(q) = ¢'(¢') e quindi (¢'(¢'))s(p) = L e (¢') " (p) = L.

108

passo induttivo: assumiamo che I’enunciato sia vero per percorsi lunghi n — 1, assumiamo ’an-
tecedente dell’enunciato, sia ¢ un nodo dal quale il pacchetto p impiega n — 1 passi per essere

accettato o scartato.

(c(q))s(p) non pud essere L in quanto altrimenti il cammino non sarebbe lungo n; per l'an-
tecedente vale ¢(q) = ¢/(¢’). Chiamiamo t il risultato di (c(q))s(p), p = t(p) e ¢1 = 6(q, D).
Vale che (g)7!(p) = qul)sf’lu{ql}(ﬁ). Da (F,q,I) > (F',¢',I') deriva che esiste un ¢} tale che

q; = 0(¢',p) e (F,q1, I U{q1}) > (F',qi,I' U{q;}) dal quale deriva per ipotesi induttiva che,

per ogni p” non ciclante in F, qul)f’lu{ql}(p”) = Gq'll)s}-/J U{qll}(p”).

()" (p) = q(_l’ll)s}-/’llu{qll}(ﬁ), e che p non & ciclante in F.

Infine osserviamo che

O

Teorema 8. Sia F un firewall IFCL, sia F, il risultato dell’applicazione della funzione UNLOOP al
firewall F:

1. Fy é un firewall IFCL aciclico

2. F>F,

3. Vp e pe(F),se€S. (Fu(s)(p) =L
Dimostrazione. Dimostriamo i punti uno per uno:

1. Per assurdo, assumiamo che un pacchetto percorre un percorso contenente un nodo ripetuto q.
Distinguiamo due casi: se ¢ = ¢; abbiamo una contraddizione perché nell’algoritmo il nodo ¢;
non compare mai come destinazione di un arco in A,; altrimenti perché sia possibile un loop
servono almeno due archi diversi (g1,%1, q) e (g2,%1,¢), ma questo & impossibile per ogni nodo
diverso da ¢y e g1 in quanto ogni nodo viene generato fresco ad una iterazione ed usato solo in
quella come nodo destinazione di un unico arco, ed ¢ impossibile anche per ¢; in quanto non ha

archi uscenti e per ¢, il cui unico arco uscente ha come destinazione ¢ .

2. Per prima cosa notiamo che a partire da UNLOOP-REC(F, ¢;,qi,{¢;}), per ogni chiamata UN-
LOOP_REC(F, ¢, qu,I), ¢ = gy se e solo se ¢, = qy. Per induzione sul numero di chiamate

ricorsive alla funzione UNLOOP_REC dimostriamo allora che

UNLOOPREC(F, ¢, qu, 1) = (Qu, Aus cu) = (F, ¢, 1) > (Fu, qu, 1)
dove F,, = (C’LME’U,)aCl_I = (quAuaCU7cf)7 Yu = (Cuvpu)

caso base: B sufficiente una sola applicazione della funzione se non esistono archi uscenti da
g verso nodi ¢’ ¢ I, quindi vale (F,q,I) > (Fu,qu,) in quanto g = ¢ se e solo se ¢, = gy
e lalgoritmo setta ¢, (q,) uguale a ¢(q).
passo induttivo: Assumiamo che sia vero per m — 1 applicazioni della funzione, sia UN-
LOOP_REC(F, ¢, qu, I) un’applicazione che richiede n chiamate, allora (F, ¢, I)> (Fu, qu,)
in quanto:
e l'algoritmo modifica ¢, affinché ¢, (q,) = ¢(q);
® §=(qf <= qu ={f;
e dall’algoritmo risulta che per ogni ¢’ ¢ T e 1 tali che (q,%,¢’) € A, esiste un ¢, tale che
(gu, ,4,) € Ay e tale che UNLOOP REC(F, ¢/, g, 1U{q'}) = (@, Al) con @), € Qu.
A, CA, eV €Q.,.c(d") = c(d).
Per ipotesi induttiva vale quindi che, per F,, = (C,, %), dove C, = (Q.,, A, c,,cf) e
2, = (e,), vale (F,¢', TU{d'}) & (Fl,q,, T U{q'}).

109

Dato che per ogni ¢’ tale che (q,%,¢') € A si ha che Q!, C Q,, A, C A, e V¢" €
Q... (") = cu(q"), possiamo scrivere (F,q', I U{¢'}) > (Fu,q,, I U{¢}) da cui la

tesi.
O

Teorema 9 (Correttezza dell’algoritmo di sintesi). thm:sintesi Sia Fa un firewall IFCL normalizzato

aciclico, sia Fy il firewall astratto sintetizzato restituito dall’algoritmo di sintesi, allora vale:

i(Fa) = (F2) (swew)
Dimostrazione. Dimostriamo per induzione sul numero di nodi massimi attraversati che

VI. Vp € P. i(COMPOSITION REC(F3, q))(p) = (a) 2% (p)

SNEW

caso base: Se il numero massimo di nodi visitati ¢ uno allora siamo nel nodo finale ¢y, dunque vale
che (](If[)gi;’w(p) = id e COMPOSITION REC(F3, g5 = {(P,id)}, con i({(P,id)})(p) = id.

passo induttivo: Assumiamo vero I’enunciato per cammini lunghi fino a n — 1, supponiamo che il
cammino dal nodo ¢ in poi sia lungo al piti n passi.

e se (g)22%(p) = L, allora c(q)(p) = L e per il teorema @ i(f(¢))(p) = L e quindi, per la

semantica della funzione DROPPER, esiste una coppia (P, L) in COMPOSITION,REC(.7}37 q)

tale che p € P e quindi

i(COMPOSITION_REC(F3,) (p) = L = (g) 22" (p)

SNEW

e se invece (g)72:?(p) # L allora

(@220p) = (¢) 72D () x t

dove t = ¢(q)(p), p' = t(p) e ¢ = d(q,p’). Essendo che ¢ & appena stato visitato e che il

grafo e aciclico per ipotesi, possiamo scrivere equivalentemente:
Fa,0 N INF2, 0,
(ahsz” (p) = (q')s” (P') x ¢

Per il teorema@ da t = ¢(q)(p) abbiamo che i(f(q))(p) = t, dal quale, considerando anche

che ¢' = 6(q,p’), per p’ = t(p), deriviamo che esiste un P, tale che (P,t) EFILTER(f(q), ¥)

con p € P e dove v ¢ il predicato sull’arco fra ¢ e ¢'.

Per ipotesi induttiva

(¢)72 (') = i(COMPOSITION REC(Fs, ¢)) (p')

SNEW

quindi abbiamo una coppia (P’,t') € i(COMPOSITION_REC(F3,q’)), tale che p’ € P’ e
_ Fa,0
"= gDz (P')-
Ma allora, chiamando A4 4 I'insieme FILTER(f(q), ¥) e Ay I'insieme i(COMPOSITION_REC(F3,¢"));
vale che i(CONCAT(S\(qﬂ,), Ag)) (@) =t x t da cui la tesi.

110

A.5 Correttezza dell’espressivita di un sistema firewall

Teorema 10. L’insieme delle configurazioni semiastratte di un diagramma di controllo C = (Q, A, ¢i, ¢y),
legali secondo un assegnamento di etichette v, € linsieme delle configurazioni di firewall ottenute dalla

semiastrazione di firewall IFCL normalizzati legali secondo v.
Ms(C,v) ={f:Q=>P—=>T@)U{L} | fFv}
Dimostrazione. Formalmente

Ms(C,v) ={f [Vg € Q- f(q) = (c(0)) (suew) A (¢, p) € Mg} =
M;(C,v) ={f [Vg € Q. c(q) = v(@) A f(q) = (c(@)) (swen) }

Il teorema & vero in quanto VL C {SNAT, DN AT, DROP} vale
(REL=(R)EL) N NEL=3R. (R)=XAANREL)

Per primo dimostriamo R = L = (R) | L; chiamiamo A = (R). Assumiamo per assurdo che
R = L, ma che non valga A = L. Allora per definizione esiste un I ¢ L. A € Ap;.

e se | = SNAT allora deve esistere un p € P, tale che A(p) =t con ¢.sIP # id o t.sPort # id.
Dalla semantica denotazionale e evidente che 'unico modo per avere una trasformazione del

genere & usare un target mr(s,,d,) con s, # x : x, ma allora SN AT deve appartenere a L.
e il caso di DN AT ¢ identico, con d,, # x : x al posto di s,,.

e se | = DROP allora deve esistere un p € P, tale che A\(p) = L, ma dalla semantica denotazionale
¢ evidente che 'unico modo per avere una trasformazione del genere € usare un target brop, ma

allora DROP deve appartenere a L.

Passiamo a A = L = 3R. (R) = AA R |= L. Definiamo, data A, come costruire la ruleset R che
verifica il predicato: semplicemente per ogni coppia (p',t) tale che A(p’) = ¢ scriviamo una regola
(¢,a) dove @(p, s) & vera se e solo se il pacchetto passato per parametro e p’ e il target a & tale che
((¢,a) - R')(p) = t. 11 target a pud essere calcolato in maniera banale: se t = id allora a = accept, se
t = 1 allora a = prop altrimenti a = anat(d,, s,) con d,, e s, adeguati. Vale banalmente per la ruleset
R costruita che (R)) = A.

Assumiamo dunque A = L e che R sia costruita come detto a partire da A; vogliamo provare che
R |= L. Procediamo per contraddizione assumendo che R = L sia falso. Allora deve sussistere uno

dei seguenti casi
e csiste una regola r = (¢, orop) nella ruleset e DROP ¢ L;
ma questo non ¢ possibile per costruzione in quanto inseriamo un target orop solo se A\(p) = L
per qualche p, e questo & possibile solo se A € Agprop, ma allora DROP € L.
e esiste una regola r = (¢, nat(ip : port,x : x)) nella ruleset e SNAT ¢ L

ma questo non & possibile per costruzione in quanto inseriamo un target at(ip : port,ip’ : port’)
con ip o port diversi da x solo se A(p).sIP # id o A(p).sPort # id per qualche p, e questo &
possibile solo se A € Agsny a7, ma allora SNAT € L.

e esiste una regola r = (¢, vat(x : %,ip : port)) nella ruleset e DN AT ¢ L, questo caso & identico

al precedente.

111

e esiste una regola r = (¢, mat(ip; : porty,ips : ports)) nella ruleset e DN AT ¢ L oppure SN AT ¢
L.

anche questo non € possibile per costruzione in quanto inseriamo un target wat(ip : port,ip’ :
port’) con ip o port e ip’ o port’ diversi da x solo se A(p).sIP # id o A(p).sPort # id per
qualche p e A(p').dIP # id o \(p').dPort # id per qualche p’, e questo & possibile solo se
A€ Apgsyar NAgpyar, ma allora SNAT e DN AT sono entrambi in L.

O

Teorema 11. Un firewall astratto A ¢ legale secondo un diagramma di controllo C e un assegnamento

di etichette v se e solo se valgono eo(A, C,v) e e1(\, C,v).
My(C,v) ={AN: P> T[P)U{L} | eo(A,C,v) ANer (N, C,v)}
Dimostrazione.

My(C,v) ={X [f € M3(C,v). ©(m, f)(p) = A(p)}

EO(A,C,U) =vpelP. Jf € MS(va)' (Q(Ca f)) (p> =)‘(p)
e1(A,C,v) = (Vp e P. 3f € M(C,v). (®(C, f)) (p) = A(p)) =
(3f € M3(C,v). Vp € P. (0(C, f)) (p) = Ap))
Abbiamo che ey(\, C,v) A e1(\,C,v) implica per modus ponens 3f € M3(C,v). (®(C, f)) = A e quindi
che A € My(C,v).

Viceversa abbiamo che 3f € Mj3(C,v). (®(C, f)) = X implica €y(A,C,v) e che i due implicano
61()\,C,”U). O

A.6 Correttezza della generazione di configurazioni

Teorema 12. Se il sistema k ¢ uniterale e compatto, e se la funzione X : P — T(P) U { L} verifica la
fattibilita locale, eo(A, Cr,vg), allora (i) <= (i) A (4i1)

Dimostrazione.
[€Ms(C,v) AVp e P. 3m € II(C). A((C, f),p) =7 AO(, f)(p) = A(p) (i)
Vp € P. A(p) # L = f € Ms(C,v) AO(m, f)(p) = A(p) dove {7} = P(Ck, vk, p,A(p)) (ii)
VpeP. A(p) =L = feM;(C,v)AIr e II(C). A((C, f),p) =7 AO(m, f)(p) =L (iii)

Chiaramente (i) <= (ii') A (41), dove
VpeP. Ap) # L= feMs(C,0) A3m € II(C). A((C, f),p) =7 AO(T, f)(p) = Alp) (iD))

11 teorema quindi & vero se e solo se (ii') <= (ii) assumendo che il sistema sia uniterale e compatto
e che valga €y(A, Ci, vk).
Poiché il sistema ¢ uniterale e (A, Ck, vi) vale, 'insieme P(C, vk, p, A(p)) € un singoletto e dunque

(#i") & equivalente a
Vp € P. A(p) # L = f € Ms(C,v) NA((Ck, f),p) = 7 AO(m, f)(p) = A(p) dove {m} = P(Ck, vk, p, A(p))

Essendo k compatto e uniterale possiamo inoltre trascurare il controllo A((Cg, f),p) = 7 in quanto
sussunto da O(m, f)(p) = A\(p), ottenendo quindi (7). O

112

Teorema 13. Se un sistema & senza NAT ripetuti, allora é compatto.

Dimostrazione. Assumiamo che il sistema sia senza NAT ripetuti e che data una configurazione

semiastratta f € M3(Ck,vr) e due pacchetti p,p’ € P, valga

A((Cr: 1), p) = A((Ch, £), 1) =T A O(T, f)(p) = O(m, /)(p) =t # L

~

Vogliamo dimostrare che p = p’. Procediamo per casi:
(m,f)

e se t = id allora banalmente per ogni nodo in 7, f(q)(p) e f(q)(p’) deve essere id, per le proprieta

della composizione.

e se t = (id : id,tdI P : tdPort) dove almeno uno fra tdIP e tdPort ¢ diverso da id; allora deve
esistere un nodo nel percorso tale che DN AT € v(q), poiché non ci sono NAT ripetuti non ce ne

puo essere piu di uno.

Allora banalmente per ogni nodo ¢’ # ¢ in 7, f(¢')(p) e f(¢')(p') deve essere id, e f(q)(p) =
f(q)(p') =t per le proprieta della composizione.

e se t = (tsIP : tsPort,id : id) il caso ¢ praticamente identico al precedente, ma con SNAT al
posto di DN AT.

e se t = (tsIP : tsPort,tdIP : tdPort) allora esistono due nodi, potenzialmente identici, uno
etichettato con SN AT e laltro etichettato con DN AT. Se il nodo ¢ unico allora faccio f(q)(p) =
f(@)(p') =t in quel nodo q e id in tutti gli altri; altrimenti applico la prima trasformazione nel

primo nodo e la seconda nel secondo nodo.
In ogni caso i due pacchetti subiscono le stesse trasformazioni.

O

Teorema 14. Per ogni sistema uniterale e compatto k con diagramma di controllo Cy, etichettato

secondo vy, percorso m € II(Cy), multicubo P e trasformazione t vale che
VfX(Ch,vp, 7, Pit, f) <= X(Cr,vx, 7, P,t, f)
Dimostrazione. Per induzione sulla lunghezza di 7
caso base: se 7 = € allora entrambi i predicati sono veri se e solo se t = id.
passo induttivo: assumo che il teorema valga per percorsi lunghi n — 1, sia 7 = ¢ - #’ lungo n.

o X(Ck,vp,m, P,t, f) & vero se e solo se
Wt t=¢ xt", t' e v(l(m, Cy,uvr)), (P, tef(q), t'(p) =1 e Q(Ck,vk,w’,P',t’,f).
o X(Cp, vk, m, P t, f) & vero se e solo se

Vpe Pt t" ¢t =t'xt", ¢ € v(l(m,Cr,vg)), z(f)(q)(p) =t',t(p) :p’ex(Ck,vk,w',p’,t’,i(f)).

Dato che il sistema e uniterale e compatto, e che a tutti i pacchetti in P e assegnata la stessa

trasformazione, in ogni nodo essi subiranno tutti la stessa trasformazione. Pertanto in
X(Cr, vk, m, Pyt f)

¢ possibile spostare e distribuire il quantificatore nella seguente maniera:

It =t xt" Nt € v(l(m,Cryvr)) AVD € P.i(f)(q)(p) =t AVp € P. x(Cr,vr, ', t'(p), t',i(f))

3ttt =t wxt" At € v(l(m,Cr,v)) A (P t)EF(q) A X(Chyvp, T, t'(P),t, f)

Dove per ipotesi induttiva X(Cg,vg, 7, t'(P),t, f) ¢ verificato se e solo se x(Cg, vk, ', P’ 1/, f)

113

O

Teorema 15 (Correttezza del firewall generato). Se il sistema k é senza NAT ripetuti e la funzio-
ne sintetizzata \ ¢é disgiunta, se esiste una configurazione ¥ € Ty, tale che i(\) = (T (Cr, %) D) e
tale che non esistono pacchetti ciclanti in (Cx,X), allora Ualgoritmo |4 restituisce una configurazione

semiastratta sintetizzata f tale che

i(f) € Ms(Cr, ve) AVp €P. © (Cr,i(f))(p) = i(N)(p)
altrimenti Ualgoritmo termina segnalando errore.

Dimostrazione. L’algoritmo gestisce correttamente i pacchetti accettati in quanto le ipotesi del teo-
rema sono piu forti di quelle dei teoremi [12]e e in quanto la funzione CHI & una riscrittura fedele
del predicato x. Dunque per il teorema [14| vale (ii) e per il teorema [12] se vale (iii), cio¢ i pacchetti
scartati sono gestiti correttamente, allora vale (i) (e quindi la tesi).

Dato che il sistema e uniterale e compatto, per ogni nodo ¢ del diagramma di controllo, esistono

una serie di coppie (p”, "

) tali che se non vale f”(q)(p”) = t” per qualche coppia, allora non & possibile
che ©(Cy, f”") = X e tali che se f/(q)(p") = t” & verificato per ogni nodo ¢ e per ogni coppia dell’insieme
di coppie associato a ¢, allora f” verifica (7). Dal teorema deriva che le coppie (p”, ") associate
al nodo ¢ sono tutte e sole quelle che compaiono nella forma di f/(q)(p”) = t” nello svolgimento di
X (Ck, vi, ™, p, t, f"). Quindi dal teorema [14] deriva che, per ogni nodo ¢, gli insiemi di pacchetti Py
non trattati dalla configurazione astratta f prodotta da CHI, e sfruttati da FILL, sono tali che se uno
qualunque dei pacchetti che non ¢ in P4 fosse trattato diversamente nel nodo g, allora non varrebbe
pitt (44).

Assumiamo dunque per assurdo che esista una configurazione semiastratta f’ che scarta un pac-
chetto p tale che i(X)(p) = L e che f = i(f) invece non lo scarti. Dato che non sono ammessi pacchetti
ciclanti, allora esiste un percorso da ¢; ad un certo nodo ¢4 tale che DROP € v(qq); dato che abbiamo
assunto che f’ verifichi (i¢), il pacchetto p non viene mai trasformato in un pacchetto che sta fuori da

Py . Dimostriamo per induzione sulla lunghezza del percorso che allora anche f scarta il pacchetto.

caso base: se il percorso contiene solo un nodo allora vuol dire che il nono ¢; € etichettato con
DROP, e dato che p € Py abbiamo che sicuramente f(q)(p) = L.

passo induttivo: se il percorso ¢ lungo n allora f trasforma p in p’ e lo passa ad un nodo successivo
q¢'; per ipotesi induttiva allora p’ € P, del nodo ¢’, quindi f manda p in un p” € P, se p € Py.
L’unico caso in cui p ¢ Pg ¢ quello in cui un valore sia gia assegnato a p in ¢, ma dato che p

non viene accettato questo vuol dire che viene gia scartato da un altro nodo.
O

Teorema 16. Sia p = {Rsnat; Ranat, Rnat, Rfil, Renat - Rfit, Ranat - Ryit, Rnat - Ry, Re}, dove Ry,
Rsnat, Rinat € Rnat sono prodotto dall’algoritmo @ con input Ry. Sia c : Q — p Uassegnamento di
ruleset ai nodi del diagramma di controllo del sistema target Cy, generato secondo vy. Se il sistema
target k & senza NAT ripetuti, se ogni percorso da q; a gy comprende almeno un nodo etichettato
con DROP, se Uinterpretazione di X ¢é localmente fattibile dal sistema target, eo(i(j\),Chvk), e sele
etichette sugli archi non predicano sul campo tag, allora la semantica del firewall (Cy,X) con X = (p, c)

per lo stato sygy € identica all’interpretazione di .

((Crs 2D (smw) = 1(N)

114

Dimostrazione. Dato che ogni percorso da ¢; a gy passa per almeno un nodo con etichetta DROP,
e dato che ogni pacchetto p tale che i(A)(p) = L viene scartato se arriva ad un nodo etichettato con
DROP (qualunque sia il suo formato al momento dell’arrivo sul nodo), tutti i pacchetti da scartare
sono gestiti correttamente dal firewall prodotto.

Dato che l'interpretazione ¢ localmente fattibile e che non ci sono NAT ripetuti, esiste un’unica
serie di trasformazioni che un pacchetto p puo subire lungo il percorso per essere trattato secondo
Z(X)(p) =t # 1. Dato che la funzione su pacchetti & localmente fattibile, per ogni pacchetto p esiste
un percorso 7 nel diagramma di controllo, avente le etichette adeguate alla trasformazione assegnatagli
t= 1(5\) E banale che la composizione delle trasformazioni delle ruleset prodotte dall’algoritmo, in
corrispondenza delle etichette del percorso, realizzano la trasformazione ¢, a meno del campo tag.
Dato che il sistema & senza NAT ripetuti, il fatto che la composizione delle trasformazioni associate ai
nodi corrisponda alla trasformazione attesa implica che anche nodo per nodo, le trasformazioni siano
quelle attese a meno del campo tag, e quindi, dato che per ipotesi le etichette sugli archi non predicano
sul campo tag, vale che A((Cg,X),p) = m. Vale dunque sia A((Cg,X),p) = 7 che O(m, f)(p) = t, con
(Ck, f) semiastrazione di (Cx,X); e quindi vale la tesi. O

Teorema 17. Sia p = {Rsnat, Ranat, Rnats Ryit, Renat - Ryit, Ranat - Ryity Rnat - Rya, Re}, dove Ry,
Rgnat, Ranat € Rpat sono prodotto dall’algoritmo [6 con input Ry. Sia ¢ : Q@ — p l'assegnamento
di ruleset ai nodi del diagramma di controllo del sistema target Cy, generato secondo vg. Se tutti
i percorsi del sistema target k, II(Cy), sono tali che {(7t) = {SNAT, DNAT, DROP}, e se nessun
pacchetto a cui siano applicate trasformazioni SNAT e DNAT al massimo una volta percorre dei loop
nel diagramma di controllo, allora la semantica del firewall (Ci,X) con X = (p,c) per lo stato Sygy €

identica all’interpretazione di A

((Crer D)) (swmw) = i(N)
Dimostrazione. Si puo notare che nessun pacchetto subisce piu di una trasformazione SNAT e DNAT
diversa, qualsiasi sia ’ordine e il numero delle ruleset visitate. Pertanto nessun pacchetto nel sistema
prodotto sara scartato per colpa di un ciclo nel diagramma di controllo e dato che ogni percorso verso
qr ¢ etichettato con SNAT, DNAT e DROP, qualunque sia t = i(\)(p) & banale verificare che il

firewall prodotto associa al pacchetto p il destino ¢. O

115

	Introduzione
	Background
	Lavori correlati
	Sistemi supportati
	Definizioni preliminari

	Ipotesi di lavoro
	Contributo
	Schema della tesi

	IFCL
	Fondamenti di IFCL
	Modellazione dei sistemi reali supportati
	Modellazione di iptables
	Modellazione di pf
	Modellazione di ipfw

	Semantica operazionale di IFCL
	Normalizzazione
	Caratterizzazione dichiarativa

	Caratterizzazione funzionale
	Semantica denotazionale
	Semantica a trasformazioni

	Pipeline di transcompilazione
	Transcompilazione di configurazioni firewall
	Presentazione della pipeline
	Esempio di transcompilazione

	Domini della pipeline
	Domini sintetici

	Algoritmo di sintesi
	Semiastrazione
	Composizione
	Firwall aciclici
	Algoritmo di composizione

	Esempio di sintesi in pf

	Espressività dei sistemi firewall
	Configurazioni IFCL esprimibili
	Configurazioni astratte esprimibili
	Fattibilità locale
	Coerenza

	Generazione di un firewall
	Concretizzazione
	Generazione per livelli
	Generazione del firewall semiastratto
	Decomposizione sintetizzata
	Generazione diretta della configurazione IFCL usando i tag
	Generazione delle ruleset
	Assegnamento delle ruleset ai nodi
	Correttezza della configurazione generata
	Problemi di concretizzazione

	Conclusioni
	Implementazione
	Implementazione banale
	Implementazione con segment tree

	Sviluppi futuri
	NAT non deterministico
	Stato interno

	Dimostrazioni
	Correttezza della normalizzazione e della caratterizzazione logica di IFCL
	Correttezza della caratterizzazione funzionale
	Correttezza della pipeline di transcompilazione
	Correttezza della sintesi di un firewall
	Correttezza dell'espressività di un sistema firewall
	Correttezza della generazione di configurazioni

